Commit 75b12857 authored by Matt Fleming's avatar Matt Fleming

Merge branch 'next' into efi-next-merge

Conflicts:
	arch/x86/boot/compressed/eboot.c
parents fe82dcec 7efe6659
......@@ -992,10 +992,14 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Format: {"off" | "on" | "skip[mbr]"}
efi= [EFI]
Format: { "old_map" }
Format: { "old_map", "nochunk", "noruntime" }
old_map [X86-64]: switch to the old ioremap-based EFI
runtime services mapping. 32-bit still uses this one by
default.
nochunk: disable reading files in "chunks" in the EFI
boot stub, as chunking can cause problems with some
firmware implementations.
noruntime : disable EFI runtime services support
efi_no_storage_paranoia [EFI; X86]
Using this parameter you can use more than 50% of
......@@ -2166,7 +2170,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
nodsp [SH] Disable hardware DSP at boot time.
noefi [X86] Disable EFI runtime services support.
noefi Disable EFI runtime services support.
noexec [IA-64]
......
......@@ -89,7 +89,8 @@ static int __init uefi_init(void)
*/
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
pr_err("System table signature incorrect\n");
return -EINVAL;
retval = -EINVAL;
goto out;
}
if ((efi.systab->hdr.revision >> 16) < 2)
pr_warn("Warning: EFI system table version %d.%02d, expected 2.00 or greater\n",
......@@ -103,6 +104,7 @@ static int __init uefi_init(void)
for (i = 0; i < (int) sizeof(vendor) - 1 && *c16; ++i)
vendor[i] = c16[i];
vendor[i] = '\0';
early_memunmap(c16, sizeof(vendor));
}
pr_info("EFI v%u.%.02u by %s\n",
......@@ -113,29 +115,11 @@ static int __init uefi_init(void)
if (retval == 0)
set_bit(EFI_CONFIG_TABLES, &efi.flags);
early_memunmap(c16, sizeof(vendor));
out:
early_memunmap(efi.systab, sizeof(efi_system_table_t));
return retval;
}
static __initdata char memory_type_name[][32] = {
{"Reserved"},
{"Loader Code"},
{"Loader Data"},
{"Boot Code"},
{"Boot Data"},
{"Runtime Code"},
{"Runtime Data"},
{"Conventional Memory"},
{"Unusable Memory"},
{"ACPI Reclaim Memory"},
{"ACPI Memory NVS"},
{"Memory Mapped I/O"},
{"MMIO Port Space"},
{"PAL Code"},
};
/*
* Return true for RAM regions we want to permanently reserve.
*/
......@@ -166,10 +150,13 @@ static __init void reserve_regions(void)
paddr = md->phys_addr;
npages = md->num_pages;
if (uefi_debug)
pr_info(" 0x%012llx-0x%012llx [%s]",
if (uefi_debug) {
char buf[64];
pr_info(" 0x%012llx-0x%012llx %s",
paddr, paddr + (npages << EFI_PAGE_SHIFT) - 1,
memory_type_name[md->type]);
efi_md_typeattr_format(buf, sizeof(buf), md));
}
memrange_efi_to_native(&paddr, &npages);
size = npages << PAGE_SHIFT;
......@@ -393,11 +380,16 @@ static int __init arm64_enter_virtual_mode(void)
return -1;
}
pr_info("Remapping and enabling EFI services.\n");
/* replace early memmap mapping with permanent mapping */
mapsize = memmap.map_end - memmap.map;
early_memunmap(memmap.map, mapsize);
if (efi_runtime_disabled()) {
pr_info("EFI runtime services will be disabled.\n");
return -1;
}
pr_info("Remapping and enabling EFI services.\n");
/* replace early memmap mapping with permanent mapping */
memmap.map = (__force void *)ioremap_cache((phys_addr_t)memmap.phys_map,
mapsize);
memmap.map_end = memmap.map + mapsize;
......
......@@ -568,6 +568,7 @@ efi_init (void)
{
const char *unit;
unsigned long size;
char buf[64];
md = p;
size = md->num_pages << EFI_PAGE_SHIFT;
......@@ -586,9 +587,10 @@ efi_init (void)
unit = "KB";
}
printk("mem%02d: type=%2u, attr=0x%016lx, "
printk("mem%02d: %s "
"range=[0x%016lx-0x%016lx) (%4lu%s)\n",
i, md->type, md->attribute, md->phys_addr,
i, efi_md_typeattr_format(buf, sizeof(buf), md),
md->phys_addr,
md->phys_addr + efi_md_size(md), size, unit);
}
}
......
......@@ -330,8 +330,10 @@ __setup_efi_pci32(efi_pci_io_protocol_32 *pci, struct pci_setup_rom **__rom)
size = pci->romsize + sizeof(*rom);
status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size, &rom);
if (status != EFI_SUCCESS)
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to alloc mem for rom\n");
return status;
}
memset(rom, 0, sizeof(*rom));
......@@ -344,14 +346,18 @@ __setup_efi_pci32(efi_pci_io_protocol_32 *pci, struct pci_setup_rom **__rom)
status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16,
PCI_VENDOR_ID, 1, &(rom->vendor));
if (status != EFI_SUCCESS)
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to read rom->vendor\n");
goto free_struct;
}
status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16,
PCI_DEVICE_ID, 1, &(rom->devid));
if (status != EFI_SUCCESS)
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to read rom->devid\n");
goto free_struct;
}
status = efi_early->call(pci->get_location, pci, &(rom->segment),
&(rom->bus), &(rom->device), &(rom->function));
......@@ -432,8 +438,10 @@ __setup_efi_pci64(efi_pci_io_protocol_64 *pci, struct pci_setup_rom **__rom)
size = pci->romsize + sizeof(*rom);
status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size, &rom);
if (status != EFI_SUCCESS)
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to alloc mem for rom\n");
return status;
}
rom->data.type = SETUP_PCI;
rom->data.len = size - sizeof(struct setup_data);
......@@ -444,14 +452,18 @@ __setup_efi_pci64(efi_pci_io_protocol_64 *pci, struct pci_setup_rom **__rom)
status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16,
PCI_VENDOR_ID, 1, &(rom->vendor));
if (status != EFI_SUCCESS)
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to read rom->vendor\n");
goto free_struct;
}
status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16,
PCI_DEVICE_ID, 1, &(rom->devid));
if (status != EFI_SUCCESS)
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to read rom->devid\n");
goto free_struct;
}
status = efi_early->call(pci->get_location, pci, &(rom->segment),
&(rom->bus), &(rom->device), &(rom->function));
......@@ -538,8 +550,10 @@ static void setup_efi_pci(struct boot_params *params)
EFI_LOADER_DATA,
size, (void **)&pci_handle);
if (status != EFI_SUCCESS)
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to alloc mem for pci_handle\n");
return;
}
status = efi_call_early(locate_handle,
EFI_LOCATE_BY_PROTOCOL, &pci_proto,
......@@ -1105,6 +1119,10 @@ struct boot_params *make_boot_params(struct efi_config *c)
memset(sdt, 0, sizeof(*sdt));
status = efi_parse_options(cmdline_ptr);
if (status != EFI_SUCCESS)
goto fail2;
status = handle_cmdline_files(sys_table, image,
(char *)(unsigned long)hdr->cmd_line_ptr,
"initrd=", hdr->initrd_addr_max,
......
......@@ -81,24 +81,23 @@ extern u64 asmlinkage efi_call(void *fp, ...);
*/
#define __efi_call_virt(f, args...) efi_call_virt(f, args)
extern void __iomem *efi_ioremap(unsigned long addr, unsigned long size,
extern void __iomem *__init efi_ioremap(unsigned long addr, unsigned long size,
u32 type, u64 attribute);
#endif /* CONFIG_X86_32 */
extern int add_efi_memmap;
extern struct efi_scratch efi_scratch;
extern void efi_set_executable(efi_memory_desc_t *md, bool executable);
extern int efi_memblock_x86_reserve_range(void);
extern void efi_call_phys_prelog(void);
extern void efi_call_phys_epilog(void);
extern void efi_unmap_memmap(void);
extern void efi_memory_uc(u64 addr, unsigned long size);
extern void __init efi_set_executable(efi_memory_desc_t *md, bool executable);
extern int __init efi_memblock_x86_reserve_range(void);
extern void __init efi_call_phys_prolog(void);
extern void __init efi_call_phys_epilog(void);
extern void __init efi_unmap_memmap(void);
extern void __init efi_memory_uc(u64 addr, unsigned long size);
extern void __init efi_map_region(efi_memory_desc_t *md);
extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
extern void efi_sync_low_kernel_mappings(void);
extern int efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
extern void efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages);
extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
extern void __init efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages);
extern void __init old_map_region(efi_memory_desc_t *md);
extern void __init runtime_code_page_mkexec(void);
extern void __init efi_runtime_mkexec(void);
......@@ -162,16 +161,6 @@ static inline efi_status_t efi_thunk_set_virtual_address_map(
extern bool efi_reboot_required(void);
#else
/*
* IF EFI is not configured, have the EFI calls return -ENOSYS.
*/
#define efi_call0(_f) (-ENOSYS)
#define efi_call1(_f, _a1) (-ENOSYS)
#define efi_call2(_f, _a1, _a2) (-ENOSYS)
#define efi_call3(_f, _a1, _a2, _a3) (-ENOSYS)
#define efi_call4(_f, _a1, _a2, _a3, _a4) (-ENOSYS)
#define efi_call5(_f, _a1, _a2, _a3, _a4, _a5) (-ENOSYS)
#define efi_call6(_f, _a1, _a2, _a3, _a4, _a5, _a6) (-ENOSYS)
static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
static inline bool efi_reboot_required(void)
{
......
......@@ -40,35 +40,59 @@ void __init efi_bgrt_init(void)
if (ACPI_FAILURE(status))
return;
if (bgrt_tab->header.length < sizeof(*bgrt_tab))
if (bgrt_tab->header.length < sizeof(*bgrt_tab)) {
pr_err("Ignoring BGRT: invalid length %u (expected %zu)\n",
bgrt_tab->header.length, sizeof(*bgrt_tab));
return;
if (bgrt_tab->version != 1 || bgrt_tab->status != 1)
}
if (bgrt_tab->version != 1) {
pr_err("Ignoring BGRT: invalid version %u (expected 1)\n",
bgrt_tab->version);
return;
}
if (bgrt_tab->status != 1) {
pr_err("Ignoring BGRT: invalid status %u (expected 1)\n",
bgrt_tab->status);
return;
}
if (bgrt_tab->image_type != 0) {
pr_err("Ignoring BGRT: invalid image type %u (expected 0)\n",
bgrt_tab->image_type);
return;
if (bgrt_tab->image_type != 0 || !bgrt_tab->image_address)
}
if (!bgrt_tab->image_address) {
pr_err("Ignoring BGRT: null image address\n");
return;
}
image = efi_lookup_mapped_addr(bgrt_tab->image_address);
if (!image) {
image = early_memremap(bgrt_tab->image_address,
sizeof(bmp_header));
ioremapped = true;
if (!image)
if (!image) {
pr_err("Ignoring BGRT: failed to map image header memory\n");
return;
}
}
memcpy_fromio(&bmp_header, image, sizeof(bmp_header));
if (ioremapped)
early_iounmap(image, sizeof(bmp_header));
bgrt_image_size = bmp_header.size;
bgrt_image = kmalloc(bgrt_image_size, GFP_KERNEL);
if (!bgrt_image)
bgrt_image = kmalloc(bgrt_image_size, GFP_KERNEL | __GFP_NOWARN);
if (!bgrt_image) {
pr_err("Ignoring BGRT: failed to allocate memory for image (wanted %zu bytes)\n",
bgrt_image_size);
return;
}
if (ioremapped) {
image = early_memremap(bgrt_tab->image_address,
bmp_header.size);
if (!image) {
pr_err("Ignoring BGRT: failed to map image memory\n");
kfree(bgrt_image);
bgrt_image = NULL;
return;
......
......@@ -70,17 +70,7 @@ static efi_config_table_type_t arch_tables[] __initdata = {
u64 efi_setup; /* efi setup_data physical address */
static bool disable_runtime __initdata = false;
static int __init setup_noefi(char *arg)
{
disable_runtime = true;
return 0;
}
early_param("noefi", setup_noefi);
int add_efi_memmap;
EXPORT_SYMBOL(add_efi_memmap);
static int add_efi_memmap __initdata;
static int __init setup_add_efi_memmap(char *arg)
{
add_efi_memmap = 1;
......@@ -96,7 +86,7 @@ static efi_status_t __init phys_efi_set_virtual_address_map(
{
efi_status_t status;
efi_call_phys_prelog();
efi_call_phys_prolog();
status = efi_call_phys(efi_phys.set_virtual_address_map,
memory_map_size, descriptor_size,
descriptor_version, virtual_map);
......@@ -210,9 +200,12 @@ static void __init print_efi_memmap(void)
for (p = memmap.map, i = 0;
p < memmap.map_end;
p += memmap.desc_size, i++) {
char buf[64];
md = p;
pr_info("mem%02u: type=%u, attr=0x%llx, range=[0x%016llx-0x%016llx) (%lluMB)\n",
i, md->type, md->attribute, md->phys_addr,
pr_info("mem%02u: %s range=[0x%016llx-0x%016llx) (%lluMB)\n",
i, efi_md_typeattr_format(buf, sizeof(buf), md),
md->phys_addr,
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
}
......@@ -344,9 +337,9 @@ static int __init efi_runtime_init32(void)
}
/*
* We will only need *early* access to the following two
* EFI runtime services before set_virtual_address_map
* is invoked.
* We will only need *early* access to the SetVirtualAddressMap
* EFI runtime service. All other runtime services will be called
* via the virtual mapping.
*/
efi_phys.set_virtual_address_map =
(efi_set_virtual_address_map_t *)
......@@ -368,9 +361,9 @@ static int __init efi_runtime_init64(void)
}
/*
* We will only need *early* access to the following two
* EFI runtime services before set_virtual_address_map
* is invoked.
* We will only need *early* access to the SetVirtualAddressMap
* EFI runtime service. All other runtime services will be called
* via the virtual mapping.
*/
efi_phys.set_virtual_address_map =
(efi_set_virtual_address_map_t *)
......@@ -492,7 +485,7 @@ void __init efi_init(void)
if (!efi_runtime_supported())
pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
else {
if (disable_runtime || efi_runtime_init())
if (efi_runtime_disabled() || efi_runtime_init())
return;
}
if (efi_memmap_init())
......@@ -537,7 +530,7 @@ void __init runtime_code_page_mkexec(void)
}
}
void efi_memory_uc(u64 addr, unsigned long size)
void __init efi_memory_uc(u64 addr, unsigned long size)
{
unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
u64 npages;
......@@ -732,6 +725,7 @@ static void __init kexec_enter_virtual_mode(void)
*/
if (!efi_is_native()) {
efi_unmap_memmap();
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
return;
}
......@@ -805,6 +799,7 @@ static void __init __efi_enter_virtual_mode(void)
new_memmap = efi_map_regions(&count, &pg_shift);
if (!new_memmap) {
pr_err("Error reallocating memory, EFI runtime non-functional!\n");
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
return;
}
......@@ -812,8 +807,10 @@ static void __init __efi_enter_virtual_mode(void)
BUG_ON(!efi.systab);
if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift))
if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift)) {
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
return;
}
efi_sync_low_kernel_mappings();
efi_dump_pagetable();
......@@ -938,14 +935,11 @@ u64 efi_mem_attributes(unsigned long phys_addr)
return 0;
}
static int __init parse_efi_cmdline(char *str)
static int __init arch_parse_efi_cmdline(char *str)
{
if (*str == '=')
str++;
if (!strncmp(str, "old_map", 7))
if (parse_option_str(str, "old_map"))
set_bit(EFI_OLD_MEMMAP, &efi.flags);
return 0;
}
early_param("efi", parse_efi_cmdline);
early_param("efi", arch_parse_efi_cmdline);
......@@ -33,7 +33,7 @@
/*
* To make EFI call EFI runtime service in physical addressing mode we need
* prelog/epilog before/after the invocation to disable interrupt, to
* prolog/epilog before/after the invocation to disable interrupt, to
* claim EFI runtime service handler exclusively and to duplicate a memory in
* low memory space say 0 - 3G.
*/
......@@ -41,11 +41,13 @@ static unsigned long efi_rt_eflags;
void efi_sync_low_kernel_mappings(void) {}
void __init efi_dump_pagetable(void) {}
int efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
{
return 0;
}
void efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages) {}
void __init efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages)
{
}
void __init efi_map_region(efi_memory_desc_t *md)
{
......@@ -55,7 +57,7 @@ void __init efi_map_region(efi_memory_desc_t *md)
void __init efi_map_region_fixed(efi_memory_desc_t *md) {}
void __init parse_efi_setup(u64 phys_addr, u32 data_len) {}
void efi_call_phys_prelog(void)
void __init efi_call_phys_prolog(void)
{
struct desc_ptr gdt_descr;
......@@ -69,7 +71,7 @@ void efi_call_phys_prelog(void)
load_gdt(&gdt_descr);
}
void efi_call_phys_epilog(void)
void __init efi_call_phys_epilog(void)
{
struct desc_ptr gdt_descr;
......
......@@ -79,7 +79,7 @@ static void __init early_code_mapping_set_exec(int executable)
}
}
void __init efi_call_phys_prelog(void)
void __init efi_call_phys_prolog(void)
{
unsigned long vaddress;
int pgd;
......@@ -139,7 +139,7 @@ void efi_sync_low_kernel_mappings(void)
sizeof(pgd_t) * num_pgds);
}
int efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
{
unsigned long text;
struct page *page;
......@@ -192,7 +192,7 @@ int efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
return 0;
}
void efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages)
void __init efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages)
{
pgd_t *pgd = (pgd_t *)__va(real_mode_header->trampoline_pgd);
......
......@@ -27,13 +27,13 @@ ENTRY(efi_call_phys)
* set to 0x0010, DS and SS have been set to 0x0018. In EFI, I found
* the values of these registers are the same. And, the corresponding
* GDT entries are identical. So I will do nothing about segment reg
* and GDT, but change GDT base register in prelog and epilog.
* and GDT, but change GDT base register in prolog and epilog.
*/
/*
* 1. Now I am running with EIP = <physical address> + PAGE_OFFSET.
* But to make it smoothly switch from virtual mode to flat mode.
* The mapping of lower virtual memory has been created in prelog and
* The mapping of lower virtual memory has been created in prolog and
* epilog.
*/
movl $1f, %edx
......
......@@ -41,6 +41,28 @@ struct efi __read_mostly efi = {
};
EXPORT_SYMBOL(efi);
static bool disable_runtime;
static int __init setup_noefi(char *arg)
{
disable_runtime = true;
return 0;
}
early_param("noefi", setup_noefi);
bool efi_runtime_disabled(void)
{
return disable_runtime;
}
static int __init parse_efi_cmdline(char *str)
{
if (parse_option_str(str, "noruntime"))
disable_runtime = true;
return 0;
}
early_param("efi", parse_efi_cmdline);
static struct kobject *efi_kobj;
static struct kobject *efivars_kobj;
......@@ -423,3 +445,60 @@ int __init efi_get_fdt_params(struct efi_fdt_params *params, int verbose)
return ret;
}
#endif /* CONFIG_EFI_PARAMS_FROM_FDT */
static __initdata char memory_type_name[][20] = {
"Reserved",
"Loader Code",
"Loader Data",
"Boot Code",
"Boot Data",
"Runtime Code",
"Runtime Data",
"Conventional Memory",
"Unusable Memory",
"ACPI Reclaim Memory",
"ACPI Memory NVS",
"Memory Mapped I/O",
"MMIO Port Space",
"PAL Code"
};
char * __init efi_md_typeattr_format(char *buf, size_t size,
const efi_memory_desc_t *md)
{
char *pos;
int type_len;
u64 attr;
pos = buf;
if (md->type >= ARRAY_SIZE(memory_type_name))
type_len = snprintf(pos, size, "[type=%u", md->type);
else
type_len = snprintf(pos, size, "[%-*s",
(int)(sizeof(memory_type_name[0]) - 1),
memory_type_name[md->type]);
if (type_len >= size)
return buf;
pos += type_len;
size -= type_len;
attr = md->attribute;
if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_WP |
EFI_MEMORY_RP | EFI_MEMORY_XP | EFI_MEMORY_RUNTIME))
snprintf(pos, size, "|attr=0x%016llx]",
(unsigned long long)attr);
else
snprintf(pos, size, "|%3s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
attr & EFI_MEMORY_XP ? "XP" : "",
attr & EFI_MEMORY_RP ? "RP" : "",
attr & EFI_MEMORY_WP ? "WP" : "",
attr & EFI_MEMORY_UCE ? "UCE" : "",
attr & EFI_MEMORY_WB ? "WB" : "",
attr & EFI_MEMORY_WT ? "WT" : "",
attr & EFI_MEMORY_WC ? "WC" : "",
attr & EFI_MEMORY_UC ? "UC" : "");
return buf;
}
......@@ -226,6 +226,10 @@ unsigned long __init efi_entry(void *handle, efi_system_table_t *sys_table,
goto fail_free_image;
}
status = efi_parse_options(cmdline_ptr);
if (status != EFI_SUCCESS)
pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n");
/*
* Unauthenticated device tree data is a security hazard, so
* ignore 'dtb=' unless UEFI Secure Boot is disabled.
......
......@@ -15,8 +15,23 @@
#include "efistub.h"
/*
* Some firmware implementations have problems reading files in one go.
* A read chunk size of 1MB seems to work for most platforms.
*
* Unfortunately, reading files in chunks triggers *other* bugs on some
* platforms, so we provide a way to disable this workaround, which can
* be done by passing "efi=nochunk" on the EFI boot stub command line.
*
* If you experience issues with initrd images being corrupt it's worth
* trying efi=nochunk, but chunking is enabled by default because there
* are far more machines that require the workaround than those that
* break with it enabled.
*/
#define EFI_READ_CHUNK_SIZE (1024 * 1024)
static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;
struct file_info {
efi_file_handle_t *handle;
u64 size;
......@@ -281,6 +296,49 @@ void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
efi_call_early(free_pages, addr, nr_pages);
}
/*
* Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
* option, e.g. efi=nochunk.
*
* It should be noted that efi= is parsed in two very different
* environments, first in the early boot environment of the EFI boot
* stub, and subsequently during the kernel boot.
*/
efi_status_t efi_parse_options(char *cmdline)
{
char *str;
/*
* If no EFI parameters were specified on the cmdline we've got
* nothing to do.
*/
str = strstr(cmdline, "efi=");
if (!str)
return EFI_SUCCESS;
/* Skip ahead to first argument */
str += strlen("efi=");
/*
* Remember, because efi= is also used by the kernel we need to
* skip over arguments we don't understand.
*/
while (*str) {
if (!strncmp(str, "nochunk", 7)) {
str += strlen("nochunk");
__chunk_size = -1UL;
}
/* Group words together, delimited by "," */
while (*str && *str != ',')
str++;
if (*str == ',')
str++;
}
return EFI_SUCCESS;
}
/*
* Check the cmdline for a LILO-style file= arguments.
......@@ -423,8 +481,8 @@ efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
size = files[j].size;
while (size) {
unsigned long chunksize;
if (size > EFI_READ_CHUNK_SIZE)
chunksize = EFI_READ_CHUNK_SIZE;
if (size > __chunk_size)
chunksize = __chunk_size;
else
chunksize = size;
......
......@@ -14,10 +14,79 @@
* This file is released under the GPLv2.
*/
#include <linux/bug.h>
#include <linux/efi.h>
#include <linux/spinlock.h> /* spinlock_t */
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <asm/efi.h>
/*
* According to section 7.1 of the UEFI spec, Runtime Services are not fully
* reentrant, and there are particular combinations of calls that need to be
* serialized. (source: UEFI Specification v2.4A)
*
* Table 31. Rules for Reentry Into Runtime Services
* +------------------------------------+-------------------------------+
* | If previous call is busy in | Forbidden to call |
* +------------------------------------+-------------------------------+
* | Any | SetVirtualAddressMap() |
* +------------------------------------+-------------------------------+
* | ConvertPointer() | ConvertPointer() |
* +------------------------------------+-------------------------------+
* | SetVariable() | ResetSystem() |
* | UpdateCapsule() | |
* | SetTime() | |
* | SetWakeupTime() | |
* | GetNextHighMonotonicCount() | |
* +------------------------------------+-------------------------------+
* | GetVariable() | GetVariable() |
* | GetNextVariableName() | GetNextVariableName() |
* | SetVariable() | SetVariable() |
* | QueryVariableInfo() | QueryVariableInfo() |
* | UpdateCapsule() | UpdateCapsule() |
* | QueryCapsuleCapabilities() | QueryCapsuleCapabilities() |
* | GetNextHighMonotonicCount() | GetNextHighMonotonicCount() |
* +------------------------------------+-------------------------------+
* | GetTime() | GetTime() |
* | SetTime() | SetTime() |
* | GetWakeupTime() | GetWakeupTime() |
* | SetWakeupTime() | SetWakeupTime() |
* +------------------------------------+-------------------------------+
*
* Due to the fact that the EFI pstore may write to the variable store in
* interrupt context, we need to use a spinlock for at least the groups that
* contain SetVariable() and QueryVariableInfo(). That leaves little else, as
* none of the remaining functions are actually ever called at runtime.
* So let's just use a single spinlock to serialize all Runtime Services calls.
*/
static DEFINE_SPINLOCK(efi_runtime_lock);
/*
* Some runtime services calls can be reentrant under NMI, even if the table
* above says they are not. (source: UEFI Specification v2.4A)
*
* Table 32. Functions that may be called after Machine Check, INIT and NMI
* +----------------------------+------------------------------------------+
* | Function | Called after Machine Check, INIT and NMI |
* +----------------------------+------------------------------------------+
* | GetTime() | Yes, even if previously busy. |
* | GetVariable() | Yes, even if previously busy |
* | GetNextVariableName() | Yes, even if previously busy |
* | QueryVariableInfo() | Yes, even if previously busy |
* | SetVariable() | Yes, even if previously busy |
* | UpdateCapsule() | Yes, even if previously busy |
* | QueryCapsuleCapabilities() | Yes, even if previously busy |
* | ResetSystem() | Yes, even if previously busy |
* +----------------------------+------------------------------------------+
*
* In order to prevent deadlocks under NMI, the wrappers for these functions
* may only grab the efi_runtime_lock or rtc_lock spinlocks if !efi_in_nmi().
* However, not all of the services listed are reachable through NMI code paths,
* so the the special handling as suggested by the UEFI spec is only implemented
* for QueryVariableInfo() and SetVariable(), as these can be reached in NMI
* context through efi_pstore_write().
*/
/*
* As per commit ef68c8f87ed1 ("x86: Serialize EFI time accesses on rtc_lock"),
* the EFI specification requires that callers of the time related runtime
......@@ -32,7 +101,9 @@ static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
efi_status_t status;
spin_lock_irqsave(&rtc_lock, flags);
spin_lock(&efi_runtime_lock);
status = efi_call_virt(get_time, tm, tc);
spin_unlock(&efi_runtime_lock);
spin_unlock_irqrestore(&rtc_lock, flags);
return status;
}
......@@ -43,7 +114,9 @@ static efi_status_t virt_efi_set_time(efi_time_t *tm)
efi_status_t status;
spin_lock_irqsave(&rtc_lock, flags);
spin_lock(&efi_runtime_lock);
status = efi_call_virt(set_time, tm);
spin_unlock(&efi_runtime_lock);
spin_unlock_irqrestore(&rtc_lock, flags);
return status;
}
......@@ -56,7 +129,9 @@ static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
efi_status_t status;
spin_lock_irqsave(&rtc_lock, flags);
spin_lock(&efi_runtime_lock);
status = efi_call_virt(get_wakeup_time, enabled, pending, tm);
spin_unlock(&efi_runtime_lock);
spin_unlock_irqrestore(&rtc_lock, flags);
return status;
}
......@@ -67,7 +142,9 @@ static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
efi_status_t status;
spin_lock_irqsave(&rtc_lock, flags);
spin_lock(&efi_runtime_lock);
status = efi_call_virt(set_wakeup_time, enabled, tm);
spin_unlock(&efi_runtime_lock);
spin_unlock_irqrestore(&rtc_lock, flags);
return status;
}
......@@ -78,14 +155,27 @@ static efi_status_t virt_efi_get_variable(efi_char16_t *name,
unsigned long *data_size,
void *data)
{
return efi_call_virt(get_variable, name, vendor, attr, data_size, data);
unsigned long flags;
efi_status_t status;
spin_lock_irqsave(&efi_runtime_lock, flags);
status = efi_call_virt(get_variable, name, vendor, attr, data_size,
data);
spin_unlock_irqrestore(&efi_runtime_lock, flags);
return status;
}
static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
efi_char16_t *name,
efi_guid_t *vendor)
{
return efi_call_virt(get_next_variable, name_size, name, vendor);
unsigned long flags;
efi_status_t status;
spin_lock_irqsave(&efi_runtime_lock, flags);
status = efi_call_virt(get_next_variable, name_size, name, vendor);
spin_unlock_irqrestore(&efi_runtime_lock, flags);
return status;
}
static efi_status_t virt_efi_set_variable(efi_char16_t *name,
......@@ -94,24 +184,61 @@ static efi_status_t virt_efi_set_variable(efi_char16_t *name,
unsigned long data_size,
void *data)
{
return efi_call_virt(set_variable, name, vendor, attr, data_size, data);
unsigned long flags;
efi_status_t status;
spin_lock_irqsave(&efi_runtime_lock, flags);
status = efi_call_virt(set_variable, name, vendor, attr, data_size,
data);
spin_unlock_irqrestore(&efi_runtime_lock, flags);
return status;
}
static efi_status_t
virt_efi_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
u32 attr, unsigned long data_size,
void *data)
{
unsigned long flags;
efi_status_t status;
if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
return EFI_NOT_READY;
status = efi_call_virt(set_variable, name, vendor, attr, data_size,
data);
spin_unlock_irqrestore(&efi_runtime_lock, flags);
return status;
}
static efi_status_t virt_efi_query_variable_info(u32 attr,
u64 *storage_space,
u64 *remaining_space,
u64 *max_variable_size)
{
unsigned long flags;
efi_status_t status;
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
return EFI_UNSUPPORTED;
return efi_call_virt(query_variable_info, attr, storage_space,
spin_lock_irqsave(&efi_runtime_lock, flags);
status = efi_call_virt(query_variable_info, attr, storage_space,
remaining_space, max_variable_size);
spin_unlock_irqrestore(&efi_runtime_lock, flags);
return status;
}
static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
{
return efi_call_virt(get_next_high_mono_count, count);
unsigned long flags;
efi_status_t status;
spin_lock_irqsave(&efi_runtime_lock, flags);
status = efi_call_virt(get_next_high_mono_count, count);
spin_unlock_irqrestore(&efi_runtime_lock, flags);
return status;
}
static void virt_efi_reset_system(int reset_type,
......@@ -119,17 +246,27 @@ static void virt_efi_reset_system(int reset_type,
unsigned long data_size,
efi_char16_t *data)
{
unsigned long flags;
spin_lock_irqsave(&efi_runtime_lock, flags);
__efi_call_virt(reset_system, reset_type, status, data_size, data);
spin_unlock_irqrestore(&efi_runtime_lock, flags);
}
static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
unsigned long count,
unsigned long sg_list)
{
unsigned long flags;
efi_status_t status;
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
return EFI_UNSUPPORTED;
return efi_call_virt(update_capsule, capsules, count, sg_list);
spin_lock_irqsave(&efi_runtime_lock, flags);
status = efi_call_virt(update_capsule, capsules, count, sg_list);
spin_unlock_irqrestore(&efi_runtime_lock, flags);
return status;
}
static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
......@@ -137,11 +274,17 @@ static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
u64 *max_size,
int *reset_type)
{
unsigned long flags;
efi_status_t status;
if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
return EFI_UNSUPPORTED;
return efi_call_virt(query_capsule_caps, capsules, count, max_size,
spin_lock_irqsave(&efi_runtime_lock, flags);
status = efi_call_virt(query_capsule_caps, capsules, count, max_size,
reset_type);
spin_unlock_irqrestore(&efi_runtime_lock, flags);
return status;
}
void efi_native_runtime_setup(void)
......@@ -153,6 +296,7 @@ void efi_native_runtime_setup(void)
efi.get_variable = virt_efi_get_variable;
efi.get_next_variable = virt_efi_get_next_variable;
efi.set_variable = virt_efi_set_variable;
efi.set_variable_nonblocking = virt_efi_set_variable_nonblocking;
efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
efi.reset_system = virt_efi_reset_system;
efi.query_variable_info = virt_efi_query_variable_info;
......
......@@ -321,11 +321,11 @@ static unsigned long var_name_strnsize(efi_char16_t *variable_name,
* Print a warning when duplicate EFI variables are encountered and
* disable the sysfs workqueue since the firmware is buggy.
*/
static void dup_variable_bug(efi_char16_t *s16, efi_guid_t *vendor_guid,
static void dup_variable_bug(efi_char16_t *str16, efi_guid_t *vendor_guid,
unsigned long len16)
{
size_t i, len8 = len16 / sizeof(efi_char16_t);
char *s8;
char *str8;
/*
* Disable the workqueue since the algorithm it uses for
......@@ -334,16 +334,16 @@ static void dup_variable_bug(efi_char16_t *s16, efi_guid_t *vendor_guid,
*/
efivar_wq_enabled = false;
s8 = kzalloc(len8, GFP_KERNEL);
if (!s8)
str8 = kzalloc(len8, GFP_KERNEL);
if (!str8)
return;
for (i = 0; i < len8; i++)
s8[i] = s16[i];
str8[i] = str16[i];
printk(KERN_WARNING "efivars: duplicate variable: %s-%pUl\n",
s8, vendor_guid);
kfree(s8);
str8, vendor_guid);
kfree(str8);
}
/**
......@@ -595,6 +595,39 @@ int efivar_entry_set(struct efivar_entry *entry, u32 attributes,
}
EXPORT_SYMBOL_GPL(efivar_entry_set);
/*
* efivar_entry_set_nonblocking - call set_variable_nonblocking()
*
* This function is guaranteed to not block and is suitable for calling
* from crash/panic handlers.
*
* Crucially, this function will not block if it cannot acquire
* __efivars->lock. Instead, it returns -EBUSY.
*/
static int
efivar_entry_set_nonblocking(efi_char16_t *name, efi_guid_t vendor,
u32 attributes, unsigned long size, void *data)
{
const struct efivar_operations *ops = __efivars->ops;
unsigned long flags;
efi_status_t status;
if (!spin_trylock_irqsave(&__efivars->lock, flags))
return -EBUSY;
status = check_var_size(attributes, size + ucs2_strsize(name, 1024));
if (status != EFI_SUCCESS) {
spin_unlock_irqrestore(&__efivars->lock, flags);
return -ENOSPC;
}
status = ops->set_variable_nonblocking(name, &vendor, attributes,
size, data);
spin_unlock_irqrestore(&__efivars->lock, flags);
return efi_status_to_err(status);
}
/**
* efivar_entry_set_safe - call set_variable() if enough space in firmware
* @name: buffer containing the variable name
......@@ -622,6 +655,20 @@ int efivar_entry_set_safe(efi_char16_t *name, efi_guid_t vendor, u32 attributes,
if (!ops->query_variable_store)
return -ENOSYS;
/*
* If the EFI variable backend provides a non-blocking
* ->set_variable() operation and we're in a context where we
* cannot block, then we need to use it to avoid live-locks,
* since the implication is that the regular ->set_variable()
* will block.
*
* If no ->set_variable_nonblocking() is provided then
* ->set_variable() is assumed to be non-blocking.
*/
if (!block && ops->set_variable_nonblocking)
return efivar_entry_set_nonblocking(name, vendor, attributes,
size, data);
if (!block) {
if (!spin_trylock_irqsave(&__efivars->lock, flags))
return -EBUSY;
......
......@@ -806,7 +806,7 @@ config RTC_DRV_DA9063
config RTC_DRV_EFI
tristate "EFI RTC"
depends on EFI
depends on EFI && !X86
help
If you say yes here you will get support for the EFI
Real Time Clock.
......
......@@ -236,3 +236,4 @@ MODULE_ALIAS("platform:rtc-efi");
MODULE_AUTHOR("dann frazier <dannf@hp.com>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("EFI RTC driver");
MODULE_ALIAS("platform:rtc-efi");
......@@ -92,6 +92,7 @@ typedef struct {
#define EFI_MEMORY_WC ((u64)0x0000000000000002ULL) /* write-coalescing */
#define EFI_MEMORY_WT ((u64)0x0000000000000004ULL) /* write-through */
#define EFI_MEMORY_WB ((u64)0x0000000000000008ULL) /* write-back */
#define EFI_MEMORY_UCE ((u64)0x0000000000000010ULL) /* uncached, exported */
#define EFI_MEMORY_WP ((u64)0x0000000000001000ULL) /* write-protect */
#define EFI_MEMORY_RP ((u64)0x0000000000002000ULL) /* read-protect */
#define EFI_MEMORY_XP ((u64)0x0000000000004000ULL) /* execute-protect */
......@@ -502,6 +503,10 @@ typedef efi_status_t efi_get_next_variable_t (unsigned long *name_size, efi_char
typedef efi_status_t efi_set_variable_t (efi_char16_t *name, efi_guid_t *vendor,
u32 attr, unsigned long data_size,
void *data);
typedef efi_status_t
efi_set_variable_nonblocking_t(efi_char16_t *name, efi_guid_t *vendor,
u32 attr, unsigned long data_size, void *data);
typedef efi_status_t efi_get_next_high_mono_count_t (u32 *count);
typedef void efi_reset_system_t (int reset_type, efi_status_t status,
unsigned long data_size, efi_char16_t *data);
......@@ -821,6 +826,7 @@ extern struct efi {
efi_get_variable_t *get_variable;
efi_get_next_variable_t *get_next_variable;
efi_set_variable_t *set_variable;
efi_set_variable_nonblocking_t *set_variable_nonblocking;
efi_query_variable_info_t *query_variable_info;
efi_update_capsule_t *update_capsule;
efi_query_capsule_caps_t *query_capsule_caps;
......@@ -886,6 +892,13 @@ extern bool efi_poweroff_required(void);
(md) <= (efi_memory_desc_t *)((m)->map_end - (m)->desc_size); \
(md) = (void *)(md) + (m)->desc_size)
/*
* Format an EFI memory descriptor's type and attributes to a user-provided
* character buffer, as per snprintf(), and return the buffer.
*/
char * __init efi_md_typeattr_format(char *buf, size_t size,
const efi_memory_desc_t *md);
/**
* efi_range_is_wc - check the WC bit on an address range
* @start: starting kvirt address
......@@ -1034,6 +1047,7 @@ struct efivar_operations {
efi_get_variable_t *get_variable;
efi_get_next_variable_t *get_next_variable;
efi_set_variable_t *set_variable;
efi_set_variable_nonblocking_t *set_variable_nonblocking;
efi_query_variable_store_t *query_variable_store;
};
......@@ -1227,4 +1241,7 @@ efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
unsigned long *load_addr,
unsigned long *load_size);
efi_status_t efi_parse_options(char *cmdline);
bool efi_runtime_disabled(void);
#endif /* _LINUX_EFI_H */
......@@ -407,6 +407,7 @@ int vsscanf(const char *, const char *, va_list);
extern int get_option(char **str, int *pint);
extern char *get_options(const char *str, int nints, int *ints);
extern unsigned long long memparse(const char *ptr, char **retptr);
extern bool parse_option_str(const char *str, const char *option);
extern int core_kernel_text(unsigned long addr);
extern int core_kernel_data(unsigned long addr);
......
......@@ -160,3 +160,32 @@ unsigned long long memparse(const char *ptr, char **retptr)
return ret;
}
EXPORT_SYMBOL(memparse);
/**
* parse_option_str - Parse a string and check an option is set or not
* @str: String to be parsed
* @option: option name
*
* This function parses a string containing a comma-separated list of
* strings like a=b,c.
*
* Return true if there's such option in the string, or return false.
*/
bool parse_option_str(const char *str, const char *option)
{
while (*str) {
if (!strncmp(str, option, strlen(option))) {
str += strlen(option);
if (!*str || *str == ',')
return true;
}
while (*str && *str != ',')
str++;
if (*str == ',')
str++;
}
return false;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment