Commit 6e076537 authored by David Ahern's avatar David Ahern Committed by David S. Miller

net: vrf: Documentation update

Update vrf documentation for changes made to 4.4 - 4.8 kernels
and iproute2 support for vrf keyword.
Signed-off-by: default avatarDavid Ahern <dsa@cumulusnetworks.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent b38a75d2
...@@ -15,9 +15,9 @@ the use of higher priority ip rules (Policy Based Routing, PBR) to take ...@@ -15,9 +15,9 @@ the use of higher priority ip rules (Policy Based Routing, PBR) to take
precedence over the VRF device rules directing specific traffic as desired. precedence over the VRF device rules directing specific traffic as desired.
In addition, VRF devices allow VRFs to be nested within namespaces. For In addition, VRF devices allow VRFs to be nested within namespaces. For
example network namespaces provide separation of network interfaces at L1 example network namespaces provide separation of network interfaces at the
(Layer 1 separation), VLANs on the interfaces within a namespace provide device layer, VLANs on the interfaces within a namespace provide L2 separation
L2 separation and then VRF devices provide L3 separation. and then VRF devices provide L3 separation.
Design Design
------ ------
...@@ -37,21 +37,22 @@ are then enslaved to a VRF device: ...@@ -37,21 +37,22 @@ are then enslaved to a VRF device:
+------+ +------+ +------+ +------+
Packets received on an enslaved device and are switched to the VRF device Packets received on an enslaved device and are switched to the VRF device
using an rx_handler which gives the impression that packets flow through in the IPv4 and IPv6 processing stacks giving the impression that packets
the VRF device. Similarly on egress routing rules are used to send packets flow through the VRF device. Similarly on egress routing rules are used to
to the VRF device driver before getting sent out the actual interface. This send packets to the VRF device driver before getting sent out the actual
allows tcpdump on a VRF device to capture all packets into and out of the interface. This allows tcpdump on a VRF device to capture all packets into
VRF as a whole.[1] Similarly, netfilter [2] and tc rules can be applied and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be
using the VRF device to specify rules that apply to the VRF domain as a whole. applied using the VRF device to specify rules that apply to the VRF domain
as a whole.
[1] Packets in the forwarded state do not flow through the device, so those [1] Packets in the forwarded state do not flow through the device, so those
packets are not seen by tcpdump. Will revisit this limitation in a packets are not seen by tcpdump. Will revisit this limitation in a
future release. future release.
[2] Iptables on ingress is limited to NF_INET_PRE_ROUTING only with skb->dev [2] Iptables on ingress supports PREROUTING with skb->dev set to the real
set to real ingress device and egress is limited to NF_INET_POST_ROUTING. ingress device and both INPUT and PREROUTING rules with skb->dev set to
Will revisit this limitation in a future release. the VRF device. For egress POSTROUTING and OUTPUT rules can be written
using either the VRF device or real egress device.
Setup Setup
----- -----
...@@ -59,23 +60,33 @@ Setup ...@@ -59,23 +60,33 @@ Setup
e.g, ip link add vrf-blue type vrf table 10 e.g, ip link add vrf-blue type vrf table 10
ip link set dev vrf-blue up ip link set dev vrf-blue up
2. Rules are added that send lookups to the associated FIB table when the 2. An l3mdev FIB rule directs lookups to the table associated with the device.
iif or oif is the VRF device. e.g., A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
l3mdev rule for IPv4 and IPv6 when the first device is created with a
default preference of 1000. Users may delete the rule if desired and add
with a different priority or install per-VRF rules.
Prior to the v4.8 kernel iif and oif rules are needed for each VRF device:
ip ru add oif vrf-blue table 10 ip ru add oif vrf-blue table 10
ip ru add iif vrf-blue table 10 ip ru add iif vrf-blue table 10
Set the default route for the table (and hence default route for the VRF). 3. Set the default route for the table (and hence default route for the VRF).
e.g, ip route add table 10 prohibit default ip route add table 10 unreachable default
3. Enslave L3 interfaces to a VRF device. 4. Enslave L3 interfaces to a VRF device.
e.g, ip link set dev eth1 master vrf-blue ip link set dev eth1 master vrf-blue
Local and connected routes for enslaved devices are automatically moved to Local and connected routes for enslaved devices are automatically moved to
the table associated with VRF device. Any additional routes depending on the table associated with VRF device. Any additional routes depending on
the enslaved device will need to be reinserted following the enslavement. the enslaved device are dropped and will need to be reinserted to the VRF
FIB table following the enslavement.
The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
addresses as VRF enslavement changes.
sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
4. Additional VRF routes are added to associated table. 5. Additional VRF routes are added to associated table.
e.g., ip route add table 10 ... ip route add table 10 ...
Applications Applications
...@@ -87,39 +98,34 @@ VRF device: ...@@ -87,39 +98,34 @@ VRF device:
or to specify the output device using cmsg and IP_PKTINFO. or to specify the output device using cmsg and IP_PKTINFO.
TCP services running in the default VRF context (ie., not bound to any VRF
device) can work across all VRF domains by enabling the tcp_l3mdev_accept
sysctl option:
sysctl -w net.ipv4.tcp_l3mdev_accept=1
Limitations netfilter rules on the VRF device can be used to limit access to services
----------- running in the default VRF context as well.
Index of original ingress interface is not available via cmsg. Will address
soon. The default VRF does not have limited scope with respect to port bindings.
That is, if a process does a wildcard bind to a port in the default VRF it
owns the port across all VRF domains within the network namespace.
################################################################################ ################################################################################
Using iproute2 for VRFs Using iproute2 for VRFs
======================= =======================
VRF devices do *not* have to start with 'vrf-'. That is a convention used here iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
for emphasis of the device type, similar to use of 'br' in bridge names. section lists both commands where appropriate -- with the vrf keyword and the
older form without it.
1. Create a VRF 1. Create a VRF
To instantiate a VRF device and associate it with a table: To instantiate a VRF device and associate it with a table:
$ ip link add dev NAME type vrf table ID $ ip link add dev NAME type vrf table ID
Remember to add the ip rules as well: As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
$ ip ru add oif NAME table 10 covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
$ ip ru add iif NAME table 10 device create.
$ ip -6 ru add oif NAME table 10
$ ip -6 ru add iif NAME table 10
Without the rules route lookups are not directed to the table.
For example:
$ ip link add dev vrf-blue type vrf table 10
$ ip ru add pref 200 oif vrf-blue table 10
$ ip ru add pref 200 iif vrf-blue table 10
$ ip -6 ru add pref 200 oif vrf-blue table 10
$ ip -6 ru add pref 200 iif vrf-blue table 10
2. List VRFs 2. List VRFs
...@@ -129,16 +135,16 @@ for emphasis of the device type, similar to use of 'br' in bridge names. ...@@ -129,16 +135,16 @@ for emphasis of the device type, similar to use of 'br' in bridge names.
For example: For example:
$ ip -d link show type vrf $ ip -d link show type vrf
11: vrf-mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0 link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
vrf table 1 addrgenmode eui64 vrf table 1 addrgenmode eui64
12: vrf-red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0 link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
vrf table 10 addrgenmode eui64 vrf table 10 addrgenmode eui64
13: vrf-blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0 link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
vrf table 66 addrgenmode eui64 vrf table 66 addrgenmode eui64
14: vrf-green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0 link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
vrf table 81 addrgenmode eui64 vrf table 81 addrgenmode eui64
...@@ -146,43 +152,44 @@ for emphasis of the device type, similar to use of 'br' in bridge names. ...@@ -146,43 +152,44 @@ for emphasis of the device type, similar to use of 'br' in bridge names.
Or in brief output: Or in brief output:
$ ip -br link show type vrf $ ip -br link show type vrf
vrf-mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP> mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
vrf-red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP> red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
vrf-blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP> blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
vrf-green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP> green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
3. Assign a Network Interface to a VRF 3. Assign a Network Interface to a VRF
Network interfaces are assigned to a VRF by enslaving the netdevice to a Network interfaces are assigned to a VRF by enslaving the netdevice to a
VRF device: VRF device:
$ ip link set dev NAME master VRF-NAME $ ip link set dev NAME master NAME
On enslavement connected and local routes are automatically moved to the On enslavement connected and local routes are automatically moved to the
table associated with the VRF device. table associated with the VRF device.
For example: For example:
$ ip link set dev eth0 master vrf-mgmt $ ip link set dev eth0 master mgmt
4. Show Devices Assigned to a VRF 4. Show Devices Assigned to a VRF
To show devices that have been assigned to a specific VRF add the master To show devices that have been assigned to a specific VRF add the master
option to the ip command: option to the ip command:
$ ip link show master VRF-NAME $ ip link show vrf NAME
$ ip link show master NAME
For example: For example:
$ ip link show master vrf-red $ ip link show vrf red
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP mode DEFAULT group default qlen 1000 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP mode DEFAULT group default qlen 1000 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master vrf-red state DOWN mode DEFAULT group default qlen 1000 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
Or using the brief output: Or using the brief output:
$ ip -br link show master vrf-red $ ip -br link show master red
eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP> eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP> eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST> eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST>
...@@ -192,14 +199,15 @@ for emphasis of the device type, similar to use of 'br' in bridge names. ...@@ -192,14 +199,15 @@ for emphasis of the device type, similar to use of 'br' in bridge names.
To list neighbor entries associated with devices enslaved to a VRF device To list neighbor entries associated with devices enslaved to a VRF device
add the master option to the ip command: add the master option to the ip command:
$ ip [-6] neigh show master VRF-NAME $ ip [-6] neigh show vrf NAME
$ ip [-6] neigh show master NAME
For example: For example:
$ ip neigh show master vrf-red $ ip neigh show vrf red
10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
$ ip -6 neigh show master vrf-red $ ip -6 neigh show vrf red
2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
...@@ -207,11 +215,12 @@ for emphasis of the device type, similar to use of 'br' in bridge names. ...@@ -207,11 +215,12 @@ for emphasis of the device type, similar to use of 'br' in bridge names.
To show addresses for interfaces associated with a VRF add the master To show addresses for interfaces associated with a VRF add the master
option to the ip command: option to the ip command:
$ ip addr show master VRF-NAME $ ip addr show vrf NAME
$ ip addr show master NAME
For example: For example:
$ ip addr show master vrf-red $ ip addr show vrf red
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP group default qlen 1000 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1 inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
valid_lft forever preferred_lft forever valid_lft forever preferred_lft forever
...@@ -219,7 +228,7 @@ for emphasis of the device type, similar to use of 'br' in bridge names. ...@@ -219,7 +228,7 @@ for emphasis of the device type, similar to use of 'br' in bridge names.
valid_lft forever preferred_lft forever valid_lft forever preferred_lft forever
inet6 fe80::ff:fe00:202/64 scope link inet6 fe80::ff:fe00:202/64 scope link
valid_lft forever preferred_lft forever valid_lft forever preferred_lft forever
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master vrf-red state UP group default qlen 1000 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2 inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
valid_lft forever preferred_lft forever valid_lft forever preferred_lft forever
...@@ -227,11 +236,11 @@ for emphasis of the device type, similar to use of 'br' in bridge names. ...@@ -227,11 +236,11 @@ for emphasis of the device type, similar to use of 'br' in bridge names.
valid_lft forever preferred_lft forever valid_lft forever preferred_lft forever
inet6 fe80::ff:fe00:203/64 scope link inet6 fe80::ff:fe00:203/64 scope link
valid_lft forever preferred_lft forever valid_lft forever preferred_lft forever
7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master vrf-red state DOWN group default qlen 1000 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
Or in brief format: Or in brief format:
$ ip -br addr show master vrf-red $ ip -br addr show vrf red
eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64 eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64 eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
eth5 DOWN eth5 DOWN
...@@ -241,10 +250,11 @@ for emphasis of the device type, similar to use of 'br' in bridge names. ...@@ -241,10 +250,11 @@ for emphasis of the device type, similar to use of 'br' in bridge names.
To show routes for a VRF use the ip command to display the table associated To show routes for a VRF use the ip command to display the table associated
with the VRF device: with the VRF device:
$ ip [-6] route show vrf NAME
$ ip [-6] route show table ID $ ip [-6] route show table ID
For example: For example:
$ ip route show table vrf-red $ ip route show vrf red
prohibit default prohibit default
broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2 broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2
10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2
...@@ -255,7 +265,7 @@ for emphasis of the device type, similar to use of 'br' in bridge names. ...@@ -255,7 +265,7 @@ for emphasis of the device type, similar to use of 'br' in bridge names.
local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2 local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2
broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2 broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2
$ ip -6 route show table vrf-red $ ip -6 route show vrf red
local 2002:1:: dev lo proto none metric 0 pref medium local 2002:1:: dev lo proto none metric 0 pref medium
local 2002:1::2 dev lo proto none metric 0 pref medium local 2002:1::2 dev lo proto none metric 0 pref medium
2002:1::/120 dev eth1 proto kernel metric 256 pref medium 2002:1::/120 dev eth1 proto kernel metric 256 pref medium
...@@ -268,23 +278,24 @@ for emphasis of the device type, similar to use of 'br' in bridge names. ...@@ -268,23 +278,24 @@ for emphasis of the device type, similar to use of 'br' in bridge names.
local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium
fe80::/64 dev eth1 proto kernel metric 256 pref medium fe80::/64 dev eth1 proto kernel metric 256 pref medium
fe80::/64 dev eth2 proto kernel metric 256 pref medium fe80::/64 dev eth2 proto kernel metric 256 pref medium
ff00::/8 dev vrf-red metric 256 pref medium ff00::/8 dev red metric 256 pref medium
ff00::/8 dev eth1 metric 256 pref medium ff00::/8 dev eth1 metric 256 pref medium
ff00::/8 dev eth2 metric 256 pref medium ff00::/8 dev eth2 metric 256 pref medium
8. Route Lookup for a VRF 8. Route Lookup for a VRF
A test route lookup can be done for a VRF by adding the oif option to ip: A test route lookup can be done for a VRF:
$ ip [-6] route get oif VRF-NAME ADDRESS $ ip [-6] route get vrf NAME ADDRESS
$ ip [-6] route get oif NAME ADDRESS
For example: For example:
$ ip route get 10.2.1.40 oif vrf-red $ ip route get 10.2.1.40 vrf red
10.2.1.40 dev eth1 table vrf-red src 10.2.1.2 10.2.1.40 dev eth1 table red src 10.2.1.2
cache cache
$ ip -6 route get 2002:1::32 oif vrf-red $ ip -6 route get 2002:1::32 vrf red
2002:1::32 from :: dev eth1 table vrf-red proto kernel src 2002:1::2 metric 256 pref medium 2002:1::32 from :: dev eth1 table red proto kernel src 2002:1::2 metric 256 pref medium
9. Removing Network Interface from a VRF 9. Removing Network Interface from a VRF
...@@ -303,46 +314,40 @@ for emphasis of the device type, similar to use of 'br' in bridge names. ...@@ -303,46 +314,40 @@ for emphasis of the device type, similar to use of 'br' in bridge names.
Commands used in this example: Commands used in this example:
cat >> /etc/iproute2/rt_tables <<EOF cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
1 vrf-mgmt 1 mgmt
10 vrf-red 10 red
66 vrf-blue 66 blue
81 vrf-green 81 green
EOF EOF
function vrf_create function vrf_create
{ {
VRF=$1 VRF=$1
TBID=$2 TBID=$2
# create VRF device
ip link add vrf-${VRF} type vrf table ${TBID}
# add rules that direct lookups to vrf table # create VRF device
ip ru add pref 200 oif vrf-${VRF} table ${TBID} ip link add ${VRF} type vrf table ${TBID}
ip ru add pref 200 iif vrf-${VRF} table ${TBID}
ip -6 ru add pref 200 oif vrf-${VRF} table ${TBID}
ip -6 ru add pref 200 iif vrf-${VRF} table ${TBID}
if [ "${VRF}" != "mgmt" ]; then if [ "${VRF}" != "mgmt" ]; then
ip route add table ${TBID} prohibit default ip route add table ${TBID} unreachable default
fi fi
ip link set dev vrf-${VRF} up ip link set dev ${VRF} up
ip link set dev vrf-${VRF} state up
} }
vrf_create mgmt 1 vrf_create mgmt 1
ip link set dev eth0 master vrf-mgmt ip link set dev eth0 master mgmt
vrf_create red 10 vrf_create red 10
ip link set dev eth1 master vrf-red ip link set dev eth1 master red
ip link set dev eth2 master vrf-red ip link set dev eth2 master red
ip link set dev eth5 master vrf-red ip link set dev eth5 master red
vrf_create blue 66 vrf_create blue 66
ip link set dev eth3 master vrf-blue ip link set dev eth3 master blue
vrf_create green 81 vrf_create green 81
ip link set dev eth4 master vrf-green ip link set dev eth4 master green
Interface addresses from /etc/network/interfaces: Interface addresses from /etc/network/interfaces:
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment