Commit 79c63eeb authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'dm-3.7-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/agk/linux-dm

Pull device-mapper changes from Alasdair G Kergon:
 "Remove the power-of-2 block size constraint on discards in dm thin
  provisioning and factor the bio_prison code out into a separate module
  (for sharing with the forthcoming cache target).

  Use struct bio's front_pad to eliminate the use of one separate
  mempool by bio-based devices.

  A few other tiny clean-ups."

* tag 'dm-3.7-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/agk/linux-dm:
  dm: store dm_target_io in bio front_pad
  dm thin: move bio_prison code to separate module
  dm thin: prepare to separate bio_prison code
  dm thin: support discard with non power of two block size
  dm persistent data: convert to use le32_add_cpu
  dm: use ACCESS_ONCE for sysfs values
  dm bufio: use list_move
  dm mpath: fix check for null mpio in end_io fn
parents 6a5a3d6a dba14160
......@@ -216,6 +216,13 @@ config DM_BUFIO
as a cache, holding recently-read blocks in memory and performing
delayed writes.
config DM_BIO_PRISON
tristate
depends on BLK_DEV_DM && EXPERIMENTAL
---help---
Some bio locking schemes used by other device-mapper targets
including thin provisioning.
source "drivers/md/persistent-data/Kconfig"
config DM_CRYPT
......@@ -247,6 +254,7 @@ config DM_THIN_PROVISIONING
tristate "Thin provisioning target (EXPERIMENTAL)"
depends on BLK_DEV_DM && EXPERIMENTAL
select DM_PERSISTENT_DATA
select DM_BIO_PRISON
---help---
Provides thin provisioning and snapshots that share a data store.
......
......@@ -29,6 +29,7 @@ obj-$(CONFIG_MD_FAULTY) += faulty.o
obj-$(CONFIG_BLK_DEV_MD) += md-mod.o
obj-$(CONFIG_BLK_DEV_DM) += dm-mod.o
obj-$(CONFIG_DM_BUFIO) += dm-bufio.o
obj-$(CONFIG_DM_BIO_PRISON) += dm-bio-prison.o
obj-$(CONFIG_DM_CRYPT) += dm-crypt.o
obj-$(CONFIG_DM_DELAY) += dm-delay.o
obj-$(CONFIG_DM_FLAKEY) += dm-flakey.o
......
/*
* Copyright (C) 2012 Red Hat, Inc.
*
* This file is released under the GPL.
*/
#include "dm.h"
#include "dm-bio-prison.h"
#include <linux/spinlock.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/slab.h>
/*----------------------------------------------------------------*/
struct dm_bio_prison_cell {
struct hlist_node list;
struct dm_bio_prison *prison;
struct dm_cell_key key;
struct bio *holder;
struct bio_list bios;
};
struct dm_bio_prison {
spinlock_t lock;
mempool_t *cell_pool;
unsigned nr_buckets;
unsigned hash_mask;
struct hlist_head *cells;
};
/*----------------------------------------------------------------*/
static uint32_t calc_nr_buckets(unsigned nr_cells)
{
uint32_t n = 128;
nr_cells /= 4;
nr_cells = min(nr_cells, 8192u);
while (n < nr_cells)
n <<= 1;
return n;
}
static struct kmem_cache *_cell_cache;
/*
* @nr_cells should be the number of cells you want in use _concurrently_.
* Don't confuse it with the number of distinct keys.
*/
struct dm_bio_prison *dm_bio_prison_create(unsigned nr_cells)
{
unsigned i;
uint32_t nr_buckets = calc_nr_buckets(nr_cells);
size_t len = sizeof(struct dm_bio_prison) +
(sizeof(struct hlist_head) * nr_buckets);
struct dm_bio_prison *prison = kmalloc(len, GFP_KERNEL);
if (!prison)
return NULL;
spin_lock_init(&prison->lock);
prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
if (!prison->cell_pool) {
kfree(prison);
return NULL;
}
prison->nr_buckets = nr_buckets;
prison->hash_mask = nr_buckets - 1;
prison->cells = (struct hlist_head *) (prison + 1);
for (i = 0; i < nr_buckets; i++)
INIT_HLIST_HEAD(prison->cells + i);
return prison;
}
EXPORT_SYMBOL_GPL(dm_bio_prison_create);
void dm_bio_prison_destroy(struct dm_bio_prison *prison)
{
mempool_destroy(prison->cell_pool);
kfree(prison);
}
EXPORT_SYMBOL_GPL(dm_bio_prison_destroy);
static uint32_t hash_key(struct dm_bio_prison *prison, struct dm_cell_key *key)
{
const unsigned long BIG_PRIME = 4294967291UL;
uint64_t hash = key->block * BIG_PRIME;
return (uint32_t) (hash & prison->hash_mask);
}
static int keys_equal(struct dm_cell_key *lhs, struct dm_cell_key *rhs)
{
return (lhs->virtual == rhs->virtual) &&
(lhs->dev == rhs->dev) &&
(lhs->block == rhs->block);
}
static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
struct dm_cell_key *key)
{
struct dm_bio_prison_cell *cell;
struct hlist_node *tmp;
hlist_for_each_entry(cell, tmp, bucket, list)
if (keys_equal(&cell->key, key))
return cell;
return NULL;
}
/*
* This may block if a new cell needs allocating. You must ensure that
* cells will be unlocked even if the calling thread is blocked.
*
* Returns 1 if the cell was already held, 0 if @inmate is the new holder.
*/
int dm_bio_detain(struct dm_bio_prison *prison, struct dm_cell_key *key,
struct bio *inmate, struct dm_bio_prison_cell **ref)
{
int r = 1;
unsigned long flags;
uint32_t hash = hash_key(prison, key);
struct dm_bio_prison_cell *cell, *cell2;
BUG_ON(hash > prison->nr_buckets);
spin_lock_irqsave(&prison->lock, flags);
cell = __search_bucket(prison->cells + hash, key);
if (cell) {
bio_list_add(&cell->bios, inmate);
goto out;
}
/*
* Allocate a new cell
*/
spin_unlock_irqrestore(&prison->lock, flags);
cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
spin_lock_irqsave(&prison->lock, flags);
/*
* We've been unlocked, so we have to double check that
* nobody else has inserted this cell in the meantime.
*/
cell = __search_bucket(prison->cells + hash, key);
if (cell) {
mempool_free(cell2, prison->cell_pool);
bio_list_add(&cell->bios, inmate);
goto out;
}
/*
* Use new cell.
*/
cell = cell2;
cell->prison = prison;
memcpy(&cell->key, key, sizeof(cell->key));
cell->holder = inmate;
bio_list_init(&cell->bios);
hlist_add_head(&cell->list, prison->cells + hash);
r = 0;
out:
spin_unlock_irqrestore(&prison->lock, flags);
*ref = cell;
return r;
}
EXPORT_SYMBOL_GPL(dm_bio_detain);
/*
* @inmates must have been initialised prior to this call
*/
static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
{
struct dm_bio_prison *prison = cell->prison;
hlist_del(&cell->list);
if (inmates) {
bio_list_add(inmates, cell->holder);
bio_list_merge(inmates, &cell->bios);
}
mempool_free(cell, prison->cell_pool);
}
void dm_cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
{
unsigned long flags;
struct dm_bio_prison *prison = cell->prison;
spin_lock_irqsave(&prison->lock, flags);
__cell_release(cell, bios);
spin_unlock_irqrestore(&prison->lock, flags);
}
EXPORT_SYMBOL_GPL(dm_cell_release);
/*
* There are a couple of places where we put a bio into a cell briefly
* before taking it out again. In these situations we know that no other
* bio may be in the cell. This function releases the cell, and also does
* a sanity check.
*/
static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
{
BUG_ON(cell->holder != bio);
BUG_ON(!bio_list_empty(&cell->bios));
__cell_release(cell, NULL);
}
void dm_cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
{
unsigned long flags;
struct dm_bio_prison *prison = cell->prison;
spin_lock_irqsave(&prison->lock, flags);
__cell_release_singleton(cell, bio);
spin_unlock_irqrestore(&prison->lock, flags);
}
EXPORT_SYMBOL_GPL(dm_cell_release_singleton);
/*
* Sometimes we don't want the holder, just the additional bios.
*/
static void __cell_release_no_holder(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
{
struct dm_bio_prison *prison = cell->prison;
hlist_del(&cell->list);
bio_list_merge(inmates, &cell->bios);
mempool_free(cell, prison->cell_pool);
}
void dm_cell_release_no_holder(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
{
unsigned long flags;
struct dm_bio_prison *prison = cell->prison;
spin_lock_irqsave(&prison->lock, flags);
__cell_release_no_holder(cell, inmates);
spin_unlock_irqrestore(&prison->lock, flags);
}
EXPORT_SYMBOL_GPL(dm_cell_release_no_holder);
void dm_cell_error(struct dm_bio_prison_cell *cell)
{
struct dm_bio_prison *prison = cell->prison;
struct bio_list bios;
struct bio *bio;
unsigned long flags;
bio_list_init(&bios);
spin_lock_irqsave(&prison->lock, flags);
__cell_release(cell, &bios);
spin_unlock_irqrestore(&prison->lock, flags);
while ((bio = bio_list_pop(&bios)))
bio_io_error(bio);
}
EXPORT_SYMBOL_GPL(dm_cell_error);
/*----------------------------------------------------------------*/
#define DEFERRED_SET_SIZE 64
struct dm_deferred_entry {
struct dm_deferred_set *ds;
unsigned count;
struct list_head work_items;
};
struct dm_deferred_set {
spinlock_t lock;
unsigned current_entry;
unsigned sweeper;
struct dm_deferred_entry entries[DEFERRED_SET_SIZE];
};
struct dm_deferred_set *dm_deferred_set_create(void)
{
int i;
struct dm_deferred_set *ds;
ds = kmalloc(sizeof(*ds), GFP_KERNEL);
if (!ds)
return NULL;
spin_lock_init(&ds->lock);
ds->current_entry = 0;
ds->sweeper = 0;
for (i = 0; i < DEFERRED_SET_SIZE; i++) {
ds->entries[i].ds = ds;
ds->entries[i].count = 0;
INIT_LIST_HEAD(&ds->entries[i].work_items);
}
return ds;
}
EXPORT_SYMBOL_GPL(dm_deferred_set_create);
void dm_deferred_set_destroy(struct dm_deferred_set *ds)
{
kfree(ds);
}
EXPORT_SYMBOL_GPL(dm_deferred_set_destroy);
struct dm_deferred_entry *dm_deferred_entry_inc(struct dm_deferred_set *ds)
{
unsigned long flags;
struct dm_deferred_entry *entry;
spin_lock_irqsave(&ds->lock, flags);
entry = ds->entries + ds->current_entry;
entry->count++;
spin_unlock_irqrestore(&ds->lock, flags);
return entry;
}
EXPORT_SYMBOL_GPL(dm_deferred_entry_inc);
static unsigned ds_next(unsigned index)
{
return (index + 1) % DEFERRED_SET_SIZE;
}
static void __sweep(struct dm_deferred_set *ds, struct list_head *head)
{
while ((ds->sweeper != ds->current_entry) &&
!ds->entries[ds->sweeper].count) {
list_splice_init(&ds->entries[ds->sweeper].work_items, head);
ds->sweeper = ds_next(ds->sweeper);
}
if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
list_splice_init(&ds->entries[ds->sweeper].work_items, head);
}
void dm_deferred_entry_dec(struct dm_deferred_entry *entry, struct list_head *head)
{
unsigned long flags;
spin_lock_irqsave(&entry->ds->lock, flags);
BUG_ON(!entry->count);
--entry->count;
__sweep(entry->ds, head);
spin_unlock_irqrestore(&entry->ds->lock, flags);
}
EXPORT_SYMBOL_GPL(dm_deferred_entry_dec);
/*
* Returns 1 if deferred or 0 if no pending items to delay job.
*/
int dm_deferred_set_add_work(struct dm_deferred_set *ds, struct list_head *work)
{
int r = 1;
unsigned long flags;
unsigned next_entry;
spin_lock_irqsave(&ds->lock, flags);
if ((ds->sweeper == ds->current_entry) &&
!ds->entries[ds->current_entry].count)
r = 0;
else {
list_add(work, &ds->entries[ds->current_entry].work_items);
next_entry = ds_next(ds->current_entry);
if (!ds->entries[next_entry].count)
ds->current_entry = next_entry;
}
spin_unlock_irqrestore(&ds->lock, flags);
return r;
}
EXPORT_SYMBOL_GPL(dm_deferred_set_add_work);
/*----------------------------------------------------------------*/
static int __init dm_bio_prison_init(void)
{
_cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
if (!_cell_cache)
return -ENOMEM;
return 0;
}
static void __exit dm_bio_prison_exit(void)
{
kmem_cache_destroy(_cell_cache);
_cell_cache = NULL;
}
/*
* module hooks
*/
module_init(dm_bio_prison_init);
module_exit(dm_bio_prison_exit);
MODULE_DESCRIPTION(DM_NAME " bio prison");
MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
MODULE_LICENSE("GPL");
/*
* Copyright (C) 2011-2012 Red Hat, Inc.
*
* This file is released under the GPL.
*/
#ifndef DM_BIO_PRISON_H
#define DM_BIO_PRISON_H
#include "persistent-data/dm-block-manager.h" /* FIXME: for dm_block_t */
#include "dm-thin-metadata.h" /* FIXME: for dm_thin_id */
#include <linux/list.h>
#include <linux/bio.h>
/*----------------------------------------------------------------*/
/*
* Sometimes we can't deal with a bio straight away. We put them in prison
* where they can't cause any mischief. Bios are put in a cell identified
* by a key, multiple bios can be in the same cell. When the cell is
* subsequently unlocked the bios become available.
*/
struct dm_bio_prison;
struct dm_bio_prison_cell;
/* FIXME: this needs to be more abstract */
struct dm_cell_key {
int virtual;
dm_thin_id dev;
dm_block_t block;
};
struct dm_bio_prison *dm_bio_prison_create(unsigned nr_cells);
void dm_bio_prison_destroy(struct dm_bio_prison *prison);
/*
* This may block if a new cell needs allocating. You must ensure that
* cells will be unlocked even if the calling thread is blocked.
*
* Returns 1 if the cell was already held, 0 if @inmate is the new holder.
*/
int dm_bio_detain(struct dm_bio_prison *prison, struct dm_cell_key *key,
struct bio *inmate, struct dm_bio_prison_cell **ref);
void dm_cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios);
void dm_cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio); // FIXME: bio arg not needed
void dm_cell_release_no_holder(struct dm_bio_prison_cell *cell, struct bio_list *inmates);
void dm_cell_error(struct dm_bio_prison_cell *cell);
/*----------------------------------------------------------------*/
/*
* We use the deferred set to keep track of pending reads to shared blocks.
* We do this to ensure the new mapping caused by a write isn't performed
* until these prior reads have completed. Otherwise the insertion of the
* new mapping could free the old block that the read bios are mapped to.
*/
struct dm_deferred_set;
struct dm_deferred_entry;
struct dm_deferred_set *dm_deferred_set_create(void);
void dm_deferred_set_destroy(struct dm_deferred_set *ds);
struct dm_deferred_entry *dm_deferred_entry_inc(struct dm_deferred_set *ds);
void dm_deferred_entry_dec(struct dm_deferred_entry *entry, struct list_head *head);
int dm_deferred_set_add_work(struct dm_deferred_set *ds, struct list_head *work);
/*----------------------------------------------------------------*/
#endif
......@@ -280,9 +280,7 @@ static void __cache_size_refresh(void)
BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
BUG_ON(dm_bufio_client_count < 0);
dm_bufio_cache_size_latch = dm_bufio_cache_size;
barrier();
dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
/*
* Use default if set to 0 and report the actual cache size used.
......@@ -441,8 +439,7 @@ static void __relink_lru(struct dm_buffer *b, int dirty)
c->n_buffers[b->list_mode]--;
c->n_buffers[dirty]++;
b->list_mode = dirty;
list_del(&b->lru_list);
list_add(&b->lru_list, &c->lru[dirty]);
list_move(&b->lru_list, &c->lru[dirty]);
}
/*----------------------------------------------------------------
......@@ -813,7 +810,7 @@ static void __get_memory_limit(struct dm_bufio_client *c,
{
unsigned long buffers;
if (dm_bufio_cache_size != dm_bufio_cache_size_latch) {
if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
mutex_lock(&dm_bufio_clients_lock);
__cache_size_refresh();
mutex_unlock(&dm_bufio_clients_lock);
......@@ -1591,11 +1588,9 @@ EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
static void cleanup_old_buffers(void)
{
unsigned long max_age = dm_bufio_max_age;
unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
struct dm_bufio_client *c;
barrier();
if (max_age > ULONG_MAX / HZ)
max_age = ULONG_MAX / HZ;
......
......@@ -1309,13 +1309,14 @@ static int multipath_end_io(struct dm_target *ti, struct request *clone,
{
struct multipath *m = ti->private;
struct dm_mpath_io *mpio = map_context->ptr;
struct pgpath *pgpath = mpio->pgpath;
struct pgpath *pgpath;
struct path_selector *ps;
int r;
BUG_ON(!mpio);
r = do_end_io(m, clone, error, mpio);
pgpath = mpio->pgpath;
if (pgpath) {
ps = &pgpath->pg->ps;
if (ps->type->end_io)
......
......@@ -5,6 +5,7 @@
*/
#include "dm-thin-metadata.h"
#include "dm-bio-prison.h"
#include "dm.h"
#include <linux/device-mapper.h>
......@@ -21,7 +22,6 @@
* Tunable constants
*/
#define ENDIO_HOOK_POOL_SIZE 1024
#define DEFERRED_SET_SIZE 64
#define MAPPING_POOL_SIZE 1024
#define PRISON_CELLS 1024
#define COMMIT_PERIOD HZ
......@@ -58,7 +58,7 @@
* i) plug io further to this physical block. (see bio_prison code).
*
* ii) quiesce any read io to that shared data block. Obviously
* including all devices that share this block. (see deferred_set code)
* including all devices that share this block. (see dm_deferred_set code)
*
* iii) copy the data block to a newly allocate block. This step can be
* missed out if the io covers the block. (schedule_copy).
......@@ -98,382 +98,11 @@
/*----------------------------------------------------------------*/
/*
* Sometimes we can't deal with a bio straight away. We put them in prison
* where they can't cause any mischief. Bios are put in a cell identified
* by a key, multiple bios can be in the same cell. When the cell is
* subsequently unlocked the bios become available.
*/
struct bio_prison;
struct cell_key {
int virtual;
dm_thin_id dev;
dm_block_t block;
};
struct dm_bio_prison_cell {
struct hlist_node list;
struct bio_prison *prison;
struct cell_key key;
struct bio *holder;
struct bio_list bios;
};
struct bio_prison {
spinlock_t lock;
mempool_t *cell_pool;
unsigned nr_buckets;
unsigned hash_mask;
struct hlist_head *cells;
};
static uint32_t calc_nr_buckets(unsigned nr_cells)
{
uint32_t n = 128;
nr_cells /= 4;
nr_cells = min(nr_cells, 8192u);
while (n < nr_cells)
n <<= 1;
return n;
}
static struct kmem_cache *_cell_cache;
/*
* @nr_cells should be the number of cells you want in use _concurrently_.
* Don't confuse it with the number of distinct keys.
*/
static struct bio_prison *prison_create(unsigned nr_cells)
{
unsigned i;
uint32_t nr_buckets = calc_nr_buckets(nr_cells);
size_t len = sizeof(struct bio_prison) +
(sizeof(struct hlist_head) * nr_buckets);
struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
if (!prison)
return NULL;
spin_lock_init(&prison->lock);
prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
if (!prison->cell_pool) {
kfree(prison);
return NULL;
}
prison->nr_buckets = nr_buckets;
prison->hash_mask = nr_buckets - 1;
prison->cells = (struct hlist_head *) (prison + 1);
for (i = 0; i < nr_buckets; i++)
INIT_HLIST_HEAD(prison->cells + i);
return prison;
}
static void prison_destroy(struct bio_prison *prison)
{
mempool_destroy(prison->cell_pool);
kfree(prison);
}
static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
{
const unsigned long BIG_PRIME = 4294967291UL;
uint64_t hash = key->block * BIG_PRIME;
return (uint32_t) (hash & prison->hash_mask);
}
static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
{
return (lhs->virtual == rhs->virtual) &&
(lhs->dev == rhs->dev) &&
(lhs->block == rhs->block);
}
static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
struct cell_key *key)
{
struct dm_bio_prison_cell *cell;
struct hlist_node *tmp;
hlist_for_each_entry(cell, tmp, bucket, list)
if (keys_equal(&cell->key, key))
return cell;
return NULL;
}
/*
* This may block if a new cell needs allocating. You must ensure that
* cells will be unlocked even if the calling thread is blocked.
*
* Returns 1 if the cell was already held, 0 if @inmate is the new holder.
*/
static int bio_detain(struct bio_prison *prison, struct cell_key *key,
struct bio *inmate, struct dm_bio_prison_cell **ref)
{
int r = 1;
unsigned long flags;
uint32_t hash = hash_key(prison, key);
struct dm_bio_prison_cell *cell, *cell2;
BUG_ON(hash > prison->nr_buckets);
spin_lock_irqsave(&prison->lock, flags);
cell = __search_bucket(prison->cells + hash, key);
if (cell) {
bio_list_add(&cell->bios, inmate);
goto out;
}
/*
* Allocate a new cell
*/
spin_unlock_irqrestore(&prison->lock, flags);
cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
spin_lock_irqsave(&prison->lock, flags);
/*
* We've been unlocked, so we have to double check that
* nobody else has inserted this cell in the meantime.
*/
cell = __search_bucket(prison->cells + hash, key);
if (cell) {
mempool_free(cell2, prison->cell_pool);
bio_list_add(&cell->bios, inmate);
goto out;
}
/*
* Use new cell.
*/
cell = cell2;
cell->prison = prison;
memcpy(&cell->key, key, sizeof(cell->key));
cell->holder = inmate;
bio_list_init(&cell->bios);
hlist_add_head(&cell->list, prison->cells + hash);
r = 0;
out:
spin_unlock_irqrestore(&prison->lock, flags);
*ref = cell;
return r;
}
/*
* @inmates must have been initialised prior to this call
*/
static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
{
struct bio_prison *prison = cell->prison;
hlist_del(&cell->list);
if (inmates) {
bio_list_add(inmates, cell->holder);
bio_list_merge(inmates, &cell->bios);
}
mempool_free(cell, prison->cell_pool);
}
static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
{
unsigned long flags;
struct bio_prison *prison = cell->prison;
spin_lock_irqsave(&prison->lock, flags);
__cell_release(cell, bios);
spin_unlock_irqrestore(&prison->lock, flags);
}
/*
* There are a couple of places where we put a bio into a cell briefly
* before taking it out again. In these situations we know that no other
* bio may be in the cell. This function releases the cell, and also does
* a sanity check.
*/
static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
{
BUG_ON(cell->holder != bio);
BUG_ON(!bio_list_empty(&cell->bios));
__cell_release(cell, NULL);
}
static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
{
unsigned long flags;
struct bio_prison *prison = cell->prison;
spin_lock_irqsave(&prison->lock, flags);
__cell_release_singleton(cell, bio);
spin_unlock_irqrestore(&prison->lock, flags);
}
/*
* Sometimes we don't want the holder, just the additional bios.
*/
static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
struct bio_list *inmates)
{
struct bio_prison *prison = cell->prison;
hlist_del(&cell->list);
bio_list_merge(inmates, &cell->bios);
mempool_free(cell, prison->cell_pool);
}
static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
struct bio_list *inmates)
{
unsigned long flags;
struct bio_prison *prison = cell->prison;
spin_lock_irqsave(&prison->lock, flags);
__cell_release_no_holder(cell, inmates);
spin_unlock_irqrestore(&prison->lock, flags);
}
static void cell_error(struct dm_bio_prison_cell *cell)
{
struct bio_prison *prison = cell->prison;
struct bio_list bios;
struct bio *bio;
unsigned long flags;
bio_list_init(&bios);
spin_lock_irqsave(&prison->lock, flags);
__cell_release(cell, &bios);
spin_unlock_irqrestore(&prison->lock, flags);
while ((bio = bio_list_pop(&bios)))
bio_io_error(bio);
}
/*----------------------------------------------------------------*/
/*
* We use the deferred set to keep track of pending reads to shared blocks.
* We do this to ensure the new mapping caused by a write isn't performed
* until these prior reads have completed. Otherwise the insertion of the
* new mapping could free the old block that the read bios are mapped to.
*/
struct deferred_set;
struct deferred_entry {
struct deferred_set *ds;
unsigned count;
struct list_head work_items;
};
struct deferred_set {
spinlock_t lock;
unsigned current_entry;
unsigned sweeper;
struct deferred_entry entries[DEFERRED_SET_SIZE];
};
static void ds_init(struct deferred_set *ds)
{
int i;
spin_lock_init(&ds->lock);
ds->current_entry = 0;
ds->sweeper = 0;
for (i = 0; i < DEFERRED_SET_SIZE; i++) {
ds->entries[i].ds = ds;
ds->entries[i].count = 0;
INIT_LIST_HEAD(&ds->entries[i].work_items);
}
}
static struct deferred_entry *ds_inc(struct deferred_set *ds)
{
unsigned long flags;
struct deferred_entry *entry;
spin_lock_irqsave(&ds->lock, flags);
entry = ds->entries + ds->current_entry;
entry->count++;
spin_unlock_irqrestore(&ds->lock, flags);
return entry;
}
static unsigned ds_next(unsigned index)
{
return (index + 1) % DEFERRED_SET_SIZE;
}
static void __sweep(struct deferred_set *ds, struct list_head *head)
{
while ((ds->sweeper != ds->current_entry) &&
!ds->entries[ds->sweeper].count) {
list_splice_init(&ds->entries[ds->sweeper].work_items, head);
ds->sweeper = ds_next(ds->sweeper);
}
if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
list_splice_init(&ds->entries[ds->sweeper].work_items, head);
}
static void ds_dec(struct deferred_entry *entry, struct list_head *head)
{
unsigned long flags;
spin_lock_irqsave(&entry->ds->lock, flags);
BUG_ON(!entry->count);
--entry->count;
__sweep(entry->ds, head);
spin_unlock_irqrestore(&entry->ds->lock, flags);
}
/*
* Returns 1 if deferred or 0 if no pending items to delay job.
*/
static int ds_add_work(struct deferred_set *ds, struct list_head *work)
{
int r = 1;
unsigned long flags;
unsigned next_entry;
spin_lock_irqsave(&ds->lock, flags);
if ((ds->sweeper == ds->current_entry) &&
!ds->entries[ds->current_entry].count)
r = 0;
else {
list_add(work, &ds->entries[ds->current_entry].work_items);
next_entry = ds_next(ds->current_entry);
if (!ds->entries[next_entry].count)
ds->current_entry = next_entry;
}
spin_unlock_irqrestore(&ds->lock, flags);
return r;
}
/*----------------------------------------------------------------*/
/*
* Key building.
*/
static void build_data_key(struct dm_thin_device *td,
dm_block_t b, struct cell_key *key)
dm_block_t b, struct dm_cell_key *key)
{
key->virtual = 0;
key->dev = dm_thin_dev_id(td);
......@@ -481,7 +110,7 @@ static void build_data_key(struct dm_thin_device *td,
}
static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
struct cell_key *key)
struct dm_cell_key *key)
{
key->virtual = 1;
key->dev = dm_thin_dev_id(td);
......@@ -534,7 +163,7 @@ struct pool {
unsigned low_water_triggered:1; /* A dm event has been sent */
unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
struct bio_prison *prison;
struct dm_bio_prison *prison;
struct dm_kcopyd_client *copier;
struct workqueue_struct *wq;
......@@ -552,8 +181,8 @@ struct pool {
struct bio_list retry_on_resume_list;
struct deferred_set shared_read_ds;
struct deferred_set all_io_ds;
struct dm_deferred_set *shared_read_ds;
struct dm_deferred_set *all_io_ds;
struct dm_thin_new_mapping *next_mapping;
mempool_t *mapping_pool;
......@@ -660,8 +289,8 @@ static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev
struct dm_thin_endio_hook {
struct thin_c *tc;
struct deferred_entry *shared_read_entry;
struct deferred_entry *all_io_entry;
struct dm_deferred_entry *shared_read_entry;
struct dm_deferred_entry *all_io_entry;
struct dm_thin_new_mapping *overwrite_mapping;
};
......@@ -877,7 +506,7 @@ static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
unsigned long flags;
spin_lock_irqsave(&pool->lock, flags);
cell_release(cell, &pool->deferred_bios);
dm_cell_release(cell, &pool->deferred_bios);
spin_unlock_irqrestore(&tc->pool->lock, flags);
wake_worker(pool);
......@@ -896,7 +525,7 @@ static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell
bio_list_init(&bios);
spin_lock_irqsave(&pool->lock, flags);
cell_release_no_holder(cell, &pool->deferred_bios);
dm_cell_release_no_holder(cell, &pool->deferred_bios);
spin_unlock_irqrestore(&pool->lock, flags);
wake_worker(pool);
......@@ -906,7 +535,7 @@ static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
if (m->bio)
m->bio->bi_end_io = m->saved_bi_end_io;
cell_error(m->cell);
dm_cell_error(m->cell);
list_del(&m->list);
mempool_free(m, m->tc->pool->mapping_pool);
}
......@@ -921,7 +550,7 @@ static void process_prepared_mapping(struct dm_thin_new_mapping *m)
bio->bi_end_io = m->saved_bi_end_io;
if (m->err) {
cell_error(m->cell);
dm_cell_error(m->cell);
goto out;
}
......@@ -933,7 +562,7 @@ static void process_prepared_mapping(struct dm_thin_new_mapping *m)
r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
if (r) {
DMERR("dm_thin_insert_block() failed");
cell_error(m->cell);
dm_cell_error(m->cell);
goto out;
}
......@@ -1067,7 +696,7 @@ static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
m->err = 0;
m->bio = NULL;
if (!ds_add_work(&pool->shared_read_ds, &m->list))
if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
m->quiesced = 1;
/*
......@@ -1099,7 +728,7 @@ static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
if (r < 0) {
mempool_free(m, pool->mapping_pool);
DMERR("dm_kcopyd_copy() failed");
cell_error(cell);
dm_cell_error(cell);
}
}
}
......@@ -1164,7 +793,7 @@ static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
if (r < 0) {
mempool_free(m, pool->mapping_pool);
DMERR("dm_kcopyd_zero() failed");
cell_error(cell);
dm_cell_error(cell);
}
}
}
......@@ -1276,7 +905,7 @@ static void no_space(struct dm_bio_prison_cell *cell)
struct bio_list bios;
bio_list_init(&bios);
cell_release(cell, &bios);
dm_cell_release(cell, &bios);
while ((bio = bio_list_pop(&bios)))
retry_on_resume(bio);
......@@ -1288,13 +917,13 @@ static void process_discard(struct thin_c *tc, struct bio *bio)
unsigned long flags;
struct pool *pool = tc->pool;
struct dm_bio_prison_cell *cell, *cell2;
struct cell_key key, key2;
struct dm_cell_key key, key2;
dm_block_t block = get_bio_block(tc, bio);
struct dm_thin_lookup_result lookup_result;
struct dm_thin_new_mapping *m;
build_virtual_key(tc->td, block, &key);
if (bio_detain(tc->pool->prison, &key, bio, &cell))
if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
return;
r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
......@@ -1306,8 +935,8 @@ static void process_discard(struct thin_c *tc, struct bio *bio)
* on this block.
*/
build_data_key(tc->td, lookup_result.block, &key2);
if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
cell_release_singleton(cell, bio);
if (dm_bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
dm_cell_release_singleton(cell, bio);
break;
}
......@@ -1326,7 +955,7 @@ static void process_discard(struct thin_c *tc, struct bio *bio)
m->err = 0;
m->bio = bio;
if (!ds_add_work(&pool->all_io_ds, &m->list)) {
if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
spin_lock_irqsave(&pool->lock, flags);
list_add(&m->list, &pool->prepared_discards);
spin_unlock_irqrestore(&pool->lock, flags);
......@@ -1338,8 +967,8 @@ static void process_discard(struct thin_c *tc, struct bio *bio)
* a block boundary. So we submit the discard of a
* partial block appropriately.
*/
cell_release_singleton(cell, bio);
cell_release_singleton(cell2, bio);
dm_cell_release_singleton(cell, bio);
dm_cell_release_singleton(cell2, bio);
if ((!lookup_result.shared) && pool->pf.discard_passdown)
remap_and_issue(tc, bio, lookup_result.block);
else
......@@ -1351,20 +980,20 @@ static void process_discard(struct thin_c *tc, struct bio *bio)
/*
* It isn't provisioned, just forget it.
*/
cell_release_singleton(cell, bio);
dm_cell_release_singleton(cell, bio);
bio_endio(bio, 0);
break;
default:
DMERR("discard: find block unexpectedly returned %d", r);
cell_release_singleton(cell, bio);
dm_cell_release_singleton(cell, bio);
bio_io_error(bio);
break;
}
}
static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
struct cell_key *key,
struct dm_cell_key *key,
struct dm_thin_lookup_result *lookup_result,
struct dm_bio_prison_cell *cell)
{
......@@ -1384,7 +1013,7 @@ static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
default:
DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
cell_error(cell);
dm_cell_error(cell);
break;
}
}
......@@ -1395,14 +1024,14 @@ static void process_shared_bio(struct thin_c *tc, struct bio *bio,
{
struct dm_bio_prison_cell *cell;
struct pool *pool = tc->pool;
struct cell_key key;
struct dm_cell_key key;
/*
* If cell is already occupied, then sharing is already in the process
* of being broken so we have nothing further to do here.
*/
build_data_key(tc->td, lookup_result->block, &key);
if (bio_detain(pool->prison, &key, bio, &cell))
if (dm_bio_detain(pool->prison, &key, bio, &cell))
return;
if (bio_data_dir(bio) == WRITE && bio->bi_size)
......@@ -1410,9 +1039,9 @@ static void process_shared_bio(struct thin_c *tc, struct bio *bio,
else {
struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
h->shared_read_entry = ds_inc(&pool->shared_read_ds);
h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
cell_release_singleton(cell, bio);
dm_cell_release_singleton(cell, bio);
remap_and_issue(tc, bio, lookup_result->block);
}
}
......@@ -1427,7 +1056,7 @@ static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block
* Remap empty bios (flushes) immediately, without provisioning.
*/
if (!bio->bi_size) {
cell_release_singleton(cell, bio);
dm_cell_release_singleton(cell, bio);
remap_and_issue(tc, bio, 0);
return;
}
......@@ -1437,7 +1066,7 @@ static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block
*/
if (bio_data_dir(bio) == READ) {
zero_fill_bio(bio);
cell_release_singleton(cell, bio);
dm_cell_release_singleton(cell, bio);
bio_endio(bio, 0);
return;
}
......@@ -1458,7 +1087,7 @@ static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block
default:
DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
set_pool_mode(tc->pool, PM_READ_ONLY);
cell_error(cell);
dm_cell_error(cell);
break;
}
}
......@@ -1468,7 +1097,7 @@ static void process_bio(struct thin_c *tc, struct bio *bio)
int r;
dm_block_t block = get_bio_block(tc, bio);
struct dm_bio_prison_cell *cell;
struct cell_key key;
struct dm_cell_key key;
struct dm_thin_lookup_result lookup_result;
/*
......@@ -1476,7 +1105,7 @@ static void process_bio(struct thin_c *tc, struct bio *bio)
* being provisioned so we have nothing further to do here.
*/
build_virtual_key(tc->td, block, &key);
if (bio_detain(tc->pool->prison, &key, bio, &cell))
if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
return;
r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
......@@ -1491,7 +1120,7 @@ static void process_bio(struct thin_c *tc, struct bio *bio)
* TODO: this will probably have to change when discard goes
* back in.
*/
cell_release_singleton(cell, bio);
dm_cell_release_singleton(cell, bio);
if (lookup_result.shared)
process_shared_bio(tc, bio, block, &lookup_result);
......@@ -1501,7 +1130,7 @@ static void process_bio(struct thin_c *tc, struct bio *bio)
case -ENODATA:
if (bio_data_dir(bio) == READ && tc->origin_dev) {
cell_release_singleton(cell, bio);
dm_cell_release_singleton(cell, bio);
remap_to_origin_and_issue(tc, bio);
} else
provision_block(tc, bio, block, cell);
......@@ -1509,7 +1138,7 @@ static void process_bio(struct thin_c *tc, struct bio *bio)
default:
DMERR("dm_thin_find_block() failed, error = %d", r);
cell_release_singleton(cell, bio);
dm_cell_release_singleton(cell, bio);
bio_io_error(bio);
break;
}
......@@ -1718,7 +1347,7 @@ static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *b
h->tc = tc;
h->shared_read_entry = NULL;
h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : dm_deferred_entry_inc(pool->all_io_ds);
h->overwrite_mapping = NULL;
return h;
......@@ -1928,7 +1557,7 @@ static void __pool_destroy(struct pool *pool)
if (dm_pool_metadata_close(pool->pmd) < 0)
DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
prison_destroy(pool->prison);
dm_bio_prison_destroy(pool->prison);
dm_kcopyd_client_destroy(pool->copier);
if (pool->wq)
......@@ -1938,6 +1567,8 @@ static void __pool_destroy(struct pool *pool)
mempool_free(pool->next_mapping, pool->mapping_pool);
mempool_destroy(pool->mapping_pool);
mempool_destroy(pool->endio_hook_pool);
dm_deferred_set_destroy(pool->shared_read_ds);
dm_deferred_set_destroy(pool->all_io_ds);
kfree(pool);
}
......@@ -1976,7 +1607,7 @@ static struct pool *pool_create(struct mapped_device *pool_md,
pool->sectors_per_block_shift = __ffs(block_size);
pool->low_water_blocks = 0;
pool_features_init(&pool->pf);
pool->prison = prison_create(PRISON_CELLS);
pool->prison = dm_bio_prison_create(PRISON_CELLS);
if (!pool->prison) {
*error = "Error creating pool's bio prison";
err_p = ERR_PTR(-ENOMEM);
......@@ -2012,8 +1643,20 @@ static struct pool *pool_create(struct mapped_device *pool_md,
pool->low_water_triggered = 0;
pool->no_free_space = 0;
bio_list_init(&pool->retry_on_resume_list);
ds_init(&pool->shared_read_ds);
ds_init(&pool->all_io_ds);
pool->shared_read_ds = dm_deferred_set_create();
if (!pool->shared_read_ds) {
*error = "Error creating pool's shared read deferred set";
err_p = ERR_PTR(-ENOMEM);
goto bad_shared_read_ds;
}
pool->all_io_ds = dm_deferred_set_create();
if (!pool->all_io_ds) {
*error = "Error creating pool's all io deferred set";
err_p = ERR_PTR(-ENOMEM);
goto bad_all_io_ds;
}
pool->next_mapping = NULL;
pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
......@@ -2042,11 +1685,15 @@ static struct pool *pool_create(struct mapped_device *pool_md,
bad_endio_hook_pool:
mempool_destroy(pool->mapping_pool);
bad_mapping_pool:
dm_deferred_set_destroy(pool->all_io_ds);
bad_all_io_ds:
dm_deferred_set_destroy(pool->shared_read_ds);
bad_shared_read_ds:
destroy_workqueue(pool->wq);
bad_wq:
dm_kcopyd_client_destroy(pool->copier);
bad_kcopyd_client:
prison_destroy(pool->prison);
dm_bio_prison_destroy(pool->prison);
bad_prison:
kfree(pool);
bad_pool:
......@@ -2272,15 +1919,6 @@ static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
goto out_flags_changed;
}
/*
* The block layer requires discard_granularity to be a power of 2.
*/
if (pf.discard_enabled && !is_power_of_2(block_size)) {
ti->error = "Discard support must be disabled when the block size is not a power of 2";
r = -EINVAL;
goto out_flags_changed;
}
pt->pool = pool;
pt->ti = ti;
pt->metadata_dev = metadata_dev;
......@@ -2762,6 +2400,11 @@ static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
}
static bool block_size_is_power_of_two(struct pool *pool)
{
return pool->sectors_per_block_shift >= 0;
}
static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
{
struct pool *pool = pt->pool;
......@@ -2775,8 +2418,15 @@ static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
if (pt->adjusted_pf.discard_passdown) {
data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
limits->discard_granularity = data_limits->discard_granularity;
} else
} else if (block_size_is_power_of_two(pool))
limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
else
/*
* Use largest power of 2 that is a factor of sectors_per_block
* but at least DATA_DEV_BLOCK_SIZE_MIN_SECTORS.
*/
limits->discard_granularity = max(1 << (ffs(pool->sectors_per_block) - 1),
DATA_DEV_BLOCK_SIZE_MIN_SECTORS) << SECTOR_SHIFT;
}
static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
......@@ -2804,7 +2454,7 @@ static struct target_type pool_target = {
.name = "thin-pool",
.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
DM_TARGET_IMMUTABLE,
.version = {1, 4, 0},
.version = {1, 5, 0},
.module = THIS_MODULE,
.ctr = pool_ctr,
.dtr = pool_dtr,
......@@ -2979,7 +2629,7 @@ static int thin_endio(struct dm_target *ti,
if (h->shared_read_entry) {
INIT_LIST_HEAD(&work);
ds_dec(h->shared_read_entry, &work);
dm_deferred_entry_dec(h->shared_read_entry, &work);
spin_lock_irqsave(&pool->lock, flags);
list_for_each_entry_safe(m, tmp, &work, list) {
......@@ -2992,7 +2642,7 @@ static int thin_endio(struct dm_target *ti,
if (h->all_io_entry) {
INIT_LIST_HEAD(&work);
ds_dec(h->all_io_entry, &work);
dm_deferred_entry_dec(h->all_io_entry, &work);
spin_lock_irqsave(&pool->lock, flags);
list_for_each_entry_safe(m, tmp, &work, list)
list_add(&m->list, &pool->prepared_discards);
......@@ -3095,7 +2745,7 @@ static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
static struct target_type thin_target = {
.name = "thin",
.version = {1, 4, 0},
.version = {1, 5, 0},
.module = THIS_MODULE,
.ctr = thin_ctr,
.dtr = thin_dtr,
......@@ -3125,10 +2775,6 @@ static int __init dm_thin_init(void)
r = -ENOMEM;
_cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
if (!_cell_cache)
goto bad_cell_cache;
_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
if (!_new_mapping_cache)
goto bad_new_mapping_cache;
......@@ -3142,8 +2788,6 @@ static int __init dm_thin_init(void)
bad_endio_hook_cache:
kmem_cache_destroy(_new_mapping_cache);
bad_new_mapping_cache:
kmem_cache_destroy(_cell_cache);
bad_cell_cache:
dm_unregister_target(&pool_target);
bad_pool_target:
dm_unregister_target(&thin_target);
......@@ -3156,7 +2800,6 @@ static void dm_thin_exit(void)
dm_unregister_target(&thin_target);
dm_unregister_target(&pool_target);
kmem_cache_destroy(_cell_cache);
kmem_cache_destroy(_new_mapping_cache);
kmem_cache_destroy(_endio_hook_cache);
}
......
......@@ -438,7 +438,7 @@ static void verity_prefetch_io(struct dm_verity *v, struct dm_verity_io *io)
verity_hash_at_level(v, io->block, i, &hash_block_start, NULL);
verity_hash_at_level(v, io->block + io->n_blocks - 1, i, &hash_block_end, NULL);
if (!i) {
unsigned cluster = *(volatile unsigned *)&dm_verity_prefetch_cluster;
unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
cluster >>= v->data_dev_block_bits;
if (unlikely(!cluster))
......
......@@ -71,6 +71,7 @@ struct dm_target_io {
struct dm_io *io;
struct dm_target *ti;
union map_info info;
struct bio clone;
};
/*
......@@ -214,7 +215,6 @@ struct dm_md_mempools {
#define MIN_IOS 256
static struct kmem_cache *_io_cache;
static struct kmem_cache *_tio_cache;
static struct kmem_cache *_rq_tio_cache;
/*
......@@ -232,14 +232,9 @@ static int __init local_init(void)
if (!_io_cache)
return r;
/* allocate a slab for the target ios */
_tio_cache = KMEM_CACHE(dm_target_io, 0);
if (!_tio_cache)
goto out_free_io_cache;
_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
if (!_rq_tio_cache)
goto out_free_tio_cache;
goto out_free_io_cache;
_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
if (!_rq_bio_info_cache)
......@@ -265,8 +260,6 @@ static int __init local_init(void)
kmem_cache_destroy(_rq_bio_info_cache);
out_free_rq_tio_cache:
kmem_cache_destroy(_rq_tio_cache);
out_free_tio_cache:
kmem_cache_destroy(_tio_cache);
out_free_io_cache:
kmem_cache_destroy(_io_cache);
......@@ -277,7 +270,6 @@ static void local_exit(void)
{
kmem_cache_destroy(_rq_bio_info_cache);
kmem_cache_destroy(_rq_tio_cache);
kmem_cache_destroy(_tio_cache);
kmem_cache_destroy(_io_cache);
unregister_blkdev(_major, _name);
dm_uevent_exit();
......@@ -463,7 +455,7 @@ static void free_io(struct mapped_device *md, struct dm_io *io)
static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
{
mempool_free(tio, md->tio_pool);
bio_put(&tio->clone);
}
static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
......@@ -682,7 +674,6 @@ static void clone_endio(struct bio *bio, int error)
}
free_tio(md, tio);
bio_put(bio);
dec_pending(io, error);
}
......@@ -1002,12 +993,12 @@ int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
}
EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
static void __map_bio(struct dm_target *ti, struct bio *clone,
struct dm_target_io *tio)
static void __map_bio(struct dm_target *ti, struct dm_target_io *tio)
{
int r;
sector_t sector;
struct mapped_device *md;
struct bio *clone = &tio->clone;
clone->bi_end_io = clone_endio;
clone->bi_private = tio;
......@@ -1031,7 +1022,6 @@ static void __map_bio(struct dm_target *ti, struct bio *clone,
/* error the io and bail out, or requeue it if needed */
md = tio->io->md;
dec_pending(tio->io, r);
bio_put(clone);
free_tio(md, tio);
} else if (r) {
DMWARN("unimplemented target map return value: %d", r);
......@@ -1052,14 +1042,13 @@ struct clone_info {
/*
* Creates a little bio that just does part of a bvec.
*/
static struct bio *split_bvec(struct bio *bio, sector_t sector,
unsigned short idx, unsigned int offset,
unsigned int len, struct bio_set *bs)
static void split_bvec(struct dm_target_io *tio, struct bio *bio,
sector_t sector, unsigned short idx, unsigned int offset,
unsigned int len, struct bio_set *bs)
{
struct bio *clone;
struct bio *clone = &tio->clone;
struct bio_vec *bv = bio->bi_io_vec + idx;
clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
*clone->bi_io_vec = *bv;
clone->bi_sector = sector;
......@@ -1076,20 +1065,18 @@ static struct bio *split_bvec(struct bio *bio, sector_t sector,
bio_integrity_trim(clone,
bio_sector_offset(bio, idx, offset), len);
}
return clone;
}
/*
* Creates a bio that consists of range of complete bvecs.
*/
static struct bio *clone_bio(struct bio *bio, sector_t sector,
unsigned short idx, unsigned short bv_count,
unsigned int len, struct bio_set *bs)
static void clone_bio(struct dm_target_io *tio, struct bio *bio,
sector_t sector, unsigned short idx,
unsigned short bv_count, unsigned int len,
struct bio_set *bs)
{
struct bio *clone;
struct bio *clone = &tio->clone;
clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
__bio_clone(clone, bio);
clone->bi_sector = sector;
clone->bi_idx = idx;
......@@ -1104,14 +1091,16 @@ static struct bio *clone_bio(struct bio *bio, sector_t sector,
bio_integrity_trim(clone,
bio_sector_offset(bio, idx, 0), len);
}
return clone;
}
static struct dm_target_io *alloc_tio(struct clone_info *ci,
struct dm_target *ti)
struct dm_target *ti, int nr_iovecs)
{
struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
struct dm_target_io *tio;
struct bio *clone;
clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
tio = container_of(clone, struct dm_target_io, clone);
tio->io = ci->io;
tio->ti = ti;
......@@ -1123,8 +1112,8 @@ static struct dm_target_io *alloc_tio(struct clone_info *ci,
static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
unsigned request_nr, sector_t len)
{
struct dm_target_io *tio = alloc_tio(ci, ti);
struct bio *clone;
struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs);
struct bio *clone = &tio->clone;
tio->info.target_request_nr = request_nr;
......@@ -1133,14 +1122,14 @@ static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
* ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
* and discard, so no need for concern about wasted bvec allocations.
*/
clone = bio_clone_bioset(ci->bio, GFP_NOIO, ci->md->bs);
__bio_clone(clone, ci->bio);
if (len) {
clone->bi_sector = ci->sector;
clone->bi_size = to_bytes(len);
}
__map_bio(ti, clone, tio);
__map_bio(ti, tio);
}
static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
......@@ -1169,14 +1158,13 @@ static int __clone_and_map_empty_flush(struct clone_info *ci)
*/
static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
{
struct bio *clone, *bio = ci->bio;
struct bio *bio = ci->bio;
struct dm_target_io *tio;
tio = alloc_tio(ci, ti);
clone = clone_bio(bio, ci->sector, ci->idx,
bio->bi_vcnt - ci->idx, ci->sector_count,
ci->md->bs);
__map_bio(ti, clone, tio);
tio = alloc_tio(ci, ti, bio->bi_max_vecs);
clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx,
ci->sector_count, ci->md->bs);
__map_bio(ti, tio);
ci->sector_count = 0;
}
......@@ -1214,7 +1202,7 @@ static int __clone_and_map_discard(struct clone_info *ci)
static int __clone_and_map(struct clone_info *ci)
{
struct bio *clone, *bio = ci->bio;
struct bio *bio = ci->bio;
struct dm_target *ti;
sector_t len = 0, max;
struct dm_target_io *tio;
......@@ -1254,10 +1242,10 @@ static int __clone_and_map(struct clone_info *ci)
len += bv_len;
}
tio = alloc_tio(ci, ti);
clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
ci->md->bs);
__map_bio(ti, clone, tio);
tio = alloc_tio(ci, ti, bio->bi_max_vecs);
clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len,
ci->md->bs);
__map_bio(ti, tio);
ci->sector += len;
ci->sector_count -= len;
......@@ -1282,12 +1270,11 @@ static int __clone_and_map(struct clone_info *ci)
len = min(remaining, max);
tio = alloc_tio(ci, ti);
clone = split_bvec(bio, ci->sector, ci->idx,
bv->bv_offset + offset, len,
ci->md->bs);
tio = alloc_tio(ci, ti, 1);
split_bvec(tio, bio, ci->sector, ci->idx,
bv->bv_offset + offset, len, ci->md->bs);
__map_bio(ti, clone, tio);
__map_bio(ti, tio);
ci->sector += len;
ci->sector_count -= len;
......@@ -1955,7 +1942,7 @@ static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
{
struct dm_md_mempools *p;
if (md->io_pool && md->tio_pool && md->bs)
if (md->io_pool && (md->tio_pool || dm_table_get_type(t) == DM_TYPE_BIO_BASED) && md->bs)
/* the md already has necessary mempools */
goto out;
......@@ -2732,14 +2719,16 @@ struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
if (!pools->io_pool)
goto free_pools_and_out;
pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
mempool_create_slab_pool(MIN_IOS, _tio_cache) :
mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
if (!pools->tio_pool)
goto free_io_pool_and_out;
pools->tio_pool = NULL;
if (type == DM_TYPE_REQUEST_BASED) {
pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
if (!pools->tio_pool)
goto free_io_pool_and_out;
}
pools->bs = (type == DM_TYPE_BIO_BASED) ?
bioset_create(pool_size, 0) :
bioset_create(pool_size,
offsetof(struct dm_target_io, clone)) :
bioset_create(pool_size,
offsetof(struct dm_rq_clone_bio_info, clone));
if (!pools->bs)
......@@ -2754,7 +2743,8 @@ struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
bioset_free(pools->bs);
free_tio_pool_and_out:
mempool_destroy(pools->tio_pool);
if (pools->tio_pool)
mempool_destroy(pools->tio_pool);
free_io_pool_and_out:
mempool_destroy(pools->io_pool);
......
......@@ -434,14 +434,14 @@ int sm_ll_insert(struct ll_disk *ll, dm_block_t b,
if (ref_count && !old) {
*ev = SM_ALLOC;
ll->nr_allocated++;
ie_disk.nr_free = cpu_to_le32(le32_to_cpu(ie_disk.nr_free) - 1);
le32_add_cpu(&ie_disk.nr_free, -1);
if (le32_to_cpu(ie_disk.none_free_before) == bit)
ie_disk.none_free_before = cpu_to_le32(bit + 1);
} else if (old && !ref_count) {
*ev = SM_FREE;
ll->nr_allocated--;
ie_disk.nr_free = cpu_to_le32(le32_to_cpu(ie_disk.nr_free) + 1);
le32_add_cpu(&ie_disk.nr_free, 1);
ie_disk.none_free_before = cpu_to_le32(min(le32_to_cpu(ie_disk.none_free_before), bit));
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment