Commit 824e47da authored by colyli@suse.de's avatar colyli@suse.de Committed by Shaohua Li

RAID1: avoid unnecessary spin locks in I/O barrier code

When I run a parallel reading performan testing on a md raid1 device with
two NVMe SSDs, I observe very bad throughput in supprise: by fio with 64KB
block size, 40 seq read I/O jobs, 128 iodepth, overall throughput is
only 2.7GB/s, this is around 50% of the idea performance number.

The perf reports locking contention happens at allow_barrier() and
wait_barrier() code,
 - 41.41%  fio [kernel.kallsyms]     [k] _raw_spin_lock_irqsave
   - _raw_spin_lock_irqsave
         + 89.92% allow_barrier
         + 9.34% __wake_up
 - 37.30%  fio [kernel.kallsyms]     [k] _raw_spin_lock_irq
   - _raw_spin_lock_irq
         - 100.00% wait_barrier

The reason is, in these I/O barrier related functions,
 - raise_barrier()
 - lower_barrier()
 - wait_barrier()
 - allow_barrier()
They always hold conf->resync_lock firstly, even there are only regular
reading I/Os and no resync I/O at all. This is a huge performance penalty.

The solution is a lockless-like algorithm in I/O barrier code, and only
holding conf->resync_lock when it has to.

The original idea is from Hannes Reinecke, and Neil Brown provides
comments to improve it. I continue to work on it, and make the patch into
current form.

In the new simpler raid1 I/O barrier implementation, there are two
wait barrier functions,
 - wait_barrier()
   Which calls _wait_barrier(), is used for regular write I/O. If there is
   resync I/O happening on the same I/O barrier bucket, or the whole
   array is frozen, task will wait until no barrier on same barrier bucket,
   or the whold array is unfreezed.
 - wait_read_barrier()
   Since regular read I/O won't interfere with resync I/O (read_balance()
   will make sure only uptodate data will be read out), it is unnecessary
   to wait for barrier in regular read I/Os, waiting in only necessary
   when the whole array is frozen.

The operations on conf->nr_pending[idx], conf->nr_waiting[idx], conf->
barrier[idx] are very carefully designed in raise_barrier(),
lower_barrier(), _wait_barrier() and wait_read_barrier(), in order to
avoid unnecessary spin locks in these functions. Once conf->
nr_pengding[idx] is increased, a resync I/O with same barrier bucket index
has to wait in raise_barrier(). Then in _wait_barrier() if no barrier
raised in same barrier bucket index and array is not frozen, the regular
I/O doesn't need to hold conf->resync_lock, it can just increase
conf->nr_pending[idx], and return to its caller. wait_read_barrier() is
very similar to _wait_barrier(), the only difference is it only waits when
array is frozen. For heavy parallel reading I/Os, the lockless I/O barrier
code almostly gets rid of all spin lock cost.

This patch significantly improves raid1 reading peroformance. From my
testing, a raid1 device built by two NVMe SSD, runs fio with 64KB
blocksize, 40 seq read I/O jobs, 128 iodepth, overall throughput
increases from 2.7GB/s to 4.6GB/s (+70%).

Changelog
V4:
- Change conf->nr_queued[] to atomic_t.
- Define BARRIER_BUCKETS_NR_BITS by (PAGE_SHIFT - ilog2(sizeof(atomic_t)))
V3:
- Add smp_mb__after_atomic() as Shaohua and Neil suggested.
- Change conf->nr_queued[] from atomic_t to int.
- Change conf->array_frozen from atomic_t back to int, and use
  READ_ONCE(conf->array_frozen) to check value of conf->array_frozen
  in _wait_barrier() and wait_read_barrier().
- In _wait_barrier() and wait_read_barrier(), add a call to
  wake_up(&conf->wait_barrier) after atomic_dec(&conf->nr_pending[idx]),
  to fix a deadlock between  _wait_barrier()/wait_read_barrier and
  freeze_array().
V2:
- Remove a spin_lock/unlock pair in raid1d().
- Add more code comments to explain why there is no racy when checking two
  atomic_t variables at same time.
V1:
- Original RFC patch for comments.
Signed-off-by: default avatarColy Li <colyli@suse.de>
Cc: Shaohua Li <shli@fb.com>
Cc: Hannes Reinecke <hare@suse.com>
Cc: Johannes Thumshirn <jthumshirn@suse.de>
Cc: Guoqing Jiang <gqjiang@suse.com>
Reviewed-by: default avatarNeil Brown <neilb@suse.de>
Signed-off-by: default avatarShaohua Li <shli@fb.com>
parent fd76863e
...@@ -226,7 +226,7 @@ static void reschedule_retry(struct r1bio *r1_bio) ...@@ -226,7 +226,7 @@ static void reschedule_retry(struct r1bio *r1_bio)
idx = sector_to_idx(r1_bio->sector); idx = sector_to_idx(r1_bio->sector);
spin_lock_irqsave(&conf->device_lock, flags); spin_lock_irqsave(&conf->device_lock, flags);
list_add(&r1_bio->retry_list, &conf->retry_list); list_add(&r1_bio->retry_list, &conf->retry_list);
conf->nr_queued[idx]++; atomic_inc(&conf->nr_queued[idx]);
spin_unlock_irqrestore(&conf->device_lock, flags); spin_unlock_irqrestore(&conf->device_lock, flags);
wake_up(&conf->wait_barrier); wake_up(&conf->wait_barrier);
...@@ -836,11 +836,21 @@ static void raise_barrier(struct r1conf *conf, sector_t sector_nr) ...@@ -836,11 +836,21 @@ static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
spin_lock_irq(&conf->resync_lock); spin_lock_irq(&conf->resync_lock);
/* Wait until no block IO is waiting */ /* Wait until no block IO is waiting */
wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting[idx], wait_event_lock_irq(conf->wait_barrier,
!atomic_read(&conf->nr_waiting[idx]),
conf->resync_lock); conf->resync_lock);
/* block any new IO from starting */ /* block any new IO from starting */
conf->barrier[idx]++; atomic_inc(&conf->barrier[idx]);
/*
* In raise_barrier() we firstly increase conf->barrier[idx] then
* check conf->nr_pending[idx]. In _wait_barrier() we firstly
* increase conf->nr_pending[idx] then check conf->barrier[idx].
* A memory barrier here to make sure conf->nr_pending[idx] won't
* be fetched before conf->barrier[idx] is increased. Otherwise
* there will be a race between raise_barrier() and _wait_barrier().
*/
smp_mb__after_atomic();
/* For these conditions we must wait: /* For these conditions we must wait:
* A: while the array is in frozen state * A: while the array is in frozen state
...@@ -851,42 +861,81 @@ static void raise_barrier(struct r1conf *conf, sector_t sector_nr) ...@@ -851,42 +861,81 @@ static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
*/ */
wait_event_lock_irq(conf->wait_barrier, wait_event_lock_irq(conf->wait_barrier,
!conf->array_frozen && !conf->array_frozen &&
!conf->nr_pending[idx] && !atomic_read(&conf->nr_pending[idx]) &&
conf->barrier[idx] < RESYNC_DEPTH, atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
conf->resync_lock); conf->resync_lock);
conf->nr_pending[idx]++; atomic_inc(&conf->nr_pending[idx]);
spin_unlock_irq(&conf->resync_lock); spin_unlock_irq(&conf->resync_lock);
} }
static void lower_barrier(struct r1conf *conf, sector_t sector_nr) static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
{ {
unsigned long flags;
int idx = sector_to_idx(sector_nr); int idx = sector_to_idx(sector_nr);
BUG_ON(conf->barrier[idx] <= 0); BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
spin_lock_irqsave(&conf->resync_lock, flags); atomic_dec(&conf->barrier[idx]);
conf->barrier[idx]--; atomic_dec(&conf->nr_pending[idx]);
conf->nr_pending[idx]--;
spin_unlock_irqrestore(&conf->resync_lock, flags);
wake_up(&conf->wait_barrier); wake_up(&conf->wait_barrier);
} }
static void _wait_barrier(struct r1conf *conf, int idx) static void _wait_barrier(struct r1conf *conf, int idx)
{ {
/*
* We need to increase conf->nr_pending[idx] very early here,
* then raise_barrier() can be blocked when it waits for
* conf->nr_pending[idx] to be 0. Then we can avoid holding
* conf->resync_lock when there is no barrier raised in same
* barrier unit bucket. Also if the array is frozen, I/O
* should be blocked until array is unfrozen.
*/
atomic_inc(&conf->nr_pending[idx]);
/*
* In _wait_barrier() we firstly increase conf->nr_pending[idx], then
* check conf->barrier[idx]. In raise_barrier() we firstly increase
* conf->barrier[idx], then check conf->nr_pending[idx]. A memory
* barrier is necessary here to make sure conf->barrier[idx] won't be
* fetched before conf->nr_pending[idx] is increased. Otherwise there
* will be a race between _wait_barrier() and raise_barrier().
*/
smp_mb__after_atomic();
/*
* Don't worry about checking two atomic_t variables at same time
* here. If during we check conf->barrier[idx], the array is
* frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
* 0, it is safe to return and make the I/O continue. Because the
* array is frozen, all I/O returned here will eventually complete
* or be queued, no race will happen. See code comment in
* frozen_array().
*/
if (!READ_ONCE(conf->array_frozen) &&
!atomic_read(&conf->barrier[idx]))
return;
/*
* After holding conf->resync_lock, conf->nr_pending[idx]
* should be decreased before waiting for barrier to drop.
* Otherwise, we may encounter a race condition because
* raise_barrer() might be waiting for conf->nr_pending[idx]
* to be 0 at same time.
*/
spin_lock_irq(&conf->resync_lock); spin_lock_irq(&conf->resync_lock);
if (conf->array_frozen || conf->barrier[idx]) { atomic_inc(&conf->nr_waiting[idx]);
conf->nr_waiting[idx]++; atomic_dec(&conf->nr_pending[idx]);
/* Wait for the barrier to drop. */ /*
wait_event_lock_irq( * In case freeze_array() is waiting for
conf->wait_barrier, * get_unqueued_pending() == extra
!conf->array_frozen && !conf->barrier[idx], */
wake_up(&conf->wait_barrier);
/* Wait for the barrier in same barrier unit bucket to drop. */
wait_event_lock_irq(conf->wait_barrier,
!conf->array_frozen &&
!atomic_read(&conf->barrier[idx]),
conf->resync_lock); conf->resync_lock);
conf->nr_waiting[idx]--; atomic_inc(&conf->nr_pending[idx]);
} atomic_dec(&conf->nr_waiting[idx]);
conf->nr_pending[idx]++;
spin_unlock_irq(&conf->resync_lock); spin_unlock_irq(&conf->resync_lock);
} }
...@@ -894,18 +943,32 @@ static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) ...@@ -894,18 +943,32 @@ static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
{ {
int idx = sector_to_idx(sector_nr); int idx = sector_to_idx(sector_nr);
/*
* Very similar to _wait_barrier(). The difference is, for read
* I/O we don't need wait for sync I/O, but if the whole array
* is frozen, the read I/O still has to wait until the array is
* unfrozen. Since there is no ordering requirement with
* conf->barrier[idx] here, memory barrier is unnecessary as well.
*/
atomic_inc(&conf->nr_pending[idx]);
if (!READ_ONCE(conf->array_frozen))
return;
spin_lock_irq(&conf->resync_lock); spin_lock_irq(&conf->resync_lock);
if (conf->array_frozen) { atomic_inc(&conf->nr_waiting[idx]);
conf->nr_waiting[idx]++; atomic_dec(&conf->nr_pending[idx]);
/* Wait for array to unfreeze */ /*
wait_event_lock_irq( * In case freeze_array() is waiting for
conf->wait_barrier, * get_unqueued_pending() == extra
*/
wake_up(&conf->wait_barrier);
/* Wait for array to be unfrozen */
wait_event_lock_irq(conf->wait_barrier,
!conf->array_frozen, !conf->array_frozen,
conf->resync_lock); conf->resync_lock);
conf->nr_waiting[idx]--; atomic_inc(&conf->nr_pending[idx]);
} atomic_dec(&conf->nr_waiting[idx]);
conf->nr_pending[idx]++;
spin_unlock_irq(&conf->resync_lock); spin_unlock_irq(&conf->resync_lock);
} }
...@@ -926,11 +989,7 @@ static void wait_all_barriers(struct r1conf *conf) ...@@ -926,11 +989,7 @@ static void wait_all_barriers(struct r1conf *conf)
static void _allow_barrier(struct r1conf *conf, int idx) static void _allow_barrier(struct r1conf *conf, int idx)
{ {
unsigned long flags; atomic_dec(&conf->nr_pending[idx]);
spin_lock_irqsave(&conf->resync_lock, flags);
conf->nr_pending[idx]--;
spin_unlock_irqrestore(&conf->resync_lock, flags);
wake_up(&conf->wait_barrier); wake_up(&conf->wait_barrier);
} }
...@@ -955,7 +1014,8 @@ static int get_unqueued_pending(struct r1conf *conf) ...@@ -955,7 +1014,8 @@ static int get_unqueued_pending(struct r1conf *conf)
int idx, ret; int idx, ret;
for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++) for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
ret += conf->nr_pending[idx] - conf->nr_queued[idx]; ret += atomic_read(&conf->nr_pending[idx]) -
atomic_read(&conf->nr_queued[idx]);
return ret; return ret;
} }
...@@ -1000,8 +1060,8 @@ static void unfreeze_array(struct r1conf *conf) ...@@ -1000,8 +1060,8 @@ static void unfreeze_array(struct r1conf *conf)
/* reverse the effect of the freeze */ /* reverse the effect of the freeze */
spin_lock_irq(&conf->resync_lock); spin_lock_irq(&conf->resync_lock);
conf->array_frozen = 0; conf->array_frozen = 0;
wake_up(&conf->wait_barrier);
spin_unlock_irq(&conf->resync_lock); spin_unlock_irq(&conf->resync_lock);
wake_up(&conf->wait_barrier);
} }
/* duplicate the data pages for behind I/O /* duplicate the data pages for behind I/O
...@@ -2391,8 +2451,13 @@ static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) ...@@ -2391,8 +2451,13 @@ static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
spin_lock_irq(&conf->device_lock); spin_lock_irq(&conf->device_lock);
list_add(&r1_bio->retry_list, &conf->bio_end_io_list); list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
idx = sector_to_idx(r1_bio->sector); idx = sector_to_idx(r1_bio->sector);
conf->nr_queued[idx]++; atomic_inc(&conf->nr_queued[idx]);
spin_unlock_irq(&conf->device_lock); spin_unlock_irq(&conf->device_lock);
/*
* In case freeze_array() is waiting for condition
* get_unqueued_pending() == extra to be true.
*/
wake_up(&conf->wait_barrier);
md_wakeup_thread(conf->mddev->thread); md_wakeup_thread(conf->mddev->thread);
} else { } else {
if (test_bit(R1BIO_WriteError, &r1_bio->state)) if (test_bit(R1BIO_WriteError, &r1_bio->state))
...@@ -2523,9 +2588,7 @@ static void raid1d(struct md_thread *thread) ...@@ -2523,9 +2588,7 @@ static void raid1d(struct md_thread *thread)
retry_list); retry_list);
list_del(&r1_bio->retry_list); list_del(&r1_bio->retry_list);
idx = sector_to_idx(r1_bio->sector); idx = sector_to_idx(r1_bio->sector);
spin_lock_irqsave(&conf->device_lock, flags); atomic_dec(&conf->nr_queued[idx]);
conf->nr_queued[idx]--;
spin_unlock_irqrestore(&conf->device_lock, flags);
if (mddev->degraded) if (mddev->degraded)
set_bit(R1BIO_Degraded, &r1_bio->state); set_bit(R1BIO_Degraded, &r1_bio->state);
if (test_bit(R1BIO_WriteError, &r1_bio->state)) if (test_bit(R1BIO_WriteError, &r1_bio->state))
...@@ -2547,7 +2610,7 @@ static void raid1d(struct md_thread *thread) ...@@ -2547,7 +2610,7 @@ static void raid1d(struct md_thread *thread)
r1_bio = list_entry(head->prev, struct r1bio, retry_list); r1_bio = list_entry(head->prev, struct r1bio, retry_list);
list_del(head->prev); list_del(head->prev);
idx = sector_to_idx(r1_bio->sector); idx = sector_to_idx(r1_bio->sector);
conf->nr_queued[idx]--; atomic_dec(&conf->nr_queued[idx]);
spin_unlock_irqrestore(&conf->device_lock, flags); spin_unlock_irqrestore(&conf->device_lock, flags);
mddev = r1_bio->mddev; mddev = r1_bio->mddev;
...@@ -2664,7 +2727,7 @@ static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, ...@@ -2664,7 +2727,7 @@ static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
* If there is non-resync activity waiting for a turn, then let it * If there is non-resync activity waiting for a turn, then let it
* though before starting on this new sync request. * though before starting on this new sync request.
*/ */
if (conf->nr_waiting[idx]) if (atomic_read(&conf->nr_waiting[idx]))
schedule_timeout_uninterruptible(1); schedule_timeout_uninterruptible(1);
/* we are incrementing sector_nr below. To be safe, we check against /* we are incrementing sector_nr below. To be safe, we check against
...@@ -2924,22 +2987,22 @@ static struct r1conf *setup_conf(struct mddev *mddev) ...@@ -2924,22 +2987,22 @@ static struct r1conf *setup_conf(struct mddev *mddev)
goto abort; goto abort;
conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
sizeof(int), GFP_KERNEL); sizeof(atomic_t), GFP_KERNEL);
if (!conf->nr_pending) if (!conf->nr_pending)
goto abort; goto abort;
conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
sizeof(int), GFP_KERNEL); sizeof(atomic_t), GFP_KERNEL);
if (!conf->nr_waiting) if (!conf->nr_waiting)
goto abort; goto abort;
conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
sizeof(int), GFP_KERNEL); sizeof(atomic_t), GFP_KERNEL);
if (!conf->nr_queued) if (!conf->nr_queued)
goto abort; goto abort;
conf->barrier = kcalloc(BARRIER_BUCKETS_NR, conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
sizeof(int), GFP_KERNEL); sizeof(atomic_t), GFP_KERNEL);
if (!conf->barrier) if (!conf->barrier)
goto abort; goto abort;
......
...@@ -10,18 +10,19 @@ ...@@ -10,18 +10,19 @@
/* /*
* In struct r1conf, the following members are related to I/O barrier * In struct r1conf, the following members are related to I/O barrier
* buckets, * buckets,
* int *nr_pending; * atomic_t *nr_pending;
* int *nr_waiting; * atomic_t *nr_waiting;
* int *nr_queued; * atomic_t *nr_queued;
* int *barrier; * atomic_t *barrier;
* Each of them points to array of integers, each array is designed to * Each of them points to array of atomic_t variables, each array is
* have BARRIER_BUCKETS_NR elements and occupy a single memory page. The * designed to have BARRIER_BUCKETS_NR elements and occupy a single
* data width of integer variables is 4, equal to 1<<(ilog2(sizeof(int))), * memory page. The data width of atomic_t variables is 4 bytes, equal
* BARRIER_BUCKETS_NR_BITS is defined as (PAGE_SHIFT - ilog2(sizeof(int))) * to 1<<(ilog2(sizeof(atomic_t))), BARRIER_BUCKETS_NR_BITS is defined
* to make sure an array of integers with BARRIER_BUCKETS_NR elements just * as (PAGE_SHIFT - ilog2(sizeof(int))) to make sure an array of
* exactly occupies a single memory page. * atomic_t variables with BARRIER_BUCKETS_NR elements just exactly
*/ * occupies a single memory page.
#define BARRIER_BUCKETS_NR_BITS (PAGE_SHIFT - ilog2(sizeof(int))) */
#define BARRIER_BUCKETS_NR_BITS (PAGE_SHIFT - ilog2(sizeof(atomic_t)))
#define BARRIER_BUCKETS_NR (1<<BARRIER_BUCKETS_NR_BITS) #define BARRIER_BUCKETS_NR (1<<BARRIER_BUCKETS_NR_BITS)
struct raid1_info { struct raid1_info {
...@@ -83,10 +84,10 @@ struct r1conf { ...@@ -83,10 +84,10 @@ struct r1conf {
*/ */
wait_queue_head_t wait_barrier; wait_queue_head_t wait_barrier;
spinlock_t resync_lock; spinlock_t resync_lock;
int *nr_pending; atomic_t *nr_pending;
int *nr_waiting; atomic_t *nr_waiting;
int *nr_queued; atomic_t *nr_queued;
int *barrier; atomic_t *barrier;
int array_frozen; int array_frozen;
/* Set to 1 if a full sync is needed, (fresh device added). /* Set to 1 if a full sync is needed, (fresh device added).
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment