Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
L
linux
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Kirill Smelkov
linux
Commits
6ed79b63
Commit
6ed79b63
authored
Jan 10, 2004
by
Jeff Garzik
Browse files
Options
Browse Files
Download
Plain Diff
Merge redhat.com:/spare/repo/netdev-2.6/natsemi
into redhat.com:/spare/repo/netdev-2.6/misc
parents
9f28b416
f1f4d2f6
Changes
7
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
4 additions
and
965 deletions
+4
-965
drivers/net/68360enet.c
drivers/net/68360enet.c
+0
-951
drivers/net/ne2k-pci.c
drivers/net/ne2k-pci.c
+3
-0
drivers/net/starfire.c
drivers/net/starfire.c
+0
-1
drivers/net/tokenring/smctr.c
drivers/net/tokenring/smctr.c
+0
-8
drivers/net/wan/farsync.c
drivers/net/wan/farsync.c
+0
-3
drivers/net/wan/pc300_drv.c
drivers/net/wan/pc300_drv.c
+0
-2
drivers/net/wireless/orinoco_pci.c
drivers/net/wireless/orinoco_pci.c
+1
-0
No files found.
drivers/net/68360enet.c
deleted
100644 → 0
View file @
9f28b416
/*
* Ethernet driver for Motorola MPC8xx.
* Copyright (c) 2000 Michael Leslie <mleslie@lineo.com>
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
*
* I copied the basic skeleton from the lance driver, because I did not
* know how to write the Linux driver, but I did know how the LANCE worked.
*
* This version of the driver is somewhat selectable for the different
* processor/board combinations. It works for the boards I know about
* now, and should be easily modified to include others. Some of the
* configuration information is contained in "commproc.h" and the
* remainder is here.
*
* Buffer descriptors are kept in the CPM dual port RAM, and the frame
* buffers are in the host memory.
*
* Right now, I am very watseful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets.
*
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <asm/irq.h>
#include <asm/m68360.h>
/* #include <asm/8xx_immap.h> */
/* #include <asm/pgtable.h> */
/* #include <asm/mpc8xx.h> */
#include <asm/bitops.h>
/* #include <asm/uaccess.h> */
#include <asm/commproc.h>
/*
* Theory of Operation
*
* The MPC8xx CPM performs the Ethernet processing on SCC1. It can use
* an aribtrary number of buffers on byte boundaries, but must have at
* least two receive buffers to prevent constant overrun conditions.
*
* The buffer descriptors are allocated from the CPM dual port memory
* with the data buffers allocated from host memory, just like all other
* serial communication protocols. The host memory buffers are allocated
* from the free page pool, and then divided into smaller receive and
* transmit buffers. The size of the buffers should be a power of two,
* since that nicely divides the page. This creates a ring buffer
* structure similar to the LANCE and other controllers.
*
* Like the LANCE driver:
* The driver runs as two independent, single-threaded flows of control. One
* is the send-packet routine, which enforces single-threaded use by the
* cep->tx_busy flag. The other thread is the interrupt handler, which is
* single threaded by the hardware and other software.
*
* The send packet thread has partial control over the Tx ring and the
* 'cep->tx_busy' flag. It sets the tx_busy flag whenever it's queuing a Tx
* packet. If the next queue slot is empty, it clears the tx_busy flag when
* finished otherwise it sets the 'lp->tx_full' flag.
*
* The MBX has a control register external to the MPC8xx that has some
* control of the Ethernet interface. Information is in the manual for
* your board.
*
* The RPX boards have an external control/status register. Consult the
* programming documents for details unique to your board.
*
* For the TQM8xx(L) modules, there is no control register interface.
* All functions are directly controlled using I/O pins. See commproc.h.
*/
/* The transmitter timeout
*/
#define TX_TIMEOUT (2*HZ)
/* The number of Tx and Rx buffers. These are allocated statically here.
* We don't need to allocate pages for the transmitter. We just use
* the skbuffer directly.
*/
#ifdef CONFIG_ENET_BIG_BUFFERS
#define RX_RING_SIZE 64
#define TX_RING_SIZE 64
/* Must be power of two */
#define TX_RING_MOD_MASK 63
/* for this to work */
#else
#define RX_RING_SIZE 8
#define TX_RING_SIZE 8
/* Must be power of two */
#define TX_RING_MOD_MASK 7
/* for this to work */
#endif
#define CPM_ENET_RX_FRSIZE 2048
/* overkill left over from ppc page-based allocation */
static
char
rx_buf_pool
[
RX_RING_SIZE
*
CPM_ENET_RX_FRSIZE
];
/* The CPM stores dest/src/type, data, and checksum for receive packets.
*/
#define PKT_MAXBUF_SIZE 1518
#define PKT_MINBUF_SIZE 64
#define PKT_MAXBLR_SIZE 1520
/* The CPM buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
* The dirty_tx tracks the current buffer that is being sent by the
* controller. The cur_tx and dirty_tx are equal under both completely
* empty and completely full conditions. The empty/ready indicator in
* the buffer descriptor determines the actual condition.
*/
struct
scc_enet_private
{
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
struct
sk_buff
*
tx_skbuff
[
TX_RING_SIZE
];
ushort
skb_cur
;
ushort
skb_dirty
;
/* CPM dual port RAM relative addresses.
*/
QUICC_BD
*
rx_bd_base
;
/* Address of Rx and Tx buffers. */
QUICC_BD
*
tx_bd_base
;
QUICC_BD
*
cur_rx
,
*
cur_tx
;
/* The next free ring entry */
QUICC_BD
*
dirty_tx
;
/* The ring entries to be free()ed. */
volatile
struct
scc_regs
*
sccp
;
/* struct net_device_stats stats; */
struct
net_device_stats
stats
;
uint
tx_full
;
/* spinlock_t lock; */
volatile
unsigned
int
lock
;
};
static
int
scc_enet_open
(
struct
net_device
*
dev
);
static
int
scc_enet_start_xmit
(
struct
sk_buff
*
skb
,
struct
net_device
*
dev
);
static
int
scc_enet_rx
(
struct
net_device
*
dev
);
static
irqreturn_t
scc_enet_interrupt
(
int
vec
,
void
*
dev_id
,
struct
pt_regs
*
fp
);
static
int
scc_enet_close
(
struct
net_device
*
dev
);
/* static struct net_device_stats *scc_enet_get_stats(struct net_device *dev); */
static
struct
net_device_stats
*
scc_enet_get_stats
(
struct
net_device
*
dev
);
static
void
set_multicast_list
(
struct
net_device
*
dev
);
/* Get this from various configuration locations (depends on board).
*/
/*static ushort my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };*/
/* Typically, 860(T) boards use SCC1 for Ethernet, and other 8xx boards
* use SCC2. This is easily extended if necessary.
*/
#define CONFIG_SCC1_ENET
/* by default */
#ifdef CONFIG_SCC1_ENET
#define CPM_CR_ENET CPM_CR_CH_SCC1
#define PROFF_ENET PROFF_SCC1
#define SCC_ENET 0
#define CPMVEC_ENET CPMVEC_SCC1
#endif
#ifdef CONFIG_SCC2_ENET
#define CPM_CR_ENET CPM_CR_CH_SCC2
#define PROFF_ENET PROFF_SCC2
#define SCC_ENET 1
/* Index, not number! */
#define CPMVEC_ENET CPMVEC_SCC2
#endif
static
int
scc_enet_open
(
struct
net_device
*
dev
)
{
/* I should reset the ring buffers here, but I don't yet know
* a simple way to do that.
* mleslie: That's no biggie. Worth doing, too.
*/
/* netif_start_queue(dev); */
return
0
;
/* Always succeed */
}
static
int
scc_enet_start_xmit
(
struct
sk_buff
*
skb
,
struct
net_device
*
dev
)
{
struct
scc_enet_private
*
cep
=
(
struct
scc_enet_private
*
)
dev
->
priv
;
volatile
QUICC_BD
*
bdp
;
/* Fill in a Tx ring entry */
bdp
=
cep
->
cur_tx
;
#ifndef final_version
if
(
bdp
->
status
&
BD_ENET_TX_READY
)
{
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since cep->tx_busy should be set.
*/
printk
(
"%s: tx queue full!.
\n
"
,
dev
->
name
);
return
1
;
}
#endif
/* Clear all of the status flags.
*/
bdp
->
status
&=
~
BD_ENET_TX_STATS
;
/* If the frame is short, tell CPM to pad it.
*/
if
(
skb
->
len
<=
ETH_ZLEN
)
bdp
->
status
|=
BD_ENET_TX_PAD
;
else
bdp
->
status
&=
~
BD_ENET_TX_PAD
;
/* Set buffer length and buffer pointer.
*/
bdp
->
length
=
skb
->
len
;
/* bdp->buf = __pa(skb->data); */
bdp
->
buf
=
skb
->
data
;
/* Save skb pointer.
*/
cep
->
tx_skbuff
[
cep
->
skb_cur
]
=
skb
;
/* cep->stats.tx_bytes += skb->len; */
/* TODO: It would really be nice... */
cep
->
skb_cur
=
(
cep
->
skb_cur
+
1
)
&
TX_RING_MOD_MASK
;
/* Push the data cache so the CPM does not get stale memory
* data.
*/
/* flush_dcache_range((unsigned long)(skb->data), */
/* (unsigned long)(skb->data + skb->len)); */
/* spin_lock_irq(&cep->lock); */
/* TODO: SPINLOCK */
local_irq_disable
();
if
(
cep
->
lock
>
0
)
{
printk
(
"scc_enet_start_xmit() lock == %d
\n
"
,
cep
->
lock
);
}
else
{
cep
->
lock
++
;
}
/* Send it on its way. Tell CPM its ready, interrupt when done,
* its the last BD of the frame, and to put the CRC on the end.
*/
bdp
->
status
|=
(
BD_ENET_TX_READY
|
BD_ENET_TX_INTR
|
BD_ENET_TX_LAST
|
BD_ENET_TX_TC
);
dev
->
trans_start
=
jiffies
;
/* If this was the last BD in the ring, start at the beginning again.
*/
if
(
bdp
->
status
&
BD_ENET_TX_WRAP
)
bdp
=
cep
->
tx_bd_base
;
else
bdp
++
;
if
(
bdp
->
status
&
BD_ENET_TX_READY
)
{
/* netif_stop_queue(dev); */
cep
->
tx_full
=
1
;
}
cep
->
cur_tx
=
(
QUICC_BD
*
)
bdp
;
/* spin_unlock_irq(&cep->lock); */
/* TODO: SPINLOCK */
cep
->
lock
--
;
sti
();
return
0
;
}
#if 0
static void
scc_enet_timeout(struct net_device *dev)
{
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
printk("%s: transmit timed out.\n", dev->name);
cep->stats.tx_errors++;
#ifndef final_version
{
int i;
QUICC_BD *bdp;
printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
cep->cur_tx, cep->tx_full ? " (full)" : "",
cep->cur_rx);
bdp = cep->tx_bd_base;
for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
printk("%04x %04x %08x\n",
bdp->status,
bdp->length,
(int)(bdp->buf));
bdp = cep->rx_bd_base;
for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
printk("%04x %04x %08x\n",
bdp->status,
bdp->length,
(int)(bdp->buf));
}
#endif
/* if (!cep->tx_full) */
/* netif_wake_queue(dev); */
}
#endif
/* The interrupt handler.
* This is called from the CPM handler, not the MPC core interrupt.
*/
static
irqreturn_t
scc_enet_interrupt
(
int
vec
,
void
*
dev_id
,
struct
pt_regs
*
fp
)
{
struct
net_device
*
dev
=
(
struct
net_device
*
)
dev_id
;
volatile
struct
scc_enet_private
*
cep
;
volatile
QUICC_BD
*
bdp
;
ushort
int_events
;
int
must_restart
;
cep
=
(
struct
scc_enet_private
*
)
dev
->
priv
;
/* Get the interrupt events that caused us to be here.
*/
int_events
=
cep
->
sccp
->
scc_scce
;
cep
->
sccp
->
scc_scce
=
int_events
;
must_restart
=
0
;
/* Handle receive event in its own function.
*/
if
(
int_events
&
SCCE_ENET_RXF
)
scc_enet_rx
(
dev_id
);
/* Check for a transmit error. The manual is a little unclear
* about this, so the debug code until I get it figured out. It
* appears that if TXE is set, then TXB is not set. However,
* if carrier sense is lost during frame transmission, the TXE
* bit is set, "and continues the buffer transmission normally."
* I don't know if "normally" implies TXB is set when the buffer
* descriptor is closed.....trial and error :-).
*/
/* Transmit OK, or non-fatal error. Update the buffer descriptors.
*/
if
(
int_events
&
(
SCCE_ENET_TXE
|
SCCE_ENET_TXB
))
{
/* spin_lock(&cep->lock); */
/* TODO: SPINLOCK */
/* local_irq_disable(); */
if
(
cep
->
lock
>
0
)
{
printk
(
"scc_enet_interrupt() lock == %d
\n
"
,
cep
->
lock
);
}
else
{
cep
->
lock
++
;
}
bdp
=
cep
->
dirty_tx
;
while
((
bdp
->
status
&
BD_ENET_TX_READY
)
==
0
)
{
if
((
bdp
==
cep
->
cur_tx
)
&&
(
cep
->
tx_full
==
0
))
break
;
if
(
bdp
->
status
&
BD_ENET_TX_HB
)
/* No heartbeat */
cep
->
stats
.
tx_heartbeat_errors
++
;
if
(
bdp
->
status
&
BD_ENET_TX_LC
)
/* Late collision */
cep
->
stats
.
tx_window_errors
++
;
if
(
bdp
->
status
&
BD_ENET_TX_RL
)
/* Retrans limit */
cep
->
stats
.
tx_aborted_errors
++
;
if
(
bdp
->
status
&
BD_ENET_TX_UN
)
/* Underrun */
cep
->
stats
.
tx_fifo_errors
++
;
if
(
bdp
->
status
&
BD_ENET_TX_CSL
)
/* Carrier lost */
cep
->
stats
.
tx_carrier_errors
++
;
/* No heartbeat or Lost carrier are not really bad errors.
* The others require a restart transmit command.
*/
if
(
bdp
->
status
&
(
BD_ENET_TX_LC
|
BD_ENET_TX_RL
|
BD_ENET_TX_UN
))
{
must_restart
=
1
;
cep
->
stats
.
tx_errors
++
;
}
cep
->
stats
.
tx_packets
++
;
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if
(
bdp
->
status
&
BD_ENET_TX_DEF
)
cep
->
stats
.
collisions
++
;
/* Free the sk buffer associated with this last transmit.
*/
/* dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]); */
dev_kfree_skb
(
cep
->
tx_skbuff
[
cep
->
skb_dirty
]);
cep
->
skb_dirty
=
(
cep
->
skb_dirty
+
1
)
&
TX_RING_MOD_MASK
;
/* Update pointer to next buffer descriptor to be transmitted.
*/
if
(
bdp
->
status
&
BD_ENET_TX_WRAP
)
bdp
=
cep
->
tx_bd_base
;
else
bdp
++
;
/* I don't know if we can be held off from processing these
* interrupts for more than one frame time. I really hope
* not. In such a case, we would now want to check the
* currently available BD (cur_tx) and determine if any
* buffers between the dirty_tx and cur_tx have also been
* sent. We would want to process anything in between that
* does not have BD_ENET_TX_READY set.
*/
/* Since we have freed up a buffer, the ring is no longer
* full.
*/
if
(
cep
->
tx_full
)
{
cep
->
tx_full
=
0
;
/* if (netif_queue_stopped(dev)) */
/* netif_wake_queue(dev); */
}
cep
->
dirty_tx
=
(
QUICC_BD
*
)
bdp
;
}
if
(
must_restart
)
{
volatile
QUICC
*
cp
;
/* Some transmit errors cause the transmitter to shut
* down. We now issue a restart transmit. Since the
* errors close the BD and update the pointers, the restart
* _should_ pick up without having to reset any of our
* pointers either.
*/
cp
=
pquicc
;
cp
->
cp_cr
=
mk_cr_cmd
(
CPM_CR_ENET
,
CPM_CR_RESTART_TX
)
|
CPM_CR_FLG
;
while
(
cp
->
cp_cr
&
CPM_CR_FLG
);
}
/* spin_unlock(&cep->lock); */
/* TODO: SPINLOCK */
/* sti(); */
cep
->
lock
--
;
}
/* Check for receive busy, i.e. packets coming but no place to
* put them. This "can't happen" because the receive interrupt
* is tossing previous frames.
*/
if
(
int_events
&
SCCE_ENET_BSY
)
{
cep
->
stats
.
rx_dropped
++
;
printk
(
"CPM ENET: BSY can't happen.
\n
"
);
}
return
IRQ_HANDLED
;
}
/* During a receive, the cur_rx points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static
int
scc_enet_rx
(
struct
net_device
*
dev
)
{
struct
scc_enet_private
*
cep
;
volatile
QUICC_BD
*
bdp
;
struct
sk_buff
*
skb
;
ushort
pkt_len
;
cep
=
(
struct
scc_enet_private
*
)
dev
->
priv
;
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp
=
cep
->
cur_rx
;
for
(;;)
{
if
(
bdp
->
status
&
BD_ENET_RX_EMPTY
)
break
;
#ifndef final_version
/* Since we have allocated space to hold a complete frame, both
* the first and last indicators should be set.
*/
if
((
bdp
->
status
&
(
BD_ENET_RX_FIRST
|
BD_ENET_RX_LAST
))
!=
(
BD_ENET_RX_FIRST
|
BD_ENET_RX_LAST
))
printk
(
"CPM ENET: rcv is not first+last
\n
"
);
#endif
/* Frame too long or too short.
*/
if
(
bdp
->
status
&
(
BD_ENET_RX_LG
|
BD_ENET_RX_SH
))
cep
->
stats
.
rx_length_errors
++
;
if
(
bdp
->
status
&
BD_ENET_RX_NO
)
/* Frame alignment */
cep
->
stats
.
rx_frame_errors
++
;
if
(
bdp
->
status
&
BD_ENET_RX_CR
)
/* CRC Error */
cep
->
stats
.
rx_crc_errors
++
;
if
(
bdp
->
status
&
BD_ENET_RX_OV
)
/* FIFO overrun */
cep
->
stats
.
rx_crc_errors
++
;
/* Report late collisions as a frame error.
* On this error, the BD is closed, but we don't know what we
* have in the buffer. So, just drop this frame on the floor.
*/
if
(
bdp
->
status
&
BD_ENET_RX_CL
)
{
cep
->
stats
.
rx_frame_errors
++
;
}
else
{
/* Process the incoming frame.
*/
cep
->
stats
.
rx_packets
++
;
pkt_len
=
bdp
->
length
;
/* cep->stats.rx_bytes += pkt_len; */
/* TODO: It would really be nice... */
/* This does 16 byte alignment, much more than we need.
* The packet length includes FCS, but we don't want to
* include that when passing upstream as it messes up
* bridging applications.
*/
skb
=
dev_alloc_skb
(
pkt_len
-
4
);
if
(
skb
==
NULL
)
{
printk
(
"%s: Memory squeeze, dropping packet.
\n
"
,
dev
->
name
);
cep
->
stats
.
rx_dropped
++
;
}
else
{
skb
->
dev
=
dev
;
skb_put
(
skb
,
pkt_len
-
4
);
/* Make room */
eth_copy_and_sum
(
skb
,
(
unsigned
char
*
)
bdp
->
buf
,
pkt_len
-
4
,
0
);
skb
->
protocol
=
eth_type_trans
(
skb
,
dev
);
netif_rx
(
skb
);
}
}
/* Clear the status flags for this buffer.
*/
bdp
->
status
&=
~
BD_ENET_RX_STATS
;
/* Mark the buffer empty.
*/
bdp
->
status
|=
BD_ENET_RX_EMPTY
;
/* Update BD pointer to next entry.
*/
if
(
bdp
->
status
&
BD_ENET_RX_WRAP
)
bdp
=
cep
->
rx_bd_base
;
else
bdp
++
;
}
cep
->
cur_rx
=
(
QUICC_BD
*
)
bdp
;
return
0
;
}
static
int
scc_enet_close
(
struct
net_device
*
dev
)
{
/* Don't know what to do yet.
*/
/* netif_stop_queue(dev); */
return
0
;
}
/* static struct net_device_stats *scc_enet_get_stats(struct net_device *dev) */
static
struct
net_device_stats
*
scc_enet_get_stats
(
struct
net_device
*
dev
)
{
struct
scc_enet_private
*
cep
=
(
struct
scc_enet_private
*
)
dev
->
priv
;
return
&
cep
->
stats
;
}
/* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
static
void
set_multicast_list
(
struct
net_device
*
dev
)
{
struct
scc_enet_private
*
cep
;
struct
dev_mc_list
*
dmi
;
u_char
*
mcptr
,
*
tdptr
;
volatile
scc_enet_t
*
ep
;
int
i
,
j
;
volatile
QUICC
*
cp
=
pquicc
;
cep
=
(
struct
scc_enet_private
*
)
dev
->
priv
;
/* Get pointer to SCC area in parameter RAM.
*/
ep
=
(
scc_enet_t
*
)
dev
->
base_addr
;
if
(
dev
->
flags
&
IFF_PROMISC
)
{
/* Log any net taps. */
printk
(
"%s: Promiscuous mode enabled.
\n
"
,
dev
->
name
);
cep
->
sccp
->
scc_psmr
|=
ETHER_PRO
;
}
else
{
cep
->
sccp
->
scc_psmr
&=
~
ETHER_PRO
;
if
(
dev
->
flags
&
IFF_ALLMULTI
)
{
/* Catch all multicast addresses, so set the
* filter to all 1's.
*/
ep
->
sen_gaddr1
=
0xffff
;
ep
->
sen_gaddr2
=
0xffff
;
ep
->
sen_gaddr3
=
0xffff
;
ep
->
sen_gaddr4
=
0xffff
;
}
else
{
/* Clear filter and add the addresses in the list.
*/
ep
->
sen_gaddr1
=
0
;
ep
->
sen_gaddr2
=
0
;
ep
->
sen_gaddr3
=
0
;
ep
->
sen_gaddr4
=
0
;
dmi
=
dev
->
mc_list
;
for
(
i
=
0
;
i
<
dev
->
mc_count
;
i
++
)
{
/* Only support group multicast for now.
*/
if
(
!
(
dmi
->
dmi_addr
[
0
]
&
1
))
continue
;
/* The address in dmi_addr is LSB first,
* and taddr is MSB first. We have to
* copy bytes MSB first from dmi_addr.
*/
mcptr
=
(
u_char
*
)
dmi
->
dmi_addr
+
5
;
tdptr
=
(
u_char
*
)
&
ep
->
sen_taddrh
;
for
(
j
=
0
;
j
<
6
;
j
++
)
*
tdptr
++
=
*
mcptr
--
;
/* Ask CPM to run CRC and set bit in
* filter mask.
*/
cp
->
cp_cr
=
mk_cr_cmd
(
CPM_CR_ENET
,
CPM_CR_SET_GADDR
)
|
CPM_CR_FLG
;
/* this delay is necessary here -- Cort */
udelay
(
10
);
while
(
cp
->
cp_cr
&
CPM_CR_FLG
);
}
}
}
}
/* Initialize the CPM Ethernet on SCC.
*/
int
scc_enet_init
(
void
)
{
struct
net_device
*
dev
;
struct
scc_enet_private
*
cep
;
int
i
,
j
;
unsigned
char
*
eap
;
/* unsigned long mem_addr; */
/* pte_t *pte; */
/* bd_t *bd; */
/* `board tag' used by ppc - TODO: integrate uC bootloader vars */
volatile
QUICC_BD
*
bdp
;
volatile
QUICC
*
cp
;
volatile
struct
scc_regs
*
sccp
;
volatile
struct
ethernet_pram
*
ep
;
/* volatile immap_t *immap; */
cp
=
pquicc
;
/* Get pointer to Communication Processor */
/* immap = (immap_t *)IMAP_ADDR; */
/* and to internal registers */
/* bd = (bd_t *)__res; */
/* Allocate some private information.
*/
cep
=
(
struct
scc_enet_private
*
)
kmalloc
(
sizeof
(
*
cep
),
GFP_KERNEL
);
memset
(
cep
,
0
,
sizeof
(
*
cep
));
/* __clear_user(cep,sizeof(*cep)); */
/* spin_lock_init(&cep->lock); */
/* TODO: SPINLOCK */
/* Create an Ethernet device instance.
*/
dev
=
init_etherdev
(
0
,
0
);
/* Get pointer to SCC area in parameter RAM.
*/
/* ep = (ethernet_pram *)(&cp->cp_dparam[PROFF_ENET]); */
ep
=
&
pquicc
->
pram
[
SCC_ENET
].
enet_scc
;
/* And another to the SCC register area.
*/
sccp
=
&
pquicc
->
scc_regs
[
SCC_ENET
];
cep
->
sccp
=
sccp
;
/* Keep the pointer handy */
/* Disable receive and transmit in case EPPC-Bug started it.
*/
sccp
->
scc_gsmr
.
w
.
low
&=
~
(
SCC_GSMRL_ENR
|
SCC_GSMRL_ENT
);
/* Set up 360 pins for SCC interface to ethernet transceiver.
* Pin mappings (PA_xx and PC_xx) are defined in commproc.h
*/
/* Configure port A pins for Txd and Rxd.
*/
pquicc
->
pio_papar
|=
(
PA_ENET_RXD
|
PA_ENET_TXD
);
pquicc
->
pio_padir
&=
~
(
PA_ENET_RXD
|
PA_ENET_TXD
);
pquicc
->
pio_paodr
&=
~
PA_ENET_TXD
;
/* Configure port C pins to enable CLSN and RENA.
*/
pquicc
->
pio_pcpar
&=
~
(
PC_ENET_CLSN
|
PC_ENET_RENA
);
pquicc
->
pio_pcdir
&=
~
(
PC_ENET_CLSN
|
PC_ENET_RENA
);
pquicc
->
pio_pcso
|=
(
PC_ENET_CLSN
|
PC_ENET_RENA
);
/* Configure port A for TCLK and RCLK.
*/
pquicc
->
pio_papar
|=
(
PA_ENET_TCLK
|
PA_ENET_RCLK
);
pquicc
->
pio_padir
&=
~
(
PA_ENET_TCLK
|
PA_ENET_RCLK
);
/* Configure Serial Interface clock routing.
* First, clear all SCC bits to zero, then set the ones we want.
*/
pquicc
->
si_sicr
&=
~
SICR_ENET_MASK
;
pquicc
->
si_sicr
|=
SICR_ENET_CLKRT
;
/* Allocate space for the buffer descriptors in the DP ram.
* These are relative offsets in the DP ram address space.
* Initialize base addresses for the buffer descriptors.
*/
i
=
m360_cpm_dpalloc
(
sizeof
(
QUICC_BD
)
*
RX_RING_SIZE
);
ep
->
rbase
=
i
;
cep
->
rx_bd_base
=
(
QUICC_BD
*
)((
uint
)
pquicc
+
i
);
i
=
m360_cpm_dpalloc
(
sizeof
(
QUICC_BD
)
*
TX_RING_SIZE
);
ep
->
tbase
=
i
;
cep
->
tx_bd_base
=
(
QUICC_BD
*
)((
uint
)
pquicc
+
i
);
cep
->
dirty_tx
=
cep
->
cur_tx
=
cep
->
tx_bd_base
;
cep
->
cur_rx
=
cep
->
rx_bd_base
;
/* Issue init Rx BD command for SCC.
* Manual says to perform an Init Rx parameters here. We have
* to perform both Rx and Tx because the SCC may have been
* already running. [In uCquicc's case, I don't think that is so - mles]
* In addition, we have to do it later because we don't yet have
* all of the BD control/status set properly.
cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_RX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
*/
/* Initialize function code registers for big-endian.
*/
ep
->
rfcr
=
(
SCC_EB
|
SCC_FC_DMA
);
ep
->
tfcr
=
(
SCC_EB
|
SCC_FC_DMA
);
/* Set maximum bytes per receive buffer.
* This appears to be an Ethernet frame size, not the buffer
* fragment size. It must be a multiple of four.
*/
ep
->
mrblr
=
PKT_MAXBLR_SIZE
;
/* Set CRC preset and mask.
*/
ep
->
c_pres
=
0xffffffff
;
ep
->
c_mask
=
0xdebb20e3
;
/* see 360UM p. 7-247 */
ep
->
crcec
=
0
;
/* CRC Error counter */
ep
->
alec
=
0
;
/* alignment error counter */
ep
->
disfc
=
0
;
/* discard frame counter */
ep
->
pads
=
0x8888
;
/* Tx short frame pad character */
ep
->
ret_lim
=
0x000f
;
/* Retry limit threshold */
ep
->
mflr
=
PKT_MAXBUF_SIZE
;
/* maximum frame length register */
ep
->
minflr
=
PKT_MINBUF_SIZE
;
/* minimum frame length register */
ep
->
maxd1
=
PKT_MAXBLR_SIZE
;
/* maximum DMA1 length */
ep
->
maxd2
=
PKT_MAXBLR_SIZE
;
/* maximum DMA2 length */
/* Clear hash tables, group and individual.
*/
ep
->
gaddr1
=
ep
->
gaddr2
=
ep
->
gaddr3
=
ep
->
gaddr4
=
0
;
ep
->
iaddr1
=
ep
->
iaddr2
=
ep
->
iaddr3
=
ep
->
iaddr4
=
0
;
/* Set Ethernet station address.
*
* The uCbootloader provides a hook to the kernel to retrieve
* stuff like the MAC address. This is retrieved in config_BSP()
*/
#if defined (CONFIG_UCQUICC)
{
extern
unsigned
char
*
scc1_hwaddr
;
eap
=
(
char
*
)
ep
->
paddr
.
b
;
for
(
i
=
5
;
i
>=
0
;
i
--
)
*
eap
++
=
dev
->
dev_addr
[
i
]
=
scc1_hwaddr
[
i
];
}
#endif
/* #ifndef CONFIG_MBX */
/* eap = (unsigned char *)&(ep->paddrh); */
/* for (i=5; i>=0; i--) */
/* *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i]; */
/* #else */
/* for (i=5; i>=0; i--) */
/* dev->dev_addr[i] = *eap++; */
/* #endif */
ep
->
p_per
=
0
;
/* 'cause the book says so */
ep
->
taddr_l
=
0
;
/* temp address (LSB) */
ep
->
taddr_m
=
0
;
ep
->
taddr_h
=
0
;
/* temp address (MSB) */
/* Now allocate the host memory pages and initialize the
* buffer descriptors.
*/
/* initialize rx buffer descriptors */
bdp
=
cep
->
tx_bd_base
;
for
(
j
=
0
;
j
<
(
TX_RING_SIZE
-
1
);
j
++
)
{
bdp
->
buf
=
0
;
bdp
->
status
=
0
;
bdp
++
;
}
bdp
->
buf
=
0
;
bdp
->
status
=
BD_SC_WRAP
;
/* initialize rx buffer descriptors */
bdp
=
cep
->
rx_bd_base
;
for
(
j
=
0
;
j
<
(
RX_RING_SIZE
-
1
);
j
++
)
{
bdp
->
buf
=
&
rx_buf_pool
[
j
*
CPM_ENET_RX_FRSIZE
];
bdp
->
status
=
BD_SC_EMPTY
|
BD_SC_INTRPT
;
bdp
++
;
}
bdp
->
buf
=
&
rx_buf_pool
[
j
*
CPM_ENET_RX_FRSIZE
];
bdp
->
status
=
BD_SC_WRAP
|
BD_SC_EMPTY
|
BD_SC_INTRPT
;
/* Let's re-initialize the channel now. We have to do it later
* than the manual describes because we have just now finished
* the BD initialization.
*/
cp
->
cp_cr
=
mk_cr_cmd
(
CPM_CR_ENET
,
CPM_CR_INIT_TRX
)
|
CPM_CR_FLG
;
while
(
cp
->
cp_cr
&
CPM_CR_FLG
);
cep
->
skb_cur
=
cep
->
skb_dirty
=
0
;
sccp
->
scc_scce
=
0xffff
;
/* Clear any pending events */
/* Enable interrupts for transmit error, complete frame
* received, and any transmit buffer we have also set the
* interrupt flag.
*/
sccp
->
scc_sccm
=
(
SCCE_ENET_TXE
|
SCCE_ENET_RXF
|
SCCE_ENET_TXB
);
/* Install our interrupt handler.
*/
/* cpm_install_handler(CPMVEC_ENET, scc_enet_interrupt, dev); */
request_irq
(
CPMVEC_ENET
,
scc_enet_interrupt
,
IRQ_FLG_LOCK
,
dev
->
name
,
(
void
*
)
dev
);
/* Set GSMR_H to enable all normal operating modes.
* Set GSMR_L to enable Ethernet to MC68160.
*/
sccp
->
scc_gsmr
.
w
.
high
=
0
;
sccp
->
scc_gsmr
.
w
.
low
=
(
SCC_GSMRL_TCI
|
SCC_GSMRL_TPL_48
|
SCC_GSMRL_TPP_10
|
SCC_GSMRL_MODE_ENET
);
/* Set sync/delimiters.
*/
sccp
->
scc_dsr
=
0xd555
;
/* Set processing mode. Use Ethernet CRC, catch broadcast, and
* start frame search 22 bit times after RENA.
*/
sccp
->
scc_psmr
=
(
SCC_PMSR_ENCRC
/* Ethernet CRC mode */
/* | SCC_PSMR_HBC */
/* Enable heartbeat */
/* | SCC_PMSR_PRO */
/* Promiscuous mode */
/* | SCC_PMSR_FDE */
/* Full duplex enable */
|
ETHER_NIB_22
);
/* sccp->scc_psmr = (SCC_PMSR_PRO | ETHER_CRC_32 | ETHER_NIB_22); */
/* It is now OK to enable the Ethernet transmitter.
* Unfortunately, there are board implementation differences here.
*/
#if defined(CONFIG_UCQUICC)
/* immap->im_ioport.iop_pcpar |= PC_ENET_TENA; */
/* immap->im_ioport.iop_pcdir &= ~PC_ENET_TENA; */
cp
->
pio_pcpar
|=
PC_ENET_TENA
;
/* t_en */
cp
->
pio_pcdir
&=
~
PC_ENET_TENA
;
cp
->
pip_pbpar
&=
~
(
0x00000200
);
/* power up ethernet transceiver */
cp
->
pip_pbdir
|=
(
0x00000200
);
cp
->
pip_pbdat
|=
(
0x00000200
);
#endif
dev
->
base_addr
=
(
unsigned
long
)
ep
;
dev
->
priv
=
cep
;
#if 0
dev->name = "CPM_ENET";
#endif
/* The CPM Ethernet specific entries in the device structure. */
dev
->
open
=
scc_enet_open
;
dev
->
hard_start_xmit
=
scc_enet_start_xmit
;
/* dev->tx_timeout = scc_enet_timeout; */
/* dev->watchdog_timeo = TX_TIMEOUT; */
dev
->
stop
=
scc_enet_close
;
dev
->
get_stats
=
scc_enet_get_stats
;
dev
->
set_multicast_list
=
set_multicast_list
;
/* And last, enable the transmit and receive processing.
*/
sccp
->
scc_gsmr
.
w
.
low
|=
(
SCC_GSMRL_ENR
|
SCC_GSMRL_ENT
);
printk
(
"%s: CPM ENET Version 0.3, "
,
dev
->
name
);
for
(
i
=
0
;
i
<
5
;
i
++
)
printk
(
"%02x:"
,
dev
->
dev_addr
[
i
]);
printk
(
"%02x
\n
"
,
dev
->
dev_addr
[
5
]);
return
0
;
}
int
m68360_enet_probe
(
struct
device
*
dev
)
{
return
(
scc_enet_init
());
}
/*
* Local variables:
* c-indent-level: 4
* c-basic-offset: 4
* tab-width: 4
* End:
*/
drivers/net/ne2k-pci.c
View file @
6ed79b63
...
...
@@ -115,6 +115,7 @@ enum ne2k_pci_chipsets {
CH_Winbond_W89C940F
,
CH_Holtek_HT80232
,
CH_Holtek_HT80229
,
CH_Winbond_89C940_8c4a
,
};
...
...
@@ -132,6 +133,7 @@ static struct {
{
"Winbond W89C940F"
,
0
},
{
"Holtek HT80232"
,
ONLY_16BIT_IO
|
HOLTEK_FDX
},
{
"Holtek HT80229"
,
ONLY_32BIT_IO
|
HOLTEK_FDX
|
STOP_PG_0x60
},
{
"Winbond W89C940(misprogrammed)"
,
0
},
{
0
,}
};
...
...
@@ -147,6 +149,7 @@ static struct pci_device_id ne2k_pci_tbl[] = {
{
0x1050
,
0x5a5a
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
CH_Winbond_W89C940F
},
{
0x12c3
,
0x0058
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
CH_Holtek_HT80232
},
{
0x12c3
,
0x5598
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
CH_Holtek_HT80229
},
{
0x8c4a
,
0x1980
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
CH_Winbond_89C940_8c4a
},
{
0
,
}
};
MODULE_DEVICE_TABLE
(
pci
,
ne2k_pci_tbl
);
...
...
drivers/net/starfire.c
View file @
6ed79b63
...
...
@@ -139,7 +139,6 @@ TODO: bugfixes (no bugs known as of right now)
#include <linux/config.h>
#include <linux/version.h>
#include <linux/module.h>
#include <asm/io.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
...
...
drivers/net/tokenring/smctr.c
View file @
6ed79b63
...
...
@@ -729,10 +729,6 @@ static int smctr_close(struct net_device *dev)
netif_stop_queue
(
dev
);
#ifdef MODULE
MOD_DEC_USE_COUNT
;
#endif
tp
->
cleanup
=
1
;
/* Check to see if adapter is already in a closed state. */
...
...
@@ -3490,10 +3486,6 @@ static int smctr_open(struct net_device *dev)
if
(
err
<
0
)
return
(
err
);
#ifdef MODULE
MOD_INC_USE_COUNT
;
#endif
return
(
err
);
}
...
...
drivers/net/wan/farsync.c
View file @
6ed79b63
...
...
@@ -1313,8 +1313,6 @@ fst_open ( struct net_device *dev )
if
(
err
)
return
err
;
MOD_INC_USE_COUNT
;
fst_openport
(
dev_to_port
(
dev
));
netif_wake_queue
(
dev
);
return
0
;
...
...
@@ -1326,7 +1324,6 @@ fst_close ( struct net_device *dev )
netif_stop_queue
(
dev
);
fst_closeport
(
dev_to_port
(
dev
));
hdlc_close
(
dev_to_hdlc
(
dev
));
MOD_DEC_USE_COUNT
;
return
0
;
}
...
...
drivers/net/wan/pc300_drv.c
View file @
6ed79b63
...
...
@@ -3165,7 +3165,6 @@ int cpc_open(struct net_device *dev)
return
result
;
}
MOD_INC_USE_COUNT
;
sprintf
(
ifr
.
ifr_name
,
"%s"
,
dev
->
name
);
cpc_opench
(
d
);
netif_start_queue
(
dev
);
...
...
@@ -3201,7 +3200,6 @@ int cpc_close(struct net_device *dev)
}
#endif
MOD_DEC_USE_COUNT
;
return
0
;
}
...
...
drivers/net/wireless/orinoco_pci.c
View file @
6ed79b63
...
...
@@ -360,6 +360,7 @@ static int orinoco_pci_resume(struct pci_dev *pdev)
}
static
struct
pci_device_id
orinoco_pci_pci_id_table
[]
=
{
{
0x1260
,
0x3872
,
PCI_ANY_ID
,
PCI_ANY_ID
,},
{
0x1260
,
0x3873
,
PCI_ANY_ID
,
PCI_ANY_ID
,},
{
0
,},
};
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment