Commit 811fe9f5 authored by Michal Wajdeczko's avatar Michal Wajdeczko

drm/xe/guc: Introduce Relay Communication for SR-IOV

There are scenarios where SR-IOV Virtual Function (VF) driver will
need to get additional data that is not available over VF MMIO BAR
nor could be queried from the GuC firmware and must be obtained
from the Physical Function (PF) driver.

To allow such communication between VF and PF drivers, GuC supports
set of H2G and G2H actions which allows relaying embedded messages,
that are otherwise opaque for the GuC.

To allow use of this communication mechanism, provide functions for
sending requests and handling replies and placeholder where we will
put handlers for incoming requests.
Reviewed-by: default avatarPiotr Piórkowski <piotr.piorkowski@intel.com>
Link: https://lore.kernel.org/r/20240104222031.277-8-michal.wajdeczko@intel.comSigned-off-by: default avatarMichal Wajdeczko <michal.wajdeczko@intel.com>
parent fa6c12e0
......@@ -148,6 +148,7 @@ xe-$(CONFIG_HWMON) += xe_hwmon.o
# graphics virtualization (SR-IOV) support
xe-y += \
xe_guc_relay.o \
xe_memirq.o \
xe_sriov.o
......
......@@ -21,6 +21,7 @@
#include "xe_guc_hwconfig.h"
#include "xe_guc_log.h"
#include "xe_guc_pc.h"
#include "xe_guc_relay.h"
#include "xe_guc_submit.h"
#include "xe_memirq.h"
#include "xe_mmio.h"
......@@ -263,6 +264,10 @@ int xe_guc_init(struct xe_guc *guc)
if (ret)
goto out;
ret = xe_guc_relay_init(&guc->relay);
if (ret)
goto out;
ret = xe_guc_pc_init(&guc->pc);
if (ret)
goto out;
......
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <drm/drm_managed.h>
#include "abi/guc_actions_sriov_abi.h"
#include "abi/guc_relay_actions_abi.h"
#include "abi/guc_relay_communication_abi.h"
#include "xe_assert.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_gt_sriov_printk.h"
#include "xe_guc.h"
#include "xe_guc_ct.h"
#include "xe_guc_hxg_helpers.h"
#include "xe_guc_relay.h"
#include "xe_guc_relay_types.h"
#include "xe_sriov.h"
/*
* How long should we wait for the response?
* XXX this value is subject for the profiling.
*/
#define RELAY_TIMEOUT_MSEC (2500)
static void relays_worker_fn(struct work_struct *w);
static struct xe_guc *relay_to_guc(struct xe_guc_relay *relay)
{
return container_of(relay, struct xe_guc, relay);
}
static struct xe_guc_ct *relay_to_ct(struct xe_guc_relay *relay)
{
return &relay_to_guc(relay)->ct;
}
static struct xe_gt *relay_to_gt(struct xe_guc_relay *relay)
{
return guc_to_gt(relay_to_guc(relay));
}
static struct xe_device *relay_to_xe(struct xe_guc_relay *relay)
{
return gt_to_xe(relay_to_gt(relay));
}
#define relay_assert(relay, condition) xe_gt_assert(relay_to_gt(relay), condition)
#define relay_notice(relay, msg...) xe_gt_sriov_notice(relay_to_gt(relay), "relay: " msg)
#define relay_debug(relay, msg...) xe_gt_sriov_dbg_verbose(relay_to_gt(relay), "relay: " msg)
static int relay_get_totalvfs(struct xe_guc_relay *relay)
{
struct xe_device *xe = relay_to_xe(relay);
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
return IS_SRIOV_VF(xe) ? 0 : pci_sriov_get_totalvfs(pdev);
}
static bool relay_is_ready(struct xe_guc_relay *relay)
{
return mempool_initialized(&relay->pool);
}
static u32 relay_get_next_rid(struct xe_guc_relay *relay)
{
u32 rid;
spin_lock(&relay->lock);
rid = ++relay->last_rid;
spin_unlock(&relay->lock);
return rid;
}
/**
* struct relay_transaction - internal data used to handle transactions
*
* Relation between struct relay_transaction members::
*
* <-------------------- GUC_CTB_MAX_DWORDS -------------->
* <-------- GUC_RELAY_MSG_MAX_LEN --->
* <--- offset ---> <--- request_len ------->
* +----------------+-------------------------+----------+--+
* | | | | |
* +----------------+-------------------------+----------+--+
* ^ ^
* / /
* request_buf request
*
* <-------------------- GUC_CTB_MAX_DWORDS -------------->
* <-------- GUC_RELAY_MSG_MAX_LEN --->
* <--- offset ---> <--- response_len --->
* +----------------+----------------------+-------------+--+
* | | | | |
* +----------------+----------------------+-------------+--+
* ^ ^
* / /
* response_buf response
*/
struct relay_transaction {
/**
* @incoming: indicates whether this transaction represents an incoming
* request from the remote VF/PF or this transaction
* represents outgoing request to the remote VF/PF.
*/
bool incoming;
/**
* @remote: PF/VF identifier of the origin (or target) of the relay
* request message.
*/
u32 remote;
/** @rid: identifier of the VF/PF relay message. */
u32 rid;
/**
* @request: points to the inner VF/PF request message, copied to the
* #response_buf starting at #offset.
*/
u32 *request;
/** @request_len: length of the inner VF/PF request message. */
u32 request_len;
/**
* @response: points to the placeholder buffer where inner VF/PF
* response will be located, for outgoing transaction
* this could be caller's buffer (if provided) otherwise
* it points to the #response_buf starting at #offset.
*/
u32 *response;
/**
* @response_len: length of the inner VF/PF response message (only
* if #status is 0), initially set to the size of the
* placeholder buffer where response message will be
* copied.
*/
u32 response_len;
/**
* @offset: offset to the start of the inner VF/PF relay message inside
* buffers; this offset is equal the length of the outer GuC
* relay header message.
*/
u32 offset;
/**
* @request_buf: buffer with VF/PF request message including outer
* transport message.
*/
u32 request_buf[GUC_CTB_MAX_DWORDS];
/**
* @response_buf: buffer with VF/PF response message including outer
* transport message.
*/
u32 response_buf[GUC_CTB_MAX_DWORDS];
/**
* @reply: status of the reply, 0 means that data pointed by the
* #response is valid.
*/
int reply;
/** @done: completion of the outgoing transaction. */
struct completion done;
/** @link: transaction list link */
struct list_head link;
};
static u32 prepare_pf2guc(u32 *msg, u32 target, u32 rid)
{
msg[0] = FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, XE_GUC_ACTION_PF2GUC_RELAY_TO_VF);
msg[1] = FIELD_PREP(PF2GUC_RELAY_TO_VF_REQUEST_MSG_1_VFID, target);
msg[2] = FIELD_PREP(PF2GUC_RELAY_TO_VF_REQUEST_MSG_2_RELAY_ID, rid);
return PF2GUC_RELAY_TO_VF_REQUEST_MSG_MIN_LEN;
}
static u32 prepare_vf2guc(u32 *msg, u32 rid)
{
msg[0] = FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, XE_GUC_ACTION_VF2GUC_RELAY_TO_PF);
msg[1] = FIELD_PREP(VF2GUC_RELAY_TO_PF_REQUEST_MSG_1_RELAY_ID, rid);
return VF2GUC_RELAY_TO_PF_REQUEST_MSG_MIN_LEN;
}
static struct relay_transaction *
__relay_get_transaction(struct xe_guc_relay *relay, bool incoming, u32 remote, u32 rid,
const u32 *action, u32 action_len, u32 *resp, u32 resp_size)
{
struct relay_transaction *txn;
relay_assert(relay, action_len >= GUC_RELAY_MSG_MIN_LEN);
relay_assert(relay, action_len <= GUC_RELAY_MSG_MAX_LEN);
relay_assert(relay, !(!!resp ^ !!resp_size));
relay_assert(relay, resp_size <= GUC_RELAY_MSG_MAX_LEN);
relay_assert(relay, resp_size == 0 || resp_size >= GUC_RELAY_MSG_MIN_LEN);
if (unlikely(!relay_is_ready(relay)))
return ERR_PTR(-ENODEV);
/*
* For incoming requests we can't use GFP_KERNEL as those are delivered
* with CTB lock held which is marked as used in the reclaim path.
* Btw, that's one of the reason why we use mempool here!
*/
txn = mempool_alloc(&relay->pool, incoming ? GFP_ATOMIC : GFP_KERNEL);
if (!txn)
return ERR_PTR(-ENOMEM);
txn->incoming = incoming;
txn->remote = remote;
txn->rid = rid;
txn->offset = remote ?
prepare_pf2guc(incoming ? txn->response_buf : txn->request_buf, remote, rid) :
prepare_vf2guc(incoming ? txn->response_buf : txn->request_buf, rid);
relay_assert(relay, txn->offset);
relay_assert(relay, txn->offset + GUC_RELAY_MSG_MAX_LEN <= ARRAY_SIZE(txn->request_buf));
relay_assert(relay, txn->offset + GUC_RELAY_MSG_MAX_LEN <= ARRAY_SIZE(txn->response_buf));
txn->request = txn->request_buf + txn->offset;
memcpy(&txn->request_buf[txn->offset], action, sizeof(u32) * action_len);
txn->request_len = action_len;
txn->response = resp ?: txn->response_buf + txn->offset;
txn->response_len = resp_size ?: GUC_RELAY_MSG_MAX_LEN;
txn->reply = -ENOMSG;
INIT_LIST_HEAD(&txn->link);
init_completion(&txn->done);
return txn;
}
static struct relay_transaction *
relay_new_transaction(struct xe_guc_relay *relay, u32 target, const u32 *action, u32 len,
u32 *resp, u32 resp_size)
{
u32 rid = relay_get_next_rid(relay);
return __relay_get_transaction(relay, false, target, rid, action, len, resp, resp_size);
}
static struct relay_transaction *
relay_new_incoming_transaction(struct xe_guc_relay *relay, u32 origin, u32 rid,
const u32 *action, u32 len)
{
return __relay_get_transaction(relay, true, origin, rid, action, len, NULL, 0);
}
static void relay_release_transaction(struct xe_guc_relay *relay, struct relay_transaction *txn)
{
relay_assert(relay, list_empty(&txn->link));
txn->offset = 0;
txn->response = NULL;
txn->reply = -ESTALE;
mempool_free(txn, &relay->pool);
}
static int relay_send_transaction(struct xe_guc_relay *relay, struct relay_transaction *txn)
{
u32 len = txn->incoming ? txn->response_len : txn->request_len;
u32 *buf = txn->incoming ? txn->response_buf : txn->request_buf;
u32 *msg = buf + txn->offset;
int ret;
relay_assert(relay, txn->offset);
relay_assert(relay, txn->offset + len <= GUC_CTB_MAX_DWORDS);
relay_assert(relay, len >= GUC_RELAY_MSG_MIN_LEN);
relay_assert(relay, len <= GUC_RELAY_MSG_MAX_LEN);
relay_debug(relay, "sending %s.%u to %u = %*ph\n",
guc_hxg_type_to_string(FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[0])),
txn->rid, txn->remote, (int)sizeof(u32) * len, msg);
ret = xe_guc_ct_send_block(relay_to_ct(relay), buf, len + txn->offset);
if (unlikely(ret > 0)) {
relay_notice(relay, "Unexpected data=%d from GuC, wrong ABI?\n", ret);
ret = -EPROTO;
}
if (unlikely(ret < 0)) {
relay_notice(relay, "Failed to send %s.%x to GuC (%pe) %*ph ...\n",
guc_hxg_type_to_string(FIELD_GET(GUC_HXG_MSG_0_TYPE, buf[0])),
FIELD_GET(GUC_HXG_REQUEST_MSG_0_ACTION, buf[0]),
ERR_PTR(ret), (int)sizeof(u32) * txn->offset, buf);
relay_notice(relay, "Failed to send %s.%u to %u (%pe) %*ph\n",
guc_hxg_type_to_string(FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[0])),
txn->rid, txn->remote, ERR_PTR(ret), (int)sizeof(u32) * len, msg);
}
return ret;
}
static void __fini_relay(struct drm_device *drm, void *arg)
{
struct xe_guc_relay *relay = arg;
mempool_exit(&relay->pool);
}
/**
* xe_guc_relay_init - Initialize a &xe_guc_relay
* @relay: the &xe_guc_relay to initialize
*
* Initialize remaining members of &xe_guc_relay that may depend
* on the SR-IOV mode.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_guc_relay_init(struct xe_guc_relay *relay)
{
const int XE_RELAY_MEMPOOL_MIN_NUM = 1;
struct xe_device *xe = relay_to_xe(relay);
int err;
relay_assert(relay, !relay_is_ready(relay));
if (!IS_SRIOV(xe))
return 0;
spin_lock_init(&relay->lock);
INIT_WORK(&relay->worker, relays_worker_fn);
INIT_LIST_HEAD(&relay->pending_relays);
INIT_LIST_HEAD(&relay->incoming_actions);
err = mempool_init_kmalloc_pool(&relay->pool, XE_RELAY_MEMPOOL_MIN_NUM +
relay_get_totalvfs(relay),
sizeof(struct relay_transaction));
if (err)
return err;
relay_debug(relay, "using mempool with %d elements\n", relay->pool.min_nr);
return drmm_add_action_or_reset(&xe->drm, __fini_relay, relay);
}
static u32 to_relay_error(int err)
{
/* XXX: assume that relay errors match errno codes */
return err < 0 ? -err : GUC_RELAY_ERROR_UNDISCLOSED;
}
static int from_relay_error(u32 error)
{
/* XXX: assume that relay errors match errno codes */
return error ? -error : -ENODATA;
}
static u32 sanitize_relay_error(u32 error)
{
/* XXX TBD if generic error codes will be allowed */
if (!IS_ENABLED(CONFIG_DRM_XE_DEBUG))
error = GUC_RELAY_ERROR_UNDISCLOSED;
return error;
}
static u32 sanitize_relay_error_hint(u32 hint)
{
/* XXX TBD if generic error codes will be allowed */
if (!IS_ENABLED(CONFIG_DRM_XE_DEBUG))
hint = 0;
return hint;
}
static u32 prepare_error_reply(u32 *msg, u32 error, u32 hint)
{
msg[0] = FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_RESPONSE_FAILURE) |
FIELD_PREP(GUC_HXG_FAILURE_MSG_0_HINT, hint) |
FIELD_PREP(GUC_HXG_FAILURE_MSG_0_ERROR, error);
XE_WARN_ON(!FIELD_FIT(GUC_HXG_FAILURE_MSG_0_ERROR, error));
XE_WARN_ON(!FIELD_FIT(GUC_HXG_FAILURE_MSG_0_HINT, hint));
return GUC_HXG_FAILURE_MSG_LEN;
}
static int relay_send_message_and_wait(struct xe_guc_relay *relay,
struct relay_transaction *txn,
u32 *buf, u32 buf_size)
{
unsigned long timeout = msecs_to_jiffies(RELAY_TIMEOUT_MSEC);
u32 *msg = &txn->request_buf[txn->offset];
u32 len = txn->request_len;
u32 type, action, data0;
int ret;
long n;
type = FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[0]);
action = FIELD_GET(GUC_HXG_REQUEST_MSG_0_ACTION, msg[0]);
data0 = FIELD_GET(GUC_HXG_REQUEST_MSG_0_DATA0, msg[0]);
relay_debug(relay, "%s.%u to %u action %#x:%u\n",
guc_hxg_type_to_string(type),
txn->rid, txn->remote, action, data0);
/* list ordering does not need to match RID ordering */
spin_lock(&relay->lock);
list_add_tail(&txn->link, &relay->pending_relays);
spin_unlock(&relay->lock);
resend:
ret = relay_send_transaction(relay, txn);
if (unlikely(ret < 0))
goto unlink;
wait:
n = wait_for_completion_timeout(&txn->done, timeout);
if (unlikely(n == 0 && txn->reply)) {
ret = -ETIME;
goto unlink;
}
relay_debug(relay, "%u.%u reply %d after %u msec\n",
txn->remote, txn->rid, txn->reply, jiffies_to_msecs(timeout - n));
if (unlikely(txn->reply)) {
reinit_completion(&txn->done);
if (txn->reply == -EAGAIN)
goto resend;
if (txn->reply == -EBUSY)
goto wait;
if (txn->reply > 0)
ret = from_relay_error(txn->reply);
else
ret = txn->reply;
goto unlink;
}
relay_debug(relay, "%u.%u response %*ph\n", txn->remote, txn->rid,
(int)sizeof(u32) * txn->response_len, txn->response);
relay_assert(relay, txn->response_len >= GUC_RELAY_MSG_MIN_LEN);
ret = txn->response_len;
unlink:
spin_lock(&relay->lock);
list_del_init(&txn->link);
spin_unlock(&relay->lock);
if (unlikely(ret < 0)) {
relay_notice(relay, "Unsuccessful %s.%u %#x:%u to %u (%pe) %*ph\n",
guc_hxg_type_to_string(type), txn->rid,
action, data0, txn->remote, ERR_PTR(ret),
(int)sizeof(u32) * len, msg);
}
return ret;
}
static int relay_send_to(struct xe_guc_relay *relay, u32 target,
const u32 *msg, u32 len, u32 *buf, u32 buf_size)
{
struct relay_transaction *txn;
int ret;
relay_assert(relay, len >= GUC_RELAY_MSG_MIN_LEN);
relay_assert(relay, len <= GUC_RELAY_MSG_MAX_LEN);
relay_assert(relay, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, msg[0]) == GUC_HXG_ORIGIN_HOST);
relay_assert(relay, guc_hxg_type_is_action(FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[0])));
if (unlikely(!relay_is_ready(relay)))
return -ENODEV;
txn = relay_new_transaction(relay, target, msg, len, buf, buf_size);
if (IS_ERR(txn))
return PTR_ERR(txn);
switch (FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[0])) {
case GUC_HXG_TYPE_REQUEST:
ret = relay_send_message_and_wait(relay, txn, buf, buf_size);
break;
case GUC_HXG_TYPE_FAST_REQUEST:
relay_assert(relay, !GUC_HXG_TYPE_FAST_REQUEST);
fallthrough;
case GUC_HXG_TYPE_EVENT:
ret = relay_send_transaction(relay, txn);
break;
default:
ret = -EINVAL;
break;
}
relay_release_transaction(relay, txn);
return ret;
}
#ifdef CONFIG_PCI_IOV
/**
* xe_guc_relay_send_to_vf - Send a message to the VF.
* @relay: the &xe_guc_relay which will send the message
* @target: target VF number
* @msg: request message to be sent
* @len: length of the request message (in dwords, can't be 0)
* @buf: placeholder for the response message
* @buf_size: size of the response message placeholder (in dwords)
*
* This function can only be used by the driver running in the SR-IOV PF mode.
*
* Return: Non-negative response length (in dwords) or
* a negative error code on failure.
*/
int xe_guc_relay_send_to_vf(struct xe_guc_relay *relay, u32 target,
const u32 *msg, u32 len, u32 *buf, u32 buf_size)
{
relay_assert(relay, IS_SRIOV_PF(relay_to_xe(relay)));
return relay_send_to(relay, target, msg, len, buf, buf_size);
}
#endif
/**
* xe_guc_relay_send_to_pf - Send a message to the PF.
* @relay: the &xe_guc_relay which will send the message
* @msg: request message to be sent
* @len: length of the message (in dwords, can't be 0)
* @buf: placeholder for the response message
* @buf_size: size of the response message placeholder (in dwords)
*
* This function can only be used by driver running in SR-IOV VF mode.
*
* Return: Non-negative response length (in dwords) or
* a negative error code on failure.
*/
int xe_guc_relay_send_to_pf(struct xe_guc_relay *relay,
const u32 *msg, u32 len, u32 *buf, u32 buf_size)
{
relay_assert(relay, IS_SRIOV_VF(relay_to_xe(relay)));
return relay_send_to(relay, PFID, msg, len, buf, buf_size);
}
static int relay_handle_reply(struct xe_guc_relay *relay, u32 origin,
u32 rid, int reply, const u32 *msg, u32 len)
{
struct relay_transaction *pending;
int err = -ESRCH;
spin_lock(&relay->lock);
list_for_each_entry(pending, &relay->pending_relays, link) {
if (pending->remote != origin || pending->rid != rid) {
relay_debug(relay, "%u.%u still awaits response\n",
pending->remote, pending->rid);
continue;
}
err = 0; /* found! */
if (reply == 0) {
if (len > pending->response_len) {
reply = -ENOBUFS;
err = -ENOBUFS;
} else {
memcpy(pending->response, msg, 4 * len);
pending->response_len = len;
}
}
pending->reply = reply;
complete_all(&pending->done);
break;
}
spin_unlock(&relay->lock);
return err;
}
static int relay_handle_failure(struct xe_guc_relay *relay, u32 origin,
u32 rid, const u32 *msg, u32 len)
{
int error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, msg[0]);
u32 hint __maybe_unused = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, msg[0]);
relay_assert(relay, len);
relay_debug(relay, "%u.%u error %#x (%pe) hint %u debug %*ph\n",
origin, rid, error, ERR_PTR(-error), hint, 4 * (len - 1), msg + 1);
return relay_handle_reply(relay, origin, rid, error ?: -EREMOTEIO, NULL, 0);
}
static int relay_testloop_action_handler(struct xe_guc_relay *relay, u32 origin,
const u32 *msg, u32 len, u32 *response, u32 size)
{
static ktime_t last_reply = 0;
u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[0]);
u32 action = FIELD_GET(GUC_HXG_REQUEST_MSG_0_ACTION, msg[0]);
u32 opcode = FIELD_GET(GUC_HXG_REQUEST_MSG_0_DATA0, msg[0]);
ktime_t now = ktime_get();
bool busy;
int ret;
relay_assert(relay, guc_hxg_type_is_action(type));
relay_assert(relay, action == GUC_RELAY_ACTION_VFXPF_TESTLOOP);
if (!IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV))
return -ECONNREFUSED;
if (!last_reply)
last_reply = now;
busy = ktime_before(now, ktime_add_ms(last_reply, 2 * RELAY_TIMEOUT_MSEC));
if (!busy)
last_reply = now;
switch (opcode) {
case VFXPF_TESTLOOP_OPCODE_NOP:
if (type == GUC_HXG_TYPE_EVENT)
return 0;
return guc_hxg_msg_encode_success(response, 0);
case VFXPF_TESTLOOP_OPCODE_BUSY:
if (type == GUC_HXG_TYPE_EVENT)
return -EPROTO;
msleep(RELAY_TIMEOUT_MSEC / 8);
if (busy)
return -EINPROGRESS;
return guc_hxg_msg_encode_success(response, 0);
case VFXPF_TESTLOOP_OPCODE_RETRY:
if (type == GUC_HXG_TYPE_EVENT)
return -EPROTO;
msleep(RELAY_TIMEOUT_MSEC / 8);
if (busy)
return guc_hxg_msg_encode_retry(response, 0);
return guc_hxg_msg_encode_success(response, 0);
case VFXPF_TESTLOOP_OPCODE_ECHO:
if (type == GUC_HXG_TYPE_EVENT)
return -EPROTO;
if (size < len)
return -ENOBUFS;
ret = guc_hxg_msg_encode_success(response, len);
memcpy(response + ret, msg + ret, (len - ret) * sizeof(u32));
return len;
case VFXPF_TESTLOOP_OPCODE_FAIL:
return -EHWPOISON;
default:
break;
}
relay_notice(relay, "Unexpected action %#x opcode %#x\n", action, opcode);
return -EBADRQC;
}
static int relay_action_handler(struct xe_guc_relay *relay, u32 origin,
const u32 *msg, u32 len, u32 *response, u32 size)
{
u32 type;
int ret;
relay_assert(relay, len >= GUC_HXG_MSG_MIN_LEN);
if (FIELD_GET(GUC_HXG_REQUEST_MSG_0_ACTION, msg[0]) == GUC_RELAY_ACTION_VFXPF_TESTLOOP)
return relay_testloop_action_handler(relay, origin, msg, len, response, size);
type = FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[0]);
/* XXX: PF services will be added later */
ret = -EOPNOTSUPP;
if (type == GUC_HXG_TYPE_EVENT)
relay_assert(relay, ret <= 0);
return ret;
}
static struct relay_transaction *relay_dequeue_transaction(struct xe_guc_relay *relay)
{
struct relay_transaction *txn;
spin_lock(&relay->lock);
txn = list_first_entry_or_null(&relay->incoming_actions, struct relay_transaction, link);
if (txn)
list_del_init(&txn->link);
spin_unlock(&relay->lock);
return txn;
}
static void relay_process_incoming_action(struct xe_guc_relay *relay)
{
struct relay_transaction *txn;
bool again = false;
u32 type;
int ret;
txn = relay_dequeue_transaction(relay);
if (!txn)
return;
type = FIELD_GET(GUC_HXG_MSG_0_TYPE, txn->request_buf[txn->offset]);
ret = relay_action_handler(relay, txn->remote,
txn->request_buf + txn->offset, txn->request_len,
txn->response_buf + txn->offset,
ARRAY_SIZE(txn->response_buf) - txn->offset);
if (ret == -EINPROGRESS) {
again = true;
ret = guc_hxg_msg_encode_busy(txn->response_buf + txn->offset, 0);
}
if (ret > 0) {
txn->response_len = ret;
ret = relay_send_transaction(relay, txn);
}
if (ret < 0) {
u32 error = to_relay_error(ret);
relay_notice(relay, "Failed to handle %s.%u from %u (%pe) %*ph\n",
guc_hxg_type_to_string(type), txn->rid, txn->remote,
ERR_PTR(ret), 4 * txn->request_len, txn->request_buf + txn->offset);
txn->response_len = prepare_error_reply(txn->response_buf + txn->offset,
txn->remote ?
sanitize_relay_error(error) : error,
txn->remote ?
sanitize_relay_error_hint(-ret) : -ret);
ret = relay_send_transaction(relay, txn);
again = false;
}
if (again) {
spin_lock(&relay->lock);
list_add(&txn->link, &relay->incoming_actions);
spin_unlock(&relay->lock);
return;
}
if (unlikely(ret < 0))
relay_notice(relay, "Failed to process action.%u (%pe) %*ph\n",
txn->rid, ERR_PTR(ret), 4 * txn->request_len,
txn->request_buf + txn->offset);
relay_release_transaction(relay, txn);
}
static bool relay_needs_worker(struct xe_guc_relay *relay)
{
return !list_empty(&relay->incoming_actions);
}
static void relay_kick_worker(struct xe_guc_relay *relay)
{
queue_work(relay_to_xe(relay)->sriov.wq, &relay->worker);
}
static void relays_worker_fn(struct work_struct *w)
{
struct xe_guc_relay *relay = container_of(w, struct xe_guc_relay, worker);
relay_process_incoming_action(relay);
if (relay_needs_worker(relay))
relay_kick_worker(relay);
}
static int relay_queue_action_msg(struct xe_guc_relay *relay, u32 origin, u32 rid,
const u32 *msg, u32 len)
{
struct relay_transaction *txn;
txn = relay_new_incoming_transaction(relay, origin, rid, msg, len);
if (IS_ERR(txn))
return PTR_ERR(txn);
spin_lock(&relay->lock);
list_add_tail(&txn->link, &relay->incoming_actions);
spin_unlock(&relay->lock);
relay_kick_worker(relay);
return 0;
}
static int relay_process_msg(struct xe_guc_relay *relay, u32 origin, u32 rid,
const u32 *msg, u32 len)
{
u32 type;
int err;
if (unlikely(len < GUC_HXG_MSG_MIN_LEN))
return -EPROTO;
if (FIELD_GET(GUC_HXG_MSG_0_ORIGIN, msg[0]) != GUC_HXG_ORIGIN_HOST)
return -EPROTO;
type = FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[0]);
relay_debug(relay, "received %s.%u from %u = %*ph\n",
guc_hxg_type_to_string(type), rid, origin, 4 * len, msg);
switch (type) {
case GUC_HXG_TYPE_REQUEST:
case GUC_HXG_TYPE_FAST_REQUEST:
case GUC_HXG_TYPE_EVENT:
err = relay_queue_action_msg(relay, origin, rid, msg, len);
break;
case GUC_HXG_TYPE_RESPONSE_SUCCESS:
err = relay_handle_reply(relay, origin, rid, 0, msg, len);
break;
case GUC_HXG_TYPE_NO_RESPONSE_BUSY:
err = relay_handle_reply(relay, origin, rid, -EBUSY, NULL, 0);
break;
case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
err = relay_handle_reply(relay, origin, rid, -EAGAIN, NULL, 0);
break;
case GUC_HXG_TYPE_RESPONSE_FAILURE:
err = relay_handle_failure(relay, origin, rid, msg, len);
break;
default:
err = -EBADRQC;
}
if (unlikely(err))
relay_notice(relay, "Failed to process %s.%u from %u (%pe) %*ph\n",
guc_hxg_type_to_string(type), rid, origin,
ERR_PTR(err), 4 * len, msg);
return err;
}
/**
* xe_guc_relay_process_guc2vf - Handle relay notification message from the GuC.
* @relay: the &xe_guc_relay which will handle the message
* @msg: message to be handled
* @len: length of the message (in dwords)
*
* This function will handle relay messages received from the GuC.
*
* This function is can only be used if driver is running in SR-IOV mode.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_guc_relay_process_guc2vf(struct xe_guc_relay *relay, const u32 *msg, u32 len)
{
u32 rid;
relay_assert(relay, len >= GUC_HXG_MSG_MIN_LEN);
relay_assert(relay, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, msg[0]) == GUC_HXG_ORIGIN_GUC);
relay_assert(relay, FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[0]) == GUC_HXG_TYPE_EVENT);
relay_assert(relay, FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[0]) ==
XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF);
if (unlikely(!IS_SRIOV_VF(relay_to_xe(relay))))
return -EPERM;
if (unlikely(!relay_is_ready(relay)))
return -ENODEV;
if (unlikely(len < GUC2VF_RELAY_FROM_PF_EVENT_MSG_MIN_LEN))
return -EPROTO;
if (unlikely(len > GUC2VF_RELAY_FROM_PF_EVENT_MSG_MAX_LEN))
return -EMSGSIZE;
if (unlikely(FIELD_GET(GUC_HXG_EVENT_MSG_0_DATA0, msg[0])))
return -EPFNOSUPPORT;
rid = FIELD_GET(GUC2VF_RELAY_FROM_PF_EVENT_MSG_1_RELAY_ID, msg[1]);
return relay_process_msg(relay, PFID, rid,
msg + GUC2VF_RELAY_FROM_PF_EVENT_MSG_MIN_LEN,
len - GUC2VF_RELAY_FROM_PF_EVENT_MSG_MIN_LEN);
}
#ifdef CONFIG_PCI_IOV
/**
* xe_guc_relay_process_guc2pf - Handle relay notification message from the GuC.
* @relay: the &xe_guc_relay which will handle the message
* @msg: message to be handled
* @len: length of the message (in dwords)
*
* This function will handle relay messages received from the GuC.
*
* This function can only be used if driver is running in SR-IOV PF mode.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_guc_relay_process_guc2pf(struct xe_guc_relay *relay, const u32 *msg, u32 len)
{
u32 origin, rid;
int err;
relay_assert(relay, len >= GUC_HXG_EVENT_MSG_MIN_LEN);
relay_assert(relay, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, msg[0]) == GUC_HXG_ORIGIN_GUC);
relay_assert(relay, FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[0]) == GUC_HXG_TYPE_EVENT);
relay_assert(relay, FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[0]) ==
XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF);
if (unlikely(!IS_SRIOV_PF(relay_to_xe(relay))))
return -EPERM;
if (unlikely(!relay_is_ready(relay)))
return -ENODEV;
if (unlikely(len < GUC2PF_RELAY_FROM_VF_EVENT_MSG_MIN_LEN))
return -EPROTO;
if (unlikely(len > GUC2PF_RELAY_FROM_VF_EVENT_MSG_MAX_LEN))
return -EMSGSIZE;
if (unlikely(FIELD_GET(GUC_HXG_EVENT_MSG_0_DATA0, msg[0])))
return -EPFNOSUPPORT;
origin = FIELD_GET(GUC2PF_RELAY_FROM_VF_EVENT_MSG_1_VFID, msg[1]);
rid = FIELD_GET(GUC2PF_RELAY_FROM_VF_EVENT_MSG_2_RELAY_ID, msg[2]);
if (unlikely(origin > relay_get_totalvfs(relay)))
return -ENOENT;
err = relay_process_msg(relay, origin, rid,
msg + GUC2PF_RELAY_FROM_VF_EVENT_MSG_MIN_LEN,
len - GUC2PF_RELAY_FROM_VF_EVENT_MSG_MIN_LEN);
return err;
}
#endif
/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2023 Intel Corporation
*/
#ifndef _XE_GUC_RELAY_H_
#define _XE_GUC_RELAY_H_
#include <linux/types.h>
#include <linux/errno.h>
struct xe_guc_relay;
int xe_guc_relay_init(struct xe_guc_relay *relay);
int xe_guc_relay_send_to_pf(struct xe_guc_relay *relay,
const u32 *msg, u32 len, u32 *buf, u32 buf_size);
int xe_guc_relay_process_guc2vf(struct xe_guc_relay *relay, const u32 *msg, u32 len);
#ifdef CONFIG_PCI_IOV
int xe_guc_relay_send_to_vf(struct xe_guc_relay *relay, u32 target,
const u32 *msg, u32 len, u32 *buf, u32 buf_size);
int xe_guc_relay_process_guc2pf(struct xe_guc_relay *relay, const u32 *msg, u32 len);
#else
static inline int xe_guc_relay_send_to_vf(struct xe_guc_relay *relay, u32 target,
const u32 *msg, u32 len, u32 *buf, u32 buf_size)
{
return -ENODEV;
}
static inline int xe_guc_relay_process_guc2pf(struct xe_guc_relay *relay, const u32 *msg, u32 len)
{
return -ENODEV;
}
#endif
#endif
/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2023 Intel Corporation
*/
#ifndef _XE_GUC_RELAY_TYPES_H_
#define _XE_GUC_RELAY_TYPES_H_
#include <linux/mempool.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
/**
* struct xe_guc_relay - Data used by the VF-PF Relay Communication over GuC.
*/
struct xe_guc_relay {
/**@lock: protects all internal data. */
spinlock_t lock;
/** @worker: dispatches incoming action messages. */
struct work_struct worker;
/** @pending_relays: list of sent requests that await a response. */
struct list_head pending_relays;
/** @incoming_actions: list of incoming relay action messages to process. */
struct list_head incoming_actions;
/** @pool: pool of the relay message buffers. */
mempool_t pool;
/** @last_rid: last Relay-ID used while sending a message. */
u32 last_rid;
};
#endif
......@@ -15,6 +15,7 @@
#include "xe_guc_fwif.h"
#include "xe_guc_log_types.h"
#include "xe_guc_pc_types.h"
#include "xe_guc_relay_types.h"
#include "xe_uc_fw_types.h"
/**
......@@ -85,6 +86,9 @@ struct xe_guc {
u32 size;
} hwconfig;
/** @relay: GuC Relay Communication used in SR-IOV */
struct xe_guc_relay relay;
/**
* @notify_reg: Register which is written to notify GuC of H2G messages
*/
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment