Commit 6f9c8900 authored by Daniel Lezcano's avatar Daniel Lezcano

Merge tag 'arch-timer-errata' of...

Merge tag 'arch-timer-errata' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into clockevents/4.12

arm64 arch timer workaround series, including the base patches
that will also go via the arm64 tree.
Signed-off-by: default avatarDaniel Lezcano <daniel.lezcano@linaro.org>
parents 28e71e2f d003d029
......@@ -54,6 +54,7 @@ stable kernels.
| ARM | Cortex-A57 | #852523 | N/A |
| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 |
| ARM | Cortex-A72 | #853709 | N/A |
| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 |
| ARM | MMU-500 | #841119,#826419 | N/A |
| | | | |
| Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 |
......
......@@ -25,6 +25,7 @@
#include <linux/bug.h>
#include <linux/init.h>
#include <linux/jump_label.h>
#include <linux/smp.h>
#include <linux/types.h>
#include <clocksource/arm_arch_timer.h>
......@@ -37,23 +38,43 @@ extern struct static_key_false arch_timer_read_ool_enabled;
#define needs_unstable_timer_counter_workaround() false
#endif
enum arch_timer_erratum_match_type {
ate_match_dt,
ate_match_local_cap_id,
ate_match_acpi_oem_info,
};
struct clock_event_device;
struct arch_timer_erratum_workaround {
const char *id; /* Indicate the Erratum ID */
enum arch_timer_erratum_match_type match_type;
const void *id;
const char *desc;
u32 (*read_cntp_tval_el0)(void);
u32 (*read_cntv_tval_el0)(void);
u64 (*read_cntvct_el0)(void);
int (*set_next_event_phys)(unsigned long, struct clock_event_device *);
int (*set_next_event_virt)(unsigned long, struct clock_event_device *);
};
extern const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround;
DECLARE_PER_CPU(const struct arch_timer_erratum_workaround *,
timer_unstable_counter_workaround);
#define arch_timer_reg_read_stable(reg) \
({ \
u64 _val; \
if (needs_unstable_timer_counter_workaround()) \
_val = timer_unstable_counter_workaround->read_##reg();\
if (needs_unstable_timer_counter_workaround()) { \
const struct arch_timer_erratum_workaround *wa; \
preempt_disable(); \
wa = __this_cpu_read(timer_unstable_counter_workaround); \
if (wa && wa->read_##reg) \
_val = wa->read_##reg(); \
else \
_val = read_sysreg(reg); \
preempt_enable(); \
} else { \
_val = read_sysreg(reg); \
} \
_val; \
})
......
......@@ -37,7 +37,8 @@
#define ARM64_HAS_NO_FPSIMD 16
#define ARM64_WORKAROUND_REPEAT_TLBI 17
#define ARM64_WORKAROUND_QCOM_FALKOR_E1003 18
#define ARM64_WORKAROUND_858921 19
#define ARM64_NCAPS 19
#define ARM64_NCAPS 20
#endif /* __ASM_CPUCAPS_H */
......@@ -80,6 +80,7 @@
#define ARM_CPU_PART_FOUNDATION 0xD00
#define ARM_CPU_PART_CORTEX_A57 0xD07
#define ARM_CPU_PART_CORTEX_A53 0xD03
#define ARM_CPU_PART_CORTEX_A73 0xD09
#define APM_CPU_PART_POTENZA 0x000
......@@ -92,6 +93,7 @@
#define MIDR_CORTEX_A53 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A53)
#define MIDR_CORTEX_A57 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A57)
#define MIDR_CORTEX_A73 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A73)
#define MIDR_THUNDERX MIDR_CPU_MODEL(ARM_CPU_IMP_CAVIUM, CAVIUM_CPU_PART_THUNDERX)
#define MIDR_THUNDERX_81XX MIDR_CPU_MODEL(ARM_CPU_IMP_CAVIUM, CAVIUM_CPU_PART_THUNDERX_81XX)
#define MIDR_QCOM_FALKOR_V1 MIDR_CPU_MODEL(ARM_CPU_IMP_QCOM, QCOM_CPU_PART_FALKOR_V1)
......
......@@ -175,6 +175,8 @@
#define ESR_ELx_SYS64_ISS_SYS_CTR_READ (ESR_ELx_SYS64_ISS_SYS_CTR | \
ESR_ELx_SYS64_ISS_DIR_READ)
#define ESR_ELx_SYS64_ISS_SYS_CNTVCT (ESR_ELx_SYS64_ISS_SYS_VAL(3, 3, 2, 14, 0) | \
ESR_ELx_SYS64_ISS_DIR_READ)
#ifndef __ASSEMBLY__
#include <asm/types.h>
......
......@@ -53,6 +53,13 @@ static int cpu_enable_trap_ctr_access(void *__unused)
.midr_range_min = min, \
.midr_range_max = max
#define MIDR_ALL_VERSIONS(model) \
.def_scope = SCOPE_LOCAL_CPU, \
.matches = is_affected_midr_range, \
.midr_model = model, \
.midr_range_min = 0, \
.midr_range_max = (MIDR_VARIANT_MASK | MIDR_REVISION_MASK)
const struct arm64_cpu_capabilities arm64_errata[] = {
#if defined(CONFIG_ARM64_ERRATUM_826319) || \
defined(CONFIG_ARM64_ERRATUM_827319) || \
......@@ -150,6 +157,14 @@ const struct arm64_cpu_capabilities arm64_errata[] = {
MIDR_CPU_VAR_REV(0, 0),
MIDR_CPU_VAR_REV(0, 0)),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_858921
{
/* Cortex-A73 all versions */
.desc = "ARM erratum 858921",
.capability = ARM64_WORKAROUND_858921,
MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
},
#endif
{
}
......
......@@ -1090,20 +1090,29 @@ static void __init setup_feature_capabilities(void)
* Check if the current CPU has a given feature capability.
* Should be called from non-preemptible context.
*/
bool this_cpu_has_cap(unsigned int cap)
static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
unsigned int cap)
{
const struct arm64_cpu_capabilities *caps;
if (WARN_ON(preemptible()))
return false;
for (caps = arm64_features; caps->desc; caps++)
for (caps = cap_array; caps->desc; caps++)
if (caps->capability == cap && caps->matches)
return caps->matches(caps, SCOPE_LOCAL_CPU);
return false;
}
extern const struct arm64_cpu_capabilities arm64_errata[];
bool this_cpu_has_cap(unsigned int cap)
{
return (__this_cpu_has_cap(arm64_features, cap) ||
__this_cpu_has_cap(arm64_errata, cap));
}
void __init setup_cpu_features(void)
{
u32 cwg;
......
......@@ -505,6 +505,14 @@ static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
regs->pc += 4;
}
static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
{
int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT;
pt_regs_write_reg(regs, rt, arch_counter_get_cntvct());
regs->pc += 4;
}
struct sys64_hook {
unsigned int esr_mask;
unsigned int esr_val;
......@@ -523,6 +531,12 @@ static struct sys64_hook sys64_hooks[] = {
.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
.handler = ctr_read_handler,
},
{
/* Trap read access to CNTVCT_EL0 */
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
.handler = cntvct_read_handler,
},
{},
};
......
......@@ -368,6 +368,17 @@ config HISILICON_ERRATUM_161010101
161010101. The workaround will be active if the hisilicon,erratum-161010101
property is found in the timer node.
config ARM64_ERRATUM_858921
bool "Workaround for Cortex-A73 erratum 858921"
default y
select ARM_ARCH_TIMER_OOL_WORKAROUND
depends on ARM_ARCH_TIMER && ARM64
help
This option enables a workaround applicable to Cortex-A73
(all versions), whose counter may return incorrect values.
The workaround will be dynamically enabled when an affected
core is detected.
config ARM_GLOBAL_TIMER
bool "Support for the ARM global timer" if COMPILE_TEST
select CLKSRC_OF if OF
......
......@@ -83,6 +83,7 @@ static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
static bool arch_timer_c3stop;
static bool arch_timer_mem_use_virtual;
static bool arch_counter_suspend_stop;
static bool vdso_default = true;
static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
......@@ -96,6 +97,105 @@ early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
* Architected system timer support.
*/
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
struct clock_event_device *clk)
{
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
writel_relaxed(val, timer->base + CNTP_CTL);
break;
case ARCH_TIMER_REG_TVAL:
writel_relaxed(val, timer->base + CNTP_TVAL);
break;
}
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
writel_relaxed(val, timer->base + CNTV_CTL);
break;
case ARCH_TIMER_REG_TVAL:
writel_relaxed(val, timer->base + CNTV_TVAL);
break;
}
} else {
arch_timer_reg_write_cp15(access, reg, val);
}
}
static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
struct clock_event_device *clk)
{
u32 val;
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
val = readl_relaxed(timer->base + CNTP_CTL);
break;
case ARCH_TIMER_REG_TVAL:
val = readl_relaxed(timer->base + CNTP_TVAL);
break;
}
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
val = readl_relaxed(timer->base + CNTV_CTL);
break;
case ARCH_TIMER_REG_TVAL:
val = readl_relaxed(timer->base + CNTV_TVAL);
break;
}
} else {
val = arch_timer_reg_read_cp15(access, reg);
}
return val;
}
/*
* Default to cp15 based access because arm64 uses this function for
* sched_clock() before DT is probed and the cp15 method is guaranteed
* to exist on arm64. arm doesn't use this before DT is probed so even
* if we don't have the cp15 accessors we won't have a problem.
*/
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
static u64 arch_counter_read(struct clocksource *cs)
{
return arch_timer_read_counter();
}
static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
return arch_timer_read_counter();
}
static struct clocksource clocksource_counter = {
.name = "arch_sys_counter",
.rating = 400,
.read = arch_counter_read,
.mask = CLOCKSOURCE_MASK(56),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static struct cyclecounter cyclecounter __ro_after_init = {
.read = arch_counter_read_cc,
.mask = CLOCKSOURCE_MASK(56),
};
struct ate_acpi_oem_info {
char oem_id[ACPI_OEM_ID_SIZE + 1];
char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
u32 oem_revision;
};
#ifdef CONFIG_FSL_ERRATUM_A008585
/*
* The number of retries is an arbitrary value well beyond the highest number
......@@ -170,96 +270,288 @@ static u64 notrace hisi_161010101_read_cntvct_el0(void)
{
return __hisi_161010101_read_reg(cntvct_el0);
}
static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
/*
* Note that trailing spaces are required to properly match
* the OEM table information.
*/
{
.oem_id = "HISI ",
.oem_table_id = "HIP05 ",
.oem_revision = 0,
},
{
.oem_id = "HISI ",
.oem_table_id = "HIP06 ",
.oem_revision = 0,
},
{
.oem_id = "HISI ",
.oem_table_id = "HIP07 ",
.oem_revision = 0,
},
{ /* Sentinel indicating the end of the OEM array */ },
};
#endif
#ifdef CONFIG_ARM64_ERRATUM_858921
static u64 notrace arm64_858921_read_cntvct_el0(void)
{
u64 old, new;
old = read_sysreg(cntvct_el0);
new = read_sysreg(cntvct_el0);
return (((old ^ new) >> 32) & 1) ? old : new;
}
#endif
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL;
DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *,
timer_unstable_counter_workaround);
EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
struct clock_event_device *clk)
{
unsigned long ctrl;
u64 cval = evt + arch_counter_get_cntvct();
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
ctrl |= ARCH_TIMER_CTRL_ENABLE;
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
if (access == ARCH_TIMER_PHYS_ACCESS)
write_sysreg(cval, cntp_cval_el0);
else
write_sysreg(cval, cntv_cval_el0);
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}
static int erratum_set_next_event_tval_virt(unsigned long evt,
struct clock_event_device *clk)
{
erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
return 0;
}
static int erratum_set_next_event_tval_phys(unsigned long evt,
struct clock_event_device *clk)
{
erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
return 0;
}
static const struct arch_timer_erratum_workaround ool_workarounds[] = {
#ifdef CONFIG_FSL_ERRATUM_A008585
{
.match_type = ate_match_dt,
.id = "fsl,erratum-a008585",
.desc = "Freescale erratum a005858",
.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
.set_next_event_phys = erratum_set_next_event_tval_phys,
.set_next_event_virt = erratum_set_next_event_tval_virt,
},
#endif
#ifdef CONFIG_HISILICON_ERRATUM_161010101
{
.match_type = ate_match_dt,
.id = "hisilicon,erratum-161010101",
.desc = "HiSilicon erratum 161010101",
.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
.set_next_event_phys = erratum_set_next_event_tval_phys,
.set_next_event_virt = erratum_set_next_event_tval_virt,
},
{
.match_type = ate_match_acpi_oem_info,
.id = hisi_161010101_oem_info,
.desc = "HiSilicon erratum 161010101",
.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
.set_next_event_phys = erratum_set_next_event_tval_phys,
.set_next_event_virt = erratum_set_next_event_tval_virt,
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_858921
{
.match_type = ate_match_local_cap_id,
.id = (void *)ARM64_WORKAROUND_858921,
.desc = "ARM erratum 858921",
.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
},
#endif
};
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
static __always_inline
void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
struct clock_event_device *clk)
typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
const void *);
static
bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
const void *arg)
{
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
writel_relaxed(val, timer->base + CNTP_CTL);
break;
case ARCH_TIMER_REG_TVAL:
writel_relaxed(val, timer->base + CNTP_TVAL);
break;
const struct device_node *np = arg;
return of_property_read_bool(np, wa->id);
}
static
bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
const void *arg)
{
return this_cpu_has_cap((uintptr_t)wa->id);
}
static
bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
const void *arg)
{
static const struct ate_acpi_oem_info empty_oem_info = {};
const struct ate_acpi_oem_info *info = wa->id;
const struct acpi_table_header *table = arg;
/* Iterate over the ACPI OEM info array, looking for a match */
while (memcmp(info, &empty_oem_info, sizeof(*info))) {
if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
!memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
info->oem_revision == table->oem_revision)
return true;
info++;
}
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
writel_relaxed(val, timer->base + CNTV_CTL);
break;
case ARCH_TIMER_REG_TVAL:
writel_relaxed(val, timer->base + CNTV_TVAL);
break;
return false;
}
static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
ate_match_fn_t match_fn,
void *arg)
{
int i;
for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
if (ool_workarounds[i].match_type != type)
continue;
if (match_fn(&ool_workarounds[i], arg))
return &ool_workarounds[i];
}
return NULL;
}
static
void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
bool local)
{
int i;
if (local) {
__this_cpu_write(timer_unstable_counter_workaround, wa);
} else {
arch_timer_reg_write_cp15(access, reg, val);
for_each_possible_cpu(i)
per_cpu(timer_unstable_counter_workaround, i) = wa;
}
static_branch_enable(&arch_timer_read_ool_enabled);
/*
* Don't use the vdso fastpath if errata require using the
* out-of-line counter accessor. We may change our mind pretty
* late in the game (with a per-CPU erratum, for example), so
* change both the default value and the vdso itself.
*/
if (wa->read_cntvct_el0) {
clocksource_counter.archdata.vdso_direct = false;
vdso_default = false;
}
}
static __always_inline
u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
struct clock_event_device *clk)
static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
void *arg)
{
u32 val;
const struct arch_timer_erratum_workaround *wa;
ate_match_fn_t match_fn = NULL;
bool local = false;
if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
val = readl_relaxed(timer->base + CNTP_CTL);
switch (type) {
case ate_match_dt:
match_fn = arch_timer_check_dt_erratum;
break;
case ARCH_TIMER_REG_TVAL:
val = readl_relaxed(timer->base + CNTP_TVAL);
case ate_match_local_cap_id:
match_fn = arch_timer_check_local_cap_erratum;
local = true;
break;
}
} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
struct arch_timer *timer = to_arch_timer(clk);
switch (reg) {
case ARCH_TIMER_REG_CTRL:
val = readl_relaxed(timer->base + CNTV_CTL);
break;
case ARCH_TIMER_REG_TVAL:
val = readl_relaxed(timer->base + CNTV_TVAL);
case ate_match_acpi_oem_info:
match_fn = arch_timer_check_acpi_oem_erratum;
break;
default:
WARN_ON(1);
return;
}
} else {
val = arch_timer_reg_read_cp15(access, reg);
wa = arch_timer_iterate_errata(type, match_fn, arg);
if (!wa)
return;
if (needs_unstable_timer_counter_workaround()) {
const struct arch_timer_erratum_workaround *__wa;
__wa = __this_cpu_read(timer_unstable_counter_workaround);
if (__wa && wa != __wa)
pr_warn("Can't enable workaround for %s (clashes with %s\n)",
wa->desc, __wa->desc);
if (__wa)
return;
}
return val;
arch_timer_enable_workaround(wa, local);
pr_info("Enabling %s workaround for %s\n",
local ? "local" : "global", wa->desc);
}
#define erratum_handler(fn, r, ...) \
({ \
bool __val; \
if (needs_unstable_timer_counter_workaround()) { \
const struct arch_timer_erratum_workaround *__wa; \
__wa = __this_cpu_read(timer_unstable_counter_workaround); \
if (__wa && __wa->fn) { \
r = __wa->fn(__VA_ARGS__); \
__val = true; \
} else { \
__val = false; \
} \
} else { \
__val = false; \
} \
__val; \
})
static bool arch_timer_this_cpu_has_cntvct_wa(void)
{
const struct arch_timer_erratum_workaround *wa;
wa = __this_cpu_read(timer_unstable_counter_workaround);
return wa && wa->read_cntvct_el0;
}
#else
#define arch_timer_check_ool_workaround(t,a) do { } while(0)
#define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
#define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
#define erratum_handler(fn, r, ...) ({false;})
#define arch_timer_this_cpu_has_cntvct_wa() ({false;})
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
static __always_inline irqreturn_t timer_handler(const int access,
struct clock_event_device *evt)
......@@ -348,43 +640,14 @@ static __always_inline void set_next_event(const int access, unsigned long evt,
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
static __always_inline void erratum_set_next_event_generic(const int access,
unsigned long evt, struct clock_event_device *clk)
{
unsigned long ctrl;
u64 cval = evt + arch_counter_get_cntvct();
ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
ctrl |= ARCH_TIMER_CTRL_ENABLE;
ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
if (access == ARCH_TIMER_PHYS_ACCESS)
write_sysreg(cval, cntp_cval_el0);
else if (access == ARCH_TIMER_VIRT_ACCESS)
write_sysreg(cval, cntv_cval_el0);
arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
}
static int erratum_set_next_event_virt(unsigned long evt,
static int arch_timer_set_next_event_virt(unsigned long evt,
struct clock_event_device *clk)
{
erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
return 0;
}
int ret;
static int erratum_set_next_event_phys(unsigned long evt,
struct clock_event_device *clk)
{
erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
return 0;
}
#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
if (erratum_handler(set_next_event_virt, ret, evt, clk))
return ret;
static int arch_timer_set_next_event_virt(unsigned long evt,
struct clock_event_device *clk)
{
set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
return 0;
}
......@@ -392,6 +655,11 @@ static int arch_timer_set_next_event_virt(unsigned long evt,
static int arch_timer_set_next_event_phys(unsigned long evt,
struct clock_event_device *clk)
{
int ret;
if (erratum_handler(set_next_event_phys, ret, evt, clk))
return ret;
set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
return 0;
}
......@@ -410,19 +678,6 @@ static int arch_timer_set_next_event_phys_mem(unsigned long evt,
return 0;
}
static void erratum_workaround_set_sne(struct clock_event_device *clk)
{
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
return;
if (arch_timer_uses_ppi == VIRT_PPI)
clk->set_next_event = erratum_set_next_event_virt;
else
clk->set_next_event = erratum_set_next_event_phys;
#endif
}
static void __arch_timer_setup(unsigned type,
struct clock_event_device *clk)
{
......@@ -452,7 +707,7 @@ static void __arch_timer_setup(unsigned type,
BUG();
}
erratum_workaround_set_sne(clk);
arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
} else {
clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
clk->name = "arch_mem_timer";
......@@ -508,14 +763,22 @@ static void arch_counter_set_user_access(void)
{
u32 cntkctl = arch_timer_get_cntkctl();
/* Disable user access to the timers and the physical counter */
/* Disable user access to the timers and both counters */
/* Also disable virtual event stream */
cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
| ARCH_TIMER_USR_VT_ACCESS_EN
| ARCH_TIMER_USR_VCT_ACCESS_EN
| ARCH_TIMER_VIRT_EVT_EN
| ARCH_TIMER_USR_PCT_ACCESS_EN);
/* Enable user access to the virtual counter */
/*
* Enable user access to the virtual counter if it doesn't
* need to be workaround. The vdso may have been already
* disabled though.
*/
if (arch_timer_this_cpu_has_cntvct_wa())
pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
else
cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
arch_timer_set_cntkctl(cntkctl);
......@@ -621,37 +884,6 @@ static u64 arch_counter_get_cntvct_mem(void)
return ((u64) vct_hi << 32) | vct_lo;
}
/*
* Default to cp15 based access because arm64 uses this function for
* sched_clock() before DT is probed and the cp15 method is guaranteed
* to exist on arm64. arm doesn't use this before DT is probed so even
* if we don't have the cp15 accessors we won't have a problem.
*/
u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
static u64 arch_counter_read(struct clocksource *cs)
{
return arch_timer_read_counter();
}
static u64 arch_counter_read_cc(const struct cyclecounter *cc)
{
return arch_timer_read_counter();
}
static struct clocksource clocksource_counter = {
.name = "arch_sys_counter",
.rating = 400,
.read = arch_counter_read,
.mask = CLOCKSOURCE_MASK(56),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static struct cyclecounter cyclecounter __ro_after_init = {
.read = arch_counter_read_cc,
.mask = CLOCKSOURCE_MASK(56),
};
static struct arch_timer_kvm_info arch_timer_kvm_info;
struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
......@@ -670,16 +902,7 @@ static void __init arch_counter_register(unsigned type)
else
arch_timer_read_counter = arch_counter_get_cntpct;
clocksource_counter.archdata.vdso_direct = true;
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
/*
* Don't use the vdso fastpath if errata require using
* the out-of-line counter accessor.
*/
if (static_branch_unlikely(&arch_timer_read_ool_enabled))
clocksource_counter.archdata.vdso_direct = false;
#endif
clocksource_counter.archdata.vdso_direct = vdso_default;
} else {
arch_timer_read_counter = arch_counter_get_cntvct_mem;
}
......@@ -718,14 +941,14 @@ static int arch_timer_dying_cpu(unsigned int cpu)
}
#ifdef CONFIG_CPU_PM
static unsigned int saved_cntkctl;
static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
static int arch_timer_cpu_pm_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
if (action == CPU_PM_ENTER)
saved_cntkctl = arch_timer_get_cntkctl();
__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
arch_timer_set_cntkctl(saved_cntkctl);
arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
return NOTIFY_OK;
}
......@@ -960,17 +1183,8 @@ static int __init arch_timer_of_init(struct device_node *np)
arch_timer_c3stop = !of_property_read_bool(np, "always-on");
#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
if (of_property_read_bool(np, ool_workarounds[i].id)) {
timer_unstable_counter_workaround = &ool_workarounds[i];
static_branch_enable(&arch_timer_read_ool_enabled);
pr_info("arch_timer: Enabling workaround for %s\n",
timer_unstable_counter_workaround->id);
break;
}
}
#endif
/* Check for globally applicable workarounds */
arch_timer_check_ool_workaround(ate_match_dt, np);
/*
* If we cannot rely on firmware initializing the timer registers then
......@@ -1127,6 +1341,9 @@ static int __init arch_timer_acpi_init(struct acpi_table_header *table)
/* Always-on capability */
arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
/* Check for globally applicable workarounds */
arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
arch_timer_init();
return 0;
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment