Commit 84296d4c authored by Jakub Kicinski's avatar Jakub Kicinski

Merge branch 'broadcom-ptp-phy-support'

Jonathan Lemon says:

====================
Broadcom PTP PHY support

This adds PTP support for the Broadcom PHY BCM54210E (and the
specific variant BCM54213PE that the rpi-5.15 branch uses).

This has only been tested on the RPI CM4, which has one port.

There are other Broadcom chips which may benefit from using the
same framework here, although with different register sets.
====================

Link: https://lore.kernel.org/r/20220622050454.878052-1-jonathan.lemon@gmail.comSigned-off-by: default avatarJakub Kicinski <kuba@kernel.org>
parents 0aeaaa8d 7bfe91ef
...@@ -104,6 +104,8 @@ config AX88796B_PHY ...@@ -104,6 +104,8 @@ config AX88796B_PHY
config BROADCOM_PHY config BROADCOM_PHY
tristate "Broadcom 54XX PHYs" tristate "Broadcom 54XX PHYs"
select BCM_NET_PHYLIB select BCM_NET_PHYLIB
select BCM_NET_PHYPTP if NETWORK_PHY_TIMESTAMPING
depends on PTP_1588_CLOCK_OPTIONAL
help help
Currently supports the BCM5411, BCM5421, BCM5461, BCM54616S, BCM5464, Currently supports the BCM5411, BCM5421, BCM5461, BCM54616S, BCM5464,
BCM5481, BCM54810 and BCM5482 PHYs. BCM5481, BCM54810 and BCM5482 PHYs.
...@@ -160,6 +162,9 @@ config BCM_CYGNUS_PHY ...@@ -160,6 +162,9 @@ config BCM_CYGNUS_PHY
config BCM_NET_PHYLIB config BCM_NET_PHYLIB
tristate tristate
config BCM_NET_PHYPTP
tristate
config CICADA_PHY config CICADA_PHY
tristate "Cicada PHYs" tristate "Cicada PHYs"
help help
......
...@@ -47,6 +47,7 @@ obj-$(CONFIG_BCM84881_PHY) += bcm84881.o ...@@ -47,6 +47,7 @@ obj-$(CONFIG_BCM84881_PHY) += bcm84881.o
obj-$(CONFIG_BCM87XX_PHY) += bcm87xx.o obj-$(CONFIG_BCM87XX_PHY) += bcm87xx.o
obj-$(CONFIG_BCM_CYGNUS_PHY) += bcm-cygnus.o obj-$(CONFIG_BCM_CYGNUS_PHY) += bcm-cygnus.o
obj-$(CONFIG_BCM_NET_PHYLIB) += bcm-phy-lib.o obj-$(CONFIG_BCM_NET_PHYLIB) += bcm-phy-lib.o
obj-$(CONFIG_BCM_NET_PHYPTP) += bcm-phy-ptp.o
obj-$(CONFIG_BROADCOM_PHY) += broadcom.o obj-$(CONFIG_BROADCOM_PHY) += broadcom.o
obj-$(CONFIG_CICADA_PHY) += cicada.o obj-$(CONFIG_CICADA_PHY) += cicada.o
obj-$(CONFIG_CORTINA_PHY) += cortina.o obj-$(CONFIG_CORTINA_PHY) += cortina.o
......
...@@ -87,4 +87,23 @@ int bcm_phy_cable_test_start_rdb(struct phy_device *phydev); ...@@ -87,4 +87,23 @@ int bcm_phy_cable_test_start_rdb(struct phy_device *phydev);
int bcm_phy_cable_test_start(struct phy_device *phydev); int bcm_phy_cable_test_start(struct phy_device *phydev);
int bcm_phy_cable_test_get_status(struct phy_device *phydev, bool *finished); int bcm_phy_cable_test_get_status(struct phy_device *phydev, bool *finished);
#if IS_ENABLED(CONFIG_BCM_NET_PHYPTP)
struct bcm_ptp_private *bcm_ptp_probe(struct phy_device *phydev);
void bcm_ptp_config_init(struct phy_device *phydev);
void bcm_ptp_stop(struct bcm_ptp_private *priv);
#else
static inline struct bcm_ptp_private *bcm_ptp_probe(struct phy_device *phydev)
{
return NULL;
}
static inline void bcm_ptp_config_init(struct phy_device *phydev)
{
}
static inline void bcm_ptp_stop(struct bcm_ptp_private *priv)
{
}
#endif
#endif /* _LINUX_BCM_PHY_LIB_H */ #endif /* _LINUX_BCM_PHY_LIB_H */
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2022 Meta Platforms Inc.
* Copyright (C) 2022 Jonathan Lemon <jonathan.lemon@gmail.com>
*/
#include <asm/unaligned.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/ptp_classify.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/net_tstamp.h>
#include <linux/netdevice.h>
#include <linux/workqueue.h>
#include "bcm-phy-lib.h"
/* IEEE 1588 Expansion registers */
#define SLICE_CTRL 0x0810
#define SLICE_TX_EN BIT(0)
#define SLICE_RX_EN BIT(8)
#define TX_EVENT_MODE 0x0811
#define MODE_TX_UPDATE_CF BIT(0)
#define MODE_TX_REPLACE_TS_CF BIT(1)
#define MODE_TX_REPLACE_TS GENMASK(1, 0)
#define RX_EVENT_MODE 0x0819
#define MODE_RX_UPDATE_CF BIT(0)
#define MODE_RX_INSERT_TS_48 BIT(1)
#define MODE_RX_INSERT_TS_64 GENMASK(1, 0)
#define MODE_EVT_SHIFT_SYNC 0
#define MODE_EVT_SHIFT_DELAY_REQ 2
#define MODE_EVT_SHIFT_PDELAY_REQ 4
#define MODE_EVT_SHIFT_PDELAY_RESP 6
#define MODE_SEL_SHIFT_PORT 0
#define MODE_SEL_SHIFT_CPU 8
#define RX_MODE_SEL(sel, evt, act) \
(((MODE_RX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel))
#define TX_MODE_SEL(sel, evt, act) \
(((MODE_TX_##act) << (MODE_EVT_SHIFT_##evt)) << (MODE_SEL_SHIFT_##sel))
/* needs global TS capture first */
#define TX_TS_CAPTURE 0x0821
#define TX_TS_CAP_EN BIT(0)
#define RX_TS_CAPTURE 0x0822
#define RX_TS_CAP_EN BIT(0)
#define TIME_CODE_0 0x0854
#define TIME_CODE_1 0x0855
#define TIME_CODE_2 0x0856
#define TIME_CODE_3 0x0857
#define TIME_CODE_4 0x0858
#define DPLL_SELECT 0x085b
#define DPLL_HB_MODE2 BIT(6)
#define SHADOW_CTRL 0x085c
#define SHADOW_LOAD 0x085d
#define TIME_CODE_LOAD BIT(10)
#define SYNC_OUT_LOAD BIT(9)
#define NCO_TIME_LOAD BIT(7)
#define FREQ_LOAD BIT(6)
#define INTR_MASK 0x085e
#define INTR_STATUS 0x085f
#define INTC_FSYNC BIT(0)
#define INTC_SOP BIT(1)
#define NCO_FREQ_LSB 0x0873
#define NCO_FREQ_MSB 0x0874
#define NCO_TIME_0 0x0875
#define NCO_TIME_1 0x0876
#define NCO_TIME_2_CTRL 0x0877
#define FREQ_MDIO_SEL BIT(14)
#define SYNC_OUT_0 0x0878
#define SYNC_OUT_1 0x0879
#define SYNC_OUT_2 0x087a
#define SYNC_IN_DIVIDER 0x087b
#define SYNOUT_TS_0 0x087c
#define SYNOUT_TS_1 0x087d
#define SYNOUT_TS_2 0x087e
#define NSE_CTRL 0x087f
#define NSE_GMODE_EN GENMASK(15, 14)
#define NSE_CAPTURE_EN BIT(13)
#define NSE_INIT BIT(12)
#define NSE_CPU_FRAMESYNC BIT(5)
#define NSE_SYNC1_FRAMESYNC BIT(3)
#define NSE_FRAMESYNC_MASK GENMASK(5, 2)
#define NSE_PEROUT_EN BIT(1)
#define NSE_ONESHOT_EN BIT(0)
#define NSE_SYNC_OUT_MASK GENMASK(1, 0)
#define TS_READ_CTRL 0x0885
#define TS_READ_START BIT(0)
#define TS_READ_END BIT(1)
#define HB_REG_0 0x0886
#define HB_REG_1 0x0887
#define HB_REG_2 0x0888
#define HB_REG_3 0x08ec
#define HB_REG_4 0x08ed
#define HB_STAT_CTRL 0x088e
#define HB_READ_START BIT(10)
#define HB_READ_END BIT(11)
#define HB_READ_MASK GENMASK(11, 10)
#define TS_REG_0 0x0889
#define TS_REG_1 0x088a
#define TS_REG_2 0x088b
#define TS_REG_3 0x08c4
#define TS_INFO_0 0x088c
#define TS_INFO_1 0x088d
#define TIMECODE_CTRL 0x08c3
#define TX_TIMECODE_SEL GENMASK(7, 0)
#define RX_TIMECODE_SEL GENMASK(15, 8)
#define TIME_SYNC 0x0ff5
#define TIME_SYNC_EN BIT(0)
struct bcm_ptp_private {
struct phy_device *phydev;
struct mii_timestamper mii_ts;
struct ptp_clock *ptp_clock;
struct ptp_clock_info ptp_info;
struct ptp_pin_desc pin;
struct mutex mutex;
struct sk_buff_head tx_queue;
int tx_type;
bool hwts_rx;
u16 nse_ctrl;
bool pin_active;
struct delayed_work pin_work;
};
struct bcm_ptp_skb_cb {
unsigned long timeout;
u16 seq_id;
u8 msgtype;
bool discard;
};
struct bcm_ptp_capture {
ktime_t hwtstamp;
u16 seq_id;
u8 msgtype;
bool tx_dir;
};
#define BCM_SKB_CB(skb) ((struct bcm_ptp_skb_cb *)(skb)->cb)
#define SKB_TS_TIMEOUT 10 /* jiffies */
#define BCM_MAX_PULSE_8NS ((1U << 9) - 1)
#define BCM_MAX_PERIOD_8NS ((1U << 30) - 1)
#define BRCM_PHY_MODEL(phydev) \
((phydev)->drv->phy_id & (phydev)->drv->phy_id_mask)
static struct bcm_ptp_private *mii2priv(struct mii_timestamper *mii_ts)
{
return container_of(mii_ts, struct bcm_ptp_private, mii_ts);
}
static struct bcm_ptp_private *ptp2priv(struct ptp_clock_info *info)
{
return container_of(info, struct bcm_ptp_private, ptp_info);
}
static void bcm_ptp_get_framesync_ts(struct phy_device *phydev,
struct timespec64 *ts)
{
u16 hb[4];
bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_START);
hb[0] = bcm_phy_read_exp(phydev, HB_REG_0);
hb[1] = bcm_phy_read_exp(phydev, HB_REG_1);
hb[2] = bcm_phy_read_exp(phydev, HB_REG_2);
hb[3] = bcm_phy_read_exp(phydev, HB_REG_3);
bcm_phy_write_exp(phydev, HB_STAT_CTRL, HB_READ_END);
bcm_phy_write_exp(phydev, HB_STAT_CTRL, 0);
ts->tv_sec = (hb[3] << 16) | hb[2];
ts->tv_nsec = (hb[1] << 16) | hb[0];
}
static u16 bcm_ptp_framesync_disable(struct phy_device *phydev, u16 orig_ctrl)
{
u16 ctrl = orig_ctrl & ~(NSE_FRAMESYNC_MASK | NSE_CAPTURE_EN);
bcm_phy_write_exp(phydev, NSE_CTRL, ctrl);
return ctrl;
}
static void bcm_ptp_framesync_restore(struct phy_device *phydev, u16 orig_ctrl)
{
if (orig_ctrl & NSE_FRAMESYNC_MASK)
bcm_phy_write_exp(phydev, NSE_CTRL, orig_ctrl);
}
static void bcm_ptp_framesync(struct phy_device *phydev, u16 ctrl)
{
/* trigger framesync - must have 0->1 transition. */
bcm_phy_write_exp(phydev, NSE_CTRL, ctrl | NSE_CPU_FRAMESYNC);
}
static int bcm_ptp_framesync_ts(struct phy_device *phydev,
struct ptp_system_timestamp *sts,
struct timespec64 *ts,
u16 orig_ctrl)
{
u16 ctrl, reg;
int i;
ctrl = bcm_ptp_framesync_disable(phydev, orig_ctrl);
ptp_read_system_prets(sts);
/* trigger framesync + capture */
bcm_ptp_framesync(phydev, ctrl | NSE_CAPTURE_EN);
ptp_read_system_postts(sts);
/* poll for FSYNC interrupt from TS capture */
for (i = 0; i < 10; i++) {
reg = bcm_phy_read_exp(phydev, INTR_STATUS);
if (reg & INTC_FSYNC) {
bcm_ptp_get_framesync_ts(phydev, ts);
break;
}
}
bcm_ptp_framesync_restore(phydev, orig_ctrl);
return reg & INTC_FSYNC ? 0 : -ETIMEDOUT;
}
static int bcm_ptp_gettimex(struct ptp_clock_info *info,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct bcm_ptp_private *priv = ptp2priv(info);
int err;
mutex_lock(&priv->mutex);
err = bcm_ptp_framesync_ts(priv->phydev, sts, ts, priv->nse_ctrl);
mutex_unlock(&priv->mutex);
return err;
}
static int bcm_ptp_settime_locked(struct bcm_ptp_private *priv,
const struct timespec64 *ts)
{
struct phy_device *phydev = priv->phydev;
u16 ctrl;
u64 ns;
ctrl = bcm_ptp_framesync_disable(phydev, priv->nse_ctrl);
/* set up time code */
bcm_phy_write_exp(phydev, TIME_CODE_0, ts->tv_nsec);
bcm_phy_write_exp(phydev, TIME_CODE_1, ts->tv_nsec >> 16);
bcm_phy_write_exp(phydev, TIME_CODE_2, ts->tv_sec);
bcm_phy_write_exp(phydev, TIME_CODE_3, ts->tv_sec >> 16);
bcm_phy_write_exp(phydev, TIME_CODE_4, ts->tv_sec >> 32);
/* set NCO counter to match */
ns = timespec64_to_ns(ts);
bcm_phy_write_exp(phydev, NCO_TIME_0, ns >> 4);
bcm_phy_write_exp(phydev, NCO_TIME_1, ns >> 20);
bcm_phy_write_exp(phydev, NCO_TIME_2_CTRL, (ns >> 36) & 0xfff);
/* set up load on next frame sync (auto-clears due to NSE_INIT) */
bcm_phy_write_exp(phydev, SHADOW_LOAD, TIME_CODE_LOAD | NCO_TIME_LOAD);
/* must have NSE_INIT in order to write time code */
bcm_ptp_framesync(phydev, ctrl | NSE_INIT);
bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
return 0;
}
static int bcm_ptp_settime(struct ptp_clock_info *info,
const struct timespec64 *ts)
{
struct bcm_ptp_private *priv = ptp2priv(info);
int err;
mutex_lock(&priv->mutex);
err = bcm_ptp_settime_locked(priv, ts);
mutex_unlock(&priv->mutex);
return err;
}
static int bcm_ptp_adjtime_locked(struct bcm_ptp_private *priv,
s64 delta_ns)
{
struct timespec64 ts;
int err;
s64 ns;
err = bcm_ptp_framesync_ts(priv->phydev, NULL, &ts, priv->nse_ctrl);
if (!err) {
ns = timespec64_to_ns(&ts) + delta_ns;
ts = ns_to_timespec64(ns);
err = bcm_ptp_settime_locked(priv, &ts);
}
return err;
}
static int bcm_ptp_adjtime(struct ptp_clock_info *info, s64 delta_ns)
{
struct bcm_ptp_private *priv = ptp2priv(info);
int err;
mutex_lock(&priv->mutex);
err = bcm_ptp_adjtime_locked(priv, delta_ns);
mutex_unlock(&priv->mutex);
return err;
}
/* A 125Mhz clock should adjust 8ns per pulse.
* The frequency adjustment base is 0x8000 0000, or 8*2^28.
*
* Frequency adjustment is
* adj = scaled_ppm * 8*2^28 / (10^6 * 2^16)
* which simplifies to:
* adj = scaled_ppm * 2^9 / 5^6
*/
static int bcm_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
{
struct bcm_ptp_private *priv = ptp2priv(info);
int neg_adj = 0;
u32 diff, freq;
u16 ctrl;
u64 adj;
if (scaled_ppm < 0) {
neg_adj = 1;
scaled_ppm = -scaled_ppm;
}
adj = scaled_ppm << 9;
diff = div_u64(adj, 15625);
freq = (8 << 28) + (neg_adj ? -diff : diff);
mutex_lock(&priv->mutex);
ctrl = bcm_ptp_framesync_disable(priv->phydev, priv->nse_ctrl);
bcm_phy_write_exp(priv->phydev, NCO_FREQ_LSB, freq);
bcm_phy_write_exp(priv->phydev, NCO_FREQ_MSB, freq >> 16);
bcm_phy_write_exp(priv->phydev, NCO_TIME_2_CTRL, FREQ_MDIO_SEL);
/* load on next framesync */
bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, FREQ_LOAD);
bcm_ptp_framesync(priv->phydev, ctrl);
/* clear load */
bcm_phy_write_exp(priv->phydev, SHADOW_LOAD, 0);
bcm_ptp_framesync_restore(priv->phydev, priv->nse_ctrl);
mutex_unlock(&priv->mutex);
return 0;
}
static bool bcm_ptp_rxtstamp(struct mii_timestamper *mii_ts,
struct sk_buff *skb, int type)
{
struct bcm_ptp_private *priv = mii2priv(mii_ts);
struct skb_shared_hwtstamps *hwts;
struct ptp_header *header;
u32 sec, nsec;
u8 *data;
int off;
if (!priv->hwts_rx)
return false;
header = ptp_parse_header(skb, type);
if (!header)
return false;
data = (u8 *)(header + 1);
sec = get_unaligned_be32(data);
nsec = get_unaligned_be32(data + 4);
hwts = skb_hwtstamps(skb);
hwts->hwtstamp = ktime_set(sec, nsec);
off = data - skb->data + 8;
if (off < skb->len) {
memmove(data, data + 8, skb->len - off);
__pskb_trim(skb, skb->len - 8);
}
return false;
}
static bool bcm_ptp_get_tstamp(struct bcm_ptp_private *priv,
struct bcm_ptp_capture *capts)
{
struct phy_device *phydev = priv->phydev;
u16 ts[4], reg;
u32 sec, nsec;
mutex_lock(&priv->mutex);
reg = bcm_phy_read_exp(phydev, INTR_STATUS);
if ((reg & INTC_SOP) == 0) {
mutex_unlock(&priv->mutex);
return false;
}
bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_START);
ts[0] = bcm_phy_read_exp(phydev, TS_REG_0);
ts[1] = bcm_phy_read_exp(phydev, TS_REG_1);
ts[2] = bcm_phy_read_exp(phydev, TS_REG_2);
ts[3] = bcm_phy_read_exp(phydev, TS_REG_3);
/* not in be32 format for some reason */
capts->seq_id = bcm_phy_read_exp(priv->phydev, TS_INFO_0);
reg = bcm_phy_read_exp(phydev, TS_INFO_1);
capts->msgtype = reg >> 12;
capts->tx_dir = !!(reg & BIT(11));
bcm_phy_write_exp(phydev, TS_READ_CTRL, TS_READ_END);
bcm_phy_write_exp(phydev, TS_READ_CTRL, 0);
mutex_unlock(&priv->mutex);
sec = (ts[3] << 16) | ts[2];
nsec = (ts[1] << 16) | ts[0];
capts->hwtstamp = ktime_set(sec, nsec);
return true;
}
static void bcm_ptp_match_tstamp(struct bcm_ptp_private *priv,
struct bcm_ptp_capture *capts)
{
struct skb_shared_hwtstamps hwts;
struct sk_buff *skb, *ts_skb;
unsigned long flags;
bool first = false;
ts_skb = NULL;
spin_lock_irqsave(&priv->tx_queue.lock, flags);
skb_queue_walk(&priv->tx_queue, skb) {
if (BCM_SKB_CB(skb)->seq_id == capts->seq_id &&
BCM_SKB_CB(skb)->msgtype == capts->msgtype) {
first = skb_queue_is_first(&priv->tx_queue, skb);
__skb_unlink(skb, &priv->tx_queue);
ts_skb = skb;
break;
}
}
spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
/* TX captures one-step packets, discard them if needed. */
if (ts_skb) {
if (BCM_SKB_CB(ts_skb)->discard) {
kfree_skb(ts_skb);
} else {
memset(&hwts, 0, sizeof(hwts));
hwts.hwtstamp = capts->hwtstamp;
skb_complete_tx_timestamp(ts_skb, &hwts);
}
}
/* not first match, try and expire entries */
if (!first) {
while ((skb = skb_dequeue(&priv->tx_queue))) {
if (!time_after(jiffies, BCM_SKB_CB(skb)->timeout)) {
skb_queue_head(&priv->tx_queue, skb);
break;
}
kfree_skb(skb);
}
}
}
static long bcm_ptp_do_aux_work(struct ptp_clock_info *info)
{
struct bcm_ptp_private *priv = ptp2priv(info);
struct bcm_ptp_capture capts;
bool reschedule = false;
while (!skb_queue_empty_lockless(&priv->tx_queue)) {
if (!bcm_ptp_get_tstamp(priv, &capts)) {
reschedule = true;
break;
}
bcm_ptp_match_tstamp(priv, &capts);
}
return reschedule ? 1 : -1;
}
static int bcm_ptp_cancel_func(struct bcm_ptp_private *priv)
{
if (!priv->pin_active)
return 0;
priv->pin_active = false;
priv->nse_ctrl &= ~(NSE_SYNC_OUT_MASK | NSE_SYNC1_FRAMESYNC |
NSE_CAPTURE_EN);
bcm_phy_write_exp(priv->phydev, NSE_CTRL, priv->nse_ctrl);
cancel_delayed_work_sync(&priv->pin_work);
return 0;
}
static void bcm_ptp_perout_work(struct work_struct *pin_work)
{
struct bcm_ptp_private *priv =
container_of(pin_work, struct bcm_ptp_private, pin_work.work);
struct phy_device *phydev = priv->phydev;
struct timespec64 ts;
u64 ns, next;
u16 ctrl;
mutex_lock(&priv->mutex);
/* no longer running */
if (!priv->pin_active) {
mutex_unlock(&priv->mutex);
return;
}
bcm_ptp_framesync_ts(phydev, NULL, &ts, priv->nse_ctrl);
/* this is 1PPS only */
next = NSEC_PER_SEC - ts.tv_nsec;
ts.tv_sec += next < NSEC_PER_MSEC ? 2 : 1;
ts.tv_nsec = 0;
ns = timespec64_to_ns(&ts);
/* force 0->1 transition for ONESHOT */
ctrl = bcm_ptp_framesync_disable(phydev,
priv->nse_ctrl & ~NSE_ONESHOT_EN);
bcm_phy_write_exp(phydev, SYNOUT_TS_0, ns & 0xfff0);
bcm_phy_write_exp(phydev, SYNOUT_TS_1, ns >> 16);
bcm_phy_write_exp(phydev, SYNOUT_TS_2, ns >> 32);
/* load values on next framesync */
bcm_phy_write_exp(phydev, SHADOW_LOAD, SYNC_OUT_LOAD);
bcm_ptp_framesync(phydev, ctrl | NSE_ONESHOT_EN | NSE_INIT);
priv->nse_ctrl |= NSE_ONESHOT_EN;
bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
mutex_unlock(&priv->mutex);
next = next + NSEC_PER_MSEC;
schedule_delayed_work(&priv->pin_work, nsecs_to_jiffies(next));
}
static int bcm_ptp_perout_locked(struct bcm_ptp_private *priv,
struct ptp_perout_request *req, int on)
{
struct phy_device *phydev = priv->phydev;
u64 period, pulse;
u16 val;
if (!on)
return bcm_ptp_cancel_func(priv);
/* 1PPS */
if (req->period.sec != 1 || req->period.nsec != 0)
return -EINVAL;
period = BCM_MAX_PERIOD_8NS; /* write nonzero value */
if (req->flags & PTP_PEROUT_PHASE)
return -EOPNOTSUPP;
if (req->flags & PTP_PEROUT_DUTY_CYCLE)
pulse = ktime_to_ns(ktime_set(req->on.sec, req->on.nsec));
else
pulse = (u64)BCM_MAX_PULSE_8NS << 3;
/* convert to 8ns units */
pulse >>= 3;
if (!pulse || pulse > period || pulse > BCM_MAX_PULSE_8NS)
return -EINVAL;
bcm_phy_write_exp(phydev, SYNC_OUT_0, period);
val = ((pulse & 0x3) << 14) | ((period >> 16) & 0x3fff);
bcm_phy_write_exp(phydev, SYNC_OUT_1, val);
val = ((pulse >> 2) & 0x7f) | (pulse << 7);
bcm_phy_write_exp(phydev, SYNC_OUT_2, val);
if (priv->pin_active)
cancel_delayed_work_sync(&priv->pin_work);
priv->pin_active = true;
INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_perout_work);
schedule_delayed_work(&priv->pin_work, 0);
return 0;
}
static void bcm_ptp_extts_work(struct work_struct *pin_work)
{
struct bcm_ptp_private *priv =
container_of(pin_work, struct bcm_ptp_private, pin_work.work);
struct phy_device *phydev = priv->phydev;
struct ptp_clock_event event;
struct timespec64 ts;
u16 reg;
mutex_lock(&priv->mutex);
/* no longer running */
if (!priv->pin_active) {
mutex_unlock(&priv->mutex);
return;
}
reg = bcm_phy_read_exp(phydev, INTR_STATUS);
if ((reg & INTC_FSYNC) == 0)
goto out;
bcm_ptp_get_framesync_ts(phydev, &ts);
event.index = 0;
event.type = PTP_CLOCK_EXTTS;
event.timestamp = timespec64_to_ns(&ts);
ptp_clock_event(priv->ptp_clock, &event);
out:
mutex_unlock(&priv->mutex);
schedule_delayed_work(&priv->pin_work, HZ / 4);
}
static int bcm_ptp_extts_locked(struct bcm_ptp_private *priv, int on)
{
struct phy_device *phydev = priv->phydev;
if (!on)
return bcm_ptp_cancel_func(priv);
if (priv->pin_active)
cancel_delayed_work_sync(&priv->pin_work);
bcm_ptp_framesync_disable(phydev, priv->nse_ctrl);
priv->nse_ctrl |= NSE_SYNC1_FRAMESYNC | NSE_CAPTURE_EN;
bcm_ptp_framesync_restore(phydev, priv->nse_ctrl);
priv->pin_active = true;
INIT_DELAYED_WORK(&priv->pin_work, bcm_ptp_extts_work);
schedule_delayed_work(&priv->pin_work, 0);
return 0;
}
static int bcm_ptp_enable(struct ptp_clock_info *info,
struct ptp_clock_request *rq, int on)
{
struct bcm_ptp_private *priv = ptp2priv(info);
int err = -EBUSY;
mutex_lock(&priv->mutex);
switch (rq->type) {
case PTP_CLK_REQ_PEROUT:
if (priv->pin.func == PTP_PF_PEROUT)
err = bcm_ptp_perout_locked(priv, &rq->perout, on);
break;
case PTP_CLK_REQ_EXTTS:
if (priv->pin.func == PTP_PF_EXTTS)
err = bcm_ptp_extts_locked(priv, on);
break;
default:
err = -EOPNOTSUPP;
break;
}
mutex_unlock(&priv->mutex);
return err;
}
static int bcm_ptp_verify(struct ptp_clock_info *info, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
switch (func) {
case PTP_PF_NONE:
case PTP_PF_EXTTS:
case PTP_PF_PEROUT:
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static const struct ptp_clock_info bcm_ptp_clock_info = {
.owner = THIS_MODULE,
.name = KBUILD_MODNAME,
.max_adj = 100000000,
.gettimex64 = bcm_ptp_gettimex,
.settime64 = bcm_ptp_settime,
.adjtime = bcm_ptp_adjtime,
.adjfine = bcm_ptp_adjfine,
.enable = bcm_ptp_enable,
.verify = bcm_ptp_verify,
.do_aux_work = bcm_ptp_do_aux_work,
.n_pins = 1,
.n_per_out = 1,
.n_ext_ts = 1,
};
static void bcm_ptp_txtstamp(struct mii_timestamper *mii_ts,
struct sk_buff *skb, int type)
{
struct bcm_ptp_private *priv = mii2priv(mii_ts);
struct ptp_header *hdr;
bool discard = false;
int msgtype;
hdr = ptp_parse_header(skb, type);
if (!hdr)
goto out;
msgtype = ptp_get_msgtype(hdr, type);
switch (priv->tx_type) {
case HWTSTAMP_TX_ONESTEP_P2P:
if (msgtype == PTP_MSGTYPE_PDELAY_RESP)
discard = true;
fallthrough;
case HWTSTAMP_TX_ONESTEP_SYNC:
if (msgtype == PTP_MSGTYPE_SYNC)
discard = true;
fallthrough;
case HWTSTAMP_TX_ON:
BCM_SKB_CB(skb)->timeout = jiffies + SKB_TS_TIMEOUT;
BCM_SKB_CB(skb)->seq_id = be16_to_cpu(hdr->sequence_id);
BCM_SKB_CB(skb)->msgtype = msgtype;
BCM_SKB_CB(skb)->discard = discard;
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
skb_queue_tail(&priv->tx_queue, skb);
ptp_schedule_worker(priv->ptp_clock, 0);
return;
default:
break;
}
out:
kfree_skb(skb);
}
static int bcm_ptp_hwtstamp(struct mii_timestamper *mii_ts,
struct ifreq *ifr)
{
struct bcm_ptp_private *priv = mii2priv(mii_ts);
struct hwtstamp_config cfg;
u16 mode, ctrl;
if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
return -EFAULT;
switch (cfg.rx_filter) {
case HWTSTAMP_FILTER_NONE:
priv->hwts_rx = false;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
priv->hwts_rx = true;
break;
default:
return -ERANGE;
}
priv->tx_type = cfg.tx_type;
ctrl = priv->hwts_rx ? SLICE_RX_EN : 0;
ctrl |= priv->tx_type != HWTSTAMP_TX_OFF ? SLICE_TX_EN : 0;
mode = TX_MODE_SEL(PORT, SYNC, REPLACE_TS) |
TX_MODE_SEL(PORT, DELAY_REQ, REPLACE_TS) |
TX_MODE_SEL(PORT, PDELAY_REQ, REPLACE_TS) |
TX_MODE_SEL(PORT, PDELAY_RESP, REPLACE_TS);
bcm_phy_write_exp(priv->phydev, TX_EVENT_MODE, mode);
mode = RX_MODE_SEL(PORT, SYNC, INSERT_TS_64) |
RX_MODE_SEL(PORT, DELAY_REQ, INSERT_TS_64) |
RX_MODE_SEL(PORT, PDELAY_REQ, INSERT_TS_64) |
RX_MODE_SEL(PORT, PDELAY_RESP, INSERT_TS_64);
bcm_phy_write_exp(priv->phydev, RX_EVENT_MODE, mode);
bcm_phy_write_exp(priv->phydev, SLICE_CTRL, ctrl);
if (ctrl & SLICE_TX_EN)
bcm_phy_write_exp(priv->phydev, TX_TS_CAPTURE, TX_TS_CAP_EN);
else
ptp_cancel_worker_sync(priv->ptp_clock);
/* purge existing data */
skb_queue_purge(&priv->tx_queue);
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
static int bcm_ptp_ts_info(struct mii_timestamper *mii_ts,
struct ethtool_ts_info *ts_info)
{
struct bcm_ptp_private *priv = mii2priv(mii_ts);
ts_info->phc_index = ptp_clock_index(priv->ptp_clock);
ts_info->so_timestamping =
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
ts_info->tx_types =
BIT(HWTSTAMP_TX_ON) |
BIT(HWTSTAMP_TX_OFF) |
BIT(HWTSTAMP_TX_ONESTEP_SYNC) |
BIT(HWTSTAMP_TX_ONESTEP_P2P);
ts_info->rx_filters =
BIT(HWTSTAMP_FILTER_NONE) |
BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
return 0;
}
void bcm_ptp_stop(struct bcm_ptp_private *priv)
{
ptp_cancel_worker_sync(priv->ptp_clock);
bcm_ptp_cancel_func(priv);
}
EXPORT_SYMBOL_GPL(bcm_ptp_stop);
void bcm_ptp_config_init(struct phy_device *phydev)
{
/* init network sync engine */
bcm_phy_write_exp(phydev, NSE_CTRL, NSE_GMODE_EN | NSE_INIT);
/* enable time sync (TX/RX SOP capture) */
bcm_phy_write_exp(phydev, TIME_SYNC, TIME_SYNC_EN);
/* use sec.nsec heartbeat capture */
bcm_phy_write_exp(phydev, DPLL_SELECT, DPLL_HB_MODE2);
/* use 64 bit timecode for TX */
bcm_phy_write_exp(phydev, TIMECODE_CTRL, TX_TIMECODE_SEL);
/* always allow FREQ_LOAD on framesync */
bcm_phy_write_exp(phydev, SHADOW_CTRL, FREQ_LOAD);
bcm_phy_write_exp(phydev, SYNC_IN_DIVIDER, 1);
}
EXPORT_SYMBOL_GPL(bcm_ptp_config_init);
static void bcm_ptp_init(struct bcm_ptp_private *priv)
{
priv->nse_ctrl = NSE_GMODE_EN;
mutex_init(&priv->mutex);
skb_queue_head_init(&priv->tx_queue);
priv->mii_ts.rxtstamp = bcm_ptp_rxtstamp;
priv->mii_ts.txtstamp = bcm_ptp_txtstamp;
priv->mii_ts.hwtstamp = bcm_ptp_hwtstamp;
priv->mii_ts.ts_info = bcm_ptp_ts_info;
priv->phydev->mii_ts = &priv->mii_ts;
}
struct bcm_ptp_private *bcm_ptp_probe(struct phy_device *phydev)
{
struct bcm_ptp_private *priv;
struct ptp_clock *clock;
switch (BRCM_PHY_MODEL(phydev)) {
case PHY_ID_BCM54210E:
break;
default:
return NULL;
}
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return ERR_PTR(-ENOMEM);
priv->ptp_info = bcm_ptp_clock_info;
snprintf(priv->pin.name, sizeof(priv->pin.name), "SYNC_OUT");
priv->ptp_info.pin_config = &priv->pin;
clock = ptp_clock_register(&priv->ptp_info, &phydev->mdio.dev);
if (IS_ERR(clock))
return ERR_CAST(clock);
priv->ptp_clock = clock;
priv->phydev = phydev;
bcm_ptp_init(priv);
return priv;
}
EXPORT_SYMBOL_GPL(bcm_ptp_probe);
MODULE_LICENSE("GPL");
...@@ -27,6 +27,11 @@ MODULE_DESCRIPTION("Broadcom PHY driver"); ...@@ -27,6 +27,11 @@ MODULE_DESCRIPTION("Broadcom PHY driver");
MODULE_AUTHOR("Maciej W. Rozycki"); MODULE_AUTHOR("Maciej W. Rozycki");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
struct bcm54xx_phy_priv {
u64 *stats;
struct bcm_ptp_private *ptp;
};
static int bcm54xx_config_clock_delay(struct phy_device *phydev) static int bcm54xx_config_clock_delay(struct phy_device *phydev)
{ {
int rc, val; int rc, val;
...@@ -313,6 +318,22 @@ static void bcm54xx_adjust_rxrefclk(struct phy_device *phydev) ...@@ -313,6 +318,22 @@ static void bcm54xx_adjust_rxrefclk(struct phy_device *phydev)
bcm_phy_write_shadow(phydev, BCM54XX_SHD_APD, val); bcm_phy_write_shadow(phydev, BCM54XX_SHD_APD, val);
} }
static void bcm54xx_ptp_stop(struct phy_device *phydev)
{
struct bcm54xx_phy_priv *priv = phydev->priv;
if (priv->ptp)
bcm_ptp_stop(priv->ptp);
}
static void bcm54xx_ptp_config_init(struct phy_device *phydev)
{
struct bcm54xx_phy_priv *priv = phydev->priv;
if (priv->ptp)
bcm_ptp_config_init(phydev);
}
static int bcm54xx_config_init(struct phy_device *phydev) static int bcm54xx_config_init(struct phy_device *phydev)
{ {
int reg, err, val; int reg, err, val;
...@@ -390,6 +411,8 @@ static int bcm54xx_config_init(struct phy_device *phydev) ...@@ -390,6 +411,8 @@ static int bcm54xx_config_init(struct phy_device *phydev)
bcm_phy_write_exp(phydev, BCM_EXP_MULTICOLOR, val); bcm_phy_write_exp(phydev, BCM_EXP_MULTICOLOR, val);
} }
bcm54xx_ptp_config_init(phydev);
return 0; return 0;
} }
...@@ -418,6 +441,8 @@ static int bcm54xx_suspend(struct phy_device *phydev) ...@@ -418,6 +441,8 @@ static int bcm54xx_suspend(struct phy_device *phydev)
{ {
int ret; int ret;
bcm54xx_ptp_stop(phydev);
/* We cannot use a read/modify/write here otherwise the PHY gets into /* We cannot use a read/modify/write here otherwise the PHY gets into
* a bad state where its LEDs keep flashing, thus defeating the purpose * a bad state where its LEDs keep flashing, thus defeating the purpose
* of low power mode. * of low power mode.
...@@ -741,10 +766,6 @@ static irqreturn_t brcm_fet_handle_interrupt(struct phy_device *phydev) ...@@ -741,10 +766,6 @@ static irqreturn_t brcm_fet_handle_interrupt(struct phy_device *phydev)
return IRQ_HANDLED; return IRQ_HANDLED;
} }
struct bcm54xx_phy_priv {
u64 *stats;
};
static int bcm54xx_phy_probe(struct phy_device *phydev) static int bcm54xx_phy_probe(struct phy_device *phydev)
{ {
struct bcm54xx_phy_priv *priv; struct bcm54xx_phy_priv *priv;
...@@ -761,6 +782,10 @@ static int bcm54xx_phy_probe(struct phy_device *phydev) ...@@ -761,6 +782,10 @@ static int bcm54xx_phy_probe(struct phy_device *phydev)
if (!priv->stats) if (!priv->stats)
return -ENOMEM; return -ENOMEM;
priv->ptp = bcm_ptp_probe(phydev);
if (IS_ERR(priv->ptp))
return PTR_ERR(priv->ptp);
return 0; return 0;
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment