Commit 8293dd6f authored by Ingo Molnar's avatar Ingo Molnar

Merge branch 'x86/core' into tracing/ftrace

Semantic merge:

  kernel/trace/trace_functions_graph.c
Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
parents 631595fb 467c88fe
...@@ -3,14 +3,4 @@ ...@@ -3,14 +3,4 @@
#include <asm-generic/percpu.h> #include <asm-generic/percpu.h>
#ifdef CONFIG_MODULES
#define PERCPU_MODULE_RESERVE 8192
#else
#define PERCPU_MODULE_RESERVE 0
#endif
#define PERCPU_ENOUGH_ROOM \
(ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
PERCPU_MODULE_RESERVE)
#endif /* __ARCH_BLACKFIN_PERCPU__ */ #endif /* __ARCH_BLACKFIN_PERCPU__ */
...@@ -4,11 +4,6 @@ ...@@ -4,11 +4,6 @@
#undef notrace #undef notrace
#define notrace __attribute__((no_instrument_function)) #define notrace __attribute__((no_instrument_function))
#ifdef CONFIG_X86_64
#define __ALIGN .p2align 4,,15
#define __ALIGN_STR ".p2align 4,,15"
#endif
#ifdef CONFIG_X86_32 #ifdef CONFIG_X86_32
#define asmlinkage CPP_ASMLINKAGE __attribute__((regparm(0))) #define asmlinkage CPP_ASMLINKAGE __attribute__((regparm(0)))
/* /*
...@@ -50,16 +45,25 @@ ...@@ -50,16 +45,25 @@
__asmlinkage_protect_n(ret, "g" (arg1), "g" (arg2), "g" (arg3), \ __asmlinkage_protect_n(ret, "g" (arg1), "g" (arg2), "g" (arg3), \
"g" (arg4), "g" (arg5), "g" (arg6)) "g" (arg4), "g" (arg5), "g" (arg6))
#endif #endif /* CONFIG_X86_32 */
#ifdef __ASSEMBLY__
#define GLOBAL(name) \ #define GLOBAL(name) \
.globl name; \ .globl name; \
name: name:
#ifdef CONFIG_X86_64
#define __ALIGN .p2align 4,,15
#define __ALIGN_STR ".p2align 4,,15"
#endif
#ifdef CONFIG_X86_ALIGNMENT_16 #ifdef CONFIG_X86_ALIGNMENT_16
#define __ALIGN .align 16,0x90 #define __ALIGN .align 16,0x90
#define __ALIGN_STR ".align 16,0x90" #define __ALIGN_STR ".align 16,0x90"
#endif #endif
#endif /* __ASSEMBLY__ */
#endif /* _ASM_X86_LINKAGE_H */ #endif /* _ASM_X86_LINKAGE_H */
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
#include <asm/io.h> #include <asm/io.h>
#include <asm/processor.h> #include <asm/processor.h>
#include <asm/apic.h> #include <asm/apic.h>
#include <asm/cpu.h>
#ifdef CONFIG_X86_64 #ifdef CONFIG_X86_64
# include <asm/numa_64.h> # include <asm/numa_64.h>
...@@ -141,6 +142,55 @@ static void __cpuinit init_amd_k6(struct cpuinfo_x86 *c) ...@@ -141,6 +142,55 @@ static void __cpuinit init_amd_k6(struct cpuinfo_x86 *c)
} }
} }
static void __cpuinit amd_k7_smp_check(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
/* calling is from identify_secondary_cpu() ? */
if (c->cpu_index == boot_cpu_id)
return;
/*
* Certain Athlons might work (for various values of 'work') in SMP
* but they are not certified as MP capable.
*/
/* Athlon 660/661 is valid. */
if ((c->x86_model == 6) && ((c->x86_mask == 0) ||
(c->x86_mask == 1)))
goto valid_k7;
/* Duron 670 is valid */
if ((c->x86_model == 7) && (c->x86_mask == 0))
goto valid_k7;
/*
* Athlon 662, Duron 671, and Athlon >model 7 have capability
* bit. It's worth noting that the A5 stepping (662) of some
* Athlon XP's have the MP bit set.
* See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
* more.
*/
if (((c->x86_model == 6) && (c->x86_mask >= 2)) ||
((c->x86_model == 7) && (c->x86_mask >= 1)) ||
(c->x86_model > 7))
if (cpu_has_mp)
goto valid_k7;
/* If we get here, not a certified SMP capable AMD system. */
/*
* Don't taint if we are running SMP kernel on a single non-MP
* approved Athlon
*/
WARN_ONCE(1, "WARNING: This combination of AMD"
"processors is not suitable for SMP.\n");
if (!test_taint(TAINT_UNSAFE_SMP))
add_taint(TAINT_UNSAFE_SMP);
valid_k7:
;
#endif
}
static void __cpuinit init_amd_k7(struct cpuinfo_x86 *c) static void __cpuinit init_amd_k7(struct cpuinfo_x86 *c)
{ {
u32 l, h; u32 l, h;
...@@ -175,6 +225,8 @@ static void __cpuinit init_amd_k7(struct cpuinfo_x86 *c) ...@@ -175,6 +225,8 @@ static void __cpuinit init_amd_k7(struct cpuinfo_x86 *c)
} }
set_cpu_cap(c, X86_FEATURE_K7); set_cpu_cap(c, X86_FEATURE_K7);
amd_k7_smp_check(c);
} }
#endif #endif
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#include <asm/uaccess.h> #include <asm/uaccess.h>
#include <asm/ds.h> #include <asm/ds.h>
#include <asm/bugs.h> #include <asm/bugs.h>
#include <asm/cpu.h>
#ifdef CONFIG_X86_64 #ifdef CONFIG_X86_64
#include <asm/topology.h> #include <asm/topology.h>
...@@ -116,6 +117,28 @@ static void __cpuinit trap_init_f00f_bug(void) ...@@ -116,6 +117,28 @@ static void __cpuinit trap_init_f00f_bug(void)
} }
#endif #endif
static void __cpuinit intel_smp_check(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
/* calling is from identify_secondary_cpu() ? */
if (c->cpu_index == boot_cpu_id)
return;
/*
* Mask B, Pentium, but not Pentium MMX
*/
if (c->x86 == 5 &&
c->x86_mask >= 1 && c->x86_mask <= 4 &&
c->x86_model <= 3) {
/*
* Remember we have B step Pentia with bugs
*/
WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
"with B stepping processors.\n");
}
#endif
}
static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c) static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
{ {
unsigned long lo, hi; unsigned long lo, hi;
...@@ -192,6 +215,8 @@ static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c) ...@@ -192,6 +215,8 @@ static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
#ifdef CONFIG_X86_NUMAQ #ifdef CONFIG_X86_NUMAQ
numaq_tsc_disable(); numaq_tsc_disable();
#endif #endif
intel_smp_check(c);
} }
#else #else
static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c) static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
......
...@@ -42,6 +42,19 @@ unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = { ...@@ -42,6 +42,19 @@ unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = {
}; };
EXPORT_SYMBOL(__per_cpu_offset); EXPORT_SYMBOL(__per_cpu_offset);
/*
* On x86_64 symbols referenced from code should be reachable using
* 32bit relocations. Reserve space for static percpu variables in
* modules so that they are always served from the first chunk which
* is located at the percpu segment base. On x86_32, anything can
* address anywhere. No need to reserve space in the first chunk.
*/
#ifdef CONFIG_X86_64
#define PERCPU_FIRST_CHUNK_RESERVE PERCPU_MODULE_RESERVE
#else
#define PERCPU_FIRST_CHUNK_RESERVE 0
#endif
/** /**
* pcpu_need_numa - determine percpu allocation needs to consider NUMA * pcpu_need_numa - determine percpu allocation needs to consider NUMA
* *
...@@ -141,7 +154,7 @@ static ssize_t __init setup_pcpu_remap(size_t static_size) ...@@ -141,7 +154,7 @@ static ssize_t __init setup_pcpu_remap(size_t static_size)
{ {
static struct vm_struct vm; static struct vm_struct vm;
pg_data_t *last; pg_data_t *last;
size_t ptrs_size; size_t ptrs_size, dyn_size;
unsigned int cpu; unsigned int cpu;
ssize_t ret; ssize_t ret;
...@@ -169,12 +182,14 @@ static ssize_t __init setup_pcpu_remap(size_t static_size) ...@@ -169,12 +182,14 @@ static ssize_t __init setup_pcpu_remap(size_t static_size)
* Currently supports only single page. Supporting multiple * Currently supports only single page. Supporting multiple
* pages won't be too difficult if it ever becomes necessary. * pages won't be too difficult if it ever becomes necessary.
*/ */
pcpur_size = PFN_ALIGN(static_size + PERCPU_DYNAMIC_RESERVE); pcpur_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
PERCPU_DYNAMIC_RESERVE);
if (pcpur_size > PMD_SIZE) { if (pcpur_size > PMD_SIZE) {
pr_warning("PERCPU: static data is larger than large page, " pr_warning("PERCPU: static data is larger than large page, "
"can't use large page\n"); "can't use large page\n");
return -EINVAL; return -EINVAL;
} }
dyn_size = pcpur_size - static_size - PERCPU_FIRST_CHUNK_RESERVE;
/* allocate pointer array and alloc large pages */ /* allocate pointer array and alloc large pages */
ptrs_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpur_ptrs[0])); ptrs_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpur_ptrs[0]));
...@@ -217,8 +232,9 @@ static ssize_t __init setup_pcpu_remap(size_t static_size) ...@@ -217,8 +232,9 @@ static ssize_t __init setup_pcpu_remap(size_t static_size)
pr_info("PERCPU: Remapped at %p with large pages, static data " pr_info("PERCPU: Remapped at %p with large pages, static data "
"%zu bytes\n", vm.addr, static_size); "%zu bytes\n", vm.addr, static_size);
ret = pcpu_setup_first_chunk(pcpur_get_page, static_size, PMD_SIZE, ret = pcpu_setup_first_chunk(pcpur_get_page, static_size,
pcpur_size - static_size, vm.addr, NULL); PERCPU_FIRST_CHUNK_RESERVE,
PMD_SIZE, dyn_size, vm.addr, NULL);
goto out_free_ar; goto out_free_ar;
enomem: enomem:
...@@ -241,24 +257,31 @@ static ssize_t __init setup_pcpu_remap(size_t static_size) ...@@ -241,24 +257,31 @@ static ssize_t __init setup_pcpu_remap(size_t static_size)
* Embedding allocator * Embedding allocator
* *
* The first chunk is sized to just contain the static area plus * The first chunk is sized to just contain the static area plus
* PERCPU_DYNAMIC_RESERVE and allocated as a contiguous area using * module and dynamic reserves, and allocated as a contiguous area
* bootmem allocator and used as-is without being mapped into vmalloc * using bootmem allocator and used as-is without being mapped into
* area. This enables the first chunk to piggy back on the linear * vmalloc area. This enables the first chunk to piggy back on the
* physical PMD mapping and doesn't add any additional pressure to * linear physical PMD mapping and doesn't add any additional pressure
* TLB. * to TLB. Note that if the needed size is smaller than the minimum
* unit size, the leftover is returned to the bootmem allocator.
*/ */
static void *pcpue_ptr __initdata; static void *pcpue_ptr __initdata;
static size_t pcpue_size __initdata;
static size_t pcpue_unit_size __initdata; static size_t pcpue_unit_size __initdata;
static struct page * __init pcpue_get_page(unsigned int cpu, int pageno) static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
{ {
return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size size_t off = (size_t)pageno << PAGE_SHIFT;
+ ((size_t)pageno << PAGE_SHIFT));
if (off >= pcpue_size)
return NULL;
return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
} }
static ssize_t __init setup_pcpu_embed(size_t static_size) static ssize_t __init setup_pcpu_embed(size_t static_size)
{ {
unsigned int cpu; unsigned int cpu;
size_t dyn_size;
/* /*
* If large page isn't supported, there's no benefit in doing * If large page isn't supported, there's no benefit in doing
...@@ -269,25 +292,32 @@ static ssize_t __init setup_pcpu_embed(size_t static_size) ...@@ -269,25 +292,32 @@ static ssize_t __init setup_pcpu_embed(size_t static_size)
return -EINVAL; return -EINVAL;
/* allocate and copy */ /* allocate and copy */
pcpue_unit_size = PFN_ALIGN(static_size + PERCPU_DYNAMIC_RESERVE); pcpue_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
pcpue_unit_size = max_t(size_t, pcpue_unit_size, PCPU_MIN_UNIT_SIZE); PERCPU_DYNAMIC_RESERVE);
pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
dyn_size = pcpue_size - static_size - PERCPU_FIRST_CHUNK_RESERVE;
pcpue_ptr = pcpu_alloc_bootmem(0, num_possible_cpus() * pcpue_unit_size, pcpue_ptr = pcpu_alloc_bootmem(0, num_possible_cpus() * pcpue_unit_size,
PAGE_SIZE); PAGE_SIZE);
if (!pcpue_ptr) if (!pcpue_ptr)
return -ENOMEM; return -ENOMEM;
for_each_possible_cpu(cpu) for_each_possible_cpu(cpu) {
memcpy(pcpue_ptr + cpu * pcpue_unit_size, __per_cpu_load, void *ptr = pcpue_ptr + cpu * pcpue_unit_size;
static_size);
free_bootmem(__pa(ptr + pcpue_size),
pcpue_unit_size - pcpue_size);
memcpy(ptr, __per_cpu_load, static_size);
}
/* we're ready, commit */ /* we're ready, commit */
pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n", pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
pcpue_unit_size >> PAGE_SHIFT, pcpue_ptr, static_size); pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);
return pcpu_setup_first_chunk(pcpue_get_page, static_size, return pcpu_setup_first_chunk(pcpue_get_page, static_size,
pcpue_unit_size, PERCPU_FIRST_CHUNK_RESERVE,
pcpue_unit_size - static_size, pcpue_ptr, pcpue_unit_size, dyn_size,
NULL); pcpue_ptr, NULL);
} }
/* /*
...@@ -344,7 +374,8 @@ static ssize_t __init setup_pcpu_4k(size_t static_size) ...@@ -344,7 +374,8 @@ static ssize_t __init setup_pcpu_4k(size_t static_size)
pr_info("PERCPU: Allocated %d 4k pages, static data %zu bytes\n", pr_info("PERCPU: Allocated %d 4k pages, static data %zu bytes\n",
pcpu4k_nr_static_pages, static_size); pcpu4k_nr_static_pages, static_size);
ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size, 0, 0, NULL, ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size,
PERCPU_FIRST_CHUNK_RESERVE, -1, -1, NULL,
pcpu4k_populate_pte); pcpu4k_populate_pte);
goto out_free_ar; goto out_free_ar;
......
...@@ -114,10 +114,6 @@ EXPORT_PER_CPU_SYMBOL(cpu_info); ...@@ -114,10 +114,6 @@ EXPORT_PER_CPU_SYMBOL(cpu_info);
atomic_t init_deasserted; atomic_t init_deasserted;
/* Set if we find a B stepping CPU */
static int __cpuinitdata smp_b_stepping;
#if defined(CONFIG_NUMA) && defined(CONFIG_X86_32) #if defined(CONFIG_NUMA) && defined(CONFIG_X86_32)
/* which logical CPUs are on which nodes */ /* which logical CPUs are on which nodes */
...@@ -271,8 +267,6 @@ static void __cpuinit smp_callin(void) ...@@ -271,8 +267,6 @@ static void __cpuinit smp_callin(void)
cpumask_set_cpu(cpuid, cpu_callin_mask); cpumask_set_cpu(cpuid, cpu_callin_mask);
} }
static int __cpuinitdata unsafe_smp;
/* /*
* Activate a secondary processor. * Activate a secondary processor.
*/ */
...@@ -340,76 +334,6 @@ notrace static void __cpuinit start_secondary(void *unused) ...@@ -340,76 +334,6 @@ notrace static void __cpuinit start_secondary(void *unused)
cpu_idle(); cpu_idle();
} }
static void __cpuinit smp_apply_quirks(struct cpuinfo_x86 *c)
{
/*
* Mask B, Pentium, but not Pentium MMX
*/
if (c->x86_vendor == X86_VENDOR_INTEL &&
c->x86 == 5 &&
c->x86_mask >= 1 && c->x86_mask <= 4 &&
c->x86_model <= 3)
/*
* Remember we have B step Pentia with bugs
*/
smp_b_stepping = 1;
/*
* Certain Athlons might work (for various values of 'work') in SMP
* but they are not certified as MP capable.
*/
if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
if (num_possible_cpus() == 1)
goto valid_k7;
/* Athlon 660/661 is valid. */
if ((c->x86_model == 6) && ((c->x86_mask == 0) ||
(c->x86_mask == 1)))
goto valid_k7;
/* Duron 670 is valid */
if ((c->x86_model == 7) && (c->x86_mask == 0))
goto valid_k7;
/*
* Athlon 662, Duron 671, and Athlon >model 7 have capability
* bit. It's worth noting that the A5 stepping (662) of some
* Athlon XP's have the MP bit set.
* See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
* more.
*/
if (((c->x86_model == 6) && (c->x86_mask >= 2)) ||
((c->x86_model == 7) && (c->x86_mask >= 1)) ||
(c->x86_model > 7))
if (cpu_has_mp)
goto valid_k7;
/* If we get here, not a certified SMP capable AMD system. */
unsafe_smp = 1;
}
valid_k7:
;
}
static void __cpuinit smp_checks(void)
{
if (smp_b_stepping)
printk(KERN_WARNING "WARNING: SMP operation may be unreliable"
"with B stepping processors.\n");
/*
* Don't taint if we are running SMP kernel on a single non-MP
* approved Athlon
*/
if (unsafe_smp && num_online_cpus() > 1) {
printk(KERN_INFO "WARNING: This combination of AMD"
"processors is not suitable for SMP.\n");
add_taint(TAINT_UNSAFE_SMP);
}
}
/* /*
* The bootstrap kernel entry code has set these up. Save them for * The bootstrap kernel entry code has set these up. Save them for
* a given CPU * a given CPU
...@@ -423,7 +347,6 @@ void __cpuinit smp_store_cpu_info(int id) ...@@ -423,7 +347,6 @@ void __cpuinit smp_store_cpu_info(int id)
c->cpu_index = id; c->cpu_index = id;
if (id != 0) if (id != 0)
identify_secondary_cpu(c); identify_secondary_cpu(c);
smp_apply_quirks(c);
} }
...@@ -1193,7 +1116,6 @@ void __init native_smp_cpus_done(unsigned int max_cpus) ...@@ -1193,7 +1116,6 @@ void __init native_smp_cpus_done(unsigned int max_cpus)
pr_debug("Boot done.\n"); pr_debug("Boot done.\n");
impress_friends(); impress_friends();
smp_checks();
#ifdef CONFIG_X86_IO_APIC #ifdef CONFIG_X86_IO_APIC
setup_ioapic_dest(); setup_ioapic_dest();
#endif #endif
......
...@@ -314,8 +314,6 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, ...@@ -314,8 +314,6 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
int locals = 0; int locals = 0;
struct bau_desc *bau_desc; struct bau_desc *bau_desc;
WARN_ON(!in_atomic());
cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
uv_cpu = uv_blade_processor_id(); uv_cpu = uv_blade_processor_id();
......
...@@ -134,8 +134,8 @@ unsigned long __init_refok init_memory_mapping(unsigned long start, ...@@ -134,8 +134,8 @@ unsigned long __init_refok init_memory_mapping(unsigned long start,
{ {
unsigned long page_size_mask = 0; unsigned long page_size_mask = 0;
unsigned long start_pfn, end_pfn; unsigned long start_pfn, end_pfn;
unsigned long ret = 0;
unsigned long pos; unsigned long pos;
unsigned long ret;
struct map_range mr[NR_RANGE_MR]; struct map_range mr[NR_RANGE_MR];
int nr_range, i; int nr_range, i;
......
...@@ -806,11 +806,6 @@ static unsigned long __init setup_node_bootmem(int nodeid, ...@@ -806,11 +806,6 @@ static unsigned long __init setup_node_bootmem(int nodeid,
{ {
unsigned long bootmap_size; unsigned long bootmap_size;
if (start_pfn > max_low_pfn)
return bootmap;
if (end_pfn > max_low_pfn)
end_pfn = max_low_pfn;
/* don't touch min_low_pfn */ /* don't touch min_low_pfn */
bootmap_size = init_bootmem_node(NODE_DATA(nodeid), bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
bootmap >> PAGE_SHIFT, bootmap >> PAGE_SHIFT,
...@@ -843,13 +838,23 @@ void __init setup_bootmem_allocator(void) ...@@ -843,13 +838,23 @@ void __init setup_bootmem_allocator(void)
max_pfn_mapped<<PAGE_SHIFT); max_pfn_mapped<<PAGE_SHIFT);
printk(KERN_INFO " low ram: 0 - %08lx\n", max_low_pfn<<PAGE_SHIFT); printk(KERN_INFO " low ram: 0 - %08lx\n", max_low_pfn<<PAGE_SHIFT);
for_each_online_node(nodeid) {
unsigned long start_pfn, end_pfn;
#ifdef CONFIG_NEED_MULTIPLE_NODES #ifdef CONFIG_NEED_MULTIPLE_NODES
for_each_online_node(nodeid) start_pfn = node_start_pfn[nodeid];
bootmap = setup_node_bootmem(nodeid, node_start_pfn[nodeid], end_pfn = node_end_pfn[nodeid];
node_end_pfn[nodeid], bootmap); if (start_pfn > max_low_pfn)
continue;
if (end_pfn > max_low_pfn)
end_pfn = max_low_pfn;
#else #else
bootmap = setup_node_bootmem(0, 0, max_low_pfn, bootmap); start_pfn = 0;
end_pfn = max_low_pfn;
#endif #endif
bootmap = setup_node_bootmem(nodeid, start_pfn, end_pfn,
bootmap);
}
after_bootmem = 1; after_bootmem = 1;
} }
......
...@@ -85,7 +85,7 @@ early_param("gbpages", parse_direct_gbpages_on); ...@@ -85,7 +85,7 @@ early_param("gbpages", parse_direct_gbpages_on);
pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP; pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
EXPORT_SYMBOL_GPL(__supported_pte_mask); EXPORT_SYMBOL_GPL(__supported_pte_mask);
static int do_not_nx __cpuinitdata; static int disable_nx __cpuinitdata;
/* /*
* noexec=on|off * noexec=on|off
...@@ -100,9 +100,9 @@ static int __init nonx_setup(char *str) ...@@ -100,9 +100,9 @@ static int __init nonx_setup(char *str)
return -EINVAL; return -EINVAL;
if (!strncmp(str, "on", 2)) { if (!strncmp(str, "on", 2)) {
__supported_pte_mask |= _PAGE_NX; __supported_pte_mask |= _PAGE_NX;
do_not_nx = 0; disable_nx = 0;
} else if (!strncmp(str, "off", 3)) { } else if (!strncmp(str, "off", 3)) {
do_not_nx = 1; disable_nx = 1;
__supported_pte_mask &= ~_PAGE_NX; __supported_pte_mask &= ~_PAGE_NX;
} }
return 0; return 0;
...@@ -114,7 +114,7 @@ void __cpuinit check_efer(void) ...@@ -114,7 +114,7 @@ void __cpuinit check_efer(void)
unsigned long efer; unsigned long efer;
rdmsrl(MSR_EFER, efer); rdmsrl(MSR_EFER, efer);
if (!(efer & EFER_NX) || do_not_nx) if (!(efer & EFER_NX) || disable_nx)
__supported_pte_mask &= ~_PAGE_NX; __supported_pte_mask &= ~_PAGE_NX;
} }
......
...@@ -87,6 +87,8 @@ bool __virt_addr_valid(unsigned long x) ...@@ -87,6 +87,8 @@ bool __virt_addr_valid(unsigned long x)
return false; return false;
if (__vmalloc_start_set && is_vmalloc_addr((void *) x)) if (__vmalloc_start_set && is_vmalloc_addr((void *) x))
return false; return false;
if (x >= FIXADDR_START)
return false;
return pfn_valid((x - PAGE_OFFSET) >> PAGE_SHIFT); return pfn_valid((x - PAGE_OFFSET) >> PAGE_SHIFT);
} }
EXPORT_SYMBOL(__virt_addr_valid); EXPORT_SYMBOL(__virt_addr_valid);
...@@ -504,13 +506,19 @@ static inline pte_t * __init early_ioremap_pte(unsigned long addr) ...@@ -504,13 +506,19 @@ static inline pte_t * __init early_ioremap_pte(unsigned long addr)
return &bm_pte[pte_index(addr)]; return &bm_pte[pte_index(addr)];
} }
static unsigned long slot_virt[FIX_BTMAPS_SLOTS] __initdata;
void __init early_ioremap_init(void) void __init early_ioremap_init(void)
{ {
pmd_t *pmd; pmd_t *pmd;
int i;
if (early_ioremap_debug) if (early_ioremap_debug)
printk(KERN_INFO "early_ioremap_init()\n"); printk(KERN_INFO "early_ioremap_init()\n");
for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
slot_virt[i] = fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i);
pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)); pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
memset(bm_pte, 0, sizeof(bm_pte)); memset(bm_pte, 0, sizeof(bm_pte));
pmd_populate_kernel(&init_mm, pmd, bm_pte); pmd_populate_kernel(&init_mm, pmd, bm_pte);
...@@ -577,6 +585,7 @@ static inline void __init early_clear_fixmap(enum fixed_addresses idx) ...@@ -577,6 +585,7 @@ static inline void __init early_clear_fixmap(enum fixed_addresses idx)
static void __iomem *prev_map[FIX_BTMAPS_SLOTS] __initdata; static void __iomem *prev_map[FIX_BTMAPS_SLOTS] __initdata;
static unsigned long prev_size[FIX_BTMAPS_SLOTS] __initdata; static unsigned long prev_size[FIX_BTMAPS_SLOTS] __initdata;
static int __init check_early_ioremap_leak(void) static int __init check_early_ioremap_leak(void)
{ {
int count = 0; int count = 0;
...@@ -598,7 +607,8 @@ static int __init check_early_ioremap_leak(void) ...@@ -598,7 +607,8 @@ static int __init check_early_ioremap_leak(void)
} }
late_initcall(check_early_ioremap_leak); late_initcall(check_early_ioremap_leak);
static void __init __iomem *__early_ioremap(unsigned long phys_addr, unsigned long size, pgprot_t prot) static void __init __iomem *
__early_ioremap(unsigned long phys_addr, unsigned long size, pgprot_t prot)
{ {
unsigned long offset, last_addr; unsigned long offset, last_addr;
unsigned int nrpages; unsigned int nrpages;
...@@ -664,9 +674,9 @@ static void __init __iomem *__early_ioremap(unsigned long phys_addr, unsigned lo ...@@ -664,9 +674,9 @@ static void __init __iomem *__early_ioremap(unsigned long phys_addr, unsigned lo
--nrpages; --nrpages;
} }
if (early_ioremap_debug) if (early_ioremap_debug)
printk(KERN_CONT "%08lx + %08lx\n", offset, fix_to_virt(idx0)); printk(KERN_CONT "%08lx + %08lx\n", offset, slot_virt[slot]);
prev_map[slot] = (void __iomem *)(offset + fix_to_virt(idx0)); prev_map[slot] = (void __iomem *)(offset + slot_virt[slot]);
return prev_map[slot]; return prev_map[slot];
} }
...@@ -734,8 +744,3 @@ void __init early_iounmap(void __iomem *addr, unsigned long size) ...@@ -734,8 +744,3 @@ void __init early_iounmap(void __iomem *addr, unsigned long size)
} }
prev_map[slot] = NULL; prev_map[slot] = NULL;
} }
void __this_fixmap_does_not_exist(void)
{
WARN_ON(1);
}
...@@ -451,23 +451,24 @@ static void rcu_free_kmmio_fault_pages(struct rcu_head *head) ...@@ -451,23 +451,24 @@ static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
static void remove_kmmio_fault_pages(struct rcu_head *head) static void remove_kmmio_fault_pages(struct rcu_head *head)
{ {
struct kmmio_delayed_release *dr = container_of( struct kmmio_delayed_release *dr =
head, container_of(head, struct kmmio_delayed_release, rcu);
struct kmmio_delayed_release,
rcu);
struct kmmio_fault_page *p = dr->release_list; struct kmmio_fault_page *p = dr->release_list;
struct kmmio_fault_page **prevp = &dr->release_list; struct kmmio_fault_page **prevp = &dr->release_list;
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&kmmio_lock, flags); spin_lock_irqsave(&kmmio_lock, flags);
while (p) { while (p) {
if (!p->count) if (!p->count) {
list_del_rcu(&p->list); list_del_rcu(&p->list);
else
*prevp = p->release_next;
prevp = &p->release_next; prevp = &p->release_next;
} else {
*prevp = p->release_next;
}
p = p->release_next; p = p->release_next;
} }
spin_unlock_irqrestore(&kmmio_lock, flags); spin_unlock_irqrestore(&kmmio_lock, flags);
/* This is the real RCU destroy call. */ /* This is the real RCU destroy call. */
call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
} }
......
...@@ -100,6 +100,9 @@ static int __init parse_memtest(char *arg) ...@@ -100,6 +100,9 @@ static int __init parse_memtest(char *arg)
{ {
if (arg) if (arg)
memtest_pattern = simple_strtoul(arg, NULL, 0); memtest_pattern = simple_strtoul(arg, NULL, 0);
else
memtest_pattern = ARRAY_SIZE(patterns);
return 0; return 0;
} }
......
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
#include <linux/slab.h> /* For kmalloc() */ #include <linux/slab.h> /* For kmalloc() */
#include <linux/smp.h> #include <linux/smp.h>
#include <linux/cpumask.h> #include <linux/cpumask.h>
#include <linux/pfn.h>
#include <asm/percpu.h> #include <asm/percpu.h>
...@@ -52,17 +53,18 @@ ...@@ -52,17 +53,18 @@
#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(per_cpu__##var) #define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(per_cpu__##var)
#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(per_cpu__##var) #define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(per_cpu__##var)
/* Enough to cover all DEFINE_PER_CPUs in kernel, including modules. */ /* enough to cover all DEFINE_PER_CPUs in modules */
#ifndef PERCPU_ENOUGH_ROOM
#ifdef CONFIG_MODULES #ifdef CONFIG_MODULES
#define PERCPU_MODULE_RESERVE 8192 #define PERCPU_MODULE_RESERVE (8 << 10)
#else #else
#define PERCPU_MODULE_RESERVE 0 #define PERCPU_MODULE_RESERVE 0
#endif #endif
#ifndef PERCPU_ENOUGH_ROOM
#define PERCPU_ENOUGH_ROOM \ #define PERCPU_ENOUGH_ROOM \
(__per_cpu_end - __per_cpu_start + PERCPU_MODULE_RESERVE) (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
#endif /* PERCPU_ENOUGH_ROOM */ PERCPU_MODULE_RESERVE)
#endif
/* /*
* Must be an lvalue. Since @var must be a simple identifier, * Must be an lvalue. Since @var must be a simple identifier,
...@@ -79,35 +81,24 @@ ...@@ -79,35 +81,24 @@
#ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA #ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
/* minimum unit size, also is the maximum supported allocation size */ /* minimum unit size, also is the maximum supported allocation size */
#define PCPU_MIN_UNIT_SIZE (16UL << PAGE_SHIFT) #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10)
/* /*
* PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
* back on the first chunk if arch is manually allocating and mapping * back on the first chunk for dynamic percpu allocation if arch is
* it for faster access (as a part of large page mapping for example). * manually allocating and mapping it for faster access (as a part of
* Note that dynamic percpu allocator covers both static and dynamic * large page mapping for example).
* areas, so these values are bigger than PERCPU_MODULE_RESERVE.
* *
* On typical configuration with modules, the following values leave * The following values give between one and two pages of free space
* about 8k of free space on the first chunk after boot on both x86_32 * after typical minimal boot (2-way SMP, single disk and NIC) with
* and 64 when module support is enabled. When module support is * both defconfig and a distro config on x86_64 and 32. More
* disabled, it's much tighter. * intelligent way to determine this would be nice.
*/ */
#ifndef PERCPU_DYNAMIC_RESERVE #if BITS_PER_LONG > 32
# if BITS_PER_LONG > 32 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
# ifdef CONFIG_MODULES #else
# define PERCPU_DYNAMIC_RESERVE (6 << PAGE_SHIFT) #define PERCPU_DYNAMIC_RESERVE (12 << 10)
# else #endif
# define PERCPU_DYNAMIC_RESERVE (4 << PAGE_SHIFT)
# endif
# else
# ifdef CONFIG_MODULES
# define PERCPU_DYNAMIC_RESERVE (4 << PAGE_SHIFT)
# else
# define PERCPU_DYNAMIC_RESERVE (2 << PAGE_SHIFT)
# endif
# endif
#endif /* PERCPU_DYNAMIC_RESERVE */
extern void *pcpu_base_addr; extern void *pcpu_base_addr;
...@@ -115,8 +106,9 @@ typedef struct page * (*pcpu_get_page_fn_t)(unsigned int cpu, int pageno); ...@@ -115,8 +106,9 @@ typedef struct page * (*pcpu_get_page_fn_t)(unsigned int cpu, int pageno);
typedef void (*pcpu_populate_pte_fn_t)(unsigned long addr); typedef void (*pcpu_populate_pte_fn_t)(unsigned long addr);
extern size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, extern size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
size_t static_size, size_t unit_size, size_t static_size, size_t reserved_size,
size_t free_size, void *base_addr, ssize_t unit_size, ssize_t dyn_size,
void *base_addr,
pcpu_populate_pte_fn_t populate_pte_fn); pcpu_populate_pte_fn_t populate_pte_fn);
/* /*
...@@ -126,6 +118,8 @@ extern size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, ...@@ -126,6 +118,8 @@ extern size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
*/ */
#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
extern void *__alloc_reserved_percpu(size_t size, size_t align);
#else /* CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */ #else /* CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */
struct percpu_data { struct percpu_data {
......
...@@ -381,7 +381,7 @@ static void *percpu_modalloc(unsigned long size, unsigned long align, ...@@ -381,7 +381,7 @@ static void *percpu_modalloc(unsigned long size, unsigned long align,
align = PAGE_SIZE; align = PAGE_SIZE;
} }
ptr = __alloc_percpu(size, align); ptr = __alloc_reserved_percpu(size, align);
if (!ptr) if (!ptr)
printk(KERN_WARNING printk(KERN_WARNING
"Could not allocate %lu bytes percpu data\n", size); "Could not allocate %lu bytes percpu data\n", size);
......
...@@ -837,7 +837,7 @@ static void graph_trace_open(struct trace_iterator *iter) ...@@ -837,7 +837,7 @@ static void graph_trace_open(struct trace_iterator *iter)
static void graph_trace_close(struct trace_iterator *iter) static void graph_trace_close(struct trace_iterator *iter)
{ {
percpu_free(iter->private); free_percpu(iter->private);
} }
static struct tracer graph_trace __read_mostly = { static struct tracer graph_trace __read_mostly = {
......
...@@ -62,7 +62,9 @@ ...@@ -62,7 +62,9 @@
#include <linux/pfn.h> #include <linux/pfn.h>
#include <linux/rbtree.h> #include <linux/rbtree.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
#include <asm/tlbflush.h> #include <asm/tlbflush.h>
...@@ -80,7 +82,8 @@ struct pcpu_chunk { ...@@ -80,7 +82,8 @@ struct pcpu_chunk {
int map_alloc; /* # of map entries allocated */ int map_alloc; /* # of map entries allocated */
int *map; /* allocation map */ int *map; /* allocation map */
bool immutable; /* no [de]population allowed */ bool immutable; /* no [de]population allowed */
struct page *page[]; /* #cpus * UNIT_PAGES */ struct page **page; /* points to page array */
struct page *page_ar[]; /* #cpus * UNIT_PAGES */
}; };
static int pcpu_unit_pages __read_mostly; static int pcpu_unit_pages __read_mostly;
...@@ -93,28 +96,42 @@ static size_t pcpu_chunk_struct_size __read_mostly; ...@@ -93,28 +96,42 @@ static size_t pcpu_chunk_struct_size __read_mostly;
void *pcpu_base_addr __read_mostly; void *pcpu_base_addr __read_mostly;
EXPORT_SYMBOL_GPL(pcpu_base_addr); EXPORT_SYMBOL_GPL(pcpu_base_addr);
/* the size of kernel static area */ /* optional reserved chunk, only accessible for reserved allocations */
static int pcpu_static_size __read_mostly; static struct pcpu_chunk *pcpu_reserved_chunk;
/* offset limit of the reserved chunk */
static int pcpu_reserved_chunk_limit;
/* /*
* One mutex to rule them all. * Synchronization rules.
* *
* The following mutex is grabbed in the outermost public alloc/free * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
* interface functions and released only when the operation is * protects allocation/reclaim paths, chunks and chunk->page arrays.
* complete. As such, every function in this file other than the * The latter is a spinlock and protects the index data structures -
* outermost functions are called under pcpu_mutex. * chunk slots, rbtree, chunks and area maps in chunks.
* *
* It can easily be switched to use spinlock such that only the area * During allocation, pcpu_alloc_mutex is kept locked all the time and
* allocation and page population commit are protected with it doing * pcpu_lock is grabbed and released as necessary. All actual memory
* actual [de]allocation without holding any lock. However, given * allocations are done using GFP_KERNEL with pcpu_lock released.
* what this allocator does, I think it's better to let them run *
* sequentially. * Free path accesses and alters only the index data structures, so it
* can be safely called from atomic context. When memory needs to be
* returned to the system, free path schedules reclaim_work which
* grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
* reclaimed, release both locks and frees the chunks. Note that it's
* necessary to grab both locks to remove a chunk from circulation as
* allocation path might be referencing the chunk with only
* pcpu_alloc_mutex locked.
*/ */
static DEFINE_MUTEX(pcpu_mutex); static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */ static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
static int __pcpu_size_to_slot(int size) static int __pcpu_size_to_slot(int size)
{ {
int highbit = fls(size); /* size is in bytes */ int highbit = fls(size); /* size is in bytes */
...@@ -161,39 +178,44 @@ static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, ...@@ -161,39 +178,44 @@ static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
} }
/** /**
* pcpu_realloc - versatile realloc * pcpu_mem_alloc - allocate memory
* @p: the current pointer (can be NULL for new allocations) * @size: bytes to allocate
* @size: the current size in bytes (can be 0 for new allocations) *
* @new_size: the wanted new size in bytes (can be 0 for free) * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
* kzalloc() is used; otherwise, vmalloc() is used. The returned
* memory is always zeroed.
* *
* More robust realloc which can be used to allocate, resize or free a * CONTEXT:
* memory area of arbitrary size. If the needed size goes over * Does GFP_KERNEL allocation.
* PAGE_SIZE, kernel VM is used.
* *
* RETURNS: * RETURNS:
* The new pointer on success, NULL on failure. * Pointer to the allocated area on success, NULL on failure.
*/ */
static void *pcpu_realloc(void *p, size_t size, size_t new_size) static void *pcpu_mem_alloc(size_t size)
{ {
void *new; if (size <= PAGE_SIZE)
return kzalloc(size, GFP_KERNEL);
if (new_size <= PAGE_SIZE) else {
new = kmalloc(new_size, GFP_KERNEL); void *ptr = vmalloc(size);
else if (ptr)
new = vmalloc(new_size); memset(ptr, 0, size);
if (new_size && !new) return ptr;
return NULL; }
}
memcpy(new, p, min(size, new_size));
if (new_size > size)
memset(new + size, 0, new_size - size);
/**
* pcpu_mem_free - free memory
* @ptr: memory to free
* @size: size of the area
*
* Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
*/
static void pcpu_mem_free(void *ptr, size_t size)
{
if (size <= PAGE_SIZE) if (size <= PAGE_SIZE)
kfree(p); kfree(ptr);
else else
vfree(p); vfree(ptr);
return new;
} }
/** /**
...@@ -203,13 +225,17 @@ static void *pcpu_realloc(void *p, size_t size, size_t new_size) ...@@ -203,13 +225,17 @@ static void *pcpu_realloc(void *p, size_t size, size_t new_size)
* *
* This function is called after an allocation or free changed @chunk. * This function is called after an allocation or free changed @chunk.
* New slot according to the changed state is determined and @chunk is * New slot according to the changed state is determined and @chunk is
* moved to the slot. * moved to the slot. Note that the reserved chunk is never put on
* chunk slots.
*
* CONTEXT:
* pcpu_lock.
*/ */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{ {
int nslot = pcpu_chunk_slot(chunk); int nslot = pcpu_chunk_slot(chunk);
if (oslot != nslot) { if (chunk != pcpu_reserved_chunk && oslot != nslot) {
if (oslot < nslot) if (oslot < nslot)
list_move(&chunk->list, &pcpu_slot[nslot]); list_move(&chunk->list, &pcpu_slot[nslot]);
else else
...@@ -249,6 +275,9 @@ static struct rb_node **pcpu_chunk_rb_search(void *addr, ...@@ -249,6 +275,9 @@ static struct rb_node **pcpu_chunk_rb_search(void *addr,
* searchs for the chunk with the highest start address which isn't * searchs for the chunk with the highest start address which isn't
* beyond @addr. * beyond @addr.
* *
* CONTEXT:
* pcpu_lock.
*
* RETURNS: * RETURNS:
* The address of the found chunk. * The address of the found chunk.
*/ */
...@@ -257,6 +286,15 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) ...@@ -257,6 +286,15 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
struct rb_node *n, *parent; struct rb_node *n, *parent;
struct pcpu_chunk *chunk; struct pcpu_chunk *chunk;
/* is it in the reserved chunk? */
if (pcpu_reserved_chunk) {
void *start = pcpu_reserved_chunk->vm->addr;
if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
return pcpu_reserved_chunk;
}
/* nah... search the regular ones */
n = *pcpu_chunk_rb_search(addr, &parent); n = *pcpu_chunk_rb_search(addr, &parent);
if (!n) { if (!n) {
/* no exactly matching chunk, the parent is the closest */ /* no exactly matching chunk, the parent is the closest */
...@@ -280,6 +318,9 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) ...@@ -280,6 +318,9 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
* @new: chunk to insert * @new: chunk to insert
* *
* Insert @new into address rb tree. * Insert @new into address rb tree.
*
* CONTEXT:
* pcpu_lock.
*/ */
static void pcpu_chunk_addr_insert(struct pcpu_chunk *new) static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
{ {
...@@ -291,6 +332,66 @@ static void pcpu_chunk_addr_insert(struct pcpu_chunk *new) ...@@ -291,6 +332,66 @@ static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
rb_insert_color(&new->rb_node, &pcpu_addr_root); rb_insert_color(&new->rb_node, &pcpu_addr_root);
} }
/**
* pcpu_extend_area_map - extend area map for allocation
* @chunk: target chunk
*
* Extend area map of @chunk so that it can accomodate an allocation.
* A single allocation can split an area into three areas, so this
* function makes sure that @chunk->map has at least two extra slots.
*
* CONTEXT:
* pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
* if area map is extended.
*
* RETURNS:
* 0 if noop, 1 if successfully extended, -errno on failure.
*/
static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
{
int new_alloc;
int *new;
size_t size;
/* has enough? */
if (chunk->map_alloc >= chunk->map_used + 2)
return 0;
spin_unlock_irq(&pcpu_lock);
new_alloc = PCPU_DFL_MAP_ALLOC;
while (new_alloc < chunk->map_used + 2)
new_alloc *= 2;
new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
if (!new) {
spin_lock_irq(&pcpu_lock);
return -ENOMEM;
}
/*
* Acquire pcpu_lock and switch to new area map. Only free
* could have happened inbetween, so map_used couldn't have
* grown.
*/
spin_lock_irq(&pcpu_lock);
BUG_ON(new_alloc < chunk->map_used + 2);
size = chunk->map_alloc * sizeof(chunk->map[0]);
memcpy(new, chunk->map, size);
/*
* map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
* one of the first chunks and still using static map.
*/
if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
pcpu_mem_free(chunk->map, size);
chunk->map_alloc = new_alloc;
chunk->map = new;
return 0;
}
/** /**
* pcpu_split_block - split a map block * pcpu_split_block - split a map block
* @chunk: chunk of interest * @chunk: chunk of interest
...@@ -306,33 +407,19 @@ static void pcpu_chunk_addr_insert(struct pcpu_chunk *new) ...@@ -306,33 +407,19 @@ static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
* depending on @head, is reduced by @tail bytes and @tail byte block * depending on @head, is reduced by @tail bytes and @tail byte block
* is inserted after the target block. * is inserted after the target block.
* *
* RETURNS: * @chunk->map must have enough free slots to accomodate the split.
* 0 on success, -errno on failure. *
* CONTEXT:
* pcpu_lock.
*/ */
static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail) static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
int head, int tail)
{ {
int nr_extra = !!head + !!tail; int nr_extra = !!head + !!tail;
int target = chunk->map_used + nr_extra;
/* reallocation required? */ BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
if (chunk->map_alloc < target) {
int new_alloc = chunk->map_alloc;
int *new;
while (new_alloc < target) /* insert new subblocks */
new_alloc *= 2;
new = pcpu_realloc(chunk->map,
chunk->map_alloc * sizeof(new[0]),
new_alloc * sizeof(new[0]));
if (!new)
return -ENOMEM;
chunk->map_alloc = new_alloc;
chunk->map = new;
}
/* insert a new subblock */
memmove(&chunk->map[i + nr_extra], &chunk->map[i], memmove(&chunk->map[i + nr_extra], &chunk->map[i],
sizeof(chunk->map[0]) * (chunk->map_used - i)); sizeof(chunk->map[0]) * (chunk->map_used - i));
chunk->map_used += nr_extra; chunk->map_used += nr_extra;
...@@ -345,7 +432,6 @@ static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail) ...@@ -345,7 +432,6 @@ static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
chunk->map[i++] -= tail; chunk->map[i++] -= tail;
chunk->map[i] = tail; chunk->map[i] = tail;
} }
return 0;
} }
/** /**
...@@ -358,8 +444,14 @@ static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail) ...@@ -358,8 +444,14 @@ static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
* Note that this function only allocates the offset. It doesn't * Note that this function only allocates the offset. It doesn't
* populate or map the area. * populate or map the area.
* *
* @chunk->map must have at least two free slots.
*
* CONTEXT:
* pcpu_lock.
*
* RETURNS: * RETURNS:
* Allocated offset in @chunk on success, -errno on failure. * Allocated offset in @chunk on success, -1 if no matching area is
* found.
*/ */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{ {
...@@ -367,22 +459,6 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) ...@@ -367,22 +459,6 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
int max_contig = 0; int max_contig = 0;
int i, off; int i, off;
/*
* The static chunk initially doesn't have map attached
* because kmalloc wasn't available during init. Give it one.
*/
if (unlikely(!chunk->map)) {
chunk->map = pcpu_realloc(NULL, 0,
PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
if (!chunk->map)
return -ENOMEM;
chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
chunk->map[chunk->map_used++] = -pcpu_static_size;
if (chunk->free_size)
chunk->map[chunk->map_used++] = chunk->free_size;
}
for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
bool is_last = i + 1 == chunk->map_used; bool is_last = i + 1 == chunk->map_used;
int head, tail; int head, tail;
...@@ -423,8 +499,7 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) ...@@ -423,8 +499,7 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
/* split if warranted */ /* split if warranted */
if (head || tail) { if (head || tail) {
if (pcpu_split_block(chunk, i, head, tail)) pcpu_split_block(chunk, i, head, tail);
return -ENOMEM;
if (head) { if (head) {
i++; i++;
off += head; off += head;
...@@ -451,14 +526,8 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) ...@@ -451,14 +526,8 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
chunk->contig_hint = max_contig; /* fully scanned */ chunk->contig_hint = max_contig; /* fully scanned */
pcpu_chunk_relocate(chunk, oslot); pcpu_chunk_relocate(chunk, oslot);
/* /* tell the upper layer that this chunk has no matching area */
* Tell the upper layer that this chunk has no area left. return -1;
* Note that this is not an error condition but a notification
* to upper layer that it needs to look at other chunks.
* -ENOSPC is chosen as it isn't used in memory subsystem and
* matches the meaning in a way.
*/
return -ENOSPC;
} }
/** /**
...@@ -469,6 +538,9 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) ...@@ -469,6 +538,9 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
* Free area starting from @freeme to @chunk. Note that this function * Free area starting from @freeme to @chunk. Note that this function
* only modifies the allocation map. It doesn't depopulate or unmap * only modifies the allocation map. It doesn't depopulate or unmap
* the area. * the area.
*
* CONTEXT:
* pcpu_lock.
*/ */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{ {
...@@ -554,6 +626,9 @@ static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, ...@@ -554,6 +626,9 @@ static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
* For each cpu, depopulate and unmap pages [@page_start,@page_end) * For each cpu, depopulate and unmap pages [@page_start,@page_end)
* from @chunk. If @flush is true, vcache is flushed before unmapping * from @chunk. If @flush is true, vcache is flushed before unmapping
* and tlb after. * and tlb after.
*
* CONTEXT:
* pcpu_alloc_mutex.
*/ */
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
bool flush) bool flush)
...@@ -632,6 +707,9 @@ static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) ...@@ -632,6 +707,9 @@ static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
* *
* For each cpu, populate and map pages [@page_start,@page_end) into * For each cpu, populate and map pages [@page_start,@page_end) into
* @chunk. The area is cleared on return. * @chunk. The area is cleared on return.
*
* CONTEXT:
* pcpu_alloc_mutex, does GFP_KERNEL allocation.
*/ */
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
{ {
...@@ -686,7 +764,7 @@ static void free_pcpu_chunk(struct pcpu_chunk *chunk) ...@@ -686,7 +764,7 @@ static void free_pcpu_chunk(struct pcpu_chunk *chunk)
return; return;
if (chunk->vm) if (chunk->vm)
free_vm_area(chunk->vm); free_vm_area(chunk->vm);
pcpu_realloc(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]), 0); pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
kfree(chunk); kfree(chunk);
} }
...@@ -698,10 +776,10 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void) ...@@ -698,10 +776,10 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void)
if (!chunk) if (!chunk)
return NULL; return NULL;
chunk->map = pcpu_realloc(NULL, 0, chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
chunk->map_alloc = PCPU_DFL_MAP_ALLOC; chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
chunk->map[chunk->map_used++] = pcpu_unit_size; chunk->map[chunk->map_used++] = pcpu_unit_size;
chunk->page = chunk->page_ar;
chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL); chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
if (!chunk->vm) { if (!chunk->vm) {
...@@ -717,19 +795,21 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void) ...@@ -717,19 +795,21 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void)
} }
/** /**
* __alloc_percpu - allocate percpu area * pcpu_alloc - the percpu allocator
* @size: size of area to allocate in bytes * @size: size of area to allocate in bytes
* @align: alignment of area (max PAGE_SIZE) * @align: alignment of area (max PAGE_SIZE)
* @reserved: allocate from the reserved chunk if available
* *
* Allocate percpu area of @size bytes aligned at @align. Might * Allocate percpu area of @size bytes aligned at @align.
* sleep. Might trigger writeouts. *
* CONTEXT:
* Does GFP_KERNEL allocation.
* *
* RETURNS: * RETURNS:
* Percpu pointer to the allocated area on success, NULL on failure. * Percpu pointer to the allocated area on success, NULL on failure.
*/ */
void *__alloc_percpu(size_t size, size_t align) static void *pcpu_alloc(size_t size, size_t align, bool reserved)
{ {
void *ptr = NULL;
struct pcpu_chunk *chunk; struct pcpu_chunk *chunk;
int slot, off; int slot, off;
...@@ -739,90 +819,192 @@ void *__alloc_percpu(size_t size, size_t align) ...@@ -739,90 +819,192 @@ void *__alloc_percpu(size_t size, size_t align)
return NULL; return NULL;
} }
mutex_lock(&pcpu_mutex); mutex_lock(&pcpu_alloc_mutex);
spin_lock_irq(&pcpu_lock);
/* serve reserved allocations from the reserved chunk if available */
if (reserved && pcpu_reserved_chunk) {
chunk = pcpu_reserved_chunk;
if (size > chunk->contig_hint ||
pcpu_extend_area_map(chunk) < 0)
goto fail_unlock;
off = pcpu_alloc_area(chunk, size, align);
if (off >= 0)
goto area_found;
goto fail_unlock;
}
/* allocate area */ restart:
/* search through normal chunks */
for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
list_for_each_entry(chunk, &pcpu_slot[slot], list) { list_for_each_entry(chunk, &pcpu_slot[slot], list) {
if (size > chunk->contig_hint) if (size > chunk->contig_hint)
continue; continue;
switch (pcpu_extend_area_map(chunk)) {
case 0:
break;
case 1:
goto restart; /* pcpu_lock dropped, restart */
default:
goto fail_unlock;
}
off = pcpu_alloc_area(chunk, size, align); off = pcpu_alloc_area(chunk, size, align);
if (off >= 0) if (off >= 0)
goto area_found; goto area_found;
if (off != -ENOSPC)
goto out_unlock;
} }
} }
/* hmmm... no space left, create a new chunk */ /* hmmm... no space left, create a new chunk */
spin_unlock_irq(&pcpu_lock);
chunk = alloc_pcpu_chunk(); chunk = alloc_pcpu_chunk();
if (!chunk) if (!chunk)
goto out_unlock; goto fail_unlock_mutex;
spin_lock_irq(&pcpu_lock);
pcpu_chunk_relocate(chunk, -1); pcpu_chunk_relocate(chunk, -1);
pcpu_chunk_addr_insert(chunk); pcpu_chunk_addr_insert(chunk);
goto restart;
off = pcpu_alloc_area(chunk, size, align);
if (off < 0)
goto out_unlock;
area_found: area_found:
spin_unlock_irq(&pcpu_lock);
/* populate, map and clear the area */ /* populate, map and clear the area */
if (pcpu_populate_chunk(chunk, off, size)) { if (pcpu_populate_chunk(chunk, off, size)) {
spin_lock_irq(&pcpu_lock);
pcpu_free_area(chunk, off); pcpu_free_area(chunk, off);
goto out_unlock; goto fail_unlock;
} }
ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off); mutex_unlock(&pcpu_alloc_mutex);
out_unlock:
mutex_unlock(&pcpu_mutex); return __addr_to_pcpu_ptr(chunk->vm->addr + off);
return ptr;
fail_unlock:
spin_unlock_irq(&pcpu_lock);
fail_unlock_mutex:
mutex_unlock(&pcpu_alloc_mutex);
return NULL;
}
/**
* __alloc_percpu - allocate dynamic percpu area
* @size: size of area to allocate in bytes
* @align: alignment of area (max PAGE_SIZE)
*
* Allocate percpu area of @size bytes aligned at @align. Might
* sleep. Might trigger writeouts.
*
* CONTEXT:
* Does GFP_KERNEL allocation.
*
* RETURNS:
* Percpu pointer to the allocated area on success, NULL on failure.
*/
void *__alloc_percpu(size_t size, size_t align)
{
return pcpu_alloc(size, align, false);
} }
EXPORT_SYMBOL_GPL(__alloc_percpu); EXPORT_SYMBOL_GPL(__alloc_percpu);
static void pcpu_kill_chunk(struct pcpu_chunk *chunk) /**
* __alloc_reserved_percpu - allocate reserved percpu area
* @size: size of area to allocate in bytes
* @align: alignment of area (max PAGE_SIZE)
*
* Allocate percpu area of @size bytes aligned at @align from reserved
* percpu area if arch has set it up; otherwise, allocation is served
* from the same dynamic area. Might sleep. Might trigger writeouts.
*
* CONTEXT:
* Does GFP_KERNEL allocation.
*
* RETURNS:
* Percpu pointer to the allocated area on success, NULL on failure.
*/
void *__alloc_reserved_percpu(size_t size, size_t align)
{
return pcpu_alloc(size, align, true);
}
/**
* pcpu_reclaim - reclaim fully free chunks, workqueue function
* @work: unused
*
* Reclaim all fully free chunks except for the first one.
*
* CONTEXT:
* workqueue context.
*/
static void pcpu_reclaim(struct work_struct *work)
{ {
LIST_HEAD(todo);
struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
struct pcpu_chunk *chunk, *next;
mutex_lock(&pcpu_alloc_mutex);
spin_lock_irq(&pcpu_lock);
list_for_each_entry_safe(chunk, next, head, list) {
WARN_ON(chunk->immutable); WARN_ON(chunk->immutable);
pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
list_del(&chunk->list); /* spare the first one */
if (chunk == list_first_entry(head, struct pcpu_chunk, list))
continue;
rb_erase(&chunk->rb_node, &pcpu_addr_root); rb_erase(&chunk->rb_node, &pcpu_addr_root);
list_move(&chunk->list, &todo);
}
spin_unlock_irq(&pcpu_lock);
mutex_unlock(&pcpu_alloc_mutex);
list_for_each_entry_safe(chunk, next, &todo, list) {
pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
free_pcpu_chunk(chunk); free_pcpu_chunk(chunk);
}
} }
/** /**
* free_percpu - free percpu area * free_percpu - free percpu area
* @ptr: pointer to area to free * @ptr: pointer to area to free
* *
* Free percpu area @ptr. Might sleep. * Free percpu area @ptr.
*
* CONTEXT:
* Can be called from atomic context.
*/ */
void free_percpu(void *ptr) void free_percpu(void *ptr)
{ {
void *addr = __pcpu_ptr_to_addr(ptr); void *addr = __pcpu_ptr_to_addr(ptr);
struct pcpu_chunk *chunk; struct pcpu_chunk *chunk;
unsigned long flags;
int off; int off;
if (!ptr) if (!ptr)
return; return;
mutex_lock(&pcpu_mutex); spin_lock_irqsave(&pcpu_lock, flags);
chunk = pcpu_chunk_addr_search(addr); chunk = pcpu_chunk_addr_search(addr);
off = addr - chunk->vm->addr; off = addr - chunk->vm->addr;
pcpu_free_area(chunk, off); pcpu_free_area(chunk, off);
/* the chunk became fully free, kill one if there are other free ones */ /* if there are more than one fully free chunks, wake up grim reaper */
if (chunk->free_size == pcpu_unit_size) { if (chunk->free_size == pcpu_unit_size) {
struct pcpu_chunk *pos; struct pcpu_chunk *pos;
list_for_each_entry(pos, list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
&pcpu_slot[pcpu_chunk_slot(chunk)], list)
if (pos != chunk) { if (pos != chunk) {
pcpu_kill_chunk(pos); schedule_work(&pcpu_reclaim_work);
break; break;
} }
} }
mutex_unlock(&pcpu_mutex); spin_unlock_irqrestore(&pcpu_lock, flags);
} }
EXPORT_SYMBOL_GPL(free_percpu); EXPORT_SYMBOL_GPL(free_percpu);
...@@ -830,8 +1012,9 @@ EXPORT_SYMBOL_GPL(free_percpu); ...@@ -830,8 +1012,9 @@ EXPORT_SYMBOL_GPL(free_percpu);
* pcpu_setup_first_chunk - initialize the first percpu chunk * pcpu_setup_first_chunk - initialize the first percpu chunk
* @get_page_fn: callback to fetch page pointer * @get_page_fn: callback to fetch page pointer
* @static_size: the size of static percpu area in bytes * @static_size: the size of static percpu area in bytes
* @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, 0 for auto * @reserved_size: the size of reserved percpu area in bytes
* @free_size: free size in bytes, 0 for auto * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
* @dyn_size: free size for dynamic allocation in bytes, -1 for auto
* @base_addr: mapped address, NULL for auto * @base_addr: mapped address, NULL for auto
* @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
* *
...@@ -848,13 +1031,22 @@ EXPORT_SYMBOL_GPL(free_percpu); ...@@ -848,13 +1031,22 @@ EXPORT_SYMBOL_GPL(free_percpu);
* indicates end of pages for the cpu. Note that @get_page_fn() must * indicates end of pages for the cpu. Note that @get_page_fn() must
* return the same number of pages for all cpus. * return the same number of pages for all cpus.
* *
* @unit_size, if non-zero, determines unit size and must be aligned * @reserved_size, if non-zero, specifies the amount of bytes to
* to PAGE_SIZE and equal to or larger than @static_size + @free_size. * reserve after the static area in the first chunk. This reserves
* the first chunk such that it's available only through reserved
* percpu allocation. This is primarily used to serve module percpu
* static areas on architectures where the addressing model has
* limited offset range for symbol relocations to guarantee module
* percpu symbols fall inside the relocatable range.
*
* @unit_size, if non-negative, specifies unit size and must be
* aligned to PAGE_SIZE and equal to or larger than @static_size +
* @reserved_size + @dyn_size.
* *
* @free_size determines the number of free bytes after the static * @dyn_size, if non-negative, limits the number of bytes available
* area in the first chunk. If zero, whatever left is available. * for dynamic allocation in the first chunk. Specifying non-negative
* Specifying non-zero value make percpu leave the area after * value make percpu leave alone the area beyond @static_size +
* @static_size + @free_size alone. * @reserved_size + @dyn_size.
* *
* Non-null @base_addr means that the caller already allocated virtual * Non-null @base_addr means that the caller already allocated virtual
* region for the first chunk and mapped it. percpu must not mess * region for the first chunk and mapped it. percpu must not mess
...@@ -864,41 +1056,58 @@ EXPORT_SYMBOL_GPL(free_percpu); ...@@ -864,41 +1056,58 @@ EXPORT_SYMBOL_GPL(free_percpu);
* @populate_pte_fn is used to populate the pagetable. NULL means the * @populate_pte_fn is used to populate the pagetable. NULL means the
* caller already populated the pagetable. * caller already populated the pagetable.
* *
* If the first chunk ends up with both reserved and dynamic areas, it
* is served by two chunks - one to serve the core static and reserved
* areas and the other for the dynamic area. They share the same vm
* and page map but uses different area allocation map to stay away
* from each other. The latter chunk is circulated in the chunk slots
* and available for dynamic allocation like any other chunks.
*
* RETURNS: * RETURNS:
* The determined pcpu_unit_size which can be used to initialize * The determined pcpu_unit_size which can be used to initialize
* percpu access. * percpu access.
*/ */
size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
size_t static_size, size_t unit_size, size_t static_size, size_t reserved_size,
size_t free_size, void *base_addr, ssize_t unit_size, ssize_t dyn_size,
void *base_addr,
pcpu_populate_pte_fn_t populate_pte_fn) pcpu_populate_pte_fn_t populate_pte_fn)
{ {
static struct vm_struct static_vm; static struct vm_struct first_vm;
struct pcpu_chunk *static_chunk; static int smap[2], dmap[2];
struct pcpu_chunk *schunk, *dchunk = NULL;
unsigned int cpu; unsigned int cpu;
int nr_pages; int nr_pages;
int err, i; int err, i;
/* santiy checks */ /* santiy checks */
BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
BUG_ON(!static_size); BUG_ON(!static_size);
BUG_ON(!unit_size && free_size); if (unit_size >= 0) {
BUG_ON(unit_size && unit_size < static_size + free_size); BUG_ON(unit_size < static_size + reserved_size +
(dyn_size >= 0 ? dyn_size : 0));
BUG_ON(unit_size & ~PAGE_MASK); BUG_ON(unit_size & ~PAGE_MASK);
BUG_ON(base_addr && !unit_size); } else {
BUG_ON(dyn_size >= 0);
BUG_ON(base_addr);
}
BUG_ON(base_addr && populate_pte_fn); BUG_ON(base_addr && populate_pte_fn);
if (unit_size) if (unit_size >= 0)
pcpu_unit_pages = unit_size >> PAGE_SHIFT; pcpu_unit_pages = unit_size >> PAGE_SHIFT;
else else
pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
PFN_UP(static_size)); PFN_UP(static_size + reserved_size));
pcpu_static_size = static_size;
pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size; pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
+ num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *); + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
if (dyn_size < 0)
dyn_size = pcpu_unit_size - static_size - reserved_size;
/* /*
* Allocate chunk slots. The additional last slot is for * Allocate chunk slots. The additional last slot is for
* empty chunks. * empty chunks.
...@@ -908,33 +1117,66 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, ...@@ -908,33 +1117,66 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
for (i = 0; i < pcpu_nr_slots; i++) for (i = 0; i < pcpu_nr_slots; i++)
INIT_LIST_HEAD(&pcpu_slot[i]); INIT_LIST_HEAD(&pcpu_slot[i]);
/* init static_chunk */ /*
static_chunk = alloc_bootmem(pcpu_chunk_struct_size); * Initialize static chunk. If reserved_size is zero, the
INIT_LIST_HEAD(&static_chunk->list); * static chunk covers static area + dynamic allocation area
static_chunk->vm = &static_vm; * in the first chunk. If reserved_size is not zero, it
* covers static area + reserved area (mostly used for module
if (free_size) * static percpu allocation).
static_chunk->free_size = free_size; */
else schunk = alloc_bootmem(pcpu_chunk_struct_size);
static_chunk->free_size = pcpu_unit_size - pcpu_static_size; INIT_LIST_HEAD(&schunk->list);
schunk->vm = &first_vm;
static_chunk->contig_hint = static_chunk->free_size; schunk->map = smap;
schunk->map_alloc = ARRAY_SIZE(smap);
schunk->page = schunk->page_ar;
if (reserved_size) {
schunk->free_size = reserved_size;
pcpu_reserved_chunk = schunk; /* not for dynamic alloc */
} else {
schunk->free_size = dyn_size;
dyn_size = 0; /* dynamic area covered */
}
schunk->contig_hint = schunk->free_size;
schunk->map[schunk->map_used++] = -static_size;
if (schunk->free_size)
schunk->map[schunk->map_used++] = schunk->free_size;
pcpu_reserved_chunk_limit = static_size + schunk->free_size;
/* init dynamic chunk if necessary */
if (dyn_size) {
dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
INIT_LIST_HEAD(&dchunk->list);
dchunk->vm = &first_vm;
dchunk->map = dmap;
dchunk->map_alloc = ARRAY_SIZE(dmap);
dchunk->page = schunk->page_ar; /* share page map with schunk */
dchunk->contig_hint = dchunk->free_size = dyn_size;
dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
dchunk->map[dchunk->map_used++] = dchunk->free_size;
}
/* allocate vm address */ /* allocate vm address */
static_vm.flags = VM_ALLOC; first_vm.flags = VM_ALLOC;
static_vm.size = pcpu_chunk_size; first_vm.size = pcpu_chunk_size;
if (!base_addr) if (!base_addr)
vm_area_register_early(&static_vm, PAGE_SIZE); vm_area_register_early(&first_vm, PAGE_SIZE);
else { else {
/* /*
* Pages already mapped. No need to remap into * Pages already mapped. No need to remap into
* vmalloc area. In this case the static chunk can't * vmalloc area. In this case the first chunks can't
* be mapped or unmapped by percpu and is marked * be mapped or unmapped by percpu and are marked
* immutable. * immutable.
*/ */
static_vm.addr = base_addr; first_vm.addr = base_addr;
static_chunk->immutable = true; schunk->immutable = true;
if (dchunk)
dchunk->immutable = true;
} }
/* assign pages */ /* assign pages */
...@@ -945,10 +1187,10 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, ...@@ -945,10 +1187,10 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
if (!page) if (!page)
break; break;
*pcpu_chunk_pagep(static_chunk, cpu, i) = page; *pcpu_chunk_pagep(schunk, cpu, i) = page;
} }
BUG_ON(i < PFN_UP(pcpu_static_size)); BUG_ON(i < PFN_UP(static_size));
if (nr_pages < 0) if (nr_pages < 0)
nr_pages = i; nr_pages = i;
...@@ -960,20 +1202,25 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, ...@@ -960,20 +1202,25 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
if (populate_pte_fn) { if (populate_pte_fn) {
for_each_possible_cpu(cpu) for_each_possible_cpu(cpu)
for (i = 0; i < nr_pages; i++) for (i = 0; i < nr_pages; i++)
populate_pte_fn(pcpu_chunk_addr(static_chunk, populate_pte_fn(pcpu_chunk_addr(schunk,
cpu, i)); cpu, i));
err = pcpu_map(static_chunk, 0, nr_pages); err = pcpu_map(schunk, 0, nr_pages);
if (err) if (err)
panic("failed to setup static percpu area, err=%d\n", panic("failed to setup static percpu area, err=%d\n",
err); err);
} }
/* link static_chunk in */ /* link the first chunk in */
pcpu_chunk_relocate(static_chunk, -1); if (!dchunk) {
pcpu_chunk_addr_insert(static_chunk); pcpu_chunk_relocate(schunk, -1);
pcpu_chunk_addr_insert(schunk);
} else {
pcpu_chunk_relocate(dchunk, -1);
pcpu_chunk_addr_insert(dchunk);
}
/* we're done */ /* we're done */
pcpu_base_addr = (void *)pcpu_chunk_addr(static_chunk, 0, 0); pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
return pcpu_unit_size; return pcpu_unit_size;
} }
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment