Commit 72e0642f authored by Alexandre Courbot's avatar Alexandre Courbot Committed by Ben Skeggs

drm/nouveau/secboot: reorganize into more files

Split the act of building the ACR blob from firmware files from the rest
of the (chip-dependent) secure boot logic. ACR logic is moved into
acr_rxxx.c files, where rxxx corresponds to the compatible release of
the NVIDIA driver. At the moment r352 and r361 are supported since
firmwares have been released for these versions. Some abstractions are
added on top of r352 so r361 can easily be implemented on top of it by
just overriding a few hooks.

This split makes it possible and easy to reuse the same ACR version on
different chips. It also hopefully makes the code much more readable as
the different secure boot logics are separated. As more chips and
firmware versions will be supported, this is a necessity to not get lost
in code that is already quite complex.

This is a big commit, but it essentially moves things around (and split
the nvkm_secboot structure into two, nvkm_secboot and nvkm_acr). Code
semantics should not be affected.
Signed-off-by: default avatarAlexandre Courbot <acourbot@nvidia.com>
Signed-off-by: default avatarBen Skeggs <bskeggs@redhat.com>
parent 8f491c89
......@@ -34,15 +34,14 @@ enum nvkm_secboot_falcon {
NVKM_SECBOOT_FALCON_INVALID = 0xffffffff,
};
/**
* @base: base IO address of the falcon performing secure boot
* @irq_mask: IRQ mask of the falcon performing secure boot
* @enable_mask: enable mask of the falcon performing secure boot
*/
struct nvkm_secboot {
const struct nvkm_secboot_func *func;
struct nvkm_acr *acr;
struct nvkm_subdev subdev;
struct nvkm_falcon *boot_falcon;
u64 wpr_addr;
u32 wpr_size;
};
#define nvkm_secboot(p) container_of((p), struct nvkm_secboot, subdev)
......
nvkm-y += nvkm/subdev/secboot/base.o
nvkm-y += nvkm/subdev/secboot/ls_ucode_gr.o
nvkm-y += nvkm/subdev/secboot/acr.o
nvkm-y += nvkm/subdev/secboot/acr_r352.o
nvkm-y += nvkm/subdev/secboot/acr_r361.o
nvkm-y += nvkm/subdev/secboot/gm200.o
nvkm-y += nvkm/subdev/secboot/gm20b.o
/*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "acr.h"
#include <core/firmware.h>
/**
* Convenience function to duplicate a firmware file in memory and check that
* it has the required minimum size.
*/
void *
nvkm_acr_load_firmware(const struct nvkm_subdev *subdev, const char *name,
size_t min_size)
{
const struct firmware *fw;
void *blob;
int ret;
ret = nvkm_firmware_get(subdev->device, name, &fw);
if (ret)
return ERR_PTR(ret);
if (fw->size < min_size) {
nvkm_error(subdev, "%s is smaller than expected size %zu\n",
name, min_size);
nvkm_firmware_put(fw);
return ERR_PTR(-EINVAL);
}
blob = kmemdup(fw->data, fw->size, GFP_KERNEL);
nvkm_firmware_put(fw);
if (!blob)
return ERR_PTR(-ENOMEM);
return blob;
}
/*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __NVKM_SECBOOT_ACR_H__
#define __NVKM_SECBOOT_ACR_H__
#include "priv.h"
struct nvkm_acr;
/**
* struct nvkm_acr_func - properties and functions specific to an ACR
*
* @load: make the ACR ready to run on the given secboot device
* @reset: reset the specified falcon
* @start: start the specified falcon (assumed to have been reset)
*/
struct nvkm_acr_func {
void (*dtor)(struct nvkm_acr *);
int (*oneinit)(struct nvkm_acr *, struct nvkm_secboot *);
int (*fini)(struct nvkm_acr *, struct nvkm_secboot *, bool);
int (*load)(struct nvkm_acr *, struct nvkm_secboot *,
struct nvkm_gpuobj *, u64);
int (*reset)(struct nvkm_acr *, struct nvkm_secboot *,
enum nvkm_secboot_falcon);
int (*start)(struct nvkm_acr *, struct nvkm_secboot *,
enum nvkm_secboot_falcon);
};
/**
* struct nvkm_acr - instance of an ACR
*
* @boot_falcon: ID of the falcon that will perform secure boot
* @managed_falcons: bitfield of falcons managed by this ACR
* @start_address: virtual start address of the HS bootloader
*/
struct nvkm_acr {
const struct nvkm_acr_func *func;
const struct nvkm_subdev *subdev;
enum nvkm_secboot_falcon boot_falcon;
unsigned long managed_falcons;
u32 start_address;
};
void *nvkm_acr_load_firmware(const struct nvkm_subdev *, const char *, size_t);
struct nvkm_acr *acr_r352_new(unsigned long);
struct nvkm_acr *acr_r361_new(unsigned long);
#endif
/*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "acr_r352.h"
#include "ls_ucode.h"
#include <core/gpuobj.h>
#include <core/firmware.h>
#include <engine/falcon.h>
/**
* struct hsf_fw_header - HS firmware descriptor
* @sig_dbg_offset: offset of the debug signature
* @sig_dbg_size: size of the debug signature
* @sig_prod_offset: offset of the production signature
* @sig_prod_size: size of the production signature
* @patch_loc: offset of the offset (sic) of where the signature is
* @patch_sig: offset of the offset (sic) to add to sig_*_offset
* @hdr_offset: offset of the load header (see struct hs_load_header)
* @hdr_size: size of above header
*
* This structure is embedded in the HS firmware image at
* hs_bin_hdr.header_offset.
*/
struct hsf_fw_header {
u32 sig_dbg_offset;
u32 sig_dbg_size;
u32 sig_prod_offset;
u32 sig_prod_size;
u32 patch_loc;
u32 patch_sig;
u32 hdr_offset;
u32 hdr_size;
};
/**
* struct acr_r352_flcn_bl_desc - DMEM bootloader descriptor
* @signature: 16B signature for secure code. 0s if no secure code
* @ctx_dma: DMA context to be used by BL while loading code/data
* @code_dma_base: 256B-aligned Physical FB Address where code is located
* (falcon's $xcbase register)
* @non_sec_code_off: offset from code_dma_base where the non-secure code is
* located. The offset must be multiple of 256 to help perf
* @non_sec_code_size: the size of the nonSecure code part.
* @sec_code_off: offset from code_dma_base where the secure code is
* located. The offset must be multiple of 256 to help perf
* @sec_code_size: offset from code_dma_base where the secure code is
* located. The offset must be multiple of 256 to help perf
* @code_entry_point: code entry point which will be invoked by BL after
* code is loaded.
* @data_dma_base: 256B aligned Physical FB Address where data is located.
* (falcon's $xdbase register)
* @data_size: size of data block. Should be multiple of 256B
*
* Structure used by the bootloader to load the rest of the code. This has
* to be filled by host and copied into DMEM at offset provided in the
* hsflcn_bl_desc.bl_desc_dmem_load_off.
*/
struct acr_r352_flcn_bl_desc {
u32 reserved[4];
u32 signature[4];
u32 ctx_dma;
u32 code_dma_base;
u32 non_sec_code_off;
u32 non_sec_code_size;
u32 sec_code_off;
u32 sec_code_size;
u32 code_entry_point;
u32 data_dma_base;
u32 data_size;
};
/**
* acr_r352_generate_flcn_bl_desc - generate generic BL descriptor for LS image
*/
static void
acr_r352_generate_flcn_bl_desc(const struct nvkm_acr *acr,
const struct ls_ucode_img *img, u64 wpr_addr,
void *_desc)
{
struct acr_r352_flcn_bl_desc *desc = _desc;
const struct ls_ucode_img_desc *pdesc = &img->ucode_desc;
u64 base, addr_code, addr_data;
base = wpr_addr + img->lsb_header.ucode_off + pdesc->app_start_offset;
addr_code = (base + pdesc->app_resident_code_offset) >> 8;
addr_data = (base + pdesc->app_resident_data_offset) >> 8;
memset(desc, 0, sizeof(*desc));
desc->ctx_dma = FALCON_DMAIDX_UCODE;
desc->code_dma_base = lower_32_bits(addr_code);
desc->non_sec_code_off = pdesc->app_resident_code_offset;
desc->non_sec_code_size = pdesc->app_resident_code_size;
desc->code_entry_point = pdesc->app_imem_entry;
desc->data_dma_base = lower_32_bits(addr_data);
desc->data_size = pdesc->app_resident_data_size;
}
/**
* struct hsflcn_acr_desc - data section of the HS firmware
*
* This header is to be copied at the beginning of DMEM by the HS bootloader.
*
* @signature: signature of ACR ucode
* @wpr_region_id: region ID holding the WPR header and its details
* @wpr_offset: offset from the WPR region holding the wpr header
* @regions: region descriptors
* @nonwpr_ucode_blob_size: size of LS blob
* @nonwpr_ucode_blob_start: FB location of LS blob is
*/
struct hsflcn_acr_desc {
union {
u8 reserved_dmem[0x200];
u32 signatures[4];
} ucode_reserved_space;
u32 wpr_region_id;
u32 wpr_offset;
u32 mmu_mem_range;
#define FLCN_ACR_MAX_REGIONS 2
struct {
u32 no_regions;
struct {
u32 start_addr;
u32 end_addr;
u32 region_id;
u32 read_mask;
u32 write_mask;
u32 client_mask;
} region_props[FLCN_ACR_MAX_REGIONS];
} regions;
u32 ucode_blob_size;
u64 ucode_blob_base __aligned(8);
struct {
u32 vpr_enabled;
u32 vpr_start;
u32 vpr_end;
u32 hdcp_policies;
} vpr_desc;
};
/*
* Low-secure blob creation
*/
typedef int (*lsf_load_func)(const struct nvkm_subdev *, struct ls_ucode_img *);
/**
* ls_ucode_img_load() - create a lsf_ucode_img and load it
*/
static struct ls_ucode_img *
ls_ucode_img_load(const struct nvkm_subdev *subdev, lsf_load_func load_func)
{
struct ls_ucode_img *img;
int ret;
img = kzalloc(sizeof(*img), GFP_KERNEL);
if (!img)
return ERR_PTR(-ENOMEM);
ret = load_func(subdev, img);
if (ret) {
kfree(img);
return ERR_PTR(ret);
}
return img;
}
#define LSF_LSB_HEADER_ALIGN 256
#define LSF_BL_DATA_ALIGN 256
#define LSF_BL_DATA_SIZE_ALIGN 256
#define LSF_BL_CODE_SIZE_ALIGN 256
#define LSF_UCODE_DATA_ALIGN 4096
/**
* ls_ucode_img_fill_headers - fill the WPR and LSB headers of an image
* @acr: ACR to use
* @img: image to generate for
* @offset: offset in the WPR region where this image starts
*
* Allocate space in the WPR area from offset and write the WPR and LSB headers
* accordingly.
*
* Return: offset at the end of this image.
*/
static u32
ls_ucode_img_fill_headers(struct acr_r352 *acr, struct ls_ucode_img *img,
u32 offset)
{
struct lsf_wpr_header *whdr = &img->wpr_header;
struct lsf_lsb_header *lhdr = &img->lsb_header;
struct ls_ucode_img_desc *desc = &img->ucode_desc;
const struct acr_r352_ls_func *func =
acr->func->ls_func[img->falcon_id];
if (img->ucode_header) {
nvkm_fatal(acr->base.subdev,
"images withough loader are not supported yet!\n");
return offset;
}
/* Fill WPR header */
whdr->falcon_id = img->falcon_id;
whdr->bootstrap_owner = acr->base.boot_falcon;
whdr->status = LSF_IMAGE_STATUS_COPY;
/* Align, save off, and include an LSB header size */
offset = ALIGN(offset, LSF_LSB_HEADER_ALIGN);
whdr->lsb_offset = offset;
offset += sizeof(struct lsf_lsb_header);
/*
* Align, save off, and include the original (static) ucode
* image size
*/
offset = ALIGN(offset, LSF_UCODE_DATA_ALIGN);
lhdr->ucode_off = offset;
offset += img->ucode_size;
/*
* For falcons that use a boot loader (BL), we append a loader
* desc structure on the end of the ucode image and consider
* this the boot loader data. The host will then copy the loader
* desc args to this space within the WPR region (before locking
* down) and the HS bin will then copy them to DMEM 0 for the
* loader.
*/
lhdr->bl_code_size = ALIGN(desc->bootloader_size,
LSF_BL_CODE_SIZE_ALIGN);
lhdr->ucode_size = ALIGN(desc->app_resident_data_offset,
LSF_BL_CODE_SIZE_ALIGN) + lhdr->bl_code_size;
lhdr->data_size = ALIGN(desc->app_size, LSF_BL_CODE_SIZE_ALIGN) +
lhdr->bl_code_size - lhdr->ucode_size;
/*
* Though the BL is located at 0th offset of the image, the VA
* is different to make sure that it doesn't collide the actual
* OS VA range
*/
lhdr->bl_imem_off = desc->bootloader_imem_offset;
lhdr->app_code_off = desc->app_start_offset +
desc->app_resident_code_offset;
lhdr->app_code_size = desc->app_resident_code_size;
lhdr->app_data_off = desc->app_start_offset +
desc->app_resident_data_offset;
lhdr->app_data_size = desc->app_resident_data_size;
lhdr->flags = 0;
if (img->falcon_id == acr->base.boot_falcon)
lhdr->flags = LSF_FLAG_DMACTL_REQ_CTX;
/* GPCCS will be loaded using PRI */
if (img->falcon_id == NVKM_SECBOOT_FALCON_GPCCS)
lhdr->flags |= LSF_FLAG_FORCE_PRIV_LOAD;
/* Align and save off BL descriptor size */
lhdr->bl_data_size = ALIGN(func->bl_desc_size, LSF_BL_DATA_SIZE_ALIGN);
/*
* Align, save off, and include the additional BL data
*/
offset = ALIGN(offset, LSF_BL_DATA_ALIGN);
lhdr->bl_data_off = offset;
offset += lhdr->bl_data_size;
return offset;
}
/**
* struct ls_ucode_mgr - manager for all LS falcon firmwares
* @count: number of managed LS falcons
* @wpr_size: size of the required WPR region in bytes
* @img_list: linked list of lsf_ucode_img
*/
struct ls_ucode_mgr {
u16 count;
u32 wpr_size;
struct list_head img_list;
};
static void
ls_ucode_mgr_init(struct ls_ucode_mgr *mgr)
{
memset(mgr, 0, sizeof(*mgr));
INIT_LIST_HEAD(&mgr->img_list);
}
static void
ls_ucode_mgr_cleanup(struct ls_ucode_mgr *mgr)
{
struct ls_ucode_img *img, *t;
list_for_each_entry_safe(img, t, &mgr->img_list, node) {
kfree(img->ucode_data);
kfree(img->ucode_header);
kfree(img);
}
}
static void
ls_ucode_mgr_add_img(struct ls_ucode_mgr *mgr, struct ls_ucode_img *img)
{
mgr->count++;
list_add_tail(&img->node, &mgr->img_list);
}
/**
* ls_ucode_mgr_fill_headers - fill WPR and LSB headers of all managed images
*/
static void
ls_ucode_mgr_fill_headers(struct acr_r352 *acr, struct ls_ucode_mgr *mgr)
{
struct ls_ucode_img *img;
u32 offset;
/*
* Start with an array of WPR headers at the base of the WPR.
* The expectation here is that the secure falcon will do a single DMA
* read of this array and cache it internally so it's ok to pack these.
* Also, we add 1 to the falcon count to indicate the end of the array.
*/
offset = sizeof(struct lsf_wpr_header) * (mgr->count + 1);
/*
* Walk the managed falcons, accounting for the LSB structs
* as well as the ucode images.
*/
list_for_each_entry(img, &mgr->img_list, node) {
offset = ls_ucode_img_fill_headers(acr, img, offset);
}
mgr->wpr_size = offset;
}
/**
* ls_ucode_mgr_write_wpr - write the WPR blob contents
*/
static int
ls_ucode_mgr_write_wpr(struct acr_r352 *acr, struct ls_ucode_mgr *mgr,
struct nvkm_gpuobj *wpr_blob, u32 wpr_addr)
{
struct ls_ucode_img *img;
u32 pos = 0;
nvkm_kmap(wpr_blob);
list_for_each_entry(img, &mgr->img_list, node) {
nvkm_gpuobj_memcpy_to(wpr_blob, pos, &img->wpr_header,
sizeof(img->wpr_header));
nvkm_gpuobj_memcpy_to(wpr_blob, img->wpr_header.lsb_offset,
&img->lsb_header, sizeof(img->lsb_header));
/* Generate and write BL descriptor */
if (!img->ucode_header) {
const struct acr_r352_ls_func *ls_func =
acr->func->ls_func[img->falcon_id];
u8 gdesc[ls_func->bl_desc_size];
ls_func->generate_bl_desc(&acr->base, img, wpr_addr,
gdesc);
nvkm_gpuobj_memcpy_to(wpr_blob,
img->lsb_header.bl_data_off,
gdesc, ls_func->bl_desc_size);
}
/* Copy ucode */
nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.ucode_off,
img->ucode_data, img->ucode_size);
pos += sizeof(img->wpr_header);
}
nvkm_wo32(wpr_blob, pos, NVKM_SECBOOT_FALCON_INVALID);
nvkm_done(wpr_blob);
return 0;
}
/* Both size and address of WPR need to be 128K-aligned */
#define WPR_ALIGNMENT 0x20000
/**
* acr_r352_prepare_ls_blob() - prepare the LS blob
*
* For each securely managed falcon, load the FW, signatures and bootloaders and
* prepare a ucode blob. Then, compute the offsets in the WPR region for each
* blob, and finally write the headers and ucode blobs into a GPU object that
* will be copied into the WPR region by the HS firmware.
*/
static int
acr_r352_prepare_ls_blob(struct acr_r352 *acr, u64 wpr_addr, u32 wpr_size)
{
const struct nvkm_subdev *subdev = acr->base.subdev;
struct ls_ucode_mgr mgr;
unsigned long managed_falcons = acr->base.managed_falcons;
int falcon_id;
int ret;
ls_ucode_mgr_init(&mgr);
/* Load all LS blobs */
for_each_set_bit(falcon_id, &managed_falcons, NVKM_SECBOOT_FALCON_END) {
struct ls_ucode_img *img;
img = ls_ucode_img_load(subdev,
acr->func->ls_func[falcon_id]->load);
if (IS_ERR(img)) {
ret = PTR_ERR(img);
goto cleanup;
}
ls_ucode_mgr_add_img(&mgr, img);
}
/*
* Fill the WPR and LSF headers with the right offsets and compute
* required WPR size
*/
ls_ucode_mgr_fill_headers(acr, &mgr);
mgr.wpr_size = ALIGN(mgr.wpr_size, WPR_ALIGNMENT);
/* Allocate GPU object that will contain the WPR region */
ret = nvkm_gpuobj_new(subdev->device, mgr.wpr_size, WPR_ALIGNMENT,
false, NULL, &acr->ls_blob);
if (ret)
goto cleanup;
nvkm_debug(subdev, "%d managed LS falcons, WPR size is %d bytes\n",
mgr.count, mgr.wpr_size);
/* If WPR address and size are not fixed, set them to fit the LS blob */
if (wpr_size == 0) {
wpr_addr = acr->ls_blob->addr;
wpr_size = mgr.wpr_size;
/*
* But if the WPR region is set by the bootloader, it is illegal for
* the HS blob to be larger than this region.
*/
} else if (mgr.wpr_size > wpr_size) {
nvkm_error(subdev, "WPR region too small for FW blob!\n");
nvkm_error(subdev, "required: %dB\n", mgr.wpr_size);
nvkm_error(subdev, "available: %dB\n", wpr_size);
ret = -ENOSPC;
goto cleanup;
}
/* Write LS blob */
ret = ls_ucode_mgr_write_wpr(acr, &mgr, acr->ls_blob, wpr_addr);
if (ret)
nvkm_gpuobj_del(&acr->ls_blob);
cleanup:
ls_ucode_mgr_cleanup(&mgr);
return ret;
}
/**
* acr_r352_hsf_patch_signature() - patch HS blob with correct signature
*/
static void
acr_r352_hsf_patch_signature(struct nvkm_secboot *sb, void *acr_image)
{
struct fw_bin_header *hsbin_hdr = acr_image;
struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
void *hs_data = acr_image + hsbin_hdr->data_offset;
void *sig;
u32 sig_size;
/* Falcon in debug or production mode? */
if (sb->boot_falcon->debug) {
sig = acr_image + fw_hdr->sig_dbg_offset;
sig_size = fw_hdr->sig_dbg_size;
} else {
sig = acr_image + fw_hdr->sig_prod_offset;
sig_size = fw_hdr->sig_prod_size;
}
/* Patch signature */
memcpy(hs_data + fw_hdr->patch_loc, sig + fw_hdr->patch_sig, sig_size);
}
static void
acr_r352_fixup_hs_desc(struct acr_r352 *acr, struct nvkm_secboot *sb,
struct hsflcn_acr_desc *desc)
{
struct nvkm_gpuobj *ls_blob = acr->ls_blob;
desc->ucode_blob_base = ls_blob->addr;
desc->ucode_blob_size = ls_blob->size;
desc->wpr_offset = 0;
/* WPR region information if WPR is not fixed */
if (sb->wpr_size == 0) {
desc->wpr_region_id = 1;
desc->regions.no_regions = 1;
desc->regions.region_props[0].region_id = 1;
desc->regions.region_props[0].start_addr = ls_blob->addr >> 8;
desc->regions.region_props[0].end_addr =
(ls_blob->addr + ls_blob->size) >> 8;
}
}
static void
acr_r352_generate_hs_bl_desc(const struct hsf_load_header *hdr, void *_bl_desc,
u64 offset)
{
struct acr_r352_flcn_bl_desc *bl_desc = _bl_desc;
u64 addr_code, addr_data;
memset(bl_desc, 0, sizeof(*bl_desc));
addr_code = offset >> 8;
addr_data = (offset + hdr->data_dma_base) >> 8;
bl_desc->ctx_dma = FALCON_DMAIDX_VIRT;
bl_desc->code_dma_base = lower_32_bits(addr_code);
bl_desc->non_sec_code_off = hdr->non_sec_code_off;
bl_desc->non_sec_code_size = hdr->non_sec_code_size;
bl_desc->sec_code_off = hdr->app[0].sec_code_off;
bl_desc->sec_code_size = hdr->app[0].sec_code_size;
bl_desc->code_entry_point = 0;
bl_desc->data_dma_base = lower_32_bits(addr_data);
bl_desc->data_size = hdr->data_size;
}
/**
* acr_r352_prepare_hs_blob - load and prepare a HS blob and BL descriptor
*
* @sb secure boot instance to prepare for
* @fw name of the HS firmware to load
* @blob pointer to gpuobj that will be allocated to receive the HS FW payload
* @bl_desc pointer to the BL descriptor to write for this firmware
* @patch whether we should patch the HS descriptor (only for HS loaders)
*/
static int
acr_r352_prepare_hs_blob(struct acr_r352 *acr, struct nvkm_secboot *sb,
const char *fw, struct nvkm_gpuobj **blob,
struct hsf_load_header *load_header, bool patch)
{
struct nvkm_subdev *subdev = &sb->subdev;
void *acr_image;
struct fw_bin_header *hsbin_hdr;
struct hsf_fw_header *fw_hdr;
struct hsf_load_header *load_hdr;
void *acr_data;
int ret;
acr_image = nvkm_acr_load_firmware(subdev, fw, 0);
if (IS_ERR(acr_image))
return PTR_ERR(acr_image);
hsbin_hdr = acr_image;
fw_hdr = acr_image + hsbin_hdr->header_offset;
load_hdr = acr_image + fw_hdr->hdr_offset;
acr_data = acr_image + hsbin_hdr->data_offset;
/* Patch signature */
acr_r352_hsf_patch_signature(sb, acr_image);
/* Patch descriptor with WPR information? */
if (patch) {
struct hsflcn_acr_desc *desc;
desc = acr_data + load_hdr->data_dma_base;
acr_r352_fixup_hs_desc(acr, sb, desc);
}
if (load_hdr->num_apps > ACR_R352_MAX_APPS) {
nvkm_error(subdev, "more apps (%d) than supported (%d)!",
load_hdr->num_apps, ACR_R352_MAX_APPS);
ret = -EINVAL;
goto cleanup;
}
memcpy(load_header, load_hdr, sizeof(*load_header) +
(sizeof(load_hdr->app[0]) * load_hdr->num_apps));
/* Create ACR blob and copy HS data to it */
ret = nvkm_gpuobj_new(subdev->device, ALIGN(hsbin_hdr->data_size, 256),
0x1000, false, NULL, blob);
if (ret)
goto cleanup;
nvkm_kmap(*blob);
nvkm_gpuobj_memcpy_to(*blob, 0, acr_data, hsbin_hdr->data_size);
nvkm_done(*blob);
cleanup:
kfree(acr_image);
return ret;
}
static int
acr_r352_prepare_hsbl_blob(struct acr_r352 *acr)
{
const struct nvkm_subdev *subdev = acr->base.subdev;
struct fw_bin_header *hdr;
struct fw_bl_desc *hsbl_desc;
acr->hsbl_blob = nvkm_acr_load_firmware(subdev, "acr/bl", 0);
if (IS_ERR(acr->hsbl_blob)) {
int ret = PTR_ERR(acr->hsbl_blob);
acr->hsbl_blob = NULL;
return ret;
}
hdr = acr->hsbl_blob;
hsbl_desc = acr->hsbl_blob + hdr->header_offset;
/* virtual start address for boot vector */
acr->base.start_address = hsbl_desc->start_tag << 8;
return 0;
}
/**
* acr_r352_load_blobs - load blobs common to all ACR V1 versions.
*
* This includes the LS blob, HS ucode loading blob, and HS bootloader.
*
* The HS ucode unload blob is only used on dGPU if the WPR region is variable.
*/
int
acr_r352_load_blobs(struct acr_r352 *acr, struct nvkm_secboot *sb)
{
int ret;
/* Firmware already loaded? */
if (acr->firmware_ok)
return 0;
/* Load and prepare the managed falcon's firmwares */
ret = acr_r352_prepare_ls_blob(acr, sb->wpr_addr, sb->wpr_size);
if (ret)
return ret;
/* Load the HS firmware that will load the LS firmwares */
if (!acr->load_blob) {
ret = acr_r352_prepare_hs_blob(acr, sb, "acr/ucode_load",
&acr->load_blob,
&acr->load_bl_header, true);
if (ret)
return ret;
}
/* If the ACR region is dynamically programmed, we need an unload FW */
if (sb->wpr_size == 0) {
ret = acr_r352_prepare_hs_blob(acr, sb, "acr/ucode_unload",
&acr->unload_blob,
&acr->unload_bl_header, false);
if (ret)
return ret;
}
/* Load the HS firmware bootloader */
if (!acr->hsbl_blob) {
ret = acr_r352_prepare_hsbl_blob(acr);
if (ret)
return ret;
}
acr->firmware_ok = true;
nvkm_debug(&sb->subdev, "LS blob successfully created\n");
return 0;
}
/**
* acr_r352_load() - prepare HS falcon to run the specified blob, mapped
* at GPU address offset.
*/
static int
acr_r352_load(struct nvkm_acr *_acr, struct nvkm_secboot *sb,
struct nvkm_gpuobj *blob, u64 offset)
{
struct acr_r352 *acr = acr_r352(_acr);
struct nvkm_falcon *falcon = sb->boot_falcon;
struct fw_bin_header *hdr = acr->hsbl_blob;
struct fw_bl_desc *hsbl_desc = acr->hsbl_blob + hdr->header_offset;
void *blob_data = acr->hsbl_blob + hdr->data_offset;
void *hsbl_code = blob_data + hsbl_desc->code_off;
void *hsbl_data = blob_data + hsbl_desc->data_off;
u32 code_size = ALIGN(hsbl_desc->code_size, 256);
const struct hsf_load_header *load_hdr;
const u32 bl_desc_size = acr->func->hs_bl_desc_size;
u8 bl_desc[bl_desc_size];
/* Find the bootloader descriptor for our blob and copy it */
if (blob == acr->load_blob) {
load_hdr = &acr->load_bl_header;
} else if (blob == acr->unload_blob) {
load_hdr = &acr->unload_bl_header;
} else {
nvkm_error(_acr->subdev, "invalid secure boot blob!\n");
return -EINVAL;
}
/*
* Copy HS bootloader data
*/
nvkm_falcon_load_dmem(falcon, hsbl_data, 0x0, hsbl_desc->data_size, 0);
/* Copy HS bootloader code to end of IMEM */
nvkm_falcon_load_imem(falcon, hsbl_code, falcon->code.limit - code_size,
code_size, hsbl_desc->start_tag, 0, false);
/* Generate the BL header */
acr->func->generate_hs_bl_desc(load_hdr, bl_desc, offset);
/*
* Copy HS BL header where the HS descriptor expects it to be
*/
nvkm_falcon_load_dmem(falcon, bl_desc, hsbl_desc->dmem_load_off,
bl_desc_size, 0);
return 0;
}
/*
* acr_r352_reset() - execute secure boot from the prepared state
*
* Load the HS bootloader and ask the falcon to run it. This will in turn
* load the HS firmware and run it, so once the falcon stops all the managed
* falcons should have their LS firmware loaded and be ready to run.
*/
static int
acr_r352_reset(struct nvkm_acr *_acr, struct nvkm_secboot *sb,
enum nvkm_secboot_falcon falcon)
{
struct acr_r352 *acr = acr_r352(_acr);
int ret;
/* Make sure all blobs are ready */
ret = acr_r352_load_blobs(acr, sb);
if (ret)
return ret;
/*
* Dummy GM200 implementation: perform secure boot each time we are
* called on FECS. Since only FECS and GPCCS are managed and started
* together, this ought to be safe.
*
* Once we have proper PMU firmware and support, this will be changed
* to a proper call to the PMU method.
*/
if (falcon != NVKM_SECBOOT_FALCON_FECS)
goto end;
/* If WPR is set and we have an unload blob, run it to unlock WPR */
if (acr->unload_blob &&
acr->falcon_state[NVKM_SECBOOT_FALCON_FECS] != NON_SECURE) {
ret = sb->func->run_blob(sb, acr->unload_blob);
if (ret)
return ret;
}
/* Reload all managed falcons */
ret = sb->func->run_blob(sb, acr->load_blob);
if (ret)
return ret;
end:
acr->falcon_state[falcon] = RESET;
return 0;
}
static int
acr_r352_start(struct nvkm_acr *_acr, struct nvkm_secboot *sb,
enum nvkm_secboot_falcon falcon)
{
struct acr_r352 *acr = acr_r352(_acr);
const struct nvkm_subdev *subdev = &sb->subdev;
int base;
switch (falcon) {
case NVKM_SECBOOT_FALCON_FECS:
base = 0x409000;
break;
case NVKM_SECBOOT_FALCON_GPCCS:
base = 0x41a000;
break;
default:
nvkm_error(subdev, "cannot start unhandled falcon!\n");
return -EINVAL;
}
nvkm_wr32(subdev->device, base + 0x130, 0x00000002);
acr->falcon_state[falcon] = RUNNING;
return 0;
}
static int
acr_r352_fini(struct nvkm_acr *_acr, struct nvkm_secboot *sb, bool suspend)
{
struct acr_r352 *acr = acr_r352(_acr);
int ret = 0;
int i;
/* Run the unload blob to unprotect the WPR region */
if (acr->unload_blob &&
acr->falcon_state[NVKM_SECBOOT_FALCON_FECS] != NON_SECURE)
ret = sb->func->run_blob(sb, acr->unload_blob);
for (i = 0; i < NVKM_SECBOOT_FALCON_END; i++)
acr->falcon_state[i] = NON_SECURE;
return ret;
}
static void
acr_r352_dtor(struct nvkm_acr *_acr)
{
struct acr_r352 *acr = acr_r352(_acr);
nvkm_gpuobj_del(&acr->unload_blob);
kfree(acr->hsbl_blob);
nvkm_gpuobj_del(&acr->load_blob);
nvkm_gpuobj_del(&acr->ls_blob);
kfree(acr);
}
const struct acr_r352_ls_func
acr_r352_ls_fecs_func = {
.load = acr_ls_ucode_load_fecs,
.generate_bl_desc = acr_r352_generate_flcn_bl_desc,
.bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc),
};
const struct acr_r352_ls_func
acr_r352_ls_gpccs_func = {
.load = acr_ls_ucode_load_gpccs,
.generate_bl_desc = acr_r352_generate_flcn_bl_desc,
.bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc),
};
const struct acr_r352_func
acr_r352_func = {
.generate_hs_bl_desc = acr_r352_generate_hs_bl_desc,
.hs_bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc),
.ls_func = {
[NVKM_SECBOOT_FALCON_FECS] = &acr_r352_ls_fecs_func,
[NVKM_SECBOOT_FALCON_GPCCS] = &acr_r352_ls_gpccs_func,
},
};
static const struct nvkm_acr_func
acr_r352_base_func = {
.dtor = acr_r352_dtor,
.fini = acr_r352_fini,
.load = acr_r352_load,
.reset = acr_r352_reset,
.start = acr_r352_start,
};
struct nvkm_acr *
acr_r352_new_(const struct acr_r352_func *func,
enum nvkm_secboot_falcon boot_falcon,
unsigned long managed_falcons)
{
struct acr_r352 *acr;
acr = kzalloc(sizeof(*acr), GFP_KERNEL);
if (!acr)
return ERR_PTR(-ENOMEM);
acr->base.boot_falcon = boot_falcon;
acr->base.managed_falcons = managed_falcons;
acr->base.func = &acr_r352_base_func;
acr->func = func;
return &acr->base;
}
struct nvkm_acr *
acr_r352_new(unsigned long managed_falcons)
{
return acr_r352_new_(&acr_r352_func, NVKM_SECBOOT_FALCON_PMU,
managed_falcons);
}
/*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __NVKM_SECBOOT_ACR_R352_H__
#define __NVKM_SECBOOT_ACR_R352_H__
#include "acr.h"
struct ls_ucode_img;
#define ACR_R352_MAX_APPS 8
struct hsf_load_header_app {
u32 sec_code_off;
u32 sec_code_size;
};
/**
* struct hsf_load_header - HS firmware load header
*/
struct hsf_load_header {
u32 non_sec_code_off;
u32 non_sec_code_size;
u32 data_dma_base;
u32 data_size;
u32 num_apps;
struct hsf_load_header_app app[0];
};
/**
* struct acr_r352_ls_func - manages a single LS firmware
*
* @load: load the external firmware into a ls_ucode_img
* @generate_bl_desc: function called on a block of bl_desc_size to generate the
* proper bootloader descriptor for this LS firmware
* @bl_desc_size: size of the bootloader descriptor
*/
struct acr_r352_ls_func {
int (*load)(const struct nvkm_subdev *, struct ls_ucode_img *);
void (*generate_bl_desc)(const struct nvkm_acr *,
const struct ls_ucode_img *, u64, void *);
u32 bl_desc_size;
};
/**
* struct acr_r352_func - manages nuances between ACR versions
*
* @generate_hs_bl_desc: function called on a block of bl_desc_size to generate
* the proper HS bootloader descriptor
* @hs_bl_desc_size: size of the HS bootloader descriptor
*/
struct acr_r352_func {
void (*generate_hs_bl_desc)(const struct hsf_load_header *, void *,
u64);
u32 hs_bl_desc_size;
const struct acr_r352_ls_func *ls_func[NVKM_SECBOOT_FALCON_END];
};
/**
* struct acr_r352 - ACR data for driver release 352 (and beyond)
*/
struct acr_r352 {
struct nvkm_acr base;
const struct acr_r352_func *func;
/*
* HS FW - lock WPR region (dGPU only) and load LS FWs
* on Tegra the HS FW copies the LS blob into the fixed WPR instead
*/
struct nvkm_gpuobj *load_blob;
struct {
struct hsf_load_header load_bl_header;
struct hsf_load_header_app __load_apps[ACR_R352_MAX_APPS];
};
/* HS FW - unlock WPR region (dGPU only) */
struct nvkm_gpuobj *unload_blob;
struct {
struct hsf_load_header unload_bl_header;
struct hsf_load_header_app __unload_apps[ACR_R352_MAX_APPS];
};
/* HS bootloader */
void *hsbl_blob;
/* LS FWs, to be loaded by the HS ACR */
struct nvkm_gpuobj *ls_blob;
/* Firmware already loaded? */
bool firmware_ok;
/* To keep track of the state of all managed falcons */
enum {
/* In non-secure state, no firmware loaded, no privileges*/
NON_SECURE = 0,
/* In low-secure mode and ready to be started */
RESET,
/* In low-secure mode and running */
RUNNING,
} falcon_state[NVKM_SECBOOT_FALCON_END];
};
#define acr_r352(acr) container_of(acr, struct acr_r352, base)
struct nvkm_acr *acr_r352_new_(const struct acr_r352_func *,
enum nvkm_secboot_falcon, unsigned long);
#endif
/*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "acr_r352.h"
#include "ls_ucode.h"
#include <engine/falcon.h>
/**
* struct acr_r361_flcn_bl_desc - DMEM bootloader descriptor
* @signature: 16B signature for secure code. 0s if no secure code
* @ctx_dma: DMA context to be used by BL while loading code/data
* @code_dma_base: 256B-aligned Physical FB Address where code is located
* (falcon's $xcbase register)
* @non_sec_code_off: offset from code_dma_base where the non-secure code is
* located. The offset must be multiple of 256 to help perf
* @non_sec_code_size: the size of the nonSecure code part.
* @sec_code_off: offset from code_dma_base where the secure code is
* located. The offset must be multiple of 256 to help perf
* @sec_code_size: offset from code_dma_base where the secure code is
* located. The offset must be multiple of 256 to help perf
* @code_entry_point: code entry point which will be invoked by BL after
* code is loaded.
* @data_dma_base: 256B aligned Physical FB Address where data is located.
* (falcon's $xdbase register)
* @data_size: size of data block. Should be multiple of 256B
*
* Structure used by the bootloader to load the rest of the code. This has
* to be filled by host and copied into DMEM at offset provided in the
* hsflcn_bl_desc.bl_desc_dmem_load_off.
*/
struct acr_r361_flcn_bl_desc {
u32 reserved[4];
u32 signature[4];
u32 ctx_dma;
struct flcn_u64 code_dma_base;
u32 non_sec_code_off;
u32 non_sec_code_size;
u32 sec_code_off;
u32 sec_code_size;
u32 code_entry_point;
struct flcn_u64 data_dma_base;
u32 data_size;
};
static void
acr_r361_generate_flcn_bl_desc(const struct nvkm_acr *acr,
const struct ls_ucode_img *img, u64 wpr_addr,
void *_desc)
{
struct acr_r361_flcn_bl_desc *desc = _desc;
const struct ls_ucode_img_desc *pdesc = &img->ucode_desc;
u64 base, addr_code, addr_data;
base = wpr_addr + img->lsb_header.ucode_off + pdesc->app_start_offset;
addr_code = base + pdesc->app_resident_code_offset;
addr_data = base + pdesc->app_resident_data_offset;
memset(desc, 0, sizeof(*desc));
desc->ctx_dma = FALCON_DMAIDX_UCODE;
desc->code_dma_base = u64_to_flcn64(addr_code);
desc->non_sec_code_off = pdesc->app_resident_code_offset;
desc->non_sec_code_size = pdesc->app_resident_code_size;
desc->code_entry_point = pdesc->app_imem_entry;
desc->data_dma_base = u64_to_flcn64(addr_data);
desc->data_size = pdesc->app_resident_data_size;
}
static void
acr_r361_generate_hs_bl_desc(const struct hsf_load_header *hdr, void *_bl_desc,
u64 offset)
{
struct acr_r361_flcn_bl_desc *bl_desc = _bl_desc;
memset(bl_desc, 0, sizeof(*bl_desc));
bl_desc->ctx_dma = FALCON_DMAIDX_VIRT;
bl_desc->code_dma_base = u64_to_flcn64(offset);
bl_desc->non_sec_code_off = hdr->non_sec_code_off;
bl_desc->non_sec_code_size = hdr->non_sec_code_size;
bl_desc->sec_code_off = hdr->app[0].sec_code_off;
bl_desc->sec_code_size = hdr->app[0].sec_code_size;
bl_desc->code_entry_point = 0;
bl_desc->data_dma_base = u64_to_flcn64(offset + hdr->data_dma_base);
bl_desc->data_size = hdr->data_size;
}
const struct acr_r352_ls_func
acr_r361_ls_fecs_func = {
.load = acr_ls_ucode_load_fecs,
.generate_bl_desc = acr_r361_generate_flcn_bl_desc,
.bl_desc_size = sizeof(struct acr_r361_flcn_bl_desc),
};
const struct acr_r352_ls_func
acr_r361_ls_gpccs_func = {
.load = acr_ls_ucode_load_gpccs,
.generate_bl_desc = acr_r361_generate_flcn_bl_desc,
.bl_desc_size = sizeof(struct acr_r361_flcn_bl_desc),
};
const struct acr_r352_func
acr_r361_func = {
.generate_hs_bl_desc = acr_r361_generate_hs_bl_desc,
.hs_bl_desc_size = sizeof(struct acr_r361_flcn_bl_desc),
.ls_func = {
[NVKM_SECBOOT_FALCON_FECS] = &acr_r361_ls_fecs_func,
[NVKM_SECBOOT_FALCON_GPCCS] = &acr_r361_ls_gpccs_func,
},
};
struct nvkm_acr *
acr_r361_new(unsigned long managed_falcons)
{
return acr_r352_new_(&acr_r361_func, NVKM_SECBOOT_FALCON_PMU,
managed_falcons);
}
......@@ -19,7 +19,70 @@
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
* Secure boot is the process by which NVIDIA-signed firmware is loaded into
* some of the falcons of a GPU. For production devices this is the only way
* for the firmware to access useful (but sensitive) registers.
*
* A Falcon microprocessor supporting advanced security modes can run in one of
* three modes:
*
* - Non-secure (NS). In this mode, functionality is similar to Falcon
* architectures before security modes were introduced (pre-Maxwell), but
* capability is restricted. In particular, certain registers may be
* inaccessible for reads and/or writes, and physical memory access may be
* disabled (on certain Falcon instances). This is the only possible mode that
* can be used if you don't have microcode cryptographically signed by NVIDIA.
*
* - Heavy Secure (HS). In this mode, the microprocessor is a black box - it's
* not possible to read or write any Falcon internal state or Falcon registers
* from outside the Falcon (for example, from the host system). The only way
* to enable this mode is by loading microcode that has been signed by NVIDIA.
* (The loading process involves tagging the IMEM block as secure, writing the
* signature into a Falcon register, and starting execution. The hardware will
* validate the signature, and if valid, grant HS privileges.)
*
* - Light Secure (LS). In this mode, the microprocessor has more privileges
* than NS but fewer than HS. Some of the microprocessor state is visible to
* host software to ease debugging. The only way to enable this mode is by HS
* microcode enabling LS mode. Some privileges available to HS mode are not
* available here. LS mode is introduced in GM20x.
*
* Secure boot consists in temporarily switching a HS-capable falcon (typically
* PMU) into HS mode in order to validate the LS firmwares of managed falcons,
* load them, and switch managed falcons into LS mode. Once secure boot
* completes, no falcon remains in HS mode.
*
* Secure boot requires a write-protected memory region (WPR) which can only be
* written by the secure falcon. On dGPU, the driver sets up the WPR region in
* video memory. On Tegra, it is set up by the bootloader and its location and
* size written into memory controller registers.
*
* The secure boot process takes place as follows:
*
* 1) A LS blob is constructed that contains all the LS firmwares we want to
* load, along with their signatures and bootloaders.
*
* 2) A HS blob (also called ACR) is created that contains the signed HS
* firmware in charge of loading the LS firmwares into their respective
* falcons.
*
* 3) The HS blob is loaded (via its own bootloader) and executed on the
* HS-capable falcon. It authenticates itself, switches the secure falcon to
* HS mode and setup the WPR region around the LS blob (dGPU) or copies the
* LS blob into the WPR region (Tegra).
*
* 4) The LS blob is now secure from all external tampering. The HS falcon
* checks the signatures of the LS firmwares and, if valid, switches the
* managed falcons to LS mode and makes them ready to run the LS firmware.
*
* 5) The managed falcons remain in LS mode and can be started.
*
*/
#include "priv.h"
#include "acr.h"
#include <subdev/mc.h>
#include <subdev/timer.h>
......@@ -40,25 +103,24 @@ int
nvkm_secboot_reset(struct nvkm_secboot *sb, enum nvkm_secboot_falcon falcon)
{
/* Unmanaged falcon? */
if (!(BIT(falcon) & sb->func->managed_falcons)) {
if (!(BIT(falcon) & sb->acr->managed_falcons)) {
nvkm_error(&sb->subdev, "cannot reset unmanaged falcon!\n");
return -EINVAL;
}
return sb->func->reset(sb, falcon);
return sb->acr->func->reset(sb->acr, sb, falcon);
}
/**
* nvkm_secboot_is_managed() - check whether a given falcon is securely-managed
*/
bool
nvkm_secboot_is_managed(struct nvkm_secboot *secboot,
enum nvkm_secboot_falcon fid)
nvkm_secboot_is_managed(struct nvkm_secboot *sb, enum nvkm_secboot_falcon fid)
{
if (!secboot)
if (!sb)
return false;
return secboot->func->managed_falcons & BIT(fid);
return sb->acr->managed_falcons & BIT(fid);
}
static int
......@@ -67,13 +129,13 @@ nvkm_secboot_oneinit(struct nvkm_subdev *subdev)
struct nvkm_secboot *sb = nvkm_secboot(subdev);
int ret = 0;
switch (sb->func->boot_falcon) {
switch (sb->acr->boot_falcon) {
case NVKM_SECBOOT_FALCON_PMU:
sb->boot_falcon = subdev->device->pmu->falcon;
break;
default:
nvkm_error(subdev, "Unmanaged boot falcon %s!\n",
managed_falcons_names[sb->func->boot_falcon]);
managed_falcons_names[sb->acr->boot_falcon]);
return -EINVAL;
}
......@@ -121,7 +183,7 @@ nvkm_secboot = {
};
int
nvkm_secboot_ctor(const struct nvkm_secboot_func *func,
nvkm_secboot_ctor(const struct nvkm_secboot_func *func, struct nvkm_acr *acr,
struct nvkm_device *device, int index,
struct nvkm_secboot *sb)
{
......@@ -129,9 +191,11 @@ nvkm_secboot_ctor(const struct nvkm_secboot_func *func,
nvkm_subdev_ctor(&nvkm_secboot, device, index, &sb->subdev);
sb->func = func;
sb->acr = acr;
acr->subdev = &sb->subdev;
nvkm_debug(&sb->subdev, "securely managed falcons:\n");
for_each_set_bit(fid, &sb->func->managed_falcons,
for_each_set_bit(fid, &sb->acr->managed_falcons,
NVKM_SECBOOT_FALCON_END)
nvkm_debug(&sb->subdev, "- %s\n", managed_falcons_names[fid]);
......
......@@ -20,1045 +20,27 @@
* DEALINGS IN THE SOFTWARE.
*/
/*
* Secure boot is the process by which NVIDIA-signed firmware is loaded into
* some of the falcons of a GPU. For production devices this is the only way
* for the firmware to access useful (but sensitive) registers.
*
* A Falcon microprocessor supporting advanced security modes can run in one of
* three modes:
*
* - Non-secure (NS). In this mode, functionality is similar to Falcon
* architectures before security modes were introduced (pre-Maxwell), but
* capability is restricted. In particular, certain registers may be
* inaccessible for reads and/or writes, and physical memory access may be
* disabled (on certain Falcon instances). This is the only possible mode that
* can be used if you don't have microcode cryptographically signed by NVIDIA.
*
* - Heavy Secure (HS). In this mode, the microprocessor is a black box - it's
* not possible to read or write any Falcon internal state or Falcon registers
* from outside the Falcon (for example, from the host system). The only way
* to enable this mode is by loading microcode that has been signed by NVIDIA.
* (The loading process involves tagging the IMEM block as secure, writing the
* signature into a Falcon register, and starting execution. The hardware will
* validate the signature, and if valid, grant HS privileges.)
*
* - Light Secure (LS). In this mode, the microprocessor has more privileges
* than NS but fewer than HS. Some of the microprocessor state is visible to
* host software to ease debugging. The only way to enable this mode is by HS
* microcode enabling LS mode. Some privileges available to HS mode are not
* available here. LS mode is introduced in GM20x.
*
* Secure boot consists in temporarily switching a HS-capable falcon (typically
* PMU) into HS mode in order to validate the LS firmwares of managed falcons,
* load them, and switch managed falcons into LS mode. Once secure boot
* completes, no falcon remains in HS mode.
*
* Secure boot requires a write-protected memory region (WPR) which can only be
* written by the secure falcon. On dGPU, the driver sets up the WPR region in
* video memory. On Tegra, it is set up by the bootloader and its location and
* size written into memory controller registers.
*
* The secure boot process takes place as follows:
*
* 1) A LS blob is constructed that contains all the LS firmwares we want to
* load, along with their signatures and bootloaders.
*
* 2) A HS blob (also called ACR) is created that contains the signed HS
* firmware in charge of loading the LS firmwares into their respective
* falcons.
*
* 3) The HS blob is loaded (via its own bootloader) and executed on the
* HS-capable falcon. It authenticates itself, switches the secure falcon to
* HS mode and setup the WPR region around the LS blob (dGPU) or copies the
* LS blob into the WPR region (Tegra).
*
* 4) The LS blob is now secure from all external tampering. The HS falcon
* checks the signatures of the LS firmwares and, if valid, switches the
* managed falcons to LS mode and makes them ready to run the LS firmware.
*
* 5) The managed falcons remain in LS mode and can be started.
*
*/
#include "priv.h"
#include "acr.h"
#include "gm200.h"
#include <core/gpuobj.h>
#include <core/firmware.h>
#include <subdev/fb.h>
#include <engine/falcon.h>
/**
* struct fw_bin_header - header of firmware files
* @bin_magic: always 0x3b1d14f0
* @bin_ver: version of the bin format
* @bin_size: entire image size including this header
* @header_offset: offset of the firmware/bootloader header in the file
* @data_offset: offset of the firmware/bootloader payload in the file
* @data_size: size of the payload
*
* This header is located at the beginning of the HS firmware and HS bootloader
* files, to describe where the headers and data can be found.
*/
struct fw_bin_header {
u32 bin_magic;
u32 bin_ver;
u32 bin_size;
u32 header_offset;
u32 data_offset;
u32 data_size;
};
/**
* struct fw_bl_desc - firmware bootloader descriptor
* @start_tag: starting tag of bootloader
* @desc_dmem_load_off: DMEM offset of flcn_bl_dmem_desc
* @code_off: offset of code section
* @code_size: size of code section
* @data_off: offset of data section
* @data_size: size of data section
*
* This structure is embedded in bootloader firmware files at to describe the
* IMEM and DMEM layout expected by the bootloader.
*/
struct fw_bl_desc {
u32 start_tag;
u32 dmem_load_off;
u32 code_off;
u32 code_size;
u32 data_off;
u32 data_size;
};
/**
* struct ls_ucode_mgr - manager for all LS falcon firmwares
* @count: number of managed LS falcons
* @wpr_size: size of the required WPR region in bytes
* @img_list: linked list of lsf_ucode_img
*/
struct ls_ucode_mgr {
u16 count;
u32 wpr_size;
struct list_head img_list;
};
/*
*
* HS blob structures
*
*/
/**
* struct hsf_fw_header - HS firmware descriptor
* @sig_dbg_offset: offset of the debug signature
* @sig_dbg_size: size of the debug signature
* @sig_prod_offset: offset of the production signature
* @sig_prod_size: size of the production signature
* @patch_loc: offset of the offset (sic) of where the signature is
* @patch_sig: offset of the offset (sic) to add to sig_*_offset
* @hdr_offset: offset of the load header (see struct hs_load_header)
* @hdr_size: size of above header
*
* This structure is embedded in the HS firmware image at
* hs_bin_hdr.header_offset.
*/
struct hsf_fw_header {
u32 sig_dbg_offset;
u32 sig_dbg_size;
u32 sig_prod_offset;
u32 sig_prod_size;
u32 patch_loc;
u32 patch_sig;
u32 hdr_offset;
u32 hdr_size;
};
/**
* struct gm200_flcn_bl_desc - DMEM bootloader descriptor
* @signature: 16B signature for secure code. 0s if no secure code
* @ctx_dma: DMA context to be used by BL while loading code/data
* @code_dma_base: 256B-aligned Physical FB Address where code is located
* (falcon's $xcbase register)
* @non_sec_code_off: offset from code_dma_base where the non-secure code is
* located. The offset must be multiple of 256 to help perf
* @non_sec_code_size: the size of the nonSecure code part.
* @sec_code_off: offset from code_dma_base where the secure code is
* located. The offset must be multiple of 256 to help perf
* @sec_code_size: offset from code_dma_base where the secure code is
* located. The offset must be multiple of 256 to help perf
* @code_entry_point: code entry point which will be invoked by BL after
* code is loaded.
* @data_dma_base: 256B aligned Physical FB Address where data is located.
* (falcon's $xdbase register)
* @data_size: size of data block. Should be multiple of 256B
*
* Structure used by the bootloader to load the rest of the code. This has
* to be filled by host and copied into DMEM at offset provided in the
* hsflcn_bl_desc.bl_desc_dmem_load_off.
*/
struct gm200_flcn_bl_desc {
u32 reserved[4];
u32 signature[4];
u32 ctx_dma;
struct flcn_u64 code_dma_base;
u32 non_sec_code_off;
u32 non_sec_code_size;
u32 sec_code_off;
u32 sec_code_size;
u32 code_entry_point;
struct flcn_u64 data_dma_base;
u32 data_size;
};
/**
* Convenience function to duplicate a firmware file in memory and check that
* it has the required minimum size.
*/
static void *
gm200_secboot_load_firmware(const struct nvkm_subdev *subdev, const char *name,
size_t min_size)
{
const struct firmware *fw;
void *blob;
int ret;
ret = nvkm_firmware_get(subdev->device, name, &fw);
if (ret)
return ERR_PTR(ret);
if (fw->size < min_size) {
nvkm_error(subdev, "%s is smaller than expected size %zu\n",
name, min_size);
nvkm_firmware_put(fw);
return ERR_PTR(-EINVAL);
}
blob = kmemdup(fw->data, fw->size, GFP_KERNEL);
nvkm_firmware_put(fw);
if (!blob)
return ERR_PTR(-ENOMEM);
return blob;
}
/*
* Low-secure blob creation
*/
#define BL_DESC_BLK_SIZE 256
/**
* Build a ucode image and descriptor from provided bootloader, code and data.
*
* @bl: bootloader image, including 16-bytes descriptor
* @code: LS firmware code segment
* @data: LS firmware data segment
* @desc: ucode descriptor to be written
*
* Return: allocated ucode image with corresponding descriptor information. desc
* is also updated to contain the right offsets within returned image.
*/
static void *
ls_ucode_img_build(const struct firmware *bl, const struct firmware *code,
const struct firmware *data, struct ls_ucode_img_desc *desc)
{
struct fw_bin_header *bin_hdr = (void *)bl->data;
struct fw_bl_desc *bl_desc = (void *)bl->data + bin_hdr->header_offset;
void *bl_data = (void *)bl->data + bin_hdr->data_offset;
u32 pos = 0;
void *image;
desc->bootloader_start_offset = pos;
desc->bootloader_size = ALIGN(bl_desc->code_size, sizeof(u32));
desc->bootloader_imem_offset = bl_desc->start_tag * 256;
desc->bootloader_entry_point = bl_desc->start_tag * 256;
pos = ALIGN(pos + desc->bootloader_size, BL_DESC_BLK_SIZE);
desc->app_start_offset = pos;
desc->app_size = ALIGN(code->size, BL_DESC_BLK_SIZE) +
ALIGN(data->size, BL_DESC_BLK_SIZE);
desc->app_imem_offset = 0;
desc->app_imem_entry = 0;
desc->app_dmem_offset = 0;
desc->app_resident_code_offset = 0;
desc->app_resident_code_size = ALIGN(code->size, BL_DESC_BLK_SIZE);
pos = ALIGN(pos + desc->app_resident_code_size, BL_DESC_BLK_SIZE);
desc->app_resident_data_offset = pos - desc->app_start_offset;
desc->app_resident_data_size = ALIGN(data->size, BL_DESC_BLK_SIZE);
desc->image_size = ALIGN(bl_desc->code_size, BL_DESC_BLK_SIZE) +
desc->app_size;
image = kzalloc(desc->image_size, GFP_KERNEL);
if (!image)
return ERR_PTR(-ENOMEM);
memcpy(image + desc->bootloader_start_offset, bl_data,
bl_desc->code_size);
memcpy(image + desc->app_start_offset, code->data, code->size);
memcpy(image + desc->app_start_offset + desc->app_resident_data_offset,
data->data, data->size);
return image;
}
/**
* ls_ucode_img_load_generic() - load and prepare a LS ucode image
*
* Load the LS microcode, bootloader and signature and pack them into a single
* blob. Also generate the corresponding ucode descriptor.
*/
static int
ls_ucode_img_load_generic(const struct nvkm_subdev *subdev,
struct ls_ucode_img *img, const char *falcon_name,
const u32 falcon_id)
{
const struct firmware *bl, *code, *data;
struct lsf_ucode_desc *lsf_desc;
char f[64];
int ret;
img->ucode_header = NULL;
snprintf(f, sizeof(f), "gr/%s_bl", falcon_name);
ret = nvkm_firmware_get(subdev->device, f, &bl);
if (ret)
goto error;
snprintf(f, sizeof(f), "gr/%s_inst", falcon_name);
ret = nvkm_firmware_get(subdev->device, f, &code);
if (ret)
goto free_bl;
snprintf(f, sizeof(f), "gr/%s_data", falcon_name);
ret = nvkm_firmware_get(subdev->device, f, &data);
if (ret)
goto free_inst;
img->ucode_data = ls_ucode_img_build(bl, code, data,
&img->ucode_desc);
if (IS_ERR(img->ucode_data)) {
ret = PTR_ERR(img->ucode_data);
goto free_data;
}
img->ucode_size = img->ucode_desc.image_size;
snprintf(f, sizeof(f), "gr/%s_sig", falcon_name);
lsf_desc = gm200_secboot_load_firmware(subdev, f, sizeof(*lsf_desc));
if (IS_ERR(lsf_desc)) {
ret = PTR_ERR(lsf_desc);
goto free_image;
}
/* not needed? the signature should already have the right value */
lsf_desc->falcon_id = falcon_id;
memcpy(&img->lsb_header.signature, lsf_desc, sizeof(*lsf_desc));
img->falcon_id = lsf_desc->falcon_id;
kfree(lsf_desc);
/* success path - only free requested firmware files */
goto free_data;
free_image:
kfree(img->ucode_data);
free_data:
nvkm_firmware_put(data);
free_inst:
nvkm_firmware_put(code);
free_bl:
nvkm_firmware_put(bl);
error:
return ret;
}
typedef int (*lsf_load_func)(const struct nvkm_subdev *, struct ls_ucode_img *);
int
gm200_ls_load_fecs(const struct nvkm_subdev *subdev, struct ls_ucode_img *img)
{
return ls_ucode_img_load_generic(subdev, img, "fecs",
NVKM_SECBOOT_FALCON_FECS);
}
int
gm200_ls_load_gpccs(const struct nvkm_subdev *subdev, struct ls_ucode_img *img)
{
return ls_ucode_img_load_generic(subdev, img, "gpccs",
NVKM_SECBOOT_FALCON_GPCCS);
}
/**
* ls_ucode_img_load() - create a lsf_ucode_img and load it
*/
static struct ls_ucode_img *
ls_ucode_img_load(struct nvkm_subdev *subdev, lsf_load_func load_func)
{
struct ls_ucode_img *img;
int ret;
img = kzalloc(sizeof(*img), GFP_KERNEL);
if (!img)
return ERR_PTR(-ENOMEM);
ret = load_func(subdev, img);
if (ret) {
kfree(img);
return ERR_PTR(ret);
}
return img;
}
/**
* gm200_secboot_ls_bl_desc() - populate a DMEM BL descriptor for LS image
* @img: ucode image to generate against
* @desc: descriptor to populate
* @sb: secure boot state to use for base addresses
*
* Populate the DMEM BL descriptor with the information contained in a
* ls_ucode_desc.
*
*/
static void
gm200_secboot_ls_bl_desc(const struct ls_ucode_img *img, u64 wpr_addr,
void *_desc)
{
struct gm200_flcn_bl_desc *desc = _desc;
const struct ls_ucode_img_desc *pdesc = &img->ucode_desc;
u64 addr_base;
addr_base = wpr_addr + img->lsb_header.ucode_off +
pdesc->app_start_offset;
memset(desc, 0, sizeof(*desc));
desc->ctx_dma = FALCON_DMAIDX_UCODE;
desc->code_dma_base.lo = lower_32_bits(
(addr_base + pdesc->app_resident_code_offset));
desc->code_dma_base.hi = upper_32_bits(
(addr_base + pdesc->app_resident_code_offset));
desc->non_sec_code_size = pdesc->app_resident_code_size;
desc->data_dma_base.lo = lower_32_bits(
(addr_base + pdesc->app_resident_data_offset));
desc->data_dma_base.hi = upper_32_bits(
(addr_base + pdesc->app_resident_data_offset));
desc->data_size = pdesc->app_resident_data_size;
desc->code_entry_point = pdesc->app_imem_entry;
}
#define LSF_LSB_HEADER_ALIGN 256
#define LSF_BL_DATA_ALIGN 256
#define LSF_BL_DATA_SIZE_ALIGN 256
#define LSF_BL_CODE_SIZE_ALIGN 256
#define LSF_UCODE_DATA_ALIGN 4096
/**
* ls_ucode_img_fill_headers - fill the WPR and LSB headers of an image
* @gsb: secure boot device used
* @img: image to generate for
* @offset: offset in the WPR region where this image starts
*
* Allocate space in the WPR area from offset and write the WPR and LSB headers
* accordingly.
*
* Return: offset at the end of this image.
*/
static u32
ls_ucode_img_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_img *img,
u32 offset)
{
struct lsf_wpr_header *whdr = &img->wpr_header;
struct lsf_lsb_header *lhdr = &img->lsb_header;
struct ls_ucode_img_desc *desc = &img->ucode_desc;
const struct secboot_ls_single_func *func =
(*gsb->ls_func)[img->falcon_id];
if (img->ucode_header) {
nvkm_fatal(&gsb->base.subdev,
"images withough loader are not supported yet!\n");
return offset;
}
/* Fill WPR header */
whdr->falcon_id = img->falcon_id;
whdr->bootstrap_owner = gsb->base.func->boot_falcon;
whdr->status = LSF_IMAGE_STATUS_COPY;
/* Align, save off, and include an LSB header size */
offset = ALIGN(offset, LSF_LSB_HEADER_ALIGN);
whdr->lsb_offset = offset;
offset += sizeof(struct lsf_lsb_header);
/*
* Align, save off, and include the original (static) ucode
* image size
*/
offset = ALIGN(offset, LSF_UCODE_DATA_ALIGN);
lhdr->ucode_off = offset;
offset += img->ucode_size;
/*
* For falcons that use a boot loader (BL), we append a loader
* desc structure on the end of the ucode image and consider
* this the boot loader data. The host will then copy the loader
* desc args to this space within the WPR region (before locking
* down) and the HS bin will then copy them to DMEM 0 for the
* loader.
*/
lhdr->bl_code_size = ALIGN(desc->bootloader_size,
LSF_BL_CODE_SIZE_ALIGN);
lhdr->ucode_size = ALIGN(desc->app_resident_data_offset,
LSF_BL_CODE_SIZE_ALIGN) + lhdr->bl_code_size;
lhdr->data_size = ALIGN(desc->app_size, LSF_BL_CODE_SIZE_ALIGN) +
lhdr->bl_code_size - lhdr->ucode_size;
/*
* Though the BL is located at 0th offset of the image, the VA
* is different to make sure that it doesn't collide the actual
* OS VA range
*/
lhdr->bl_imem_off = desc->bootloader_imem_offset;
lhdr->app_code_off = desc->app_start_offset +
desc->app_resident_code_offset;
lhdr->app_code_size = desc->app_resident_code_size;
lhdr->app_data_off = desc->app_start_offset +
desc->app_resident_data_offset;
lhdr->app_data_size = desc->app_resident_data_size;
lhdr->flags = 0;
if (img->falcon_id == gsb->base.func->boot_falcon)
lhdr->flags = LSF_FLAG_DMACTL_REQ_CTX;
/* GPCCS will be loaded using PRI */
if (img->falcon_id == NVKM_SECBOOT_FALCON_GPCCS)
lhdr->flags |= LSF_FLAG_FORCE_PRIV_LOAD;
/* Align and save off BL descriptor size */
lhdr->bl_data_size = ALIGN(func->bl_desc_size, LSF_BL_DATA_SIZE_ALIGN);
/*
* Align, save off, and include the additional BL data
*/
offset = ALIGN(offset, LSF_BL_DATA_ALIGN);
lhdr->bl_data_off = offset;
offset += lhdr->bl_data_size;
return offset;
}
static void
ls_ucode_mgr_init(struct ls_ucode_mgr *mgr)
{
memset(mgr, 0, sizeof(*mgr));
INIT_LIST_HEAD(&mgr->img_list);
}
static void
ls_ucode_mgr_cleanup(struct ls_ucode_mgr *mgr)
{
struct ls_ucode_img *img, *t;
list_for_each_entry_safe(img, t, &mgr->img_list, node) {
kfree(img->ucode_data);
kfree(img->ucode_header);
kfree(img);
}
}
static void
ls_ucode_mgr_add_img(struct ls_ucode_mgr *mgr, struct ls_ucode_img *img)
{
mgr->count++;
list_add_tail(&img->node, &mgr->img_list);
}
/**
* ls_ucode_mgr_fill_headers - fill WPR and LSB headers of all managed images
*/
static void
ls_ucode_mgr_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr)
{
struct ls_ucode_img *img;
u32 offset;
/*
* Start with an array of WPR headers at the base of the WPR.
* The expectation here is that the secure falcon will do a single DMA
* read of this array and cache it internally so it's ok to pack these.
* Also, we add 1 to the falcon count to indicate the end of the array.
*/
offset = sizeof(struct lsf_wpr_header) * (mgr->count + 1);
/*
* Walk the managed falcons, accounting for the LSB structs
* as well as the ucode images.
*/
list_for_each_entry(img, &mgr->img_list, node) {
offset = ls_ucode_img_fill_headers(gsb, img, offset);
}
mgr->wpr_size = offset;
}
/**
* ls_ucode_mgr_write_wpr - write the WPR blob contents
*/
static int
ls_ucode_mgr_write_wpr(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr,
struct nvkm_gpuobj *wpr_blob)
{
struct ls_ucode_img *img;
u32 pos = 0;
nvkm_kmap(wpr_blob);
list_for_each_entry(img, &mgr->img_list, node) {
nvkm_gpuobj_memcpy_to(wpr_blob, pos, &img->wpr_header,
sizeof(img->wpr_header));
nvkm_gpuobj_memcpy_to(wpr_blob, img->wpr_header.lsb_offset,
&img->lsb_header, sizeof(img->lsb_header));
/* Generate and write BL descriptor */
if (!img->ucode_header) {
const struct secboot_ls_single_func *ls_func =
(*gsb->ls_func)[img->falcon_id];
u8 gdesc[ls_func->bl_desc_size];
ls_func->generate_bl_desc(img, gsb->acr_wpr_addr,
&gdesc);
nvkm_gpuobj_memcpy_to(wpr_blob,
img->lsb_header.bl_data_off,
&gdesc, ls_func->bl_desc_size);
}
/* Copy ucode */
nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.ucode_off,
img->ucode_data, img->ucode_size);
pos += sizeof(img->wpr_header);
}
nvkm_wo32(wpr_blob, pos, NVKM_SECBOOT_FALCON_INVALID);
nvkm_done(wpr_blob);
return 0;
}
/* Both size and address of WPR need to be 128K-aligned */
#define WPR_ALIGNMENT 0x20000
/**
* gm200_secboot_prepare_ls_blob() - prepare the LS blob
*
* For each securely managed falcon, load the FW, signatures and bootloaders and
* prepare a ucode blob. Then, compute the offsets in the WPR region for each
* blob, and finally write the headers and ucode blobs into a GPU object that
* will be copied into the WPR region by the HS firmware.
*/
static int
gm200_secboot_prepare_ls_blob(struct gm200_secboot *gsb)
{
struct nvkm_secboot *sb = &gsb->base;
struct nvkm_device *device = sb->subdev.device;
struct ls_ucode_mgr mgr;
int falcon_id;
int ret;
ls_ucode_mgr_init(&mgr);
/* Load all LS blobs */
for_each_set_bit(falcon_id, &sb->func->managed_falcons,
NVKM_SECBOOT_FALCON_END) {
struct ls_ucode_img *img;
img = ls_ucode_img_load(&sb->subdev,
(*gsb->ls_func)[falcon_id]->load);
if (IS_ERR(img)) {
ret = PTR_ERR(img);
goto cleanup;
}
ls_ucode_mgr_add_img(&mgr, img);
}
/*
* Fill the WPR and LSF headers with the right offsets and compute
* required WPR size
*/
ls_ucode_mgr_fill_headers(gsb, &mgr);
mgr.wpr_size = ALIGN(mgr.wpr_size, WPR_ALIGNMENT);
/* Allocate GPU object that will contain the WPR region */
ret = nvkm_gpuobj_new(device, mgr.wpr_size, WPR_ALIGNMENT, false, NULL,
&gsb->ls_blob);
if (ret)
goto cleanup;
nvkm_debug(&sb->subdev, "%d managed LS falcons, WPR size is %d bytes\n",
mgr.count, mgr.wpr_size);
/* If WPR address and size are not fixed, set them to fit the LS blob */
if (!gsb->wpr_size) {
gsb->acr_wpr_addr = gsb->ls_blob->addr;
gsb->acr_wpr_size = gsb->ls_blob->size;
} else {
gsb->acr_wpr_addr = gsb->wpr_addr;
gsb->acr_wpr_size = gsb->wpr_size;
}
/* Write LS blob */
ret = ls_ucode_mgr_write_wpr(gsb, &mgr, gsb->ls_blob);
if (ret)
nvkm_gpuobj_del(&gsb->ls_blob);
cleanup:
ls_ucode_mgr_cleanup(&mgr);
return ret;
}
static const secboot_ls_func
gm200_ls_func = {
[NVKM_SECBOOT_FALCON_FECS] = &(struct secboot_ls_single_func) {
.load = gm200_ls_load_fecs,
.generate_bl_desc = gm200_secboot_ls_bl_desc,
.bl_desc_size = sizeof(struct gm200_flcn_bl_desc),
},
[NVKM_SECBOOT_FALCON_GPCCS] = &(struct secboot_ls_single_func) {
.load = gm200_ls_load_gpccs,
.generate_bl_desc = gm200_secboot_ls_bl_desc,
.bl_desc_size = sizeof(struct gm200_flcn_bl_desc),
},
};
/*
* High-secure blob creation
*/
/**
* gm200_secboot_hsf_patch_signature() - patch HS blob with correct signature
*/
static void
gm200_secboot_hsf_patch_signature(struct gm200_secboot *gsb, void *acr_image)
{
struct nvkm_secboot *sb = &gsb->base;
struct fw_bin_header *hsbin_hdr = acr_image;
struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
void *hs_data = acr_image + hsbin_hdr->data_offset;
void *sig;
u32 sig_size;
/* Falcon in debug or production mode? */
if (sb->boot_falcon->debug) {
sig = acr_image + fw_hdr->sig_dbg_offset;
sig_size = fw_hdr->sig_dbg_size;
} else {
sig = acr_image + fw_hdr->sig_prod_offset;
sig_size = fw_hdr->sig_prod_size;
}
/* Patch signature */
memcpy(hs_data + fw_hdr->patch_loc, sig + fw_hdr->patch_sig, sig_size);
}
/**
* struct hsflcn_acr_desc - data section of the HS firmware
*
* This header is to be copied at the beginning of DMEM by the HS bootloader.
*
* @signature: signature of ACR ucode
* @wpr_region_id: region ID holding the WPR header and its details
* @wpr_offset: offset from the WPR region holding the wpr header
* @regions: region descriptors
* @nonwpr_ucode_blob_size: size of LS blob
* @nonwpr_ucode_blob_start: FB location of LS blob is
*/
struct hsflcn_acr_desc {
union {
u8 reserved_dmem[0x200];
u32 signatures[4];
} ucode_reserved_space;
u32 wpr_region_id;
u32 wpr_offset;
u32 mmu_mem_range;
#define FLCN_ACR_MAX_REGIONS 2
struct {
u32 no_regions;
struct {
u32 start_addr;
u32 end_addr;
u32 region_id;
u32 read_mask;
u32 write_mask;
u32 client_mask;
} region_props[FLCN_ACR_MAX_REGIONS];
} regions;
u32 ucode_blob_size;
u64 ucode_blob_base __aligned(8);
struct {
u32 vpr_enabled;
u32 vpr_start;
u32 vpr_end;
u32 hdcp_policies;
} vpr_desc;
};
static void
gm200_secboot_fixup_hs_desc(struct gm200_secboot *gsb,
struct hsflcn_acr_desc *desc)
{
desc->ucode_blob_base = gsb->ls_blob->addr;
desc->ucode_blob_size = gsb->ls_blob->size;
desc->wpr_offset = 0;
/* WPR region information if WPR is not fixed */
if (gsb->wpr_size == 0) {
desc->wpr_region_id = 1;
desc->regions.no_regions = 1;
desc->regions.region_props[0].region_id = 1;
desc->regions.region_props[0].start_addr =
gsb->acr_wpr_addr >> 8;
desc->regions.region_props[0].end_addr =
(gsb->acr_wpr_addr + gsb->acr_wpr_size) >> 8;
}
}
/**
* gm200_secboot_prepare_hs_blob - load and prepare a HS blob and BL descriptor
*
* @gsb secure boot instance to prepare for
* @fw name of the HS firmware to load
* @blob pointer to gpuobj that will be allocated to receive the HS FW payload
* @bl_desc pointer to the BL descriptor to write for this firmware
* @patch whether we should patch the HS descriptor (only for HS loaders)
*/
static int
gm200_secboot_prepare_hs_blob(struct gm200_secboot *gsb, const char *fw,
struct nvkm_gpuobj **blob,
struct hsf_load_header *load_header, bool patch)
{
struct nvkm_subdev *subdev = &gsb->base.subdev;
void *acr_image;
struct fw_bin_header *hsbin_hdr;
struct hsf_fw_header *fw_hdr;
struct hsf_load_header *load_hdr;
void *acr_data;
int ret;
acr_image = gm200_secboot_load_firmware(subdev, fw, 0);
if (IS_ERR(acr_image))
return PTR_ERR(acr_image);
hsbin_hdr = acr_image;
fw_hdr = acr_image + hsbin_hdr->header_offset;
load_hdr = acr_image + fw_hdr->hdr_offset;
acr_data = acr_image + hsbin_hdr->data_offset;
/* Patch signature */
gm200_secboot_hsf_patch_signature(gsb, acr_image);
/* Patch descriptor with WPR information? */
if (patch) {
struct hsflcn_acr_desc *desc;
desc = acr_data + load_hdr->data_dma_base;
gm200_secboot_fixup_hs_desc(gsb, desc);
}
if (load_hdr->num_apps > GM200_ACR_MAX_APPS) {
nvkm_error(subdev, "more apps (%d) than supported (%d)!",
load_hdr->num_apps, GM200_ACR_MAX_APPS);
ret = -EINVAL;
goto cleanup;
}
memcpy(load_header, load_hdr, sizeof(*load_header) +
(sizeof(load_hdr->app[0]) * load_hdr->num_apps));
/* Create ACR blob and copy HS data to it */
ret = nvkm_gpuobj_new(subdev->device, ALIGN(hsbin_hdr->data_size, 256),
0x1000, false, NULL, blob);
if (ret)
goto cleanup;
nvkm_kmap(*blob);
nvkm_gpuobj_memcpy_to(*blob, 0, acr_data, hsbin_hdr->data_size);
nvkm_done(*blob);
cleanup:
kfree(acr_image);
return ret;
}
/*
* High-secure bootloader blob creation
*/
static int
gm200_secboot_prepare_hsbl_blob(struct gm200_secboot *gsb)
{
struct nvkm_subdev *subdev = &gsb->base.subdev;
gsb->hsbl_blob = gm200_secboot_load_firmware(subdev, "acr/bl", 0);
if (IS_ERR(gsb->hsbl_blob)) {
int ret = PTR_ERR(gsb->hsbl_blob);
gsb->hsbl_blob = NULL;
return ret;
}
return 0;
}
/**
* gm20x_secboot_prepare_blobs - load blobs common to all GM20X GPUs.
* gm200_secboot_run_blob() - run the given high-secure blob
*
* This includes the LS blob, HS ucode loading blob, and HS bootloader.
*
* The HS ucode unload blob is only used on dGPU.
*/
int
gm20x_secboot_prepare_blobs(struct gm200_secboot *gsb)
{
int ret;
/* Load and prepare the managed falcon's firmwares */
if (!gsb->ls_blob) {
ret = gm200_secboot_prepare_ls_blob(gsb);
if (ret)
return ret;
}
/* Load the HS firmware that will load the LS firmwares */
if (!gsb->acr_load_blob) {
ret = gm200_secboot_prepare_hs_blob(gsb, "acr/ucode_load",
&gsb->acr_load_blob,
&gsb->load_bl_header, true);
if (ret)
return ret;
}
/* Load the HS firmware bootloader */
if (!gsb->hsbl_blob) {
ret = gm200_secboot_prepare_hsbl_blob(gsb);
if (ret)
return ret;
}
return 0;
}
static int
gm200_secboot_prepare_blobs(struct gm200_secboot *gsb)
{
int ret;
ret = gm20x_secboot_prepare_blobs(gsb);
if (ret)
return ret;
/* dGPU only: load the HS firmware that unprotects the WPR region */
if (!gsb->acr_unload_blob) {
ret = gm200_secboot_prepare_hs_blob(gsb, "acr/ucode_unload",
&gsb->acr_unload_blob,
&gsb->unload_bl_header, false);
if (ret)
return ret;
}
return 0;
}
static int
gm200_secboot_blobs_ready(struct gm200_secboot *gsb)
{
struct nvkm_subdev *subdev = &gsb->base.subdev;
int ret;
/* firmware already loaded, nothing to do... */
if (gsb->firmware_ok)
return 0;
ret = gsb->func->prepare_blobs(gsb);
if (ret) {
nvkm_error(subdev, "failed to load secure firmware\n");
return ret;
}
gsb->firmware_ok = true;
return 0;
}
/*
* Secure Boot Execution
*/
/**
* gm200_secboot_load_hs_bl() - load HS bootloader into DMEM and IMEM
*/
static void
gm200_secboot_load_hs_bl(struct gm200_secboot *gsb, struct nvkm_falcon *falcon,
void *data, u32 data_size)
{
struct fw_bin_header *hdr = gsb->hsbl_blob;
struct fw_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset;
void *blob_data = gsb->hsbl_blob + hdr->data_offset;
void *hsbl_code = blob_data + hsbl_desc->code_off;
void *hsbl_data = blob_data + hsbl_desc->data_off;
u32 code_size = ALIGN(hsbl_desc->code_size, 256);
u32 tag;
/*
* Copy HS bootloader data
*/
nvkm_falcon_load_dmem(falcon, hsbl_data, 0x0, hsbl_desc->data_size, 0);
/*
* Copy HS bootloader interface structure where the HS descriptor
* expects it to be
*/
nvkm_falcon_load_dmem(falcon, data, hsbl_desc->dmem_load_off, data_size,
0);
/* Copy HS bootloader code to end of IMEM */
tag = hsbl_desc->start_tag;
nvkm_falcon_load_imem(falcon, hsbl_code, falcon->code.limit - code_size,
code_size, tag, 0, false);
}
/**
* gm200_secboot_run_hs_blob() - run the given high-secure blob
*/
static int
gm200_secboot_run_hs_blob(struct gm200_secboot *gsb, struct nvkm_gpuobj *blob)
gm200_secboot_run_blob(struct nvkm_secboot *sb, struct nvkm_gpuobj *blob)
{
struct gm200_secboot *gsb = gm200_secboot(sb);
struct nvkm_subdev *subdev = &gsb->base.subdev;
struct fw_bin_header *hdr = gsb->hsbl_blob;
struct fw_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset;
struct nvkm_falcon *falcon = gsb->base.boot_falcon;
const u32 virt_addr = hsbl_desc->start_tag << 8;
const u32 bl_desc_size = gsb->func->bl_desc_size;
const struct hsf_load_header *load_hdr;
u8 bl_desc[bl_desc_size];
struct nvkm_vma vma;
int ret;
/* Find the bootloader descriptor for our blob and copy it */
if (blob == gsb->acr_load_blob) {
load_hdr = &gsb->load_bl_header;
} else if (blob == gsb->acr_unload_blob) {
load_hdr = &gsb->unload_bl_header;
} else {
nvkm_error(&gsb->base.subdev, "invalid secure boot blob!\n");
return -EINVAL;
}
ret = nvkm_falcon_get(falcon, subdev);
if (ret)
return ret;
......@@ -1070,9 +52,6 @@ gm200_secboot_run_hs_blob(struct gm200_secboot *gsb, struct nvkm_gpuobj *blob)
return ret;
}
/* Generate the BL header */
gsb->func->generate_bl_desc(load_hdr, bl_desc, vma.offset);
/* Reset and set the falcon up */
ret = nvkm_falcon_reset(falcon);
if (ret)
......@@ -1080,10 +59,12 @@ gm200_secboot_run_hs_blob(struct gm200_secboot *gsb, struct nvkm_gpuobj *blob)
nvkm_falcon_bind_context(falcon, gsb->inst);
/* Load the HS bootloader into the falcon's IMEM/DMEM */
gm200_secboot_load_hs_bl(gsb, falcon, &bl_desc, bl_desc_size);
ret = sb->acr->func->load(sb->acr, &gsb->base, blob, vma.offset);
if (ret)
goto end;
/* Start the HS bootloader */
nvkm_falcon_set_start_addr(falcon, virt_addr);
nvkm_falcon_set_start_addr(falcon, sb->acr->start_address);
nvkm_falcon_start(falcon);
ret = nvkm_falcon_wait_for_halt(falcon, 100);
if (ret)
......@@ -1105,53 +86,6 @@ gm200_secboot_run_hs_blob(struct gm200_secboot *gsb, struct nvkm_gpuobj *blob)
return ret;
}
/*
* gm200_secboot_reset() - execute secure boot from the prepared state
*
* Load the HS bootloader and ask the falcon to run it. This will in turn
* load the HS firmware and run it, so once the falcon stops all the managed
* falcons should have their LS firmware loaded and be ready to run.
*/
int
gm200_secboot_reset(struct nvkm_secboot *sb, enum nvkm_secboot_falcon falcon)
{
struct gm200_secboot *gsb = gm200_secboot(sb);
int ret;
/* Make sure all blobs are ready */
ret = gm200_secboot_blobs_ready(gsb);
if (ret)
return ret;
/*
* Dummy GM200 implementation: perform secure boot each time we are
* called on FECS. Since only FECS and GPCCS are managed and started
* together, this ought to be safe.
*
* Once we have proper PMU firmware and support, this will be changed
* to a proper call to the PMU method.
*/
if (falcon != NVKM_SECBOOT_FALCON_FECS)
goto end;
/* If WPR is set and we have an unload blob, run it to unlock WPR */
if (gsb->acr_unload_blob &&
gsb->falcon_state[NVKM_SECBOOT_FALCON_FECS] != NON_SECURE) {
ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_unload_blob);
if (ret)
return ret;
}
/* Reload all managed falcons */
ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_load_blob);
if (ret)
return ret;
end:
gsb->falcon_state[falcon] = RESET;
return 0;
}
int
gm200_secboot_oneinit(struct nvkm_secboot *sb)
{
......@@ -1188,23 +122,22 @@ gm200_secboot_oneinit(struct nvkm_secboot *sb)
nvkm_wo32(gsb->inst, 0x20c, upper_32_bits(vm_area_len - 1));
nvkm_done(gsb->inst);
if (sb->acr->func->oneinit) {
ret = sb->acr->func->oneinit(sb->acr, sb);
if (ret)
return ret;
}
return 0;
}
static int
int
gm200_secboot_fini(struct nvkm_secboot *sb, bool suspend)
{
struct gm200_secboot *gsb = gm200_secboot(sb);
int ret = 0;
int i;
/* Run the unload blob to unprotect the WPR region */
if (gsb->acr_unload_blob &&
gsb->falcon_state[NVKM_SECBOOT_FALCON_FECS] != NON_SECURE)
ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_unload_blob);
for (i = 0; i < NVKM_SECBOOT_FALCON_END; i++)
gsb->falcon_state[i] = NON_SECURE;
if (sb->acr->func->fini)
ret = sb->acr->func->fini(sb->acr, sb, suspend);
return ret;
}
......@@ -1214,11 +147,7 @@ gm200_secboot_dtor(struct nvkm_secboot *sb)
{
struct gm200_secboot *gsb = gm200_secboot(sb);
nvkm_gpuobj_del(&gsb->acr_unload_blob);
kfree(gsb->hsbl_blob);
nvkm_gpuobj_del(&gsb->acr_load_blob);
nvkm_gpuobj_del(&gsb->ls_blob);
sb->acr->func->dtor(sb->acr);
nvkm_vm_ref(NULL, &gsb->vm, gsb->pgd);
nvkm_gpuobj_del(&gsb->pgd);
......@@ -1233,36 +162,7 @@ gm200_secboot = {
.dtor = gm200_secboot_dtor,
.oneinit = gm200_secboot_oneinit,
.fini = gm200_secboot_fini,
.reset = gm200_secboot_reset,
.managed_falcons = BIT(NVKM_SECBOOT_FALCON_FECS) |
BIT(NVKM_SECBOOT_FALCON_GPCCS),
.boot_falcon = NVKM_SECBOOT_FALCON_PMU,
};
static void
gm200_secboot_generate_bl_desc(const struct hsf_load_header *hdr,
void *_bl_desc, u64 offset)
{
struct gm200_flcn_bl_desc *bl_desc = _bl_desc;
memset(bl_desc, 0, sizeof(*bl_desc));
bl_desc->ctx_dma = FALCON_DMAIDX_VIRT;
bl_desc->non_sec_code_off = hdr->non_sec_code_off;
bl_desc->non_sec_code_size = hdr->non_sec_code_size;
bl_desc->sec_code_off = hdr->app[0].sec_code_off;
bl_desc->sec_code_size = hdr->app[0].sec_code_size;
bl_desc->code_entry_point = 0;
bl_desc->code_dma_base = u64_to_flcn64(offset);
bl_desc->data_dma_base = u64_to_flcn64(offset + hdr->data_dma_base);
bl_desc->data_size = hdr->data_size;
}
static const struct gm200_secboot_func
gm200_secboot_func = {
.bl_desc_size = sizeof(struct gm200_flcn_bl_desc),
.generate_bl_desc = gm200_secboot_generate_bl_desc,
.prepare_blobs = gm200_secboot_prepare_blobs,
.run_blob = gm200_secboot_run_blob,
};
int
......@@ -1271,6 +171,12 @@ gm200_secboot_new(struct nvkm_device *device, int index,
{
int ret;
struct gm200_secboot *gsb;
struct nvkm_acr *acr;
acr = acr_r361_new(BIT(NVKM_SECBOOT_FALCON_FECS) |
BIT(NVKM_SECBOOT_FALCON_GPCCS));
if (IS_ERR(acr))
return PTR_ERR(acr);
gsb = kzalloc(sizeof(*gsb), GFP_KERNEL);
if (!gsb) {
......@@ -1279,16 +185,14 @@ gm200_secboot_new(struct nvkm_device *device, int index,
}
*psb = &gsb->base;
ret = nvkm_secboot_ctor(&gm200_secboot, device, index, &gsb->base);
ret = nvkm_secboot_ctor(&gm200_secboot, acr, device, index, &gsb->base);
if (ret)
return ret;
gsb->func = &gm200_secboot_func;
gsb->ls_func = &gm200_ls_func;
return 0;
}
MODULE_FIRMWARE("nvidia/gm200/acr/bl.bin");
MODULE_FIRMWARE("nvidia/gm200/acr/ucode_load.bin");
MODULE_FIRMWARE("nvidia/gm200/acr/ucode_unload.bin");
......
/*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __NVKM_SECBOOT_GM200_H__
#define __NVKM_SECBOOT_GM200_H__
#include "priv.h"
struct gm200_secboot {
struct nvkm_secboot base;
/* Instance block & address space used for HS FW execution */
struct nvkm_gpuobj *inst;
struct nvkm_gpuobj *pgd;
struct nvkm_vm *vm;
};
#define gm200_secboot(sb) container_of(sb, struct gm200_secboot, base)
int gm200_secboot_oneinit(struct nvkm_secboot *);
int gm200_secboot_fini(struct nvkm_secboot *, bool);
void *gm200_secboot_dtor(struct nvkm_secboot *);
int gm200_secboot_run_blob(struct nvkm_secboot *, struct nvkm_gpuobj *);
#endif
......@@ -20,99 +20,8 @@
* DEALINGS IN THE SOFTWARE.
*/
#include "priv.h"
#include <core/gpuobj.h>
#include <engine/falcon.h>
/*
* The BL header format used by GM20B's firmware is slightly different
* from the one of GM200. Fix the differences here.
*/
struct gm20b_flcn_bl_desc {
u32 reserved[4];
u32 signature[4];
u32 ctx_dma;
u32 code_dma_base;
u32 non_sec_code_off;
u32 non_sec_code_size;
u32 sec_code_off;
u32 sec_code_size;
u32 code_entry_point;
u32 data_dma_base;
u32 data_size;
};
static void
gm20b_secboot_ls_bl_desc(const struct ls_ucode_img *img, u64 wpr_addr,
void *_desc)
{
struct gm20b_flcn_bl_desc *desc = _desc;
const struct ls_ucode_img_desc *pdesc = &img->ucode_desc;
u64 base;
base = wpr_addr + img->lsb_header.ucode_off + pdesc->app_start_offset;
memset(desc, 0, sizeof(*desc));
desc->ctx_dma = FALCON_DMAIDX_UCODE;
desc->code_dma_base = (base + pdesc->app_resident_code_offset) >> 8;
desc->non_sec_code_size = pdesc->app_resident_code_size;
desc->data_dma_base = (base + pdesc->app_resident_data_offset) >> 8;
desc->data_size = pdesc->app_resident_data_size;
desc->code_entry_point = pdesc->app_imem_entry;
}
static int
gm20b_secboot_prepare_blobs(struct gm200_secboot *gsb)
{
struct nvkm_subdev *subdev = &gsb->base.subdev;
int acr_size;
int ret;
ret = gm20x_secboot_prepare_blobs(gsb);
if (ret)
return ret;
acr_size = gsb->acr_load_blob->size;
/*
* On Tegra the WPR region is set by the bootloader. It is illegal for
* the HS blob to be larger than this region.
*/
if (acr_size > gsb->wpr_size) {
nvkm_error(subdev, "WPR region too small for FW blob!\n");
nvkm_error(subdev, "required: %dB\n", acr_size);
nvkm_error(subdev, "WPR size: %dB\n", gsb->wpr_size);
return -ENOSPC;
}
return 0;
}
static void
gm20b_secboot_generate_bl_desc(const struct hsf_load_header *load_hdr,
void *_bl_desc, u64 offset)
{
struct gm20b_flcn_bl_desc *bl_desc = _bl_desc;
memset(bl_desc, 0, sizeof(*bl_desc));
bl_desc->ctx_dma = FALCON_DMAIDX_VIRT;
bl_desc->non_sec_code_off = load_hdr->non_sec_code_off;
bl_desc->non_sec_code_size = load_hdr->non_sec_code_size;
bl_desc->sec_code_off = load_hdr->app[0].sec_code_off;
bl_desc->sec_code_size = load_hdr->app[0].sec_code_size;
bl_desc->code_entry_point = 0;
bl_desc->code_dma_base = offset >> 8;
bl_desc->data_dma_base = (offset + load_hdr->data_dma_base) >> 8;
bl_desc->data_size = load_hdr->data_size;
}
static const struct gm200_secboot_func
gm20b_secboot_func = {
.bl_desc_size = sizeof(struct gm20b_flcn_bl_desc),
.generate_bl_desc = gm20b_secboot_generate_bl_desc,
.prepare_blobs = gm20b_secboot_prepare_blobs,
};
#include "acr.h"
#include "gm200.h"
#ifdef CONFIG_ARCH_TEGRA
#define TEGRA_MC_BASE 0x70019000
......@@ -140,15 +49,15 @@ gm20b_tegra_read_wpr(struct gm200_secboot *gsb)
nvkm_error(&sb->subdev, "Cannot map Tegra MC registers\n");
return PTR_ERR(mc);
}
gsb->wpr_addr = ioread32_native(mc + MC_SECURITY_CARVEOUT2_BOM_0) |
sb->wpr_addr = ioread32_native(mc + MC_SECURITY_CARVEOUT2_BOM_0) |
((u64)ioread32_native(mc + MC_SECURITY_CARVEOUT2_BOM_HI_0) << 32);
gsb->wpr_size = ioread32_native(mc + MC_SECURITY_CARVEOUT2_SIZE_128K)
sb->wpr_size = ioread32_native(mc + MC_SECURITY_CARVEOUT2_SIZE_128K)
<< 17;
cfg = ioread32_native(mc + MC_SECURITY_CARVEOUT2_CFG0);
iounmap(mc);
/* Check that WPR settings are valid */
if (gsb->wpr_size == 0) {
if (sb->wpr_size == 0) {
nvkm_error(&sb->subdev, "WPR region is empty\n");
return -EINVAL;
}
......@@ -186,18 +95,8 @@ static const struct nvkm_secboot_func
gm20b_secboot = {
.dtor = gm200_secboot_dtor,
.oneinit = gm20b_secboot_oneinit,
.reset = gm200_secboot_reset,
.managed_falcons = BIT(NVKM_SECBOOT_FALCON_FECS),
.boot_falcon = NVKM_SECBOOT_FALCON_PMU,
};
static const secboot_ls_func
gm20b_ls_func = {
[NVKM_SECBOOT_FALCON_FECS] = &(struct secboot_ls_single_func) {
.load = gm200_ls_load_fecs,
.generate_bl_desc = gm20b_secboot_ls_bl_desc,
.bl_desc_size = sizeof(struct gm20b_flcn_bl_desc),
},
.fini = gm200_secboot_fini,
.run_blob = gm200_secboot_run_blob,
};
int
......@@ -206,6 +105,11 @@ gm20b_secboot_new(struct nvkm_device *device, int index,
{
int ret;
struct gm200_secboot *gsb;
struct nvkm_acr *acr;
acr = acr_r352_new(BIT(NVKM_SECBOOT_FALCON_FECS));
if (IS_ERR(acr))
return PTR_ERR(acr);
gsb = kzalloc(sizeof(*gsb), GFP_KERNEL);
if (!gsb) {
......@@ -214,13 +118,10 @@ gm20b_secboot_new(struct nvkm_device *device, int index,
}
*psb = &gsb->base;
ret = nvkm_secboot_ctor(&gm20b_secboot, device, index, &gsb->base);
ret = nvkm_secboot_ctor(&gm20b_secboot, acr, device, index, &gsb->base);
if (ret)
return ret;
gsb->func = &gm20b_secboot_func;
gsb->ls_func = &gm20b_ls_func;
return 0;
}
......
/*
* Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __NVKM_SECBOOT_LS_UCODE_H__
#define __NVKM_SECBOOT_LS_UCODE_H__
#include <core/os.h>
#include <core/subdev.h>
#include <subdev/secboot.h>
/*
*
* LS blob structures
*
*/
/**
* struct lsf_ucode_desc - LS falcon signatures
* @prd_keys: signature to use when the GPU is in production mode
* @dgb_keys: signature to use when the GPU is in debug mode
* @b_prd_present: whether the production key is present
* @b_dgb_present: whether the debug key is present
* @falcon_id: ID of the falcon the ucode applies to
*
* Directly loaded from a signature file.
*/
struct lsf_ucode_desc {
u8 prd_keys[2][16];
u8 dbg_keys[2][16];
u32 b_prd_present;
u32 b_dbg_present;
u32 falcon_id;
};
/**
* struct lsf_lsb_header - LS firmware header
* @signature: signature to verify the firmware against
* @ucode_off: offset of the ucode blob in the WPR region. The ucode
* blob contains the bootloader, code and data of the
* LS falcon
* @ucode_size: size of the ucode blob, including bootloader
* @data_size: size of the ucode blob data
* @bl_code_size: size of the bootloader code
* @bl_imem_off: offset in imem of the bootloader
* @bl_data_off: offset of the bootloader data in WPR region
* @bl_data_size: size of the bootloader data
* @app_code_off: offset of the app code relative to ucode_off
* @app_code_size: size of the app code
* @app_data_off: offset of the app data relative to ucode_off
* @app_data_size: size of the app data
* @flags: flags for the secure bootloader
*
* This structure is written into the WPR region for each managed falcon. Each
* instance is referenced by the lsb_offset member of the corresponding
* lsf_wpr_header.
*/
struct lsf_lsb_header {
struct lsf_ucode_desc signature;
u32 ucode_off;
u32 ucode_size;
u32 data_size;
u32 bl_code_size;
u32 bl_imem_off;
u32 bl_data_off;
u32 bl_data_size;
u32 app_code_off;
u32 app_code_size;
u32 app_data_off;
u32 app_data_size;
u32 flags;
#define LSF_FLAG_LOAD_CODE_AT_0 1
#define LSF_FLAG_DMACTL_REQ_CTX 4
#define LSF_FLAG_FORCE_PRIV_LOAD 8
};
/**
* struct lsf_wpr_header - LS blob WPR Header
* @falcon_id: LS falcon ID
* @lsb_offset: offset of the lsb_lsf_header in the WPR region
* @bootstrap_owner: secure falcon reponsible for bootstrapping the LS falcon
* @lazy_bootstrap: skip bootstrapping by ACR
* @status: bootstrapping status
*
* An array of these is written at the beginning of the WPR region, one for
* each managed falcon. The array is terminated by an instance which falcon_id
* is LSF_FALCON_ID_INVALID.
*/
struct lsf_wpr_header {
u32 falcon_id;
u32 lsb_offset;
u32 bootstrap_owner;
u32 lazy_bootstrap;
u32 status;
#define LSF_IMAGE_STATUS_NONE 0
#define LSF_IMAGE_STATUS_COPY 1
#define LSF_IMAGE_STATUS_VALIDATION_CODE_FAILED 2
#define LSF_IMAGE_STATUS_VALIDATION_DATA_FAILED 3
#define LSF_IMAGE_STATUS_VALIDATION_DONE 4
#define LSF_IMAGE_STATUS_VALIDATION_SKIPPED 5
#define LSF_IMAGE_STATUS_BOOTSTRAP_READY 6
};
/**
* struct ls_ucode_img_desc - descriptor of firmware image
* @descriptor_size: size of this descriptor
* @image_size: size of the whole image
* @bootloader_start_offset: start offset of the bootloader in ucode image
* @bootloader_size: size of the bootloader
* @bootloader_imem_offset: start off set of the bootloader in IMEM
* @bootloader_entry_point: entry point of the bootloader in IMEM
* @app_start_offset: start offset of the LS firmware
* @app_size: size of the LS firmware's code and data
* @app_imem_offset: offset of the app in IMEM
* @app_imem_entry: entry point of the app in IMEM
* @app_dmem_offset: offset of the data in DMEM
* @app_resident_code_offset: offset of app code from app_start_offset
* @app_resident_code_size: size of the code
* @app_resident_data_offset: offset of data from app_start_offset
* @app_resident_data_size: size of data
*
* A firmware image contains the code, data, and bootloader of a given LS
* falcon in a single blob. This structure describes where everything is.
*
* This can be generated from a (bootloader, code, data) set if they have
* been loaded separately, or come directly from a file.
*/
struct ls_ucode_img_desc {
u32 descriptor_size;
u32 image_size;
u32 tools_version;
u32 app_version;
char date[64];
u32 bootloader_start_offset;
u32 bootloader_size;
u32 bootloader_imem_offset;
u32 bootloader_entry_point;
u32 app_start_offset;
u32 app_size;
u32 app_imem_offset;
u32 app_imem_entry;
u32 app_dmem_offset;
u32 app_resident_code_offset;
u32 app_resident_code_size;
u32 app_resident_data_offset;
u32 app_resident_data_size;
u32 nb_overlays;
struct {u32 start; u32 size; } load_ovl[64];
u32 compressed;
};
/**
* struct ls_ucode_img - temporary storage for loaded LS firmwares
* @node: to link within lsf_ucode_mgr
* @falcon_id: ID of the falcon this LS firmware is for
* @ucode_desc: loaded or generated map of ucode_data
* @ucode_header: header of the firmware
* @ucode_data: firmware payload (code and data)
* @ucode_size: size in bytes of data in ucode_data
* @wpr_header: WPR header to be written to the LS blob
* @lsb_header: LSB header to be written to the LS blob
*
* Preparing the WPR LS blob requires information about all the LS firmwares
* (size, etc) to be known. This structure contains all the data of one LS
* firmware.
*/
struct ls_ucode_img {
struct list_head node;
enum nvkm_secboot_falcon falcon_id;
struct ls_ucode_img_desc ucode_desc;
u32 *ucode_header;
u8 *ucode_data;
u32 ucode_size;
struct lsf_wpr_header wpr_header;
struct lsf_lsb_header lsb_header;
};
/**
* struct fw_bin_header - header of firmware files
* @bin_magic: always 0x3b1d14f0
* @bin_ver: version of the bin format
* @bin_size: entire image size including this header
* @header_offset: offset of the firmware/bootloader header in the file
* @data_offset: offset of the firmware/bootloader payload in the file
* @data_size: size of the payload
*
* This header is located at the beginning of the HS firmware and HS bootloader
* files, to describe where the headers and data can be found.
*/
struct fw_bin_header {
u32 bin_magic;
u32 bin_ver;
u32 bin_size;
u32 header_offset;
u32 data_offset;
u32 data_size;
};
/**
* struct fw_bl_desc - firmware bootloader descriptor
* @start_tag: starting tag of bootloader
* @desc_dmem_load_off: DMEM offset of flcn_bl_dmem_desc
* @code_off: offset of code section
* @code_size: size of code section
* @data_off: offset of data section
* @data_size: size of data section
*
* This structure is embedded in bootloader firmware files at to describe the
* IMEM and DMEM layout expected by the bootloader.
*/
struct fw_bl_desc {
u32 start_tag;
u32 dmem_load_off;
u32 code_off;
u32 code_size;
u32 data_off;
u32 data_size;
};
int acr_ls_ucode_load_fecs(const struct nvkm_subdev *, struct ls_ucode_img *);
int acr_ls_ucode_load_gpccs(const struct nvkm_subdev *, struct ls_ucode_img *);
#endif
/*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "ls_ucode.h"
#include "acr.h"
#include <core/firmware.h>
#define BL_DESC_BLK_SIZE 256
/**
* Build a ucode image and descriptor from provided bootloader, code and data.
*
* @bl: bootloader image, including 16-bytes descriptor
* @code: LS firmware code segment
* @data: LS firmware data segment
* @desc: ucode descriptor to be written
*
* Return: allocated ucode image with corresponding descriptor information. desc
* is also updated to contain the right offsets within returned image.
*/
static void *
ls_ucode_img_build(const struct firmware *bl, const struct firmware *code,
const struct firmware *data, struct ls_ucode_img_desc *desc)
{
struct fw_bin_header *bin_hdr = (void *)bl->data;
struct fw_bl_desc *bl_desc = (void *)bl->data + bin_hdr->header_offset;
void *bl_data = (void *)bl->data + bin_hdr->data_offset;
u32 pos = 0;
void *image;
desc->bootloader_start_offset = pos;
desc->bootloader_size = ALIGN(bl_desc->code_size, sizeof(u32));
desc->bootloader_imem_offset = bl_desc->start_tag * 256;
desc->bootloader_entry_point = bl_desc->start_tag * 256;
pos = ALIGN(pos + desc->bootloader_size, BL_DESC_BLK_SIZE);
desc->app_start_offset = pos;
desc->app_size = ALIGN(code->size, BL_DESC_BLK_SIZE) +
ALIGN(data->size, BL_DESC_BLK_SIZE);
desc->app_imem_offset = 0;
desc->app_imem_entry = 0;
desc->app_dmem_offset = 0;
desc->app_resident_code_offset = 0;
desc->app_resident_code_size = ALIGN(code->size, BL_DESC_BLK_SIZE);
pos = ALIGN(pos + desc->app_resident_code_size, BL_DESC_BLK_SIZE);
desc->app_resident_data_offset = pos - desc->app_start_offset;
desc->app_resident_data_size = ALIGN(data->size, BL_DESC_BLK_SIZE);
desc->image_size = ALIGN(bl_desc->code_size, BL_DESC_BLK_SIZE) +
desc->app_size;
image = kzalloc(desc->image_size, GFP_KERNEL);
if (!image)
return ERR_PTR(-ENOMEM);
memcpy(image + desc->bootloader_start_offset, bl_data,
bl_desc->code_size);
memcpy(image + desc->app_start_offset, code->data, code->size);
memcpy(image + desc->app_start_offset + desc->app_resident_data_offset,
data->data, data->size);
return image;
}
/**
* ls_ucode_img_load_gr() - load and prepare a LS GR ucode image
*
* Load the LS microcode, bootloader and signature and pack them into a single
* blob. Also generate the corresponding ucode descriptor.
*/
static int
ls_ucode_img_load_gr(const struct nvkm_subdev *subdev, struct ls_ucode_img *img,
const char *falcon_name, const u32 falcon_id)
{
const struct firmware *bl, *code, *data;
struct lsf_ucode_desc *lsf_desc;
char f[64];
int ret;
img->ucode_header = NULL;
snprintf(f, sizeof(f), "gr/%s_bl", falcon_name);
ret = nvkm_firmware_get(subdev->device, f, &bl);
if (ret)
goto error;
snprintf(f, sizeof(f), "gr/%s_inst", falcon_name);
ret = nvkm_firmware_get(subdev->device, f, &code);
if (ret)
goto free_bl;
snprintf(f, sizeof(f), "gr/%s_data", falcon_name);
ret = nvkm_firmware_get(subdev->device, f, &data);
if (ret)
goto free_inst;
img->ucode_data = ls_ucode_img_build(bl, code, data,
&img->ucode_desc);
if (IS_ERR(img->ucode_data)) {
ret = PTR_ERR(img->ucode_data);
goto free_data;
}
img->ucode_size = img->ucode_desc.image_size;
snprintf(f, sizeof(f), "gr/%s_sig", falcon_name);
lsf_desc = nvkm_acr_load_firmware(subdev, f, sizeof(*lsf_desc));
if (IS_ERR(lsf_desc)) {
ret = PTR_ERR(lsf_desc);
goto free_image;
}
/* not needed? the signature should already have the right value */
lsf_desc->falcon_id = falcon_id;
memcpy(&img->lsb_header.signature, lsf_desc, sizeof(*lsf_desc));
img->falcon_id = lsf_desc->falcon_id;
kfree(lsf_desc);
/* success path - only free requested firmware files */
goto free_data;
free_image:
kfree(img->ucode_data);
free_data:
nvkm_firmware_put(data);
free_inst:
nvkm_firmware_put(code);
free_bl:
nvkm_firmware_put(bl);
error:
return ret;
}
int
acr_ls_ucode_load_fecs(const struct nvkm_subdev *subdev,
struct ls_ucode_img *img)
{
return ls_ucode_img_load_gr(subdev, img, "fecs",
NVKM_SECBOOT_FALCON_FECS);
}
int
acr_ls_ucode_load_gpccs(const struct nvkm_subdev *subdev,
struct ls_ucode_img *img)
{
return ls_ucode_img_load_gr(subdev, img, "gpccs",
NVKM_SECBOOT_FALCON_GPCCS);
}
......@@ -30,185 +30,13 @@ struct nvkm_secboot_func {
int (*oneinit)(struct nvkm_secboot *);
int (*fini)(struct nvkm_secboot *, bool suspend);
void *(*dtor)(struct nvkm_secboot *);
int (*reset)(struct nvkm_secboot *, enum nvkm_secboot_falcon);
/* ID of the falcon that will perform secure boot */
enum nvkm_secboot_falcon boot_falcon;
/* Bit-mask of IDs of managed falcons */
unsigned long managed_falcons;
};
int nvkm_secboot_ctor(const struct nvkm_secboot_func *, struct nvkm_device *,
int index, struct nvkm_secboot *);
/*
*
* LS blob structures
*
*/
/**
* struct lsf_ucode_desc - LS falcon signatures
* @prd_keys: signature to use when the GPU is in production mode
* @dgb_keys: signature to use when the GPU is in debug mode
* @b_prd_present: whether the production key is present
* @b_dgb_present: whether the debug key is present
* @falcon_id: ID of the falcon the ucode applies to
*
* Directly loaded from a signature file.
*/
struct lsf_ucode_desc {
u8 prd_keys[2][16];
u8 dbg_keys[2][16];
u32 b_prd_present;
u32 b_dbg_present;
u32 falcon_id;
int (*run_blob)(struct nvkm_secboot *, struct nvkm_gpuobj *);
};
/**
* struct lsf_lsb_header - LS firmware header
* @signature: signature to verify the firmware against
* @ucode_off: offset of the ucode blob in the WPR region. The ucode
* blob contains the bootloader, code and data of the
* LS falcon
* @ucode_size: size of the ucode blob, including bootloader
* @data_size: size of the ucode blob data
* @bl_code_size: size of the bootloader code
* @bl_imem_off: offset in imem of the bootloader
* @bl_data_off: offset of the bootloader data in WPR region
* @bl_data_size: size of the bootloader data
* @app_code_off: offset of the app code relative to ucode_off
* @app_code_size: size of the app code
* @app_data_off: offset of the app data relative to ucode_off
* @app_data_size: size of the app data
* @flags: flags for the secure bootloader
*
* This structure is written into the WPR region for each managed falcon. Each
* instance is referenced by the lsb_offset member of the corresponding
* lsf_wpr_header.
*/
struct lsf_lsb_header {
struct lsf_ucode_desc signature;
u32 ucode_off;
u32 ucode_size;
u32 data_size;
u32 bl_code_size;
u32 bl_imem_off;
u32 bl_data_off;
u32 bl_data_size;
u32 app_code_off;
u32 app_code_size;
u32 app_data_off;
u32 app_data_size;
u32 flags;
#define LSF_FLAG_LOAD_CODE_AT_0 1
#define LSF_FLAG_DMACTL_REQ_CTX 4
#define LSF_FLAG_FORCE_PRIV_LOAD 8
};
/**
* struct lsf_wpr_header - LS blob WPR Header
* @falcon_id: LS falcon ID
* @lsb_offset: offset of the lsb_lsf_header in the WPR region
* @bootstrap_owner: secure falcon reponsible for bootstrapping the LS falcon
* @lazy_bootstrap: skip bootstrapping by ACR
* @status: bootstrapping status
*
* An array of these is written at the beginning of the WPR region, one for
* each managed falcon. The array is terminated by an instance which falcon_id
* is LSF_FALCON_ID_INVALID.
*/
struct lsf_wpr_header {
u32 falcon_id;
u32 lsb_offset;
u32 bootstrap_owner;
u32 lazy_bootstrap;
u32 status;
#define LSF_IMAGE_STATUS_NONE 0
#define LSF_IMAGE_STATUS_COPY 1
#define LSF_IMAGE_STATUS_VALIDATION_CODE_FAILED 2
#define LSF_IMAGE_STATUS_VALIDATION_DATA_FAILED 3
#define LSF_IMAGE_STATUS_VALIDATION_DONE 4
#define LSF_IMAGE_STATUS_VALIDATION_SKIPPED 5
#define LSF_IMAGE_STATUS_BOOTSTRAP_READY 6
};
/**
* struct ls_ucode_img_desc - descriptor of firmware image
* @descriptor_size: size of this descriptor
* @image_size: size of the whole image
* @bootloader_start_offset: start offset of the bootloader in ucode image
* @bootloader_size: size of the bootloader
* @bootloader_imem_offset: start off set of the bootloader in IMEM
* @bootloader_entry_point: entry point of the bootloader in IMEM
* @app_start_offset: start offset of the LS firmware
* @app_size: size of the LS firmware's code and data
* @app_imem_offset: offset of the app in IMEM
* @app_imem_entry: entry point of the app in IMEM
* @app_dmem_offset: offset of the data in DMEM
* @app_resident_code_offset: offset of app code from app_start_offset
* @app_resident_code_size: size of the code
* @app_resident_data_offset: offset of data from app_start_offset
* @app_resident_data_size: size of data
*
* A firmware image contains the code, data, and bootloader of a given LS
* falcon in a single blob. This structure describes where everything is.
*
* This can be generated from a (bootloader, code, data) set if they have
* been loaded separately, or come directly from a file.
*/
struct ls_ucode_img_desc {
u32 descriptor_size;
u32 image_size;
u32 tools_version;
u32 app_version;
char date[64];
u32 bootloader_start_offset;
u32 bootloader_size;
u32 bootloader_imem_offset;
u32 bootloader_entry_point;
u32 app_start_offset;
u32 app_size;
u32 app_imem_offset;
u32 app_imem_entry;
u32 app_dmem_offset;
u32 app_resident_code_offset;
u32 app_resident_code_size;
u32 app_resident_data_offset;
u32 app_resident_data_size;
u32 nb_overlays;
struct {u32 start; u32 size; } load_ovl[64];
u32 compressed;
};
/**
* struct ls_ucode_img - temporary storage for loaded LS firmwares
* @node: to link within lsf_ucode_mgr
* @falcon_id: ID of the falcon this LS firmware is for
* @ucode_desc: loaded or generated map of ucode_data
* @ucode_header: header of the firmware
* @ucode_data: firmware payload (code and data)
* @ucode_size: size in bytes of data in ucode_data
* @wpr_header: WPR header to be written to the LS blob
* @lsb_header: LSB header to be written to the LS blob
*
* Preparing the WPR LS blob requires information about all the LS firmwares
* (size, etc) to be known. This structure contains all the data of one LS
* firmware.
*/
struct ls_ucode_img {
struct list_head node;
enum nvkm_secboot_falcon falcon_id;
struct ls_ucode_img_desc ucode_desc;
u32 *ucode_header;
u8 *ucode_data;
u32 ucode_size;
struct lsf_wpr_header wpr_header;
struct lsf_lsb_header lsb_header;
};
int nvkm_secboot_ctor(const struct nvkm_secboot_func *, struct nvkm_acr *,
struct nvkm_device *, int, struct nvkm_secboot *);
int nvkm_secboot_falcon_reset(struct nvkm_secboot *);
int nvkm_secboot_falcon_run(struct nvkm_secboot *);
struct flcn_u64 {
u32 lo;
......@@ -230,150 +58,4 @@ static inline struct flcn_u64 u64_to_flcn64(u64 u)
return ret;
}
#define GM200_ACR_MAX_APPS 8
struct hsf_load_header_app {
u32 sec_code_off;
u32 sec_code_size;
};
/**
* struct hsf_load_header - HS firmware load header
*/
struct hsf_load_header {
u32 non_sec_code_off;
u32 non_sec_code_size;
u32 data_dma_base;
u32 data_size;
u32 num_apps;
struct hsf_load_header_app app[0];
};
/**
* struct secboot_ls_single_func - manages a single LS firmware
*
* @load: load the external firmware into a ls_ucode_img
* @generate_bl_desc: function called on a block of bl_desc_size to generate the
* proper bootloader descriptor for this LS firmware
* @bl_desc_size: size of the bootloader descriptor
*/
struct secboot_ls_single_func {
int (*load)(const struct nvkm_subdev *, struct ls_ucode_img *);
void (*generate_bl_desc)(const struct ls_ucode_img *, u64, void *);
u32 bl_desc_size;
};
/**
* typedef secboot_ls_func - manages all the LS firmwares for this ACR
*/
typedef const struct secboot_ls_single_func *
secboot_ls_func[NVKM_SECBOOT_FALCON_END];
int gm200_ls_load_fecs(const struct nvkm_subdev *, struct ls_ucode_img *);
int gm200_ls_load_gpccs(const struct nvkm_subdev *, struct ls_ucode_img *);
/**
* Contains the whole secure boot state, allowing it to be performed as needed
* @wpr_addr: physical address of the WPR region
* @wpr_size: size in bytes of the WPR region
* @ls_blob: LS blob of all the LS firmwares, signatures, bootloaders
* @ls_blob_size: size of the LS blob
* @ls_blob_nb_regions: number of LS firmwares that will be loaded
* @acr_blob: HS blob
* @acr_blob_vma: mapping of the HS blob into the secure falcon's VM
* @acr_bl_desc: bootloader descriptor of the HS blob
* @hsbl_blob: HS blob bootloader
* @inst: instance block for HS falcon
* @pgd: page directory for the HS falcon
* @vm: address space used by the HS falcon
* @falcon_state: current state of the managed falcons
* @firmware_ok: whether the firmware blobs have been created
*/
struct gm200_secboot {
struct nvkm_secboot base;
const struct gm200_secboot_func *func;
const secboot_ls_func *ls_func;
/*
* Address and size of the fixed WPR region, if any. On Tegra this
* region is set by the bootloader
*/
u64 wpr_addr;
u32 wpr_size;
/*
* Address and size of the actual WPR region.
*/
u64 acr_wpr_addr;
u32 acr_wpr_size;
/*
* HS FW - lock WPR region (dGPU only) and load LS FWs
* on Tegra the HS FW copies the LS blob into the fixed WPR instead
*/
struct nvkm_gpuobj *acr_load_blob;
struct {
struct hsf_load_header load_bl_header;
struct hsf_load_header_app __load_apps[GM200_ACR_MAX_APPS];
};
/* HS FW - unlock WPR region (dGPU only) */
struct nvkm_gpuobj *acr_unload_blob;
struct {
struct hsf_load_header unload_bl_header;
struct hsf_load_header_app __unload_apps[GM200_ACR_MAX_APPS];
};
/* HS bootloader */
void *hsbl_blob;
/* LS FWs, to be loaded by the HS ACR */
struct nvkm_gpuobj *ls_blob;
/* Instance block & address space used for HS FW execution */
struct nvkm_gpuobj *inst;
struct nvkm_gpuobj *pgd;
struct nvkm_vm *vm;
/* To keep track of the state of all managed falcons */
enum {
/* In non-secure state, no firmware loaded, no privileges*/
NON_SECURE = 0,
/* In low-secure mode and ready to be started */
RESET,
/* In low-secure mode and running */
RUNNING,
} falcon_state[NVKM_SECBOOT_FALCON_END];
bool firmware_ok;
};
#define gm200_secboot(sb) container_of(sb, struct gm200_secboot, base)
/**
* Contains functions we wish to abstract between GM200-like implementations
* @bl_desc_size: size of the BL descriptor used by this chip.
* @generate_bl_desc: hook that generates the proper BL descriptor format from
* the hsf_load_header format into a preallocated array of
* size bl_desc_size
* @prepare_blobs: prepares the various blobs needed for secure booting
*/
struct gm200_secboot_func {
/*
* Size of the bootloader descriptor for this chip. A block of this
* size is allocated before booting a falcon and the fixup_bl_desc
* callback is called on it
*/
u32 bl_desc_size;
void (*generate_bl_desc)(const struct hsf_load_header *, void *, u64);
int (*prepare_blobs)(struct gm200_secboot *);
};
int gm200_secboot_oneinit(struct nvkm_secboot *);
void *gm200_secboot_dtor(struct nvkm_secboot *);
int gm200_secboot_reset(struct nvkm_secboot *, enum nvkm_secboot_falcon);
int gm200_secboot_start(struct nvkm_secboot *, enum nvkm_secboot_falcon);
int gm20x_secboot_prepare_blobs(struct gm200_secboot *);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment