Commit 713d54a8 authored by Olivier Grenie's avatar Olivier Grenie Committed by Mauro Carvalho Chehab

[media] DiB7090: add support for the dib7090 based

This patch adds support for the SoC DiB7090 DVB-T demodulator and its
melt-in UHF/VHF RF tuner.
Signed-off-by: default avatarOlivier Grenie <olivier.grenie@dibcom.fr>
Signed-off-by: default avatarPatrick Boettcher <patrick.boettcher@dibcom.fr>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@redhat.com>
parent dd316c6b
...@@ -26,6 +26,11 @@ MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (defau ...@@ -26,6 +26,11 @@ MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (defau
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0) #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0)
struct i2c_device {
struct i2c_adapter *i2c_adap;
u8 i2c_addr;
};
struct dib7000p_state { struct dib7000p_state {
struct dvb_frontend demod; struct dvb_frontend demod;
struct dib7000p_config cfg; struct dib7000p_config cfg;
...@@ -42,8 +47,8 @@ struct dib7000p_state { ...@@ -42,8 +47,8 @@ struct dib7000p_state {
struct dibx000_agc_config *current_agc; struct dibx000_agc_config *current_agc;
u32 timf; u32 timf;
u8 div_force_off : 1; u8 div_force_off:1;
u8 div_state : 1; u8 div_state:1;
u16 div_sync_wait; u16 div_sync_wait;
u8 agc_state; u8 agc_state;
...@@ -51,7 +56,13 @@ struct dib7000p_state { ...@@ -51,7 +56,13 @@ struct dib7000p_state {
u16 gpio_dir; u16 gpio_dir;
u16 gpio_val; u16 gpio_val;
u8 sfn_workaround_active :1; u8 sfn_workaround_active:1;
#define SOC7090 0x7090
u16 version;
u16 tuner_enable;
struct i2c_adapter dib7090_tuner_adap;
}; };
enum dib7000p_power_mode { enum dib7000p_power_mode {
...@@ -60,17 +71,20 @@ enum dib7000p_power_mode { ...@@ -60,17 +71,20 @@ enum dib7000p_power_mode {
DIB7000P_POWER_INTERFACE_ONLY, DIB7000P_POWER_INTERFACE_ONLY,
}; };
static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode);
static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff);
static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
{ {
u8 wb[2] = { reg >> 8, reg & 0xff }; u8 wb[2] = { reg >> 8, reg & 0xff };
u8 rb[2]; u8 rb[2];
struct i2c_msg msg[2] = { struct i2c_msg msg[2] = {
{ .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 }, {.addr = state->i2c_addr >> 1,.flags = 0,.buf = wb,.len = 2},
{ .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 }, {.addr = state->i2c_addr >> 1,.flags = I2C_M_RD,.buf = rb,.len = 2},
}; };
if (i2c_transfer(state->i2c_adap, msg, 2) != 2) if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
dprintk("i2c read error on %d",reg); dprintk("i2c read error on %d", reg);
return (rb[0] << 8) | rb[1]; return (rb[0] << 8) | rb[1];
} }
...@@ -82,11 +96,12 @@ static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) ...@@ -82,11 +96,12 @@ static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
(val >> 8) & 0xff, val & 0xff, (val >> 8) & 0xff, val & 0xff,
}; };
struct i2c_msg msg = { struct i2c_msg msg = {
.addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4 .addr = state->i2c_addr >> 1,.flags = 0,.buf = b,.len = 4
}; };
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
} }
static void dib7000p_write_tab(struct dib7000p_state *state, u16 *buf)
static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf)
{ {
u16 l = 0, r, *n; u16 l = 0, r, *n;
n = buf; n = buf;
...@@ -111,8 +126,7 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) ...@@ -111,8 +126,7 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
fifo_threshold = 1792; fifo_threshold = 1792;
smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
dprintk( "setting output mode for demod %p to %d", dprintk("setting output mode for demod %p to %d", &state->demod, mode);
&state->demod, mode);
switch (mode) { switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
...@@ -142,15 +156,16 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) ...@@ -142,15 +156,16 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
outreg = 0; outreg = 0;
break; break;
default: default:
dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod); dprintk("Unhandled output_mode passed to be set for demod %p", &state->demod);
break; break;
} }
if (state->cfg.output_mpeg2_in_188_bytes) if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5) ; smo_mode |= (1 << 5);
ret |= dib7000p_write_word(state, 235, smo_mode); ret |= dib7000p_write_word(state, 235, smo_mode);
ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */
if (state->version != SOC7090)
ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */ ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */
return ret; return ret;
...@@ -161,13 +176,13 @@ static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff) ...@@ -161,13 +176,13 @@ static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
if (state->div_force_off) { if (state->div_force_off) {
dprintk( "diversity combination deactivated - forced by COFDM parameters"); dprintk("diversity combination deactivated - forced by COFDM parameters");
onoff = 0; onoff = 0;
dib7000p_write_word(state, 207, 0); dib7000p_write_word(state, 207, 0);
} else } else
dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
state->div_state = (u8)onoff; state->div_state = (u8) onoff;
if (onoff) { if (onoff) {
dib7000p_write_word(state, 204, 6); dib7000p_write_word(state, 204, 6);
...@@ -184,14 +199,20 @@ static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff) ...@@ -184,14 +199,20 @@ static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
{ {
/* by default everything is powered off */ /* by default everything is powered off */
u16 reg_774 = 0xffff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
/* now, depending on the requested mode, we power on */ /* now, depending on the requested mode, we power on */
switch (mode) { switch (mode) {
/* power up everything in the demod */ /* power up everything in the demod */
case DIB7000P_POWER_ALL: case DIB7000P_POWER_ALL:
reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; reg_1280 &= 0x01ff; reg_774 = 0x0000;
reg_775 = 0x0000;
reg_776 = 0x0;
reg_899 = 0x0;
if (state->version == SOC7090)
reg_1280 &= 0x001f;
else
reg_1280 &= 0x01ff;
break; break;
case DIB7000P_POWER_ANALOG_ADC: case DIB7000P_POWER_ANALOG_ADC:
...@@ -200,11 +221,16 @@ static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_p ...@@ -200,11 +221,16 @@ static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_p
/* nud */ /* nud */
reg_776 &= ~((1 << 0)); reg_776 &= ~((1 << 0));
/* Dout */ /* Dout */
if (state->version != SOC7090)
reg_1280 &= ~((1 << 11)); reg_1280 &= ~((1 << 11));
reg_1280 &= ~(1 << 6);
/* fall through wanted to enable the interfaces */ /* fall through wanted to enable the interfaces */
/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */ case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */
if (state->version == SOC7090)
reg_1280 &= ~((1 << 7) | (1 << 5));
else
reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
break; break;
...@@ -222,17 +248,34 @@ static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_p ...@@ -222,17 +248,34 @@ static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_p
static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no) static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
{ {
u16 reg_908 = dib7000p_read_word(state, 908), u16 reg_908 = dib7000p_read_word(state, 908), reg_909 = dib7000p_read_word(state, 909);
reg_909 = dib7000p_read_word(state, 909); u16 reg;
switch (no) { switch (no) {
case DIBX000_SLOW_ADC_ON: case DIBX000_SLOW_ADC_ON:
if (state->version == SOC7090) {
reg = dib7000p_read_word(state, 1925);
dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2)); /* en_slowAdc = 1 & reset_sladc = 1 */
reg = dib7000p_read_word(state, 1925); /* read acces to make it works... strange ... */
msleep(200);
dib7000p_write_word(state, 1925, reg & ~(1 << 4)); /* en_slowAdc = 1 & reset_sladc = 0 */
reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12));
dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524); /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */
} else {
reg_909 |= (1 << 1) | (1 << 0); reg_909 |= (1 << 1) | (1 << 0);
dib7000p_write_word(state, 909, reg_909); dib7000p_write_word(state, 909, reg_909);
reg_909 &= ~(1 << 1); reg_909 &= ~(1 << 1);
}
break; break;
case DIBX000_SLOW_ADC_OFF: case DIBX000_SLOW_ADC_OFF:
if (state->version == SOC7090) {
reg = dib7000p_read_word(state, 1925);
dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4)); /* reset_sladc = 1 en_slowAdc = 0 */
} else
reg_909 |= (1 << 1) | (1 << 0); reg_909 |= (1 << 1) | (1 << 0);
break; break;
...@@ -275,17 +318,17 @@ static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw) ...@@ -275,17 +318,17 @@ static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
state->current_bandwidth = bw; state->current_bandwidth = bw;
if (state->timf == 0) { if (state->timf == 0) {
dprintk( "using default timf"); dprintk("using default timf");
timf = state->cfg.bw->timf; timf = state->cfg.bw->timf;
} else { } else {
dprintk( "using updated timf"); dprintk("using updated timf");
timf = state->timf; timf = state->timf;
} }
timf = timf * (bw / 50) / 160; timf = timf * (bw / 50) / 160;
dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
dib7000p_write_word(state, 24, (u16) ((timf ) & 0xffff)); dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff));
return 0; return 0;
} }
...@@ -295,7 +338,11 @@ static int dib7000p_sad_calib(struct dib7000p_state *state) ...@@ -295,7 +338,11 @@ static int dib7000p_sad_calib(struct dib7000p_state *state)
/* internal */ /* internal */
// dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth // dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth
dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
dib7000p_write_word(state, 74, 776); // 0.625*3.3 / 4096
if (state->version == SOC7090)
dib7000p_write_word(state, 74, 2048); // P_sad_calib_value = (0.9/1.8)*4096
else
dib7000p_write_word(state, 74, 776); // P_sad_calib_value = 0.625*3.3 / 4096
/* do the calibration */ /* do the calibration */
dib7000p_write_word(state, 73, (1 << 0)); dib7000p_write_word(state, 73, (1 << 0));
...@@ -314,17 +361,24 @@ int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value) ...@@ -314,17 +361,24 @@ int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value)
state->wbd_ref = value; state->wbd_ref = value;
return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value); return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value);
} }
EXPORT_SYMBOL(dib7000p_set_wbd_ref); EXPORT_SYMBOL(dib7000p_set_wbd_ref);
static void dib7000p_reset_pll(struct dib7000p_state *state) static void dib7000p_reset_pll(struct dib7000p_state *state)
{ {
struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
u16 clk_cfg0; u16 clk_cfg0;
if (state->version == SOC7090) {
dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv));
while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) {
}
dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15));
} else {
/* force PLL bypass */ /* force PLL bypass */
clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) | clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
(bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
dib7000p_write_word(state, 900, clk_cfg0); dib7000p_write_word(state, 900, clk_cfg0);
...@@ -332,19 +386,67 @@ static void dib7000p_reset_pll(struct dib7000p_state *state) ...@@ -332,19 +386,67 @@ static void dib7000p_reset_pll(struct dib7000p_state *state)
dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset); dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff); clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
dib7000p_write_word(state, 900, clk_cfg0); dib7000p_write_word(state, 900, clk_cfg0);
}
dib7000p_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff)); dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff));
dib7000p_write_word(state, 19, (u16) ( (bw->internal*1000 ) & 0xffff)); dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff));
dib7000p_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff)); dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff));
dib7000p_write_word(state, 22, (u16) ( (bw->ifreq ) & 0xffff)); dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff));
dib7000p_write_word(state, 72, bw->sad_cfg); dib7000p_write_word(state, 72, bw->sad_cfg);
} }
static u32 dib7000p_get_internal_freq(struct dib7000p_state *state)
{
u32 internal = (u32) dib7000p_read_word(state, 18) << 16;
internal |= (u32) dib7000p_read_word(state, 19);
internal /= 1000;
return internal;
}
int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856);
u8 loopdiv, prediv;
u32 internal, xtal;
/* get back old values */
prediv = reg_1856 & 0x3f;
loopdiv = (reg_1856 >> 6) & 0x3f;
if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) {
dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio);
reg_1856 &= 0xf000;
reg_1857 = dib7000p_read_word(state, 1857);
dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15)); // desable pll
dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f));
/* write new system clk into P_sec_len */
internal = dib7000p_get_internal_freq(state);
xtal = (internal / loopdiv) * prediv;
internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio; /* new internal */
dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff));
dib7000p_write_word(state, 19, (u16) (internal & 0xffff));
dib7000p_write_word(state, 1857, reg_1857 | (1 << 15)); // enable pll
while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) {
dprintk("Waiting for PLL to lock");
}
return 0;
}
return -EIO;
}
EXPORT_SYMBOL(dib7000p_update_pll);
static int dib7000p_reset_gpio(struct dib7000p_state *st) static int dib7000p_reset_gpio(struct dib7000p_state *st)
{ {
/* reset the GPIOs */ /* reset the GPIOs */
dprintk( "gpio dir: %x: val: %x, pwm_pos: %x",st->gpio_dir, st->gpio_val,st->cfg.gpio_pwm_pos); dprintk("gpio dir: %x: val: %x, pwm_pos: %x", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos);
dib7000p_write_word(st, 1029, st->gpio_dir); dib7000p_write_word(st, 1029, st->gpio_dir);
dib7000p_write_word(st, 1030, st->gpio_val); dib7000p_write_word(st, 1030, st->gpio_val);
...@@ -377,11 +479,9 @@ int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val) ...@@ -377,11 +479,9 @@ int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val)
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
return dib7000p_cfg_gpio(state, num, dir, val); return dib7000p_cfg_gpio(state, num, dir, val);
} }
EXPORT_SYMBOL(dib7000p_set_gpio); EXPORT_SYMBOL(dib7000p_set_gpio);
static u16 dib7000p_defaults[] =
{ static u16 dib7000p_defaults[] = {
// auto search configuration // auto search configuration
3, 2, 3, 2,
0x0004, 0x0004,
...@@ -445,6 +545,9 @@ static u16 dib7000p_defaults[] = ...@@ -445,6 +545,9 @@ static u16 dib7000p_defaults[] =
1, 183, 1, 183,
0x200f, // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005 0x200f, // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005
1, 212,
0x169, // P_vit_ksi_dwn = 5 P_vit_ksi_up = 5 0x1e1, // P_vit_ksi_dwn = 4 P_vit_ksi_up = 7
5, 187, 5, 187,
0x023d, // P_adp_regul_cnt=573, default: 410 0x023d, // P_adp_regul_cnt=573, default: 410
0x00a4, // P_adp_noise_cnt= 0x00a4, // P_adp_noise_cnt=
...@@ -475,6 +578,9 @@ static int dib7000p_demod_reset(struct dib7000p_state *state) ...@@ -475,6 +578,9 @@ static int dib7000p_demod_reset(struct dib7000p_state *state)
{ {
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
if (state->version == SOC7090)
dibx000_reset_i2c_master(&state->i2c_master);
dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE); dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);
/* restart all parts */ /* restart all parts */
...@@ -482,8 +588,7 @@ static int dib7000p_demod_reset(struct dib7000p_state *state) ...@@ -482,8 +588,7 @@ static int dib7000p_demod_reset(struct dib7000p_state *state)
dib7000p_write_word(state, 771, 0xffff); dib7000p_write_word(state, 771, 0xffff);
dib7000p_write_word(state, 772, 0x001f); dib7000p_write_word(state, 772, 0x001f);
dib7000p_write_word(state, 898, 0x0003); dib7000p_write_word(state, 898, 0x0003);
/* except i2c, sdio, gpio - control interfaces */ dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3)));
dib7000p_write_word(state, 1280, 0x01fc - ((1 << 7) | (1 << 6) | (1 << 5)) );
dib7000p_write_word(state, 770, 0); dib7000p_write_word(state, 770, 0);
dib7000p_write_word(state, 771, 0); dib7000p_write_word(state, 771, 0);
...@@ -495,31 +600,43 @@ static int dib7000p_demod_reset(struct dib7000p_state *state) ...@@ -495,31 +600,43 @@ static int dib7000p_demod_reset(struct dib7000p_state *state)
dib7000p_reset_pll(state); dib7000p_reset_pll(state);
if (dib7000p_reset_gpio(state) != 0) if (dib7000p_reset_gpio(state) != 0)
dprintk( "GPIO reset was not successful."); dprintk("GPIO reset was not successful.");
if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
dprintk( "OUTPUT_MODE could not be reset.");
/* unforce divstr regardless whether i2c enumeration was done or not */ if (state->version == SOC7090) {
dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1) ); dib7000p_write_word(state, 899, 0);
dib7000p_set_bandwidth(state, 8000); /* impulse noise */
dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */
dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */
dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */
//dib7000p_write_word(state, 273, (1<<6) | 10); /* P_vit_inoise_sel = 1, P_vit_inoise_gain = 10*/
dib7000p_write_word(state, 273, (1<<6) | 30); //26/* P_vit_inoise_sel = 1, P_vit_inoise_gain = 26*/// FAG
}
if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
dprintk("OUTPUT_MODE could not be reset.");
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
dib7000p_sad_calib(state); dib7000p_sad_calib(state);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
// P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ... /* unforce divstr regardless whether i2c enumeration was done or not */
if(state->cfg.tuner_is_baseband) dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1));
dib7000p_write_word(state, 36,0x0755);
dib7000p_set_bandwidth(state, 8000);
if(state->version == SOC7090) {
dib7000p_write_word(state, 36, 0x5755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */
} else { // P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ...
if (state->cfg.tuner_is_baseband)
dib7000p_write_word(state, 36, 0x0755);
else else
dib7000p_write_word(state, 36,0x1f55); dib7000p_write_word(state, 36, 0x1f55);
}
dib7000p_write_tab(state, dib7000p_defaults); dib7000p_write_tab(state, dib7000p_defaults);
dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
return 0; return 0;
} }
...@@ -547,7 +664,7 @@ static int dib7000p_update_lna(struct dib7000p_state *state) ...@@ -547,7 +664,7 @@ static int dib7000p_update_lna(struct dib7000p_state *state)
if (state->cfg.update_lna) { if (state->cfg.update_lna) {
// read dyn_gain here (because it is demod-dependent and not fe) // read dyn_gain here (because it is demod-dependent and not fe)
dyn_gain = dib7000p_read_word(state, 394); dyn_gain = dib7000p_read_word(state, 394);
if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed if (state->cfg.update_lna(&state->demod, dyn_gain)) { // LNA has changed
dib7000p_restart_agc(state); dib7000p_restart_agc(state);
return 1; return 1;
} }
...@@ -571,16 +688,16 @@ static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) ...@@ -571,16 +688,16 @@ static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
} }
if (agc == NULL) { if (agc == NULL) {
dprintk( "no valid AGC configuration found for band 0x%02x",band); dprintk("no valid AGC configuration found for band 0x%02x", band);
return -EINVAL; return -EINVAL;
} }
state->current_agc = agc; state->current_agc = agc;
/* AGC */ /* AGC */
dib7000p_write_word(state, 75 , agc->setup ); dib7000p_write_word(state, 75, agc->setup);
dib7000p_write_word(state, 76 , agc->inv_gain ); dib7000p_write_word(state, 76, agc->inv_gain);
dib7000p_write_word(state, 77 , agc->time_stabiliz ); dib7000p_write_word(state, 77, agc->time_stabiliz);
dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock); dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);
// Demod AGC loop configuration // Demod AGC loop configuration
...@@ -588,7 +705,7 @@ static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) ...@@ -588,7 +705,7 @@ static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp); dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
/* AGC continued */ /* AGC continued */
dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d", dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
if (state->wbd_ref != 0) if (state->wbd_ref != 0)
...@@ -610,23 +727,61 @@ static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) ...@@ -610,23 +727,61 @@ static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
return 0; return 0;
} }
static void dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz)
{
u32 internal = dib7000p_get_internal_freq(state);
s32 unit_khz_dds_val = 67108864 / (internal); /* 2**26 / Fsampling is the unit 1KHz offset */
u32 abs_offset_khz = ABS(offset_khz);
u32 dds = state->cfg.bw->ifreq & 0x1ffffff;
u8 invert = !!(state->cfg.bw->ifreq & (1 << 25));
dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d", offset_khz, internal, invert);
if (offset_khz < 0)
unit_khz_dds_val *= -1;
/* IF tuner */
if (invert)
dds -= (abs_offset_khz * unit_khz_dds_val); /* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */
else
dds += (abs_offset_khz * unit_khz_dds_val);
if (abs_offset_khz <= (internal / 2)) { /* Max dds offset is the half of the demod freq */
dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9)));
dib7000p_write_word(state, 22, (u16) (dds & 0xffff));
}
}
static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{ {
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
int ret = -1; int ret = -1;
u8 *agc_state = &state->agc_state; u8 *agc_state = &state->agc_state;
u8 agc_split; u8 agc_split;
u16 reg;
u32 upd_demod_gain_period = 0x1000;
switch (state->agc_state) { switch (state->agc_state) {
case 0: case 0:
// set power-up level: interf+analog+AGC // set power-up level: interf+analog+AGC
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
if (state->version == SOC7090) {
reg = dib7000p_read_word(state, 0x79b) & 0xff00;
dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF); /* lsb */
dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF)); // bit 14 = enDemodGain
/* enable adc i & q */
reg = dib7000p_read_word(state, 0x780);
dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7)));
} else {
dib7000p_set_adc_state(state, DIBX000_ADC_ON); dib7000p_set_adc_state(state, DIBX000_ADC_ON);
dib7000p_pll_clk_cfg(state); dib7000p_pll_clk_cfg(state);
}
if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0) if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0)
return -1; return -1;
dib7000p_set_dds(state, 0);
ret = 7; ret = 7;
(*agc_state)++; (*agc_state)++;
break; break;
...@@ -661,7 +816,7 @@ static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_ ...@@ -661,7 +816,7 @@ static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_
break; break;
case 3: /* split search ended */ case 3: /* split search ended */
agc_split = (u8)dib7000p_read_word(state, 396); /* store the split value for the next time */ agc_split = (u8) dib7000p_read_word(state, 396); /* store the split value for the next time */
dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */ dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */
dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */ dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */
...@@ -669,7 +824,7 @@ static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_ ...@@ -669,7 +824,7 @@ static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_
dib7000p_restart_agc(state); dib7000p_restart_agc(state);
dprintk( "SPLIT %p: %hd", demod, agc_split); dprintk("SPLIT %p: %hd", demod, agc_split);
(*agc_state)++; (*agc_state)++;
ret = 5; ret = 5;
...@@ -703,10 +858,28 @@ static void dib7000p_update_timf(struct dib7000p_state *state) ...@@ -703,10 +858,28 @@ static void dib7000p_update_timf(struct dib7000p_state *state)
state->timf = timf * 160 / (state->current_bandwidth / 50); state->timf = timf * 160 / (state->current_bandwidth / 50);
dib7000p_write_word(state, 23, (u16) (timf >> 16)); dib7000p_write_word(state, 23, (u16) (timf >> 16));
dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->cfg.bw->timf); dprintk("updated timf_frequency: %d (default: %d)", state->timf, state->cfg.bw->timf);
} }
u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf)
{
struct dib7000p_state *state = fe->demodulator_priv;
switch (op) {
case DEMOD_TIMF_SET:
state->timf = timf;
break;
case DEMOD_TIMF_UPDATE:
dib7000p_update_timf(state);
break;
case DEMOD_TIMF_GET:
break;
}
dib7000p_set_bandwidth(state, state->current_bandwidth);
return state->timf;
}
EXPORT_SYMBOL(dib7000p_ctrl_timf);
static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_frontend_parameters *ch, u8 seq) static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_frontend_parameters *ch, u8 seq)
{ {
u16 value, est[4]; u16 value, est[4];
...@@ -716,29 +889,55 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte ...@@ -716,29 +889,55 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte
/* nfft, guard, qam, alpha */ /* nfft, guard, qam, alpha */
value = 0; value = 0;
switch (ch->u.ofdm.transmission_mode) { switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: value |= (0 << 7); break; case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_4K: value |= (2 << 7); break; value |= (0 << 7);
break;
case TRANSMISSION_MODE_4K:
value |= (2 << 7);
break;
default: default:
case TRANSMISSION_MODE_8K: value |= (1 << 7); break; case TRANSMISSION_MODE_8K:
value |= (1 << 7);
break;
} }
switch (ch->u.ofdm.guard_interval) { switch (ch->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32: value |= (0 << 5); break; case GUARD_INTERVAL_1_32:
case GUARD_INTERVAL_1_16: value |= (1 << 5); break; value |= (0 << 5);
case GUARD_INTERVAL_1_4: value |= (3 << 5); break; break;
case GUARD_INTERVAL_1_16:
value |= (1 << 5);
break;
case GUARD_INTERVAL_1_4:
value |= (3 << 5);
break;
default: default:
case GUARD_INTERVAL_1_8: value |= (2 << 5); break; case GUARD_INTERVAL_1_8:
value |= (2 << 5);
break;
} }
switch (ch->u.ofdm.constellation) { switch (ch->u.ofdm.constellation) {
case QPSK: value |= (0 << 3); break; case QPSK:
case QAM_16: value |= (1 << 3); break; value |= (0 << 3);
break;
case QAM_16:
value |= (1 << 3);
break;
default: default:
case QAM_64: value |= (2 << 3); break; case QAM_64:
value |= (2 << 3);
break;
} }
switch (HIERARCHY_1) { switch (HIERARCHY_1) {
case HIERARCHY_2: value |= 2; break; case HIERARCHY_2:
case HIERARCHY_4: value |= 4; break; value |= 2;
break;
case HIERARCHY_4:
value |= 4;
break;
default: default:
case HIERARCHY_1: value |= 1; break; case HIERARCHY_1:
value |= 1;
break;
} }
dib7000p_write_word(state, 0, value); dib7000p_write_word(state, 0, value);
dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */ dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */
...@@ -752,12 +951,22 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte ...@@ -752,12 +951,22 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte
if (1 == 1) if (1 == 1)
value |= 1; value |= 1;
switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) { switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
case FEC_2_3: value |= (2 << 1); break; case FEC_2_3:
case FEC_3_4: value |= (3 << 1); break; value |= (2 << 1);
case FEC_5_6: value |= (5 << 1); break; break;
case FEC_7_8: value |= (7 << 1); break; case FEC_3_4:
value |= (3 << 1);
break;
case FEC_5_6:
value |= (5 << 1);
break;
case FEC_7_8:
value |= (7 << 1);
break;
default: default:
case FEC_1_2: value |= (1 << 1); break; case FEC_1_2:
value |= (1 << 1);
break;
} }
dib7000p_write_word(state, 208, value); dib7000p_write_word(state, 208, value);
...@@ -769,17 +978,31 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte ...@@ -769,17 +978,31 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte
/* P_dvsy_sync_wait */ /* P_dvsy_sync_wait */
switch (ch->u.ofdm.transmission_mode) { switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_8K: value = 256; break; case TRANSMISSION_MODE_8K:
case TRANSMISSION_MODE_4K: value = 128; break; value = 256;
break;
case TRANSMISSION_MODE_4K:
value = 128;
break;
case TRANSMISSION_MODE_2K: case TRANSMISSION_MODE_2K:
default: value = 64; break; default:
value = 64;
break;
} }
switch (ch->u.ofdm.guard_interval) { switch (ch->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_16: value *= 2; break; case GUARD_INTERVAL_1_16:
case GUARD_INTERVAL_1_8: value *= 4; break; value *= 2;
case GUARD_INTERVAL_1_4: value *= 8; break; break;
case GUARD_INTERVAL_1_8:
value *= 4;
break;
case GUARD_INTERVAL_1_4:
value *= 8;
break;
default: default:
case GUARD_INTERVAL_1_32: value *= 1; break; case GUARD_INTERVAL_1_32:
value *= 1;
break;
} }
if (state->cfg.diversity_delay == 0) if (state->cfg.diversity_delay == 0)
state->div_sync_wait = (value * 3) / 2 + 48; // add 50% SFN margin + compensate for one DVSY-fifo state->div_sync_wait = (value * 3) / 2 + 48; // add 50% SFN margin + compensate for one DVSY-fifo
...@@ -820,6 +1043,7 @@ static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_fron ...@@ -820,6 +1043,7 @@ static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_fron
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
struct dvb_frontend_parameters schan; struct dvb_frontend_parameters schan;
u32 value, factor; u32 value, factor;
u32 internal = dib7000p_get_internal_freq(state);
schan = *ch; schan = *ch;
schan.u.ofdm.constellation = QAM_64; schan.u.ofdm.constellation = QAM_64;
...@@ -838,13 +1062,13 @@ static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_fron ...@@ -838,13 +1062,13 @@ static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_fron
factor = 6; factor = 6;
// always use the setting for 8MHz here lock_time for 7,6 MHz are longer // always use the setting for 8MHz here lock_time for 7,6 MHz are longer
value = 30 * state->cfg.bw->internal * factor; value = 30 * internal * factor;
dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time
value = 100 * state->cfg.bw->internal * factor; value = 100 * internal * factor;
dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time
value = 500 * state->cfg.bw->internal * factor; value = 500 * internal * factor;
dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time
...@@ -872,8 +1096,8 @@ static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) ...@@ -872,8 +1096,8 @@ static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw) static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
{ {
static s16 notch[]={16143, 14402, 12238, 9713, 6902, 3888, 759, -2392}; static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 };
static u8 sine [] ={0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
...@@ -889,73 +1113,73 @@ static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 ...@@ -889,73 +1113,73 @@ static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32
244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, 244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254, 250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255}; 255, 255, 255, 255, 255, 255
};
u32 xtal = state->cfg.bw->xtal_hz / 1000; u32 xtal = state->cfg.bw->xtal_hz / 1000;
int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz; int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz;
int k; int k;
int coef_re[8],coef_im[8]; int coef_re[8], coef_im[8];
int bw_khz = bw; int bw_khz = bw;
u32 pha; u32 pha;
dprintk( "relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal); dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal);
if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2)
if (f_rel < -bw_khz/2 || f_rel > bw_khz/2)
return; return;
bw_khz /= 100; bw_khz /= 100;
dib7000p_write_word(state, 142 ,0x0610); dib7000p_write_word(state, 142, 0x0610);
for (k = 0; k < 8; k++) { for (k = 0; k < 8; k++) {
pha = ((f_rel * (k+1) * 112 * 80/bw_khz) /1000) & 0x3ff; pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff;
if (pha==0) { if (pha == 0) {
coef_re[k] = 256; coef_re[k] = 256;
coef_im[k] = 0; coef_im[k] = 0;
} else if(pha < 256) { } else if (pha < 256) {
coef_re[k] = sine[256-(pha&0xff)]; coef_re[k] = sine[256 - (pha & 0xff)];
coef_im[k] = sine[pha&0xff]; coef_im[k] = sine[pha & 0xff];
} else if (pha == 256) { } else if (pha == 256) {
coef_re[k] = 0; coef_re[k] = 0;
coef_im[k] = 256; coef_im[k] = 256;
} else if (pha < 512) { } else if (pha < 512) {
coef_re[k] = -sine[pha&0xff]; coef_re[k] = -sine[pha & 0xff];
coef_im[k] = sine[256 - (pha&0xff)]; coef_im[k] = sine[256 - (pha & 0xff)];
} else if (pha == 512) { } else if (pha == 512) {
coef_re[k] = -256; coef_re[k] = -256;
coef_im[k] = 0; coef_im[k] = 0;
} else if (pha < 768) { } else if (pha < 768) {
coef_re[k] = -sine[256-(pha&0xff)]; coef_re[k] = -sine[256 - (pha & 0xff)];
coef_im[k] = -sine[pha&0xff]; coef_im[k] = -sine[pha & 0xff];
} else if (pha == 768) { } else if (pha == 768) {
coef_re[k] = 0; coef_re[k] = 0;
coef_im[k] = -256; coef_im[k] = -256;
} else { } else {
coef_re[k] = sine[pha&0xff]; coef_re[k] = sine[pha & 0xff];
coef_im[k] = -sine[256 - (pha&0xff)]; coef_im[k] = -sine[256 - (pha & 0xff)];
} }
coef_re[k] *= notch[k]; coef_re[k] *= notch[k];
coef_re[k] += (1<<14); coef_re[k] += (1 << 14);
if (coef_re[k] >= (1<<24)) if (coef_re[k] >= (1 << 24))
coef_re[k] = (1<<24) - 1; coef_re[k] = (1 << 24) - 1;
coef_re[k] /= (1<<15); coef_re[k] /= (1 << 15);
coef_im[k] *= notch[k]; coef_im[k] *= notch[k];
coef_im[k] += (1<<14); coef_im[k] += (1 << 14);
if (coef_im[k] >= (1<<24)) if (coef_im[k] >= (1 << 24))
coef_im[k] = (1<<24)-1; coef_im[k] = (1 << 24) - 1;
coef_im[k] /= (1<<15); coef_im[k] /= (1 << 15);
dprintk( "PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]); dprintk("PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]);
dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
dib7000p_write_word(state, 144, coef_im[k] & 0x3ff); dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
} }
dib7000p_write_word(state,143 ,0); dib7000p_write_word(state, 143, 0);
} }
static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
...@@ -976,7 +1200,7 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_paramet ...@@ -976,7 +1200,7 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_paramet
/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3); tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3);
if (state->sfn_workaround_active) { if (state->sfn_workaround_active) {
dprintk( "SFN workaround is active"); dprintk("SFN workaround is active");
tmp |= (1 << 9); tmp |= (1 << 9);
dib7000p_write_word(state, 166, 0x4000); // P_pha3_force_pha_shift dib7000p_write_word(state, 166, 0x4000); // P_pha3_force_pha_shift
} else { } else {
...@@ -993,49 +1217,70 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_paramet ...@@ -993,49 +1217,70 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_paramet
/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
tmp = (6 << 8) | 0x80; tmp = (6 << 8) | 0x80;
switch (ch->u.ofdm.transmission_mode) { switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: tmp |= (7 << 12); break; case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_4K: tmp |= (8 << 12); break; tmp |= (2 << 12);
break;
case TRANSMISSION_MODE_4K:
tmp |= (3 << 12);
break;
default: default:
case TRANSMISSION_MODE_8K: tmp |= (9 << 12); break; case TRANSMISSION_MODE_8K:
tmp |= (4 << 12);
break;
} }
dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */ dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */
/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
tmp = (0 << 4); tmp = (0 << 4);
switch (ch->u.ofdm.transmission_mode) { switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: tmp |= 0x6; break; case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_4K: tmp |= 0x7; break; tmp |= 0x6;
break;
case TRANSMISSION_MODE_4K:
tmp |= 0x7;
break;
default: default:
case TRANSMISSION_MODE_8K: tmp |= 0x8; break; case TRANSMISSION_MODE_8K:
tmp |= 0x8;
break;
} }
dib7000p_write_word(state, 32, tmp); dib7000p_write_word(state, 32, tmp);
/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
tmp = (0 << 4); tmp = (0 << 4);
switch (ch->u.ofdm.transmission_mode) { switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: tmp |= 0x6; break; case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_4K: tmp |= 0x7; break; tmp |= 0x6;
break;
case TRANSMISSION_MODE_4K:
tmp |= 0x7;
break;
default: default:
case TRANSMISSION_MODE_8K: tmp |= 0x8; break; case TRANSMISSION_MODE_8K:
tmp |= 0x8;
break;
} }
dib7000p_write_word(state, 33, tmp); dib7000p_write_word(state, 33, tmp);
tmp = dib7000p_read_word(state,509); tmp = dib7000p_read_word(state, 509);
if (!((tmp >> 6) & 0x1)) { if (!((tmp >> 6) & 0x1)) {
/* restart the fec */ /* restart the fec */
tmp = dib7000p_read_word(state,771); tmp = dib7000p_read_word(state, 771);
dib7000p_write_word(state, 771, tmp | (1 << 1)); dib7000p_write_word(state, 771, tmp | (1 << 1));
dib7000p_write_word(state, 771, tmp); dib7000p_write_word(state, 771, tmp);
msleep(10); msleep(40);
tmp = dib7000p_read_word(state,509); tmp = dib7000p_read_word(state, 509);
} }
// we achieved a lock - it's time to update the osc freq // we achieved a lock - it's time to update the osc freq
if ((tmp >> 6) & 0x1) if ((tmp >> 6) & 0x1) {
dib7000p_update_timf(state); dib7000p_update_timf(state);
/* P_timf_alpha += 2 */
tmp = dib7000p_read_word(state, 26);
dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12));
}
if (state->cfg.spur_protect) if (state->cfg.spur_protect)
dib7000p_spur_protect(state, ch->frequency/1000, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
return 0; return 0;
...@@ -1046,63 +1291,82 @@ static int dib7000p_wakeup(struct dvb_frontend *demod) ...@@ -1046,63 +1291,82 @@ static int dib7000p_wakeup(struct dvb_frontend *demod)
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
if (state->version == SOC7090)
dib7000p_sad_calib(state);
return 0; return 0;
} }
static int dib7000p_sleep(struct dvb_frontend *demod) static int dib7000p_sleep(struct dvb_frontend *demod)
{ {
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
if (state->version == SOC7090)
return dib7090_set_output_mode(demod, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
} }
static int dib7000p_identify(struct dib7000p_state *st) static int dib7000p_identify(struct dib7000p_state *st)
{ {
u16 value; u16 value;
dprintk( "checking demod on I2C address: %d (%x)", dprintk("checking demod on I2C address: %d (%x)", st->i2c_addr, st->i2c_addr);
st->i2c_addr, st->i2c_addr);
if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
dprintk( "wrong Vendor ID (read=0x%x)",value); dprintk("wrong Vendor ID (read=0x%x)", value);
return -EREMOTEIO; return -EREMOTEIO;
} }
if ((value = dib7000p_read_word(st, 769)) != 0x4000) { if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
dprintk( "wrong Device ID (%x)",value); dprintk("wrong Device ID (%x)", value);
return -EREMOTEIO; return -EREMOTEIO;
} }
return 0; return 0;
} }
static int dib7000p_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
static int dib7000p_get_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
u16 tps = dib7000p_read_word(state,463); u16 tps = dib7000p_read_word(state, 463);
fep->inversion = INVERSION_AUTO; fep->inversion = INVERSION_AUTO;
fep->u.ofdm.bandwidth = BANDWIDTH_TO_INDEX(state->current_bandwidth); fep->u.ofdm.bandwidth = BANDWIDTH_TO_INDEX(state->current_bandwidth);
switch ((tps >> 8) & 0x3) { switch ((tps >> 8) & 0x3) {
case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; case 0:
case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break; fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
break;
case 1:
fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
break;
/* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */ /* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */
} }
switch (tps & 0x3) { switch (tps & 0x3) {
case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; case 0:
case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; break;
case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; case 1:
fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
break;
} }
switch ((tps >> 14) & 0x3) { switch ((tps >> 14) & 0x3) {
case 0: fep->u.ofdm.constellation = QPSK; break; case 0:
case 1: fep->u.ofdm.constellation = QAM_16; break; fep->u.ofdm.constellation = QPSK;
break;
case 1:
fep->u.ofdm.constellation = QAM_16;
break;
case 2: case 2:
default: fep->u.ofdm.constellation = QAM_64; break; default:
fep->u.ofdm.constellation = QAM_64;
break;
} }
/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
...@@ -1110,22 +1374,42 @@ static int dib7000p_get_frontend(struct dvb_frontend* fe, ...@@ -1110,22 +1374,42 @@ static int dib7000p_get_frontend(struct dvb_frontend* fe,
fep->u.ofdm.hierarchy_information = HIERARCHY_NONE; fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
switch ((tps >> 5) & 0x7) { switch ((tps >> 5) & 0x7) {
case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break; case 1:
case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break; fep->u.ofdm.code_rate_HP = FEC_1_2;
case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break; break;
case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break; case 2:
fep->u.ofdm.code_rate_HP = FEC_2_3;
break;
case 3:
fep->u.ofdm.code_rate_HP = FEC_3_4;
break;
case 5:
fep->u.ofdm.code_rate_HP = FEC_5_6;
break;
case 7: case 7:
default: fep->u.ofdm.code_rate_HP = FEC_7_8; break; default:
fep->u.ofdm.code_rate_HP = FEC_7_8;
break;
} }
switch ((tps >> 2) & 0x7) { switch ((tps >> 2) & 0x7) {
case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break; case 1:
case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break; fep->u.ofdm.code_rate_LP = FEC_1_2;
case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break; break;
case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break; case 2:
fep->u.ofdm.code_rate_LP = FEC_2_3;
break;
case 3:
fep->u.ofdm.code_rate_LP = FEC_3_4;
break;
case 5:
fep->u.ofdm.code_rate_LP = FEC_5_6;
break;
case 7: case 7:
default: fep->u.ofdm.code_rate_LP = FEC_7_8; break; default:
fep->u.ofdm.code_rate_LP = FEC_7_8;
break;
} }
/* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */ /* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */
...@@ -1133,12 +1417,16 @@ static int dib7000p_get_frontend(struct dvb_frontend* fe, ...@@ -1133,12 +1417,16 @@ static int dib7000p_get_frontend(struct dvb_frontend* fe,
return 0; return 0;
} }
static int dib7000p_set_frontend(struct dvb_frontend* fe, static int dib7000p_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
struct dvb_frontend_parameters *fep)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
int time, ret; int time, ret;
if (state->version == SOC7090) {
dib7090_set_diversity_in(fe, 0);
dib7090_set_output_mode(fe, OUTMODE_HIGH_Z);
}
else
dib7000p_set_output_mode(state, OUTMODE_HIGH_Z); dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
/* maybe the parameter has been changed */ /* maybe the parameter has been changed */
...@@ -1156,9 +1444,7 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe, ...@@ -1156,9 +1444,7 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe,
} while (time != -1); } while (time != -1);
if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) {
fep->u.ofdm.constellation == QAM_AUTO ||
fep->u.ofdm.code_rate_HP == FEC_AUTO) {
int i = 800, found; int i = 800, found;
dib7000p_autosearch_start(fe, fep); dib7000p_autosearch_start(fe, fep);
...@@ -1167,7 +1453,7 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe, ...@@ -1167,7 +1453,7 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe,
found = dib7000p_autosearch_is_irq(fe); found = dib7000p_autosearch_is_irq(fe);
} while (found == 0 && i--); } while (found == 0 && i--);
dprintk("autosearch returns: %d",found); dprintk("autosearch returns: %d", found);
if (found == 0 || found == 1) if (found == 0 || found == 1)
return 0; // no channel found return 0; // no channel found
...@@ -1177,11 +1463,15 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe, ...@@ -1177,11 +1463,15 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe,
ret = dib7000p_tune(fe, fep); ret = dib7000p_tune(fe, fep);
/* make this a config parameter */ /* make this a config parameter */
if (state->version == SOC7090)
dib7090_set_output_mode(fe, state->cfg.output_mode);
else
dib7000p_set_output_mode(state, state->cfg.output_mode); dib7000p_set_output_mode(state, state->cfg.output_mode);
return ret; return ret;
} }
static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat) static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t * stat)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
u16 lock = dib7000p_read_word(state, 509); u16 lock = dib7000p_read_word(state, 509);
...@@ -1202,21 +1492,21 @@ static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat) ...@@ -1202,21 +1492,21 @@ static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat)
return 0; return 0;
} }
static int dib7000p_read_ber(struct dvb_frontend *fe, u32 *ber) static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
*ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501); *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
return 0; return 0;
} }
static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
*unc = dib7000p_read_word(state, 506); *unc = dib7000p_read_word(state, 506);
return 0; return 0;
} }
static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength) static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
u16 val = dib7000p_read_word(state, 394); u16 val = dib7000p_read_word(state, 394);
...@@ -1224,7 +1514,7 @@ static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength) ...@@ -1224,7 +1514,7 @@ static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
return 0; return 0;
} }
static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr) static int dib7000p_read_snr(struct dvb_frontend *fe, u16 * snr)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
u16 val; u16 val;
...@@ -1245,14 +1535,12 @@ static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr) ...@@ -1245,14 +1535,12 @@ static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr)
signal_exp -= 0x40; signal_exp -= 0x40;
if (signal_mant != 0) if (signal_mant != 0)
result = intlog10(2) * 10 * signal_exp + 10 * result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
intlog10(signal_mant);
else else
result = intlog10(2) * 10 * signal_exp - 100; result = intlog10(2) * 10 * signal_exp - 100;
if (noise_mant != 0) if (noise_mant != 0)
result -= intlog10(2) * 10 * noise_exp + 10 * result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
intlog10(noise_mant);
else else
result -= intlog10(2) * 10 * noise_exp - 100; result -= intlog10(2) * 10 * noise_exp - 100;
...@@ -1260,7 +1548,7 @@ static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr) ...@@ -1260,7 +1548,7 @@ static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr)
return 0; return 0;
} }
static int dib7000p_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
{ {
tune->min_delay_ms = 1000; tune->min_delay_ms = 1000;
return 0; return 0;
...@@ -1270,6 +1558,7 @@ static void dib7000p_release(struct dvb_frontend *demod) ...@@ -1270,6 +1558,7 @@ static void dib7000p_release(struct dvb_frontend *demod)
{ {
struct dib7000p_state *st = demod->demodulator_priv; struct dib7000p_state *st = demod->demodulator_priv;
dibx000_exit_i2c_master(&st->i2c_master); dibx000_exit_i2c_master(&st->i2c_master);
i2c_del_adapter(&st->dib7090_tuner_adap);
kfree(st); kfree(st);
} }
...@@ -1277,8 +1566,8 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap) ...@@ -1277,8 +1566,8 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap)
{ {
u8 tx[2], rx[2]; u8 tx[2], rx[2];
struct i2c_msg msg[2] = { struct i2c_msg msg[2] = {
{ .addr = 18 >> 1, .flags = 0, .buf = tx, .len = 2 }, {.addr = 18 >> 1,.flags = 0,.buf = tx,.len = 2},
{ .addr = 18 >> 1, .flags = I2C_M_RD, .buf = rx, .len = 2 }, {.addr = 18 >> 1,.flags = I2C_M_RD,.buf = rx,.len = 2},
}; };
tx[0] = 0x03; tx[0] = 0x03;
...@@ -1303,7 +1592,7 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap) ...@@ -1303,7 +1592,7 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap)
} }
EXPORT_SYMBOL(dib7000pc_detection); EXPORT_SYMBOL(dib7000pc_detection);
struct i2c_adapter * dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
{ {
struct dib7000p_state *st = demod->demodulator_priv; struct dib7000p_state *st = demod->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
...@@ -1340,10 +1629,13 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau ...@@ -1340,10 +1629,13 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau
dpst->i2c_adap = i2c; dpst->i2c_adap = i2c;
for (k = no_of_demods-1; k >= 0; k--) { for (k = no_of_demods - 1; k >= 0; k--) {
dpst->cfg = cfg[k]; dpst->cfg = cfg[k];
/* designated i2c address */ /* designated i2c address */
if (cfg[k].default_i2c_addr != 0)
new_addr = cfg[k].default_i2c_addr + (k << 1);
else
new_addr = (0x40 + k) << 1; new_addr = (0x40 + k) << 1;
dpst->i2c_addr = new_addr; dpst->i2c_addr = new_addr;
dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */ dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */
...@@ -1368,6 +1660,9 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau ...@@ -1368,6 +1660,9 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau
for (k = 0; k < no_of_demods; k++) { for (k = 0; k < no_of_demods; k++) {
dpst->cfg = cfg[k]; dpst->cfg = cfg[k];
if (cfg[k].default_i2c_addr != 0)
dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1;
else
dpst->i2c_addr = (0x40 + k) << 1; dpst->i2c_addr = (0x40 + k) << 1;
// unforce divstr // unforce divstr
...@@ -1382,8 +1677,616 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau ...@@ -1382,8 +1677,616 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau
} }
EXPORT_SYMBOL(dib7000p_i2c_enumeration); EXPORT_SYMBOL(dib7000p_i2c_enumeration);
static const s32 lut_1000ln_mant[] = {
6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600
};
static s32 dib7000p_get_adc_power(struct dvb_frontend *fe)
{
struct dib7000p_state *state = fe->demodulator_priv;
u32 tmp_val = 0, exp = 0, mant = 0;
s32 pow_i;
u16 buf[2];
u8 ix = 0;
buf[0] = dib7000p_read_word(state, 0x184);
buf[1] = dib7000p_read_word(state, 0x185);
pow_i = (buf[0] << 16) | buf[1];
dprintk("raw pow_i = %d", pow_i);
tmp_val = pow_i;
while (tmp_val >>= 1)
exp++;
mant = (pow_i * 1000 / (1 << exp));
dprintk(" mant = %d exp = %d", mant / 1000, exp);
ix = (u8) ((mant - 1000) / 100); /* index of the LUT */
dprintk(" ix = %d", ix);
pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908);
pow_i = (pow_i << 8) / 1000;
dprintk(" pow_i = %d", pow_i);
return pow_i;
}
static int map_addr_to_serpar_number(struct i2c_msg *msg)
{
if ((msg->buf[0] <= 15))
msg->buf[0] -= 1;
else if (msg->buf[0] == 17)
msg->buf[0] = 15;
else if (msg->buf[0] == 16)
msg->buf[0] = 17;
else if (msg->buf[0] == 19)
msg->buf[0] = 16;
else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
msg->buf[0] -= 3;
else if (msg->buf[0] == 28)
msg->buf[0] = 23;
else {
return -EINVAL;
}
return 0;
}
static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u8 n_overflow = 1;
u16 i = 1000;
u16 serpar_num = msg[0].buf[0];
while (n_overflow == 1 && i) {
n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
i--;
if (i == 0)
dprintk("Tuner ITF: write busy (overflow)");
}
dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);
return num;
}
static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u8 n_overflow = 1, n_empty = 1;
u16 i = 1000;
u16 serpar_num = msg[0].buf[0];
u16 read_word;
while (n_overflow == 1 && i) {
n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
i--;
if (i == 0)
dprintk("TunerITF: read busy (overflow)");
}
dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f));
i = 1000;
while (n_empty == 1 && i) {
n_empty = dib7000p_read_word(state, 1984) & 0x1;
i--;
if (i == 0)
dprintk("TunerITF: read busy (empty)");
}
read_word = dib7000p_read_word(state, 1987);
msg[1].buf[0] = (read_word >> 8) & 0xff;
msg[1].buf[1] = (read_word) & 0xff;
return num;
}
static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
if (map_addr_to_serpar_number(&msg[0]) == 0) { /* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */
if (num == 1) { /* write */
return w7090p_tuner_write_serpar(i2c_adap, msg, 1);
} else { /* read */
return w7090p_tuner_read_serpar(i2c_adap, msg, 2);
}
}
return num;
}
int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num, u16 apb_address)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u16 word;
if (num == 1) { /* write */
dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2])));
} else {
word = dib7000p_read_word(state, apb_address);
msg[1].buf[0] = (word >> 8) & 0xff;
msg[1].buf[1] = (word) & 0xff;
}
return num;
}
static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u16 apb_address = 0, word;
int i = 0;
switch (msg[0].buf[0]) {
case 0x12:
apb_address = 1920;
break;
case 0x14:
apb_address = 1921;
break;
case 0x24:
apb_address = 1922;
break;
case 0x1a:
apb_address = 1923;
break;
case 0x22:
apb_address = 1924;
break;
case 0x33:
apb_address = 1926;
break;
case 0x34:
apb_address = 1927;
break;
case 0x35:
apb_address = 1928;
break;
case 0x36:
apb_address = 1929;
break;
case 0x37:
apb_address = 1930;
break;
case 0x38:
apb_address = 1931;
break;
case 0x39:
apb_address = 1932;
break;
case 0x2a:
apb_address = 1935;
break;
case 0x2b:
apb_address = 1936;
break;
case 0x2c:
apb_address = 1937;
break;
case 0x2d:
apb_address = 1938;
break;
case 0x2e:
apb_address = 1939;
break;
case 0x2f:
apb_address = 1940;
break;
case 0x30:
apb_address = 1941;
break;
case 0x31:
apb_address = 1942;
break;
case 0x32:
apb_address = 1943;
break;
case 0x3e:
apb_address = 1944;
break;
case 0x3f:
apb_address = 1945;
break;
case 0x40:
apb_address = 1948;
break;
case 0x25:
apb_address = 914;
break;
case 0x26:
apb_address = 915;
break;
case 0x27:
apb_address = 916;
break;
case 0x28:
apb_address = 917;
break;
case 0x1d:
i = ((dib7000p_read_word(state, 72) >> 12) & 0x3);
word = dib7000p_read_word(state, 384 + i);
msg[1].buf[0] = (word >> 8) & 0xff;
msg[1].buf[1] = (word) & 0xff;
return num;
case 0x1f:
if (num == 1) { /* write */
word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]);
word &= 0x3;
word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12); //Mask bit 12,13
dib7000p_write_word(state, 72, word); /* Set the proper input */
return num;
}
}
if (apb_address != 0) /* R/W acces via APB */
return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address);
else /* R/W access via SERPAR */
return w7090p_tuner_rw_serpar(i2c_adap, msg, num);
return 0;
}
static u32 dib7000p_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static struct i2c_algorithm dib7090_tuner_xfer_algo = {
.master_xfer = dib7090_tuner_xfer,
.functionality = dib7000p_i2c_func,
};
struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe)
{
struct dib7000p_state *st = fe->demodulator_priv;
return &st->dib7090_tuner_adap;
}
EXPORT_SYMBOL(dib7090_get_i2c_tuner);
static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive)
{
u16 reg;
/* drive host bus 2, 3, 4 */
reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
reg |= (drive << 12) | (drive << 6) | drive;
dib7000p_write_word(state, 1798, reg);
/* drive host bus 5,6 */
reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
reg |= (drive << 8) | (drive << 2);
dib7000p_write_word(state, 1799, reg);
/* drive host bus 7, 8, 9 */
reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
reg |= (drive << 12) | (drive << 6) | drive;
dib7000p_write_word(state, 1800, reg);
/* drive host bus 10, 11 */
reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
reg |= (drive << 8) | (drive << 2);
dib7000p_write_word(state, 1801, reg);
/* drive host bus 12, 13, 14 */
reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
reg |= (drive << 12) | (drive << 6) | drive;
dib7000p_write_word(state, 1802, reg);
return 0;
}
static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize)
{
u32 quantif = 3;
u32 nom = (insertExtSynchro * P_Kin + syncSize);
u32 denom = P_Kout;
u32 syncFreq = ((nom << quantif) / denom);
if ((syncFreq & ((1 << quantif) - 1)) != 0)
syncFreq = (syncFreq >> quantif) + 1;
else
syncFreq = (syncFreq >> quantif);
if (syncFreq != 0)
syncFreq = syncFreq - 1;
return syncFreq;
}
static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize)
{
u8 index_buf;
u16 rx_copy_buf[22];
dprintk("Configure DibStream Tx");
for (index_buf = 0; index_buf<22; index_buf++)
rx_copy_buf[index_buf] = dib7000p_read_word(state, 1536+index_buf);
dib7000p_write_word(state, 1615, 1);
dib7000p_write_word(state, 1603, P_Kin);
dib7000p_write_word(state, 1605, P_Kout);
dib7000p_write_word(state, 1606, insertExtSynchro);
dib7000p_write_word(state, 1608, synchroMode);
dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff);
dib7000p_write_word(state, 1610, syncWord & 0xffff);
dib7000p_write_word(state, 1612, syncSize);
dib7000p_write_word(state, 1615, 0);
for (index_buf = 0; index_buf<22; index_buf++)
dib7000p_write_word(state, 1536+index_buf, rx_copy_buf[index_buf]);
return 0;
}
static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize,
u32 dataOutRate)
{
u32 syncFreq;
dprintk("Configure DibStream Rx");
if ((P_Kin != 0) && (P_Kout != 0))
{
syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize);
dib7000p_write_word(state, 1542, syncFreq);
}
dib7000p_write_word(state, 1554, 1);
dib7000p_write_word(state, 1536, P_Kin);
dib7000p_write_word(state, 1537, P_Kout);
dib7000p_write_word(state, 1539, synchroMode);
dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff);
dib7000p_write_word(state, 1541, syncWord & 0xffff);
dib7000p_write_word(state, 1543, syncSize);
dib7000p_write_word(state, 1544, dataOutRate);
dib7000p_write_word(state, 1554, 0);
return 0;
}
static int dib7090_enDivOnHostBus(struct dib7000p_state *state)
{
u16 reg;
dprintk("Enable Diversity on host bus");
reg = (1 << 8) | (1 << 5); // P_enDivOutOnDibTx = 1 ; P_enDibTxOnHostBus = 1
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
}
static int dib7090_enAdcOnHostBus(struct dib7000p_state *state)
{
u16 reg;
dprintk("Enable ADC on host bus");
reg = (1 << 7) | (1 << 5); //P_enAdcOnDibTx = 1 ; P_enDibTxOnHostBus = 1
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
}
static int dib7090_enMpegOnHostBus(struct dib7000p_state *state)
{
u16 reg;
dprintk("Enable Mpeg on host bus");
reg = (1 << 9) | (1 << 5); //P_enMpegOnDibTx = 1 ; P_enDibTxOnHostBus = 1
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
}
static int dib7090_enMpegInput(struct dib7000p_state *state)
{
dprintk("Enable Mpeg input");
return dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); /*outputRate = 8 */
}
static int dib7090_enMpegMux(struct dib7000p_state *state, u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
{
u16 reg = (1 << 7) | ((pulseWidth & 0x1f) << 2) | ((enSerialMode & 0x1) << 1) | (enSerialClkDiv2 & 0x1);
dprintk("Enable Mpeg mux");
dib7000p_write_word(state, 1287, reg);
reg &= ~(1 << 7); // P_restart_mpegMux = 0
dib7000p_write_word(state, 1287, reg);
reg = (1 << 4); //P_enMpegMuxOnHostBus = 1
dib7000p_write_word(state, 1288, reg);
return 0;
}
static int dib7090_disableMpegMux(struct dib7000p_state *state)
{
u16 reg;
dprintk("Disable Mpeg mux");
dib7000p_write_word(state, 1288, 0); //P_enMpegMuxOnHostBus = 0
reg = dib7000p_read_word(state, 1287);
reg &= ~(1 << 7); // P_restart_mpegMux = 0
dib7000p_write_word(state, 1287, reg);
return 0;
}
static int dib7090_set_input_mode(struct dvb_frontend *fe, int mode)
{
struct dib7000p_state *state = fe->demodulator_priv;
switch(mode) {
case INPUT_MODE_DIVERSITY:
dprintk("Enable diversity INPUT");
dib7090_cfg_DibRx(state, 5,5,0,0,0,0,0);
break;
case INPUT_MODE_MPEG:
dprintk("Enable Mpeg INPUT");
dib7090_cfg_DibRx(state, 8,5,0,0,0,8,0); /*outputRate = 8 */
break;
case INPUT_MODE_OFF:
default:
dprintk("Disable INPUT");
dib7090_cfg_DibRx(state, 0,0,0,0,0,0,0);
break;
}
return 0;
}
static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff)
{
switch (onoff) {
case 0: /* only use the internal way - not the diversity input */
dib7090_set_input_mode(fe, INPUT_MODE_MPEG);
break;
case 1: /* both ways */
case 2: /* only the diversity input */
dib7090_set_input_mode(fe, INPUT_MODE_DIVERSITY);
break;
}
return 0;
}
static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 outreg, smo_mode, fifo_threshold;
u8 prefer_mpeg_mux_use = 1;
int ret = 0;
dib7090_host_bus_drive(state, 1);
fifo_threshold = 1792;
smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1));
switch (mode) {
case OUTMODE_HIGH_Z:
outreg = 0;
break;
case OUTMODE_MPEG2_SERIAL:
if (prefer_mpeg_mux_use) {
dprintk("Sip 7090P setting output mode TS_SERIAL using Mpeg Mux");
dib7090_enMpegOnHostBus(state);
dib7090_enMpegInput(state);
if (state->cfg.enMpegOutput == 1)
dib7090_enMpegMux(state, 3, 1, 1);
} else { /* Use Smooth block */
dprintk("Sip 7090P setting output mode TS_SERIAL using Smooth bloc");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
outreg |= (2 << 6) | (0 << 1);
}
break;
case OUTMODE_MPEG2_PAR_GATED_CLK:
if (prefer_mpeg_mux_use) {
dprintk("Sip 7090P setting output mode TS_PARALLEL_GATED using Mpeg Mux");
dib7090_enMpegOnHostBus(state);
dib7090_enMpegInput(state);
if (state->cfg.enMpegOutput == 1)
dib7090_enMpegMux(state, 2, 0, 0);
} else { /* Use Smooth block */
dprintk("Sip 7090P setting output mode TS_PARALLEL_GATED using Smooth block");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
outreg |= (0 << 6);
}
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */
dprintk("Sip 7090P setting output mode TS_PARALLEL_CONT using Smooth block");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
outreg |= (1 << 6);
break;
case OUTMODE_MPEG2_FIFO: /* Using Smooth block because not supported by new Mpeg Mux bloc */
dprintk("Sip 7090P setting output mode TS_FIFO using Smooth block");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
outreg |= (5 << 6);
smo_mode |= (3 << 1);
fifo_threshold = 512;
break;
case OUTMODE_DIVERSITY:
dprintk("Sip 7090P setting output mode MODE_DIVERSITY");
dib7090_disableMpegMux(state);
dib7090_enDivOnHostBus(state);
break;
case OUTMODE_ANALOG_ADC:
dprintk("Sip 7090P setting output mode MODE_ANALOG_ADC");
dib7090_enAdcOnHostBus(state);
break;
}
if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5);
ret |= dib7000p_write_word(state, 235, smo_mode);
ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */
ret |= dib7000p_write_word(state, 1286, outreg | (1 << 10)); /* allways set Dout active = 1 !!! */
return ret;
}
int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 en_cur_state;
dprintk("sleep dib7090: %d", onoff);
en_cur_state = dib7000p_read_word(state, 1922);
if (en_cur_state > 0xff) { //LNAs and MIX are ON and therefore it is a valid configuration
state->tuner_enable = en_cur_state;
}
if (onoff)
en_cur_state &= 0x00ff; //Mask to be applied
else {
if (state->tuner_enable != 0)
en_cur_state = state->tuner_enable;
}
dib7000p_write_word(state, 1922, en_cur_state);
return 0;
}
EXPORT_SYMBOL(dib7090_tuner_sleep);
int dib7090_agc_restart(struct dvb_frontend *fe, u8 restart)
{
dprintk("AGC restart callback: %d", restart);
return 0;
}
EXPORT_SYMBOL(dib7090_agc_restart);
int dib7090_get_adc_power(struct dvb_frontend *fe)
{
return dib7000p_get_adc_power(fe);
}
EXPORT_SYMBOL(dib7090_get_adc_power);
int dib7090_slave_reset(struct dvb_frontend *fe)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 reg;
reg = dib7000p_read_word(state, 1794);
dib7000p_write_word(state, 1794, reg | (4 << 12));
dib7000p_write_word(state, 1032, 0xffff);
return 0;
}
EXPORT_SYMBOL(dib7090_slave_reset);
static struct dvb_frontend_ops dib7000p_ops; static struct dvb_frontend_ops dib7000p_ops;
struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg) struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
{ {
struct dvb_frontend *demod; struct dvb_frontend *demod;
struct dib7000p_state *st; struct dib7000p_state *st;
...@@ -1400,8 +2303,7 @@ struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, ...@@ -1400,8 +2303,7 @@ struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr,
/* Ensure the output mode remains at the previous default if it's /* Ensure the output mode remains at the previous default if it's
* not specifically set by the caller. * not specifically set by the caller.
*/ */
if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
(st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
st->cfg.output_mode = OUTMODE_MPEG2_FIFO; st->cfg.output_mode = OUTMODE_MPEG2_FIFO;
demod = &st->demod; demod = &st->demod;
...@@ -1413,18 +2315,32 @@ struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, ...@@ -1413,18 +2315,32 @@ struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr,
if (dib7000p_identify(st) != 0) if (dib7000p_identify(st) != 0)
goto error; goto error;
st->version = dib7000p_read_word(st, 897);
/* FIXME: make sure the dev.parent field is initialized, or else /* FIXME: make sure the dev.parent field is initialized, or else
request_firmware() will hit an OOPS (this should be moved somewhere request_firmware() will hit an OOPS (this should be moved somewhere
more common) */ more common) */
st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent;
dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr); dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);
/* init 7090 tuner adapter */
strncpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", sizeof(st->dib7090_tuner_adap.name));
st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo;
st->dib7090_tuner_adap.algo_data = NULL;
st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent;
i2c_set_adapdata(&st->dib7090_tuner_adap, st);
i2c_add_adapter(&st->dib7090_tuner_adap);
dib7000p_demod_reset(st); dib7000p_demod_reset(st);
if (st->version == SOC7090) {
dib7090_set_output_mode(demod, st->cfg.output_mode);
dib7090_set_diversity_in(demod, 0);
}
return demod; return demod;
error: error:
kfree(st); kfree(st);
return NULL; return NULL;
} }
...@@ -1441,10 +2357,7 @@ static struct dvb_frontend_ops dib7000p_ops = { ...@@ -1441,10 +2357,7 @@ static struct dvb_frontend_ops dib7000p_ops = {
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_RECOVER |
FE_CAN_HIERARCHY_AUTO,
}, },
.release = dib7000p_release, .release = dib7000p_release,
...@@ -1463,6 +2376,7 @@ static struct dvb_frontend_ops dib7000p_ops = { ...@@ -1463,6 +2376,7 @@ static struct dvb_frontend_ops dib7000p_ops = {
.read_ucblocks = dib7000p_read_unc_blocks, .read_ucblocks = dib7000p_read_unc_blocks,
}; };
MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>");
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator"); MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
...@@ -33,59 +33,54 @@ struct dib7000p_config { ...@@ -33,59 +33,54 @@ struct dib7000p_config {
int (*agc_control) (struct dvb_frontend *, u8 before); int (*agc_control) (struct dvb_frontend *, u8 before);
u8 output_mode; u8 output_mode;
u8 disable_sample_and_hold : 1; u8 disable_sample_and_hold:1;
u8 enable_current_mirror : 1; u8 enable_current_mirror:1;
u8 diversity_delay; u16 diversity_delay;
u8 default_i2c_addr;
u8 enMpegOutput : 1;
}; };
#define DEFAULT_DIB7000P_I2C_ADDRESS 18 #define DEFAULT_DIB7000P_I2C_ADDRESS 18
#if defined(CONFIG_DVB_DIB7000P) || (defined(CONFIG_DVB_DIB7000P_MODULE) && \ #if defined(CONFIG_DVB_DIB7000P) || (defined(CONFIG_DVB_DIB7000P_MODULE) && \
defined(MODULE)) defined(MODULE))
extern struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, extern struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg);
u8 i2c_addr, extern struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *, enum dibx000_i2c_interface, int);
struct dib7000p_config *cfg); extern int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]);
extern struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *,
enum dibx000_i2c_interface,
int);
extern int dib7000p_i2c_enumeration(struct i2c_adapter *i2c,
int no_of_demods, u8 default_addr,
struct dib7000p_config cfg[]);
extern int dib7000p_set_gpio(struct dvb_frontend *, u8 num, u8 dir, u8 val); extern int dib7000p_set_gpio(struct dvb_frontend *, u8 num, u8 dir, u8 val);
extern int dib7000p_set_wbd_ref(struct dvb_frontend *, u16 value); extern int dib7000p_set_wbd_ref(struct dvb_frontend *, u16 value);
extern int dib7000pc_detection(struct i2c_adapter *i2c_adap); extern int dib7000pc_detection(struct i2c_adapter *i2c_adap);
extern int dib7000p_pid_filter(struct dvb_frontend *, u8 id, u16 pid, u8 onoff); extern int dib7000p_pid_filter(struct dvb_frontend *, u8 id, u16 pid, u8 onoff);
extern int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff); extern int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff);
extern int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw);
extern u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf);
extern int dib7090_agc_restart(struct dvb_frontend *fe, u8 restart);
extern int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff);
extern int dib7090_get_adc_power(struct dvb_frontend *fe);
extern struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe);
extern int dib7090_slave_reset(struct dvb_frontend *fe);
#else #else
static inline static inline struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr,
struct dib7000p_config *cfg)
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return NULL; return NULL;
} }
static inline static inline struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface i, int x)
struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *fe,
enum dibx000_i2c_interface i,
int x)
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return NULL; return NULL;
} }
static inline int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, static inline int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
int no_of_demods, u8 default_addr,
struct dib7000p_config cfg[])
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV; return -ENODEV;
} }
static inline int dib7000p_set_gpio(struct dvb_frontend *fe, static inline int dib7000p_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
u8 num, u8 dir, u8 val)
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV; return -ENODEV;
...@@ -102,6 +97,7 @@ static inline int dib7000pc_detection(struct i2c_adapter *i2c_adap) ...@@ -102,6 +97,7 @@ static inline int dib7000pc_detection(struct i2c_adapter *i2c_adap)
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV; return -ENODEV;
} }
static inline int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) static inline int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
...@@ -113,6 +109,48 @@ static inline int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, uint8_t onof ...@@ -113,6 +109,48 @@ static inline int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, uint8_t onof
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV; return -ENODEV;
} }
static inline int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV;
}
static inline u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return 0;
}
static inline int dib7090_agc_restart(struct dvb_frontend *fe, u8 restart)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV;
}
static inline int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV;
}
static inline int dib7090_get_adc_power(struct dvb_frontend *fe)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV;
}
static inline struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return NULL;
}
static inline int dib7090_slave_reset(struct dvb_frontend *fe)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV;
}
#endif #endif
#endif #endif
...@@ -158,6 +158,10 @@ enum dibx000_adc_states { ...@@ -158,6 +158,10 @@ enum dibx000_adc_states {
#define OUTMODE_MPEG2_FIFO 5 #define OUTMODE_MPEG2_FIFO 5
#define OUTMODE_ANALOG_ADC 6 #define OUTMODE_ANALOG_ADC 6
#define INPUT_MODE_OFF 0x11
#define INPUT_MODE_DIVERSITY 0x12
#define INPUT_MODE_MPEG 0x13
enum frontend_tune_state { enum frontend_tune_state {
CT_TUNER_START = 10, CT_TUNER_START = 10,
CT_TUNER_STEP_0, CT_TUNER_STEP_0,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment