Commit 849dcce3 authored by David S. Miller's avatar David S. Miller

Merge branch 'amd-xgbe-updates'

Tom Lendacky says:

====================
amd-xgbe: AMD XGBE driver updates 2016-11-10

This patch series is targeted at adding support for a new PCI version
of the hardware. As part of the new PCI device, there is a new PCS/PHY
interaction, ECC support, I2C sideband communication, SFP+ support and
more.

The following updates and fixes are included in this driver update series:

- Hardware workaround for possible incorrectly generated interrupts
  during software reset
- Hardware workaround for Tx timestamp register access order
- Add support for a PCI version of the device
- Increase the Rx queue limit to take advantage of the increased number
  of DMA channels that might be available
- Add support for a new DMA channel interrupt mode
- Add ECC support for the device memory
- Add support for using the integrated I2C controller for sideband
  communication
- Expose the phylib phy_aneg_done() function so it can be called by the
  driver
- Add support for SFP+ modules
- Add support for MDIO attached PHYs
- Add support for KR re-driver between the PCS/SerDes and an external
  PHY

This patch series is based on net-next.
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents f0a40400 d7445d1f
...@@ -1290,15 +1290,6 @@ static int greth_mdio_probe(struct net_device *dev) ...@@ -1290,15 +1290,6 @@ static int greth_mdio_probe(struct net_device *dev)
return 0; return 0;
} }
static inline int phy_aneg_done(struct phy_device *phydev)
{
int retval;
retval = phy_read(phydev, MII_BMSR);
return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
}
static int greth_mdio_init(struct greth_private *greth) static int greth_mdio_init(struct greth_private *greth)
{ {
int ret; int ret;
......
...@@ -173,11 +173,13 @@ config SUNLANCE ...@@ -173,11 +173,13 @@ config SUNLANCE
config AMD_XGBE config AMD_XGBE
tristate "AMD 10GbE Ethernet driver" tristate "AMD 10GbE Ethernet driver"
depends on ((OF_NET && OF_ADDRESS) || ACPI) && HAS_IOMEM && HAS_DMA depends on ((OF_NET && OF_ADDRESS) || ACPI || PCI) && HAS_IOMEM && HAS_DMA
depends on ARM64 || COMPILE_TEST depends on X86 || ARM64 || COMPILE_TEST
select BITREVERSE select BITREVERSE
select CRC32 select CRC32
select PTP_1588_CLOCK select PTP_1588_CLOCK
select PHYLIB
select AMD_XGBE_HAVE_ECC if X86
---help--- ---help---
This driver supports the AMD 10GbE Ethernet device found on an This driver supports the AMD 10GbE Ethernet device found on an
AMD SoC. AMD SoC.
...@@ -195,4 +197,8 @@ config AMD_XGBE_DCB ...@@ -195,4 +197,8 @@ config AMD_XGBE_DCB
If unsure, say N. If unsure, say N.
config AMD_XGBE_HAVE_ECC
bool
default n
endif # NET_VENDOR_AMD endif # NET_VENDOR_AMD
...@@ -3,8 +3,9 @@ obj-$(CONFIG_AMD_XGBE) += amd-xgbe.o ...@@ -3,8 +3,9 @@ obj-$(CONFIG_AMD_XGBE) += amd-xgbe.o
amd-xgbe-objs := xgbe-main.o xgbe-drv.o xgbe-dev.o \ amd-xgbe-objs := xgbe-main.o xgbe-drv.o xgbe-dev.o \
xgbe-desc.o xgbe-ethtool.o xgbe-mdio.o \ xgbe-desc.o xgbe-ethtool.o xgbe-mdio.o \
xgbe-ptp.o \ xgbe-ptp.o \
xgbe-phy-v1.o \ xgbe-i2c.o xgbe-phy-v1.o xgbe-phy-v2.o \
xgbe-platform.o xgbe-platform.o
amd-xgbe-$(CONFIG_PCI) += xgbe-pci.o
amd-xgbe-$(CONFIG_AMD_XGBE_DCB) += xgbe-dcb.o amd-xgbe-$(CONFIG_AMD_XGBE_DCB) += xgbe-dcb.o
amd-xgbe-$(CONFIG_DEBUG_FS) += xgbe-debugfs.o amd-xgbe-$(CONFIG_DEBUG_FS) += xgbe-debugfs.o
...@@ -159,6 +159,8 @@ ...@@ -159,6 +159,8 @@
#define DMA_ISR_MACIS_WIDTH 1 #define DMA_ISR_MACIS_WIDTH 1
#define DMA_ISR_MTLIS_INDEX 16 #define DMA_ISR_MTLIS_INDEX 16
#define DMA_ISR_MTLIS_WIDTH 1 #define DMA_ISR_MTLIS_WIDTH 1
#define DMA_MR_INTM_INDEX 12
#define DMA_MR_INTM_WIDTH 2
#define DMA_MR_SWR_INDEX 0 #define DMA_MR_SWR_INDEX 0
#define DMA_MR_SWR_WIDTH 1 #define DMA_MR_SWR_WIDTH 1
#define DMA_SBMR_EAME_INDEX 11 #define DMA_SBMR_EAME_INDEX 11
...@@ -309,6 +311,11 @@ ...@@ -309,6 +311,11 @@
#define MAC_HWF0R 0x011c #define MAC_HWF0R 0x011c
#define MAC_HWF1R 0x0120 #define MAC_HWF1R 0x0120
#define MAC_HWF2R 0x0124 #define MAC_HWF2R 0x0124
#define MAC_MDIOSCAR 0x0200
#define MAC_MDIOSCCDR 0x0204
#define MAC_MDIOISR 0x0214
#define MAC_MDIOIER 0x0218
#define MAC_MDIOCL22R 0x0220
#define MAC_GPIOCR 0x0278 #define MAC_GPIOCR 0x0278
#define MAC_GPIOSR 0x027c #define MAC_GPIOSR 0x027c
#define MAC_MACA0HR 0x0300 #define MAC_MACA0HR 0x0300
...@@ -409,10 +416,34 @@ ...@@ -409,10 +416,34 @@
#define MAC_ISR_MMCTXIS_WIDTH 1 #define MAC_ISR_MMCTXIS_WIDTH 1
#define MAC_ISR_PMTIS_INDEX 4 #define MAC_ISR_PMTIS_INDEX 4
#define MAC_ISR_PMTIS_WIDTH 1 #define MAC_ISR_PMTIS_WIDTH 1
#define MAC_ISR_SMI_INDEX 1
#define MAC_ISR_SMI_WIDTH 1
#define MAC_ISR_TSIS_INDEX 12 #define MAC_ISR_TSIS_INDEX 12
#define MAC_ISR_TSIS_WIDTH 1 #define MAC_ISR_TSIS_WIDTH 1
#define MAC_MACA1HR_AE_INDEX 31 #define MAC_MACA1HR_AE_INDEX 31
#define MAC_MACA1HR_AE_WIDTH 1 #define MAC_MACA1HR_AE_WIDTH 1
#define MAC_MDIOIER_SNGLCOMPIE_INDEX 12
#define MAC_MDIOIER_SNGLCOMPIE_WIDTH 1
#define MAC_MDIOISR_SNGLCOMPINT_INDEX 12
#define MAC_MDIOISR_SNGLCOMPINT_WIDTH 1
#define MAC_MDIOSCAR_DA_INDEX 21
#define MAC_MDIOSCAR_DA_WIDTH 5
#define MAC_MDIOSCAR_PA_INDEX 16
#define MAC_MDIOSCAR_PA_WIDTH 5
#define MAC_MDIOSCAR_RA_INDEX 0
#define MAC_MDIOSCAR_RA_WIDTH 16
#define MAC_MDIOSCAR_REG_INDEX 0
#define MAC_MDIOSCAR_REG_WIDTH 21
#define MAC_MDIOSCCDR_BUSY_INDEX 22
#define MAC_MDIOSCCDR_BUSY_WIDTH 1
#define MAC_MDIOSCCDR_CMD_INDEX 16
#define MAC_MDIOSCCDR_CMD_WIDTH 2
#define MAC_MDIOSCCDR_CR_INDEX 19
#define MAC_MDIOSCCDR_CR_WIDTH 3
#define MAC_MDIOSCCDR_DATA_INDEX 0
#define MAC_MDIOSCCDR_DATA_WIDTH 16
#define MAC_MDIOSCCDR_SADDR_INDEX 18
#define MAC_MDIOSCCDR_SADDR_WIDTH 1
#define MAC_PFR_HMC_INDEX 2 #define MAC_PFR_HMC_INDEX 2
#define MAC_PFR_HMC_WIDTH 1 #define MAC_PFR_HMC_WIDTH 1
#define MAC_PFR_HPF_INDEX 10 #define MAC_PFR_HPF_INDEX 10
...@@ -858,8 +889,15 @@ ...@@ -858,8 +889,15 @@
/* PCS register offsets */ /* PCS register offsets */
#define PCS_V1_WINDOW_SELECT 0x03fc #define PCS_V1_WINDOW_SELECT 0x03fc
#define PCS_V2_WINDOW_DEF 0x9060
#define PCS_V2_WINDOW_SELECT 0x9064 #define PCS_V2_WINDOW_SELECT 0x9064
/* PCS register entry bit positions and sizes */
#define PCS_V2_WINDOW_DEF_OFFSET_INDEX 6
#define PCS_V2_WINDOW_DEF_OFFSET_WIDTH 14
#define PCS_V2_WINDOW_DEF_SIZE_INDEX 2
#define PCS_V2_WINDOW_DEF_SIZE_WIDTH 4
/* SerDes integration register offsets */ /* SerDes integration register offsets */
#define SIR0_KR_RT_1 0x002c #define SIR0_KR_RT_1 0x002c
#define SIR0_STATUS 0x0040 #define SIR0_STATUS 0x0040
...@@ -902,6 +940,198 @@ ...@@ -902,6 +940,198 @@
#define RXTX_REG129_RXDFE_CONFIG_INDEX 14 #define RXTX_REG129_RXDFE_CONFIG_INDEX 14
#define RXTX_REG129_RXDFE_CONFIG_WIDTH 2 #define RXTX_REG129_RXDFE_CONFIG_WIDTH 2
/* MAC Control register offsets */
#define XP_PROP_0 0x0000
#define XP_PROP_1 0x0004
#define XP_PROP_2 0x0008
#define XP_PROP_3 0x000c
#define XP_PROP_4 0x0010
#define XP_PROP_5 0x0014
#define XP_MAC_ADDR_LO 0x0020
#define XP_MAC_ADDR_HI 0x0024
#define XP_ECC_ISR 0x0030
#define XP_ECC_IER 0x0034
#define XP_ECC_CNT0 0x003c
#define XP_ECC_CNT1 0x0040
#define XP_DRIVER_INT_REQ 0x0060
#define XP_DRIVER_INT_RO 0x0064
#define XP_DRIVER_SCRATCH_0 0x0068
#define XP_DRIVER_SCRATCH_1 0x006c
#define XP_INT_EN 0x0078
#define XP_I2C_MUTEX 0x0080
#define XP_MDIO_MUTEX 0x0084
/* MAC Control register entry bit positions and sizes */
#define XP_DRIVER_INT_REQ_REQUEST_INDEX 0
#define XP_DRIVER_INT_REQ_REQUEST_WIDTH 1
#define XP_DRIVER_INT_RO_STATUS_INDEX 0
#define XP_DRIVER_INT_RO_STATUS_WIDTH 1
#define XP_DRIVER_SCRATCH_0_COMMAND_INDEX 0
#define XP_DRIVER_SCRATCH_0_COMMAND_WIDTH 8
#define XP_DRIVER_SCRATCH_0_SUB_COMMAND_INDEX 8
#define XP_DRIVER_SCRATCH_0_SUB_COMMAND_WIDTH 8
#define XP_ECC_CNT0_RX_DED_INDEX 24
#define XP_ECC_CNT0_RX_DED_WIDTH 8
#define XP_ECC_CNT0_RX_SEC_INDEX 16
#define XP_ECC_CNT0_RX_SEC_WIDTH 8
#define XP_ECC_CNT0_TX_DED_INDEX 8
#define XP_ECC_CNT0_TX_DED_WIDTH 8
#define XP_ECC_CNT0_TX_SEC_INDEX 0
#define XP_ECC_CNT0_TX_SEC_WIDTH 8
#define XP_ECC_CNT1_DESC_DED_INDEX 8
#define XP_ECC_CNT1_DESC_DED_WIDTH 8
#define XP_ECC_CNT1_DESC_SEC_INDEX 0
#define XP_ECC_CNT1_DESC_SEC_WIDTH 8
#define XP_ECC_IER_DESC_DED_INDEX 0
#define XP_ECC_IER_DESC_DED_WIDTH 1
#define XP_ECC_IER_DESC_SEC_INDEX 1
#define XP_ECC_IER_DESC_SEC_WIDTH 1
#define XP_ECC_IER_RX_DED_INDEX 2
#define XP_ECC_IER_RX_DED_WIDTH 1
#define XP_ECC_IER_RX_SEC_INDEX 3
#define XP_ECC_IER_RX_SEC_WIDTH 1
#define XP_ECC_IER_TX_DED_INDEX 4
#define XP_ECC_IER_TX_DED_WIDTH 1
#define XP_ECC_IER_TX_SEC_INDEX 5
#define XP_ECC_IER_TX_SEC_WIDTH 1
#define XP_ECC_ISR_DESC_DED_INDEX 0
#define XP_ECC_ISR_DESC_DED_WIDTH 1
#define XP_ECC_ISR_DESC_SEC_INDEX 1
#define XP_ECC_ISR_DESC_SEC_WIDTH 1
#define XP_ECC_ISR_RX_DED_INDEX 2
#define XP_ECC_ISR_RX_DED_WIDTH 1
#define XP_ECC_ISR_RX_SEC_INDEX 3
#define XP_ECC_ISR_RX_SEC_WIDTH 1
#define XP_ECC_ISR_TX_DED_INDEX 4
#define XP_ECC_ISR_TX_DED_WIDTH 1
#define XP_ECC_ISR_TX_SEC_INDEX 5
#define XP_ECC_ISR_TX_SEC_WIDTH 1
#define XP_I2C_MUTEX_BUSY_INDEX 31
#define XP_I2C_MUTEX_BUSY_WIDTH 1
#define XP_I2C_MUTEX_ID_INDEX 29
#define XP_I2C_MUTEX_ID_WIDTH 2
#define XP_I2C_MUTEX_ACTIVE_INDEX 0
#define XP_I2C_MUTEX_ACTIVE_WIDTH 1
#define XP_MAC_ADDR_HI_VALID_INDEX 31
#define XP_MAC_ADDR_HI_VALID_WIDTH 1
#define XP_PROP_0_CONN_TYPE_INDEX 28
#define XP_PROP_0_CONN_TYPE_WIDTH 3
#define XP_PROP_0_MDIO_ADDR_INDEX 16
#define XP_PROP_0_MDIO_ADDR_WIDTH 5
#define XP_PROP_0_PORT_ID_INDEX 0
#define XP_PROP_0_PORT_ID_WIDTH 8
#define XP_PROP_0_PORT_MODE_INDEX 8
#define XP_PROP_0_PORT_MODE_WIDTH 4
#define XP_PROP_0_PORT_SPEEDS_INDEX 23
#define XP_PROP_0_PORT_SPEEDS_WIDTH 4
#define XP_PROP_1_MAX_RX_DMA_INDEX 24
#define XP_PROP_1_MAX_RX_DMA_WIDTH 5
#define XP_PROP_1_MAX_RX_QUEUES_INDEX 8
#define XP_PROP_1_MAX_RX_QUEUES_WIDTH 5
#define XP_PROP_1_MAX_TX_DMA_INDEX 16
#define XP_PROP_1_MAX_TX_DMA_WIDTH 5
#define XP_PROP_1_MAX_TX_QUEUES_INDEX 0
#define XP_PROP_1_MAX_TX_QUEUES_WIDTH 5
#define XP_PROP_2_RX_FIFO_SIZE_INDEX 16
#define XP_PROP_2_RX_FIFO_SIZE_WIDTH 16
#define XP_PROP_2_TX_FIFO_SIZE_INDEX 0
#define XP_PROP_2_TX_FIFO_SIZE_WIDTH 16
#define XP_PROP_3_GPIO_MASK_INDEX 28
#define XP_PROP_3_GPIO_MASK_WIDTH 4
#define XP_PROP_3_GPIO_MOD_ABS_INDEX 20
#define XP_PROP_3_GPIO_MOD_ABS_WIDTH 4
#define XP_PROP_3_GPIO_RATE_SELECT_INDEX 16
#define XP_PROP_3_GPIO_RATE_SELECT_WIDTH 4
#define XP_PROP_3_GPIO_RX_LOS_INDEX 24
#define XP_PROP_3_GPIO_RX_LOS_WIDTH 4
#define XP_PROP_3_GPIO_TX_FAULT_INDEX 12
#define XP_PROP_3_GPIO_TX_FAULT_WIDTH 4
#define XP_PROP_3_GPIO_ADDR_INDEX 8
#define XP_PROP_3_GPIO_ADDR_WIDTH 3
#define XP_PROP_3_MDIO_RESET_INDEX 0
#define XP_PROP_3_MDIO_RESET_WIDTH 2
#define XP_PROP_3_MDIO_RESET_I2C_ADDR_INDEX 8
#define XP_PROP_3_MDIO_RESET_I2C_ADDR_WIDTH 3
#define XP_PROP_3_MDIO_RESET_I2C_GPIO_INDEX 12
#define XP_PROP_3_MDIO_RESET_I2C_GPIO_WIDTH 4
#define XP_PROP_3_MDIO_RESET_INT_GPIO_INDEX 4
#define XP_PROP_3_MDIO_RESET_INT_GPIO_WIDTH 2
#define XP_PROP_4_MUX_ADDR_HI_INDEX 8
#define XP_PROP_4_MUX_ADDR_HI_WIDTH 5
#define XP_PROP_4_MUX_ADDR_LO_INDEX 0
#define XP_PROP_4_MUX_ADDR_LO_WIDTH 3
#define XP_PROP_4_MUX_CHAN_INDEX 4
#define XP_PROP_4_MUX_CHAN_WIDTH 3
#define XP_PROP_4_REDRV_ADDR_INDEX 16
#define XP_PROP_4_REDRV_ADDR_WIDTH 7
#define XP_PROP_4_REDRV_IF_INDEX 23
#define XP_PROP_4_REDRV_IF_WIDTH 1
#define XP_PROP_4_REDRV_LANE_INDEX 24
#define XP_PROP_4_REDRV_LANE_WIDTH 3
#define XP_PROP_4_REDRV_MODEL_INDEX 28
#define XP_PROP_4_REDRV_MODEL_WIDTH 3
#define XP_PROP_4_REDRV_PRESENT_INDEX 31
#define XP_PROP_4_REDRV_PRESENT_WIDTH 1
/* I2C Control register offsets */
#define IC_CON 0x0000
#define IC_TAR 0x0004
#define IC_DATA_CMD 0x0010
#define IC_INTR_STAT 0x002c
#define IC_INTR_MASK 0x0030
#define IC_RAW_INTR_STAT 0x0034
#define IC_CLR_INTR 0x0040
#define IC_CLR_TX_ABRT 0x0054
#define IC_CLR_STOP_DET 0x0060
#define IC_ENABLE 0x006c
#define IC_TXFLR 0x0074
#define IC_RXFLR 0x0078
#define IC_TX_ABRT_SOURCE 0x0080
#define IC_ENABLE_STATUS 0x009c
#define IC_COMP_PARAM_1 0x00f4
/* I2C Control register entry bit positions and sizes */
#define IC_COMP_PARAM_1_MAX_SPEED_MODE_INDEX 2
#define IC_COMP_PARAM_1_MAX_SPEED_MODE_WIDTH 2
#define IC_COMP_PARAM_1_RX_BUFFER_DEPTH_INDEX 8
#define IC_COMP_PARAM_1_RX_BUFFER_DEPTH_WIDTH 8
#define IC_COMP_PARAM_1_TX_BUFFER_DEPTH_INDEX 16
#define IC_COMP_PARAM_1_TX_BUFFER_DEPTH_WIDTH 8
#define IC_CON_MASTER_MODE_INDEX 0
#define IC_CON_MASTER_MODE_WIDTH 1
#define IC_CON_RESTART_EN_INDEX 5
#define IC_CON_RESTART_EN_WIDTH 1
#define IC_CON_RX_FIFO_FULL_HOLD_INDEX 9
#define IC_CON_RX_FIFO_FULL_HOLD_WIDTH 1
#define IC_CON_SLAVE_DISABLE_INDEX 6
#define IC_CON_SLAVE_DISABLE_WIDTH 1
#define IC_CON_SPEED_INDEX 1
#define IC_CON_SPEED_WIDTH 2
#define IC_DATA_CMD_CMD_INDEX 8
#define IC_DATA_CMD_CMD_WIDTH 1
#define IC_DATA_CMD_STOP_INDEX 9
#define IC_DATA_CMD_STOP_WIDTH 1
#define IC_ENABLE_ABORT_INDEX 1
#define IC_ENABLE_ABORT_WIDTH 1
#define IC_ENABLE_EN_INDEX 0
#define IC_ENABLE_EN_WIDTH 1
#define IC_ENABLE_STATUS_EN_INDEX 0
#define IC_ENABLE_STATUS_EN_WIDTH 1
#define IC_INTR_MASK_TX_EMPTY_INDEX 4
#define IC_INTR_MASK_TX_EMPTY_WIDTH 1
#define IC_RAW_INTR_STAT_RX_FULL_INDEX 2
#define IC_RAW_INTR_STAT_RX_FULL_WIDTH 1
#define IC_RAW_INTR_STAT_STOP_DET_INDEX 9
#define IC_RAW_INTR_STAT_STOP_DET_WIDTH 1
#define IC_RAW_INTR_STAT_TX_ABRT_INDEX 6
#define IC_RAW_INTR_STAT_TX_ABRT_WIDTH 1
#define IC_RAW_INTR_STAT_TX_EMPTY_INDEX 4
#define IC_RAW_INTR_STAT_TX_EMPTY_WIDTH 1
/* I2C Control register value */
#define IC_TX_ABRT_7B_ADDR_NOACK 0x0001
#define IC_TX_ABRT_ARB_LOST 0x1000
/* Descriptor/Packet entry bit positions and sizes */ /* Descriptor/Packet entry bit positions and sizes */
#define RX_PACKET_ERRORS_CRC_INDEX 2 #define RX_PACKET_ERRORS_CRC_INDEX 2
#define RX_PACKET_ERRORS_CRC_WIDTH 1 #define RX_PACKET_ERRORS_CRC_WIDTH 1
...@@ -1078,6 +1308,14 @@ ...@@ -1078,6 +1308,14 @@
#define MDIO_VEND2_CTRL1_AN_RESTART BIT(9) #define MDIO_VEND2_CTRL1_AN_RESTART BIT(9)
#endif #endif
#ifndef MDIO_VEND2_CTRL1_SS6
#define MDIO_VEND2_CTRL1_SS6 BIT(6)
#endif
#ifndef MDIO_VEND2_CTRL1_SS13
#define MDIO_VEND2_CTRL1_SS13 BIT(13)
#endif
/* MDIO mask values */ /* MDIO mask values */
#define XGBE_AN_CL73_INT_CMPLT BIT(0) #define XGBE_AN_CL73_INT_CMPLT BIT(0)
#define XGBE_AN_CL73_INC_LINK BIT(1) #define XGBE_AN_CL73_INC_LINK BIT(1)
...@@ -1240,6 +1478,16 @@ do { \ ...@@ -1240,6 +1478,16 @@ do { \
/* Macros for building, reading or writing register values or bits /* Macros for building, reading or writing register values or bits
* within the register values of XPCS registers. * within the register values of XPCS registers.
*/ */
#define XPCS_GET_BITS(_var, _prefix, _field) \
GET_BITS((_var), \
_prefix##_##_field##_INDEX, \
_prefix##_##_field##_WIDTH)
#define XPCS_SET_BITS(_var, _prefix, _field, _val) \
SET_BITS((_var), \
_prefix##_##_field##_INDEX, \
_prefix##_##_field##_WIDTH, (_val))
#define XPCS32_IOWRITE(_pdata, _off, _val) \ #define XPCS32_IOWRITE(_pdata, _off, _val) \
iowrite32(_val, (_pdata)->xpcs_regs + (_off)) iowrite32(_val, (_pdata)->xpcs_regs + (_off))
...@@ -1328,6 +1576,72 @@ do { \ ...@@ -1328,6 +1576,72 @@ do { \
XRXTX_IOWRITE((_pdata), _reg, reg_val); \ XRXTX_IOWRITE((_pdata), _reg, reg_val); \
} while (0) } while (0)
/* Macros for building, reading or writing register values or bits
* within the register values of MAC Control registers.
*/
#define XP_GET_BITS(_var, _prefix, _field) \
GET_BITS((_var), \
_prefix##_##_field##_INDEX, \
_prefix##_##_field##_WIDTH)
#define XP_SET_BITS(_var, _prefix, _field, _val) \
SET_BITS((_var), \
_prefix##_##_field##_INDEX, \
_prefix##_##_field##_WIDTH, (_val))
#define XP_IOREAD(_pdata, _reg) \
ioread32((_pdata)->xprop_regs + (_reg))
#define XP_IOREAD_BITS(_pdata, _reg, _field) \
GET_BITS(XP_IOREAD((_pdata), (_reg)), \
_reg##_##_field##_INDEX, \
_reg##_##_field##_WIDTH)
#define XP_IOWRITE(_pdata, _reg, _val) \
iowrite32((_val), (_pdata)->xprop_regs + (_reg))
#define XP_IOWRITE_BITS(_pdata, _reg, _field, _val) \
do { \
u32 reg_val = XP_IOREAD((_pdata), (_reg)); \
SET_BITS(reg_val, \
_reg##_##_field##_INDEX, \
_reg##_##_field##_WIDTH, (_val)); \
XP_IOWRITE((_pdata), (_reg), reg_val); \
} while (0)
/* Macros for building, reading or writing register values or bits
* within the register values of I2C Control registers.
*/
#define XI2C_GET_BITS(_var, _prefix, _field) \
GET_BITS((_var), \
_prefix##_##_field##_INDEX, \
_prefix##_##_field##_WIDTH)
#define XI2C_SET_BITS(_var, _prefix, _field, _val) \
SET_BITS((_var), \
_prefix##_##_field##_INDEX, \
_prefix##_##_field##_WIDTH, (_val))
#define XI2C_IOREAD(_pdata, _reg) \
ioread32((_pdata)->xi2c_regs + (_reg))
#define XI2C_IOREAD_BITS(_pdata, _reg, _field) \
GET_BITS(XI2C_IOREAD((_pdata), (_reg)), \
_reg##_##_field##_INDEX, \
_reg##_##_field##_WIDTH)
#define XI2C_IOWRITE(_pdata, _reg, _val) \
iowrite32((_val), (_pdata)->xi2c_regs + (_reg))
#define XI2C_IOWRITE_BITS(_pdata, _reg, _field, _val) \
do { \
u32 reg_val = XI2C_IOREAD((_pdata), (_reg)); \
SET_BITS(reg_val, \
_reg##_##_field##_INDEX, \
_reg##_##_field##_WIDTH, (_val)); \
XI2C_IOWRITE((_pdata), (_reg), reg_val); \
} while (0)
/* Macros for building, reading or writing register values or bits /* Macros for building, reading or writing register values or bits
* using MDIO. Different from above because of the use of standardized * using MDIO. Different from above because of the use of standardized
* Linux include values. No shifting is performed with the bit * Linux include values. No shifting is performed with the bit
......
...@@ -316,6 +316,126 @@ static const struct file_operations xpcs_reg_value_fops = { ...@@ -316,6 +316,126 @@ static const struct file_operations xpcs_reg_value_fops = {
.write = xpcs_reg_value_write, .write = xpcs_reg_value_write,
}; };
static ssize_t xprop_reg_addr_read(struct file *filp, char __user *buffer,
size_t count, loff_t *ppos)
{
struct xgbe_prv_data *pdata = filp->private_data;
return xgbe_common_read(buffer, count, ppos, pdata->debugfs_xprop_reg);
}
static ssize_t xprop_reg_addr_write(struct file *filp,
const char __user *buffer,
size_t count, loff_t *ppos)
{
struct xgbe_prv_data *pdata = filp->private_data;
return xgbe_common_write(buffer, count, ppos,
&pdata->debugfs_xprop_reg);
}
static ssize_t xprop_reg_value_read(struct file *filp, char __user *buffer,
size_t count, loff_t *ppos)
{
struct xgbe_prv_data *pdata = filp->private_data;
unsigned int value;
value = XP_IOREAD(pdata, pdata->debugfs_xprop_reg);
return xgbe_common_read(buffer, count, ppos, value);
}
static ssize_t xprop_reg_value_write(struct file *filp,
const char __user *buffer,
size_t count, loff_t *ppos)
{
struct xgbe_prv_data *pdata = filp->private_data;
unsigned int value;
ssize_t len;
len = xgbe_common_write(buffer, count, ppos, &value);
if (len < 0)
return len;
XP_IOWRITE(pdata, pdata->debugfs_xprop_reg, value);
return len;
}
static const struct file_operations xprop_reg_addr_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = xprop_reg_addr_read,
.write = xprop_reg_addr_write,
};
static const struct file_operations xprop_reg_value_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = xprop_reg_value_read,
.write = xprop_reg_value_write,
};
static ssize_t xi2c_reg_addr_read(struct file *filp, char __user *buffer,
size_t count, loff_t *ppos)
{
struct xgbe_prv_data *pdata = filp->private_data;
return xgbe_common_read(buffer, count, ppos, pdata->debugfs_xi2c_reg);
}
static ssize_t xi2c_reg_addr_write(struct file *filp,
const char __user *buffer,
size_t count, loff_t *ppos)
{
struct xgbe_prv_data *pdata = filp->private_data;
return xgbe_common_write(buffer, count, ppos,
&pdata->debugfs_xi2c_reg);
}
static ssize_t xi2c_reg_value_read(struct file *filp, char __user *buffer,
size_t count, loff_t *ppos)
{
struct xgbe_prv_data *pdata = filp->private_data;
unsigned int value;
value = XI2C_IOREAD(pdata, pdata->debugfs_xi2c_reg);
return xgbe_common_read(buffer, count, ppos, value);
}
static ssize_t xi2c_reg_value_write(struct file *filp,
const char __user *buffer,
size_t count, loff_t *ppos)
{
struct xgbe_prv_data *pdata = filp->private_data;
unsigned int value;
ssize_t len;
len = xgbe_common_write(buffer, count, ppos, &value);
if (len < 0)
return len;
XI2C_IOWRITE(pdata, pdata->debugfs_xi2c_reg, value);
return len;
}
static const struct file_operations xi2c_reg_addr_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = xi2c_reg_addr_read,
.write = xi2c_reg_addr_write,
};
static const struct file_operations xi2c_reg_value_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = xi2c_reg_value_read,
.write = xi2c_reg_value_write,
};
void xgbe_debugfs_init(struct xgbe_prv_data *pdata) void xgbe_debugfs_init(struct xgbe_prv_data *pdata)
{ {
struct dentry *pfile; struct dentry *pfile;
...@@ -367,6 +487,38 @@ void xgbe_debugfs_init(struct xgbe_prv_data *pdata) ...@@ -367,6 +487,38 @@ void xgbe_debugfs_init(struct xgbe_prv_data *pdata)
if (!pfile) if (!pfile)
netdev_err(pdata->netdev, "debugfs_create_file failed\n"); netdev_err(pdata->netdev, "debugfs_create_file failed\n");
if (pdata->xprop_regs) {
pfile = debugfs_create_file("xprop_register", 0600,
pdata->xgbe_debugfs, pdata,
&xprop_reg_addr_fops);
if (!pfile)
netdev_err(pdata->netdev,
"debugfs_create_file failed\n");
pfile = debugfs_create_file("xprop_register_value", 0600,
pdata->xgbe_debugfs, pdata,
&xprop_reg_value_fops);
if (!pfile)
netdev_err(pdata->netdev,
"debugfs_create_file failed\n");
}
if (pdata->xi2c_regs) {
pfile = debugfs_create_file("xi2c_register", 0600,
pdata->xgbe_debugfs, pdata,
&xi2c_reg_addr_fops);
if (!pfile)
netdev_err(pdata->netdev,
"debugfs_create_file failed\n");
pfile = debugfs_create_file("xi2c_register_value", 0600,
pdata->xgbe_debugfs, pdata,
&xi2c_reg_value_fops);
if (!pfile)
netdev_err(pdata->netdev,
"debugfs_create_file failed\n");
}
kfree(buf); kfree(buf);
} }
......
...@@ -646,6 +646,11 @@ static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata) ...@@ -646,6 +646,11 @@ static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
unsigned int dma_ch_isr, dma_ch_ier; unsigned int dma_ch_isr, dma_ch_ier;
unsigned int i; unsigned int i;
/* Set the interrupt mode if supported */
if (pdata->channel_irq_mode)
XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
pdata->channel_irq_mode);
channel = pdata->channel; channel = pdata->channel;
for (i = 0; i < pdata->channel_count; i++, channel++) { for (i = 0; i < pdata->channel_count; i++, channel++) {
/* Clear all the interrupts which are set */ /* Clear all the interrupts which are set */
...@@ -667,19 +672,21 @@ static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata) ...@@ -667,19 +672,21 @@ static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
if (channel->tx_ring) { if (channel->tx_ring) {
/* Enable the following Tx interrupts /* Enable the following Tx interrupts
* TIE - Transmit Interrupt Enable (unless using * TIE - Transmit Interrupt Enable (unless using
* per channel interrupts) * per channel interrupts in edge triggered
* mode)
*/ */
if (!pdata->per_channel_irq) if (!pdata->per_channel_irq || pdata->channel_irq_mode)
XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1); XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
} }
if (channel->rx_ring) { if (channel->rx_ring) {
/* Enable following Rx interrupts /* Enable following Rx interrupts
* RBUE - Receive Buffer Unavailable Enable * RBUE - Receive Buffer Unavailable Enable
* RIE - Receive Interrupt Enable (unless using * RIE - Receive Interrupt Enable (unless using
* per channel interrupts) * per channel interrupts in edge triggered
* mode)
*/ */
XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1); XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
if (!pdata->per_channel_irq) if (!pdata->per_channel_irq || pdata->channel_irq_mode)
XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1); XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
} }
...@@ -715,6 +722,68 @@ static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata) ...@@ -715,6 +722,68 @@ static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
/* Enable all counter interrupts */ /* Enable all counter interrupts */
XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff); XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff); XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
/* Enable MDIO single command completion interrupt */
XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
}
static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
{
unsigned int ecc_isr, ecc_ier = 0;
if (!pdata->vdata->ecc_support)
return;
/* Clear all the interrupts which are set */
ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
/* Enable ECC interrupts */
XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
}
static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
{
unsigned int ecc_ier;
ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
/* Disable ECC DED interrupts */
XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
}
static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
enum xgbe_ecc_sec sec)
{
unsigned int ecc_ier;
ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
/* Disable ECC SEC interrupt */
switch (sec) {
case XGBE_ECC_SEC_TX:
XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
break;
case XGBE_ECC_SEC_RX:
XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
break;
case XGBE_ECC_SEC_DESC:
XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
break;
}
XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
} }
static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed) static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
...@@ -1026,6 +1095,36 @@ static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata) ...@@ -1026,6 +1095,36 @@ static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
return 0; return 0;
} }
static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
{
unsigned int reg;
if (gpio > 16)
return -EINVAL;
reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
reg &= ~(1 << (gpio + 16));
XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
return 0;
}
static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
{
unsigned int reg;
if (gpio > 16)
return -EINVAL;
reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
reg |= (1 << (gpio + 16));
XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
return 0;
}
static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
int mmd_reg) int mmd_reg)
{ {
...@@ -1170,6 +1269,79 @@ static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, ...@@ -1170,6 +1269,79 @@ static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
} }
} }
static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
int reg, u16 val)
{
unsigned int mdio_sca, mdio_sccd;
reinit_completion(&pdata->mdio_complete);
mdio_sca = 0;
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, REG, reg);
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, addr);
XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
mdio_sccd = 0;
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
netdev_err(pdata->netdev, "mdio write operation timed out\n");
return -ETIMEDOUT;
}
return 0;
}
static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
int reg)
{
unsigned int mdio_sca, mdio_sccd;
reinit_completion(&pdata->mdio_complete);
mdio_sca = 0;
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, REG, reg);
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, addr);
XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
mdio_sccd = 0;
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
netdev_err(pdata->netdev, "mdio read operation timed out\n");
return -ETIMEDOUT;
}
return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
}
static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
enum xgbe_mdio_mode mode)
{
unsigned int reg_val = 0;
switch (mode) {
case XGBE_MDIO_MODE_CL22:
if (port > XGMAC_MAX_C22_PORT)
return -EINVAL;
reg_val |= (1 << port);
break;
case XGBE_MDIO_MODE_CL45:
break;
default:
return -EINVAL;
}
XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
return 0;
}
static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc) static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
{ {
return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN); return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
...@@ -1360,14 +1532,21 @@ static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata) ...@@ -1360,14 +1532,21 @@ static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata) static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
{ {
unsigned int tx_snr; unsigned int tx_snr, tx_ssr;
u64 nsec; u64 nsec;
if (pdata->vdata->tx_tstamp_workaround) {
tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR); tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
} else {
tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
}
if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS)) if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
return 0; return 0;
nsec = XGMAC_IOREAD(pdata, MAC_TXSSR); nsec = tx_ssr;
nsec *= NSEC_PER_SEC; nsec *= NSEC_PER_SEC;
nsec += tx_snr; nsec += tx_snr;
...@@ -1897,7 +2076,7 @@ static int xgbe_disable_int(struct xgbe_channel *channel, ...@@ -1897,7 +2076,7 @@ static int xgbe_disable_int(struct xgbe_channel *channel,
return 0; return 0;
} }
static int xgbe_exit(struct xgbe_prv_data *pdata) static int __xgbe_exit(struct xgbe_prv_data *pdata)
{ {
unsigned int count = 2000; unsigned int count = 2000;
...@@ -1919,6 +2098,20 @@ static int xgbe_exit(struct xgbe_prv_data *pdata) ...@@ -1919,6 +2098,20 @@ static int xgbe_exit(struct xgbe_prv_data *pdata)
return 0; return 0;
} }
static int xgbe_exit(struct xgbe_prv_data *pdata)
{
int ret;
/* To guard against possible incorrectly generated interrupts,
* issue the software reset twice.
*/
ret = __xgbe_exit(pdata);
if (ret)
return ret;
return __xgbe_exit(pdata);
}
static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata) static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
{ {
unsigned int i, count; unsigned int i, count;
...@@ -3266,6 +3459,11 @@ static int xgbe_init(struct xgbe_prv_data *pdata) ...@@ -3266,6 +3459,11 @@ static int xgbe_init(struct xgbe_prv_data *pdata)
xgbe_config_mmc(pdata); xgbe_config_mmc(pdata);
xgbe_enable_mac_interrupts(pdata); xgbe_enable_mac_interrupts(pdata);
/*
* Initialize ECC related features
*/
xgbe_enable_ecc_interrupts(pdata);
DBGPR("<--xgbe_init\n"); DBGPR("<--xgbe_init\n");
return 0; return 0;
...@@ -3294,6 +3492,13 @@ void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if) ...@@ -3294,6 +3492,13 @@ void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
hw_if->set_speed = xgbe_set_speed; hw_if->set_speed = xgbe_set_speed;
hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
hw_if->set_gpio = xgbe_set_gpio;
hw_if->clr_gpio = xgbe_clr_gpio;
hw_if->enable_tx = xgbe_enable_tx; hw_if->enable_tx = xgbe_enable_tx;
hw_if->disable_tx = xgbe_disable_tx; hw_if->disable_tx = xgbe_disable_tx;
hw_if->enable_rx = xgbe_enable_rx; hw_if->enable_rx = xgbe_enable_rx;
...@@ -3371,5 +3576,9 @@ void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if) ...@@ -3371,5 +3576,9 @@ void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
hw_if->set_rss_hash_key = xgbe_set_rss_hash_key; hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table; hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
/* For ECC */
hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
DBGPR("<--xgbe_init_function_ptrs\n"); DBGPR("<--xgbe_init_function_ptrs\n");
} }
...@@ -114,6 +114,7 @@ ...@@ -114,6 +114,7 @@
* THE POSSIBILITY OF SUCH DAMAGE. * THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#include <linux/module.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <linux/tcp.h> #include <linux/tcp.h>
#include <linux/if_vlan.h> #include <linux/if_vlan.h>
...@@ -126,8 +127,35 @@ ...@@ -126,8 +127,35 @@
#include "xgbe.h" #include "xgbe.h"
#include "xgbe-common.h" #include "xgbe-common.h"
static unsigned int ecc_sec_info_threshold = 10;
static unsigned int ecc_sec_warn_threshold = 10000;
static unsigned int ecc_sec_period = 600;
static unsigned int ecc_ded_threshold = 2;
static unsigned int ecc_ded_period = 600;
#ifdef CONFIG_AMD_XGBE_HAVE_ECC
/* Only expose the ECC parameters if supported */
module_param(ecc_sec_info_threshold, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(ecc_sec_info_threshold,
" ECC corrected error informational threshold setting");
module_param(ecc_sec_warn_threshold, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(ecc_sec_warn_threshold,
" ECC corrected error warning threshold setting");
module_param(ecc_sec_period, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(ecc_sec_period, " ECC corrected error period (in seconds)");
module_param(ecc_ded_threshold, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(ecc_ded_threshold, " ECC detected error threshold setting");
module_param(ecc_ded_period, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(ecc_ded_period, " ECC detected error period (in seconds)");
#endif
static int xgbe_one_poll(struct napi_struct *, int); static int xgbe_one_poll(struct napi_struct *, int);
static int xgbe_all_poll(struct napi_struct *, int); static int xgbe_all_poll(struct napi_struct *, int);
static void xgbe_stop(struct xgbe_prv_data *);
static int xgbe_alloc_channels(struct xgbe_prv_data *pdata) static int xgbe_alloc_channels(struct xgbe_prv_data *pdata)
{ {
...@@ -252,15 +280,12 @@ static int xgbe_calc_rx_buf_size(struct net_device *netdev, unsigned int mtu) ...@@ -252,15 +280,12 @@ static int xgbe_calc_rx_buf_size(struct net_device *netdev, unsigned int mtu)
return rx_buf_size; return rx_buf_size;
} }
static void xgbe_enable_rx_tx_ints(struct xgbe_prv_data *pdata) static void xgbe_enable_rx_tx_int(struct xgbe_prv_data *pdata,
struct xgbe_channel *channel)
{ {
struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct xgbe_channel *channel;
enum xgbe_int int_id; enum xgbe_int int_id;
unsigned int i;
channel = pdata->channel;
for (i = 0; i < pdata->channel_count; i++, channel++) {
if (channel->tx_ring && channel->rx_ring) if (channel->tx_ring && channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_TI_RI; int_id = XGMAC_INT_DMA_CH_SR_TI_RI;
else if (channel->tx_ring) else if (channel->tx_ring)
...@@ -268,21 +293,27 @@ static void xgbe_enable_rx_tx_ints(struct xgbe_prv_data *pdata) ...@@ -268,21 +293,27 @@ static void xgbe_enable_rx_tx_ints(struct xgbe_prv_data *pdata)
else if (channel->rx_ring) else if (channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_RI; int_id = XGMAC_INT_DMA_CH_SR_RI;
else else
continue; return;
hw_if->enable_int(channel, int_id); hw_if->enable_int(channel, int_id);
}
} }
static void xgbe_disable_rx_tx_ints(struct xgbe_prv_data *pdata) static void xgbe_enable_rx_tx_ints(struct xgbe_prv_data *pdata)
{ {
struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct xgbe_channel *channel; struct xgbe_channel *channel;
enum xgbe_int int_id;
unsigned int i; unsigned int i;
channel = pdata->channel; channel = pdata->channel;
for (i = 0; i < pdata->channel_count; i++, channel++) { for (i = 0; i < pdata->channel_count; i++, channel++)
xgbe_enable_rx_tx_int(pdata, channel);
}
static void xgbe_disable_rx_tx_int(struct xgbe_prv_data *pdata,
struct xgbe_channel *channel)
{
struct xgbe_hw_if *hw_if = &pdata->hw_if;
enum xgbe_int int_id;
if (channel->tx_ring && channel->rx_ring) if (channel->tx_ring && channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_TI_RI; int_id = XGMAC_INT_DMA_CH_SR_TI_RI;
else if (channel->tx_ring) else if (channel->tx_ring)
...@@ -290,10 +321,120 @@ static void xgbe_disable_rx_tx_ints(struct xgbe_prv_data *pdata) ...@@ -290,10 +321,120 @@ static void xgbe_disable_rx_tx_ints(struct xgbe_prv_data *pdata)
else if (channel->rx_ring) else if (channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_RI; int_id = XGMAC_INT_DMA_CH_SR_RI;
else else
continue; return;
hw_if->disable_int(channel, int_id); hw_if->disable_int(channel, int_id);
}
static void xgbe_disable_rx_tx_ints(struct xgbe_prv_data *pdata)
{
struct xgbe_channel *channel;
unsigned int i;
channel = pdata->channel;
for (i = 0; i < pdata->channel_count; i++, channel++)
xgbe_disable_rx_tx_int(pdata, channel);
}
static bool xgbe_ecc_sec(struct xgbe_prv_data *pdata, unsigned long *period,
unsigned int *count, const char *area)
{
if (time_before(jiffies, *period)) {
(*count)++;
} else {
*period = jiffies + (ecc_sec_period * HZ);
*count = 1;
}
if (*count > ecc_sec_info_threshold)
dev_warn_once(pdata->dev,
"%s ECC corrected errors exceed informational threshold\n",
area);
if (*count > ecc_sec_warn_threshold) {
dev_warn_once(pdata->dev,
"%s ECC corrected errors exceed warning threshold\n",
area);
return true;
}
return false;
}
static bool xgbe_ecc_ded(struct xgbe_prv_data *pdata, unsigned long *period,
unsigned int *count, const char *area)
{
if (time_before(jiffies, *period)) {
(*count)++;
} else {
*period = jiffies + (ecc_ded_period * HZ);
*count = 1;
}
if (*count > ecc_ded_threshold) {
netdev_alert(pdata->netdev,
"%s ECC detected errors exceed threshold\n",
area);
return true;
}
return false;
}
static irqreturn_t xgbe_ecc_isr(int irq, void *data)
{
struct xgbe_prv_data *pdata = data;
unsigned int ecc_isr;
bool stop = false;
/* Mask status with only the interrupts we care about */
ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
ecc_isr &= XP_IOREAD(pdata, XP_ECC_IER);
netif_dbg(pdata, intr, pdata->netdev, "ECC_ISR=%#010x\n", ecc_isr);
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, TX_DED)) {
stop |= xgbe_ecc_ded(pdata, &pdata->tx_ded_period,
&pdata->tx_ded_count, "TX fifo");
}
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, RX_DED)) {
stop |= xgbe_ecc_ded(pdata, &pdata->rx_ded_period,
&pdata->rx_ded_count, "RX fifo");
} }
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, DESC_DED)) {
stop |= xgbe_ecc_ded(pdata, &pdata->desc_ded_period,
&pdata->desc_ded_count,
"descriptor cache");
}
if (stop) {
pdata->hw_if.disable_ecc_ded(pdata);
schedule_work(&pdata->stopdev_work);
goto out;
}
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, TX_SEC)) {
if (xgbe_ecc_sec(pdata, &pdata->tx_sec_period,
&pdata->tx_sec_count, "TX fifo"))
pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_TX);
}
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, RX_SEC))
if (xgbe_ecc_sec(pdata, &pdata->rx_sec_period,
&pdata->rx_sec_count, "RX fifo"))
pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_RX);
if (XP_GET_BITS(ecc_isr, XP_ECC_ISR, DESC_SEC))
if (xgbe_ecc_sec(pdata, &pdata->desc_sec_period,
&pdata->desc_sec_count, "descriptor cache"))
pdata->hw_if.disable_ecc_sec(pdata, XGBE_ECC_SEC_DESC);
out:
/* Clear all ECC interrupts */
XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
return IRQ_HANDLED;
} }
static irqreturn_t xgbe_isr(int irq, void *data) static irqreturn_t xgbe_isr(int irq, void *data)
...@@ -302,7 +443,7 @@ static irqreturn_t xgbe_isr(int irq, void *data) ...@@ -302,7 +443,7 @@ static irqreturn_t xgbe_isr(int irq, void *data)
struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_hw_if *hw_if = &pdata->hw_if;
struct xgbe_channel *channel; struct xgbe_channel *channel;
unsigned int dma_isr, dma_ch_isr; unsigned int dma_isr, dma_ch_isr;
unsigned int mac_isr, mac_tssr; unsigned int mac_isr, mac_tssr, mac_mdioisr;
unsigned int i; unsigned int i;
/* The DMA interrupt status register also reports MAC and MTL /* The DMA interrupt status register also reports MAC and MTL
...@@ -339,6 +480,13 @@ static irqreturn_t xgbe_isr(int irq, void *data) ...@@ -339,6 +480,13 @@ static irqreturn_t xgbe_isr(int irq, void *data)
/* Turn on polling */ /* Turn on polling */
__napi_schedule_irqoff(&pdata->napi); __napi_schedule_irqoff(&pdata->napi);
} }
} else {
/* Don't clear Rx/Tx status if doing per channel DMA
* interrupts, these will be cleared by the ISR for
* per channel DMA interrupts.
*/
XGMAC_SET_BITS(dma_ch_isr, DMA_CH_SR, TI, 0);
XGMAC_SET_BITS(dma_ch_isr, DMA_CH_SR, RI, 0);
} }
if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, RBU)) if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, RBU))
...@@ -348,13 +496,16 @@ static irqreturn_t xgbe_isr(int irq, void *data) ...@@ -348,13 +496,16 @@ static irqreturn_t xgbe_isr(int irq, void *data)
if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, FBE)) if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, FBE))
schedule_work(&pdata->restart_work); schedule_work(&pdata->restart_work);
/* Clear all interrupt signals */ /* Clear interrupt signals */
XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr); XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr);
} }
if (XGMAC_GET_BITS(dma_isr, DMA_ISR, MACIS)) { if (XGMAC_GET_BITS(dma_isr, DMA_ISR, MACIS)) {
mac_isr = XGMAC_IOREAD(pdata, MAC_ISR); mac_isr = XGMAC_IOREAD(pdata, MAC_ISR);
netif_dbg(pdata, intr, pdata->netdev, "MAC_ISR=%#010x\n",
mac_isr);
if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCTXIS)) if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCTXIS))
hw_if->tx_mmc_int(pdata); hw_if->tx_mmc_int(pdata);
...@@ -364,6 +515,9 @@ static irqreturn_t xgbe_isr(int irq, void *data) ...@@ -364,6 +515,9 @@ static irqreturn_t xgbe_isr(int irq, void *data)
if (XGMAC_GET_BITS(mac_isr, MAC_ISR, TSIS)) { if (XGMAC_GET_BITS(mac_isr, MAC_ISR, TSIS)) {
mac_tssr = XGMAC_IOREAD(pdata, MAC_TSSR); mac_tssr = XGMAC_IOREAD(pdata, MAC_TSSR);
netif_dbg(pdata, intr, pdata->netdev,
"MAC_TSSR=%#010x\n", mac_tssr);
if (XGMAC_GET_BITS(mac_tssr, MAC_TSSR, TXTSC)) { if (XGMAC_GET_BITS(mac_tssr, MAC_TSSR, TXTSC)) {
/* Read Tx Timestamp to clear interrupt */ /* Read Tx Timestamp to clear interrupt */
pdata->tx_tstamp = pdata->tx_tstamp =
...@@ -372,8 +526,31 @@ static irqreturn_t xgbe_isr(int irq, void *data) ...@@ -372,8 +526,31 @@ static irqreturn_t xgbe_isr(int irq, void *data)
&pdata->tx_tstamp_work); &pdata->tx_tstamp_work);
} }
} }
if (XGMAC_GET_BITS(mac_isr, MAC_ISR, SMI)) {
mac_mdioisr = XGMAC_IOREAD(pdata, MAC_MDIOISR);
netif_dbg(pdata, intr, pdata->netdev,
"MAC_MDIOISR=%#010x\n", mac_mdioisr);
if (XGMAC_GET_BITS(mac_mdioisr, MAC_MDIOISR,
SNGLCOMPINT))
complete(&pdata->mdio_complete);
}
} }
/* If there is not a separate AN irq, handle it here */
if (pdata->dev_irq == pdata->an_irq)
pdata->phy_if.an_isr(irq, pdata);
/* If there is not a separate ECC irq, handle it here */
if (pdata->vdata->ecc_support && (pdata->dev_irq == pdata->ecc_irq))
xgbe_ecc_isr(irq, pdata);
/* If there is not a separate I2C irq, handle it here */
if (pdata->vdata->i2c_support && (pdata->dev_irq == pdata->i2c_irq))
pdata->i2c_if.i2c_isr(irq, pdata);
isr_done: isr_done:
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -381,18 +558,29 @@ static irqreturn_t xgbe_isr(int irq, void *data) ...@@ -381,18 +558,29 @@ static irqreturn_t xgbe_isr(int irq, void *data)
static irqreturn_t xgbe_dma_isr(int irq, void *data) static irqreturn_t xgbe_dma_isr(int irq, void *data)
{ {
struct xgbe_channel *channel = data; struct xgbe_channel *channel = data;
struct xgbe_prv_data *pdata = channel->pdata;
unsigned int dma_status;
/* Per channel DMA interrupts are enabled, so we use the per /* Per channel DMA interrupts are enabled, so we use the per
* channel napi structure and not the private data napi structure * channel napi structure and not the private data napi structure
*/ */
if (napi_schedule_prep(&channel->napi)) { if (napi_schedule_prep(&channel->napi)) {
/* Disable Tx and Rx interrupts */ /* Disable Tx and Rx interrupts */
if (pdata->channel_irq_mode)
xgbe_disable_rx_tx_int(pdata, channel);
else
disable_irq_nosync(channel->dma_irq); disable_irq_nosync(channel->dma_irq);
/* Turn on polling */ /* Turn on polling */
__napi_schedule_irqoff(&channel->napi); __napi_schedule_irqoff(&channel->napi);
} }
/* Clear Tx/Rx signals */
dma_status = 0;
XGMAC_SET_BITS(dma_status, DMA_CH_SR, TI, 1);
XGMAC_SET_BITS(dma_status, DMA_CH_SR, RI, 1);
XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_status);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -409,6 +597,9 @@ static void xgbe_tx_timer(unsigned long data) ...@@ -409,6 +597,9 @@ static void xgbe_tx_timer(unsigned long data)
if (napi_schedule_prep(napi)) { if (napi_schedule_prep(napi)) {
/* Disable Tx and Rx interrupts */ /* Disable Tx and Rx interrupts */
if (pdata->per_channel_irq) if (pdata->per_channel_irq)
if (pdata->channel_irq_mode)
xgbe_disable_rx_tx_int(pdata, channel);
else
disable_irq_nosync(channel->dma_irq); disable_irq_nosync(channel->dma_irq);
else else
xgbe_disable_rx_tx_ints(pdata); xgbe_disable_rx_tx_ints(pdata);
...@@ -642,6 +833,16 @@ static int xgbe_request_irqs(struct xgbe_prv_data *pdata) ...@@ -642,6 +833,16 @@ static int xgbe_request_irqs(struct xgbe_prv_data *pdata)
return ret; return ret;
} }
if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq)) {
ret = devm_request_irq(pdata->dev, pdata->ecc_irq, xgbe_ecc_isr,
0, pdata->ecc_name, pdata);
if (ret) {
netdev_alert(netdev, "error requesting ecc irq %d\n",
pdata->ecc_irq);
goto err_dev_irq;
}
}
if (!pdata->per_channel_irq) if (!pdata->per_channel_irq)
return 0; return 0;
...@@ -658,17 +859,21 @@ static int xgbe_request_irqs(struct xgbe_prv_data *pdata) ...@@ -658,17 +859,21 @@ static int xgbe_request_irqs(struct xgbe_prv_data *pdata)
if (ret) { if (ret) {
netdev_alert(netdev, "error requesting irq %d\n", netdev_alert(netdev, "error requesting irq %d\n",
channel->dma_irq); channel->dma_irq);
goto err_irq; goto err_dma_irq;
} }
} }
return 0; return 0;
err_irq: err_dma_irq:
/* Using an unsigned int, 'i' will go to UINT_MAX and exit */ /* Using an unsigned int, 'i' will go to UINT_MAX and exit */
for (i--, channel--; i < pdata->channel_count; i--, channel--) for (i--, channel--; i < pdata->channel_count; i--, channel--)
devm_free_irq(pdata->dev, channel->dma_irq, channel); devm_free_irq(pdata->dev, channel->dma_irq, channel);
if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq))
devm_free_irq(pdata->dev, pdata->ecc_irq, pdata);
err_dev_irq:
devm_free_irq(pdata->dev, pdata->dev_irq, pdata); devm_free_irq(pdata->dev, pdata->dev_irq, pdata);
return ret; return ret;
...@@ -681,6 +886,9 @@ static void xgbe_free_irqs(struct xgbe_prv_data *pdata) ...@@ -681,6 +886,9 @@ static void xgbe_free_irqs(struct xgbe_prv_data *pdata)
devm_free_irq(pdata->dev, pdata->dev_irq, pdata); devm_free_irq(pdata->dev, pdata->dev_irq, pdata);
if (pdata->vdata->ecc_support && (pdata->dev_irq != pdata->ecc_irq))
devm_free_irq(pdata->dev, pdata->ecc_irq, pdata);
if (!pdata->per_channel_irq) if (!pdata->per_channel_irq)
return; return;
...@@ -864,16 +1072,16 @@ static int xgbe_start(struct xgbe_prv_data *pdata) ...@@ -864,16 +1072,16 @@ static int xgbe_start(struct xgbe_prv_data *pdata)
hw_if->init(pdata); hw_if->init(pdata);
ret = phy_if->phy_start(pdata);
if (ret)
goto err_phy;
xgbe_napi_enable(pdata, 1); xgbe_napi_enable(pdata, 1);
ret = xgbe_request_irqs(pdata); ret = xgbe_request_irqs(pdata);
if (ret) if (ret)
goto err_napi; goto err_napi;
ret = phy_if->phy_start(pdata);
if (ret)
goto err_irqs;
hw_if->enable_tx(pdata); hw_if->enable_tx(pdata);
hw_if->enable_rx(pdata); hw_if->enable_rx(pdata);
...@@ -882,16 +1090,18 @@ static int xgbe_start(struct xgbe_prv_data *pdata) ...@@ -882,16 +1090,18 @@ static int xgbe_start(struct xgbe_prv_data *pdata)
xgbe_start_timers(pdata); xgbe_start_timers(pdata);
queue_work(pdata->dev_workqueue, &pdata->service_work); queue_work(pdata->dev_workqueue, &pdata->service_work);
clear_bit(XGBE_STOPPED, &pdata->dev_state);
DBGPR("<--xgbe_start\n"); DBGPR("<--xgbe_start\n");
return 0; return 0;
err_irqs:
xgbe_free_irqs(pdata);
err_napi: err_napi:
xgbe_napi_disable(pdata, 1); xgbe_napi_disable(pdata, 1);
phy_if->phy_stop(pdata);
err_phy:
hw_if->exit(pdata); hw_if->exit(pdata);
return ret; return ret;
...@@ -908,6 +1118,9 @@ static void xgbe_stop(struct xgbe_prv_data *pdata) ...@@ -908,6 +1118,9 @@ static void xgbe_stop(struct xgbe_prv_data *pdata)
DBGPR("-->xgbe_stop\n"); DBGPR("-->xgbe_stop\n");
if (test_bit(XGBE_STOPPED, &pdata->dev_state))
return;
netif_tx_stop_all_queues(netdev); netif_tx_stop_all_queues(netdev);
xgbe_stop_timers(pdata); xgbe_stop_timers(pdata);
...@@ -933,9 +1146,29 @@ static void xgbe_stop(struct xgbe_prv_data *pdata) ...@@ -933,9 +1146,29 @@ static void xgbe_stop(struct xgbe_prv_data *pdata)
netdev_tx_reset_queue(txq); netdev_tx_reset_queue(txq);
} }
set_bit(XGBE_STOPPED, &pdata->dev_state);
DBGPR("<--xgbe_stop\n"); DBGPR("<--xgbe_stop\n");
} }
static void xgbe_stopdev(struct work_struct *work)
{
struct xgbe_prv_data *pdata = container_of(work,
struct xgbe_prv_data,
stopdev_work);
rtnl_lock();
xgbe_stop(pdata);
xgbe_free_tx_data(pdata);
xgbe_free_rx_data(pdata);
rtnl_unlock();
netdev_alert(pdata->netdev, "device stopped\n");
}
static void xgbe_restart_dev(struct xgbe_prv_data *pdata) static void xgbe_restart_dev(struct xgbe_prv_data *pdata)
{ {
DBGPR("-->xgbe_restart_dev\n"); DBGPR("-->xgbe_restart_dev\n");
...@@ -1318,6 +1551,7 @@ static int xgbe_open(struct net_device *netdev) ...@@ -1318,6 +1551,7 @@ static int xgbe_open(struct net_device *netdev)
INIT_WORK(&pdata->service_work, xgbe_service); INIT_WORK(&pdata->service_work, xgbe_service);
INIT_WORK(&pdata->restart_work, xgbe_restart); INIT_WORK(&pdata->restart_work, xgbe_restart);
INIT_WORK(&pdata->stopdev_work, xgbe_stopdev);
INIT_WORK(&pdata->tx_tstamp_work, xgbe_tx_tstamp); INIT_WORK(&pdata->tx_tstamp_work, xgbe_tx_tstamp);
xgbe_init_timers(pdata); xgbe_init_timers(pdata);
...@@ -2026,6 +2260,7 @@ static int xgbe_one_poll(struct napi_struct *napi, int budget) ...@@ -2026,6 +2260,7 @@ static int xgbe_one_poll(struct napi_struct *napi, int budget)
{ {
struct xgbe_channel *channel = container_of(napi, struct xgbe_channel, struct xgbe_channel *channel = container_of(napi, struct xgbe_channel,
napi); napi);
struct xgbe_prv_data *pdata = channel->pdata;
int processed = 0; int processed = 0;
DBGPR("-->xgbe_one_poll: budget=%d\n", budget); DBGPR("-->xgbe_one_poll: budget=%d\n", budget);
...@@ -2042,6 +2277,9 @@ static int xgbe_one_poll(struct napi_struct *napi, int budget) ...@@ -2042,6 +2277,9 @@ static int xgbe_one_poll(struct napi_struct *napi, int budget)
napi_complete_done(napi, processed); napi_complete_done(napi, processed);
/* Enable Tx and Rx interrupts */ /* Enable Tx and Rx interrupts */
if (pdata->channel_irq_mode)
xgbe_enable_rx_tx_int(pdata, channel);
else
enable_irq(channel->dma_irq); enable_irq(channel->dma_irq);
} }
......
/*
* AMD 10Gb Ethernet driver
*
* This file is available to you under your choice of the following two
* licenses:
*
* License 1: GPLv2
*
* Copyright (c) 2016 Advanced Micro Devices, Inc.
*
* This file is free software; you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or (at
* your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*
* License 2: Modified BSD
*
* Copyright (c) 2016 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/mutex.h>
#include "xgbe.h"
#include "xgbe-common.h"
#define XGBE_ABORT_COUNT 500
#define XGBE_DISABLE_COUNT 1000
#define XGBE_STD_SPEED 1
#define XGBE_INTR_RX_FULL BIT(IC_RAW_INTR_STAT_RX_FULL_INDEX)
#define XGBE_INTR_TX_EMPTY BIT(IC_RAW_INTR_STAT_TX_EMPTY_INDEX)
#define XGBE_INTR_TX_ABRT BIT(IC_RAW_INTR_STAT_TX_ABRT_INDEX)
#define XGBE_INTR_STOP_DET BIT(IC_RAW_INTR_STAT_STOP_DET_INDEX)
#define XGBE_DEFAULT_INT_MASK (XGBE_INTR_RX_FULL | \
XGBE_INTR_TX_EMPTY | \
XGBE_INTR_TX_ABRT | \
XGBE_INTR_STOP_DET)
#define XGBE_I2C_READ BIT(8)
#define XGBE_I2C_STOP BIT(9)
static int xgbe_i2c_abort(struct xgbe_prv_data *pdata)
{
unsigned int wait = XGBE_ABORT_COUNT;
/* Must be enabled to recognize the abort request */
XI2C_IOWRITE_BITS(pdata, IC_ENABLE, EN, 1);
/* Issue the abort */
XI2C_IOWRITE_BITS(pdata, IC_ENABLE, ABORT, 1);
while (wait--) {
if (!XI2C_IOREAD_BITS(pdata, IC_ENABLE, ABORT))
return 0;
usleep_range(500, 600);
}
return -EBUSY;
}
static int xgbe_i2c_set_enable(struct xgbe_prv_data *pdata, bool enable)
{
unsigned int wait = XGBE_DISABLE_COUNT;
unsigned int mode = enable ? 1 : 0;
while (wait--) {
XI2C_IOWRITE_BITS(pdata, IC_ENABLE, EN, mode);
if (XI2C_IOREAD_BITS(pdata, IC_ENABLE_STATUS, EN) == mode)
return 0;
usleep_range(100, 110);
}
return -EBUSY;
}
static int xgbe_i2c_disable(struct xgbe_prv_data *pdata)
{
unsigned int ret;
ret = xgbe_i2c_set_enable(pdata, false);
if (ret) {
/* Disable failed, try an abort */
ret = xgbe_i2c_abort(pdata);
if (ret)
return ret;
/* Abort succeeded, try to disable again */
ret = xgbe_i2c_set_enable(pdata, false);
}
return ret;
}
static int xgbe_i2c_enable(struct xgbe_prv_data *pdata)
{
return xgbe_i2c_set_enable(pdata, true);
}
static void xgbe_i2c_clear_all_interrupts(struct xgbe_prv_data *pdata)
{
XI2C_IOREAD(pdata, IC_CLR_INTR);
}
static void xgbe_i2c_disable_interrupts(struct xgbe_prv_data *pdata)
{
XI2C_IOWRITE(pdata, IC_INTR_MASK, 0);
}
static void xgbe_i2c_enable_interrupts(struct xgbe_prv_data *pdata)
{
XI2C_IOWRITE(pdata, IC_INTR_MASK, XGBE_DEFAULT_INT_MASK);
}
static void xgbe_i2c_write(struct xgbe_prv_data *pdata)
{
struct xgbe_i2c_op_state *state = &pdata->i2c.op_state;
unsigned int tx_slots;
unsigned int cmd;
/* Configured to never receive Rx overflows, so fill up Tx fifo */
tx_slots = pdata->i2c.tx_fifo_size - XI2C_IOREAD(pdata, IC_TXFLR);
while (tx_slots && state->tx_len) {
if (state->op->cmd == XGBE_I2C_CMD_READ)
cmd = XGBE_I2C_READ;
else
cmd = *state->tx_buf++;
if (state->tx_len == 1)
XI2C_SET_BITS(cmd, IC_DATA_CMD, STOP, 1);
XI2C_IOWRITE(pdata, IC_DATA_CMD, cmd);
tx_slots--;
state->tx_len--;
}
/* No more Tx operations, so ignore TX_EMPTY and return */
if (!state->tx_len)
XI2C_IOWRITE_BITS(pdata, IC_INTR_MASK, TX_EMPTY, 0);
}
static void xgbe_i2c_read(struct xgbe_prv_data *pdata)
{
struct xgbe_i2c_op_state *state = &pdata->i2c.op_state;
unsigned int rx_slots;
/* Anything to be read? */
if (state->op->cmd != XGBE_I2C_CMD_READ)
return;
rx_slots = XI2C_IOREAD(pdata, IC_RXFLR);
while (rx_slots && state->rx_len) {
*state->rx_buf++ = XI2C_IOREAD(pdata, IC_DATA_CMD);
state->rx_len--;
rx_slots--;
}
}
static void xgbe_i2c_clear_isr_interrupts(struct xgbe_prv_data *pdata,
unsigned int isr)
{
struct xgbe_i2c_op_state *state = &pdata->i2c.op_state;
if (isr & XGBE_INTR_TX_ABRT) {
state->tx_abort_source = XI2C_IOREAD(pdata, IC_TX_ABRT_SOURCE);
XI2C_IOREAD(pdata, IC_CLR_TX_ABRT);
}
if (isr & XGBE_INTR_STOP_DET)
XI2C_IOREAD(pdata, IC_CLR_STOP_DET);
}
static irqreturn_t xgbe_i2c_isr(int irq, void *data)
{
struct xgbe_prv_data *pdata = (struct xgbe_prv_data *)data;
struct xgbe_i2c_op_state *state = &pdata->i2c.op_state;
unsigned int isr;
isr = XI2C_IOREAD(pdata, IC_RAW_INTR_STAT);
netif_dbg(pdata, intr, pdata->netdev,
"I2C interrupt received: status=%#010x\n", isr);
xgbe_i2c_clear_isr_interrupts(pdata, isr);
if (isr & XGBE_INTR_TX_ABRT) {
netif_dbg(pdata, link, pdata->netdev,
"I2C TX_ABRT received (%#010x) for target %#04x\n",
state->tx_abort_source, state->op->target);
xgbe_i2c_disable_interrupts(pdata);
state->ret = -EIO;
goto out;
}
/* Check for data in the Rx fifo */
xgbe_i2c_read(pdata);
/* Fill up the Tx fifo next */
xgbe_i2c_write(pdata);
out:
/* Complete on an error or STOP condition */
if (state->ret || XI2C_GET_BITS(isr, IC_RAW_INTR_STAT, STOP_DET))
complete(&pdata->i2c_complete);
return IRQ_HANDLED;
}
static void xgbe_i2c_set_mode(struct xgbe_prv_data *pdata)
{
unsigned int reg;
reg = XI2C_IOREAD(pdata, IC_CON);
XI2C_SET_BITS(reg, IC_CON, MASTER_MODE, 1);
XI2C_SET_BITS(reg, IC_CON, SLAVE_DISABLE, 1);
XI2C_SET_BITS(reg, IC_CON, RESTART_EN, 1);
XI2C_SET_BITS(reg, IC_CON, SPEED, XGBE_STD_SPEED);
XI2C_SET_BITS(reg, IC_CON, RX_FIFO_FULL_HOLD, 1);
XI2C_IOWRITE(pdata, IC_CON, reg);
}
static void xgbe_i2c_get_features(struct xgbe_prv_data *pdata)
{
struct xgbe_i2c *i2c = &pdata->i2c;
unsigned int reg;
reg = XI2C_IOREAD(pdata, IC_COMP_PARAM_1);
i2c->max_speed_mode = XI2C_GET_BITS(reg, IC_COMP_PARAM_1,
MAX_SPEED_MODE);
i2c->rx_fifo_size = XI2C_GET_BITS(reg, IC_COMP_PARAM_1,
RX_BUFFER_DEPTH);
i2c->tx_fifo_size = XI2C_GET_BITS(reg, IC_COMP_PARAM_1,
TX_BUFFER_DEPTH);
if (netif_msg_probe(pdata))
dev_dbg(pdata->dev, "I2C features: %s=%u, %s=%u, %s=%u\n",
"MAX_SPEED_MODE", i2c->max_speed_mode,
"RX_BUFFER_DEPTH", i2c->rx_fifo_size,
"TX_BUFFER_DEPTH", i2c->tx_fifo_size);
}
static void xgbe_i2c_set_target(struct xgbe_prv_data *pdata, unsigned int addr)
{
XI2C_IOWRITE(pdata, IC_TAR, addr);
}
static irqreturn_t xgbe_i2c_combined_isr(int irq, struct xgbe_prv_data *pdata)
{
if (!XI2C_IOREAD(pdata, IC_RAW_INTR_STAT))
return IRQ_HANDLED;
return xgbe_i2c_isr(irq, pdata);
}
static int xgbe_i2c_xfer(struct xgbe_prv_data *pdata, struct xgbe_i2c_op *op)
{
struct xgbe_i2c_op_state *state = &pdata->i2c.op_state;
int ret;
mutex_lock(&pdata->i2c_mutex);
reinit_completion(&pdata->i2c_complete);
ret = xgbe_i2c_disable(pdata);
if (ret) {
netdev_err(pdata->netdev, "failed to disable i2c master\n");
goto unlock;
}
xgbe_i2c_set_target(pdata, op->target);
memset(state, 0, sizeof(*state));
state->op = op;
state->tx_len = op->len;
state->tx_buf = op->buf;
state->rx_len = op->len;
state->rx_buf = op->buf;
xgbe_i2c_clear_all_interrupts(pdata);
ret = xgbe_i2c_enable(pdata);
if (ret) {
netdev_err(pdata->netdev, "failed to enable i2c master\n");
goto unlock;
}
/* Enabling the interrupts will cause the TX FIFO empty interrupt to
* fire and begin to process the command via the ISR.
*/
xgbe_i2c_enable_interrupts(pdata);
if (!wait_for_completion_timeout(&pdata->i2c_complete, HZ)) {
netdev_err(pdata->netdev, "i2c operation timed out\n");
ret = -ETIMEDOUT;
goto disable;
}
ret = state->ret;
if (ret) {
if (state->tx_abort_source & IC_TX_ABRT_7B_ADDR_NOACK)
ret = -ENOTCONN;
else if (state->tx_abort_source & IC_TX_ABRT_ARB_LOST)
ret = -EAGAIN;
}
disable:
xgbe_i2c_disable_interrupts(pdata);
xgbe_i2c_disable(pdata);
unlock:
mutex_unlock(&pdata->i2c_mutex);
return ret;
}
static void xgbe_i2c_stop(struct xgbe_prv_data *pdata)
{
if (!pdata->i2c.started)
return;
netif_dbg(pdata, link, pdata->netdev, "stopping I2C\n");
pdata->i2c.started = 0;
xgbe_i2c_disable_interrupts(pdata);
xgbe_i2c_disable(pdata);
xgbe_i2c_clear_all_interrupts(pdata);
if (pdata->dev_irq != pdata->i2c_irq)
devm_free_irq(pdata->dev, pdata->i2c_irq, pdata);
}
static int xgbe_i2c_start(struct xgbe_prv_data *pdata)
{
int ret;
if (pdata->i2c.started)
return 0;
netif_dbg(pdata, link, pdata->netdev, "starting I2C\n");
/* If we have a separate I2C irq, enable it */
if (pdata->dev_irq != pdata->i2c_irq) {
ret = devm_request_irq(pdata->dev, pdata->i2c_irq,
xgbe_i2c_isr, 0, pdata->i2c_name,
pdata);
if (ret) {
netdev_err(pdata->netdev, "i2c irq request failed\n");
return ret;
}
}
pdata->i2c.started = 1;
return 0;
}
static int xgbe_i2c_init(struct xgbe_prv_data *pdata)
{
int ret;
xgbe_i2c_disable_interrupts(pdata);
ret = xgbe_i2c_disable(pdata);
if (ret) {
dev_err(pdata->dev, "failed to disable i2c master\n");
return ret;
}
xgbe_i2c_get_features(pdata);
xgbe_i2c_set_mode(pdata);
xgbe_i2c_clear_all_interrupts(pdata);
return 0;
}
void xgbe_init_function_ptrs_i2c(struct xgbe_i2c_if *i2c_if)
{
i2c_if->i2c_init = xgbe_i2c_init;
i2c_if->i2c_start = xgbe_i2c_start;
i2c_if->i2c_stop = xgbe_i2c_stop;
i2c_if->i2c_xfer = xgbe_i2c_xfer;
i2c_if->i2c_isr = xgbe_i2c_combined_isr;
}
...@@ -161,6 +161,7 @@ static void xgbe_init_all_fptrs(struct xgbe_prv_data *pdata) ...@@ -161,6 +161,7 @@ static void xgbe_init_all_fptrs(struct xgbe_prv_data *pdata)
{ {
xgbe_init_function_ptrs_dev(&pdata->hw_if); xgbe_init_function_ptrs_dev(&pdata->hw_if);
xgbe_init_function_ptrs_phy(&pdata->phy_if); xgbe_init_function_ptrs_phy(&pdata->phy_if);
xgbe_init_function_ptrs_i2c(&pdata->i2c_if);
xgbe_init_function_ptrs_desc(&pdata->desc_if); xgbe_init_function_ptrs_desc(&pdata->desc_if);
pdata->vdata->init_function_ptrs_phy_impl(&pdata->phy_if); pdata->vdata->init_function_ptrs_phy_impl(&pdata->phy_if);
...@@ -186,10 +187,14 @@ struct xgbe_prv_data *xgbe_alloc_pdata(struct device *dev) ...@@ -186,10 +187,14 @@ struct xgbe_prv_data *xgbe_alloc_pdata(struct device *dev)
spin_lock_init(&pdata->xpcs_lock); spin_lock_init(&pdata->xpcs_lock);
mutex_init(&pdata->rss_mutex); mutex_init(&pdata->rss_mutex);
spin_lock_init(&pdata->tstamp_lock); spin_lock_init(&pdata->tstamp_lock);
mutex_init(&pdata->i2c_mutex);
init_completion(&pdata->i2c_complete);
init_completion(&pdata->mdio_complete);
pdata->msg_enable = netif_msg_init(debug, default_msg_level); pdata->msg_enable = netif_msg_init(debug, default_msg_level);
set_bit(XGBE_DOWN, &pdata->dev_state); set_bit(XGBE_DOWN, &pdata->dev_state);
set_bit(XGBE_STOPPED, &pdata->dev_state);
return pdata; return pdata;
} }
...@@ -236,8 +241,7 @@ void xgbe_set_counts(struct xgbe_prv_data *pdata) ...@@ -236,8 +241,7 @@ void xgbe_set_counts(struct xgbe_prv_data *pdata)
pdata->tx_q_count = pdata->tx_ring_count; pdata->tx_q_count = pdata->tx_ring_count;
pdata->rx_ring_count = min_t(unsigned int, pdata->rx_ring_count = min_t(unsigned int, num_online_cpus(),
netif_get_num_default_rss_queues(),
pdata->hw_feat.rx_ch_cnt); pdata->hw_feat.rx_ch_cnt);
pdata->rx_ring_count = min_t(unsigned int, pdata->rx_ring_count, pdata->rx_ring_count = min_t(unsigned int, pdata->rx_ring_count,
pdata->rx_max_channel_count); pdata->rx_max_channel_count);
...@@ -264,6 +268,14 @@ int xgbe_config_netdev(struct xgbe_prv_data *pdata) ...@@ -264,6 +268,14 @@ int xgbe_config_netdev(struct xgbe_prv_data *pdata)
netdev->base_addr = (unsigned long)pdata->xgmac_regs; netdev->base_addr = (unsigned long)pdata->xgmac_regs;
memcpy(netdev->dev_addr, pdata->mac_addr, netdev->addr_len); memcpy(netdev->dev_addr, pdata->mac_addr, netdev->addr_len);
/* Initialize ECC timestamps */
pdata->tx_sec_period = jiffies;
pdata->tx_ded_period = jiffies;
pdata->rx_sec_period = jiffies;
pdata->rx_ded_period = jiffies;
pdata->desc_sec_period = jiffies;
pdata->desc_ded_period = jiffies;
/* Issue software reset to device */ /* Issue software reset to device */
pdata->hw_if.exit(pdata); pdata->hw_if.exit(pdata);
...@@ -291,6 +303,19 @@ int xgbe_config_netdev(struct xgbe_prv_data *pdata) ...@@ -291,6 +303,19 @@ int xgbe_config_netdev(struct xgbe_prv_data *pdata)
BUILD_BUG_ON_NOT_POWER_OF_2(XGBE_RX_DESC_CNT); BUILD_BUG_ON_NOT_POWER_OF_2(XGBE_RX_DESC_CNT);
pdata->rx_desc_count = XGBE_RX_DESC_CNT; pdata->rx_desc_count = XGBE_RX_DESC_CNT;
/* Adjust the number of queues based on interrupts assigned */
if (pdata->channel_irq_count) {
pdata->tx_ring_count = min_t(unsigned int, pdata->tx_ring_count,
pdata->channel_irq_count);
pdata->rx_ring_count = min_t(unsigned int, pdata->rx_ring_count,
pdata->channel_irq_count);
if (netif_msg_probe(pdata))
dev_dbg(pdata->dev,
"adjusted TX/RX DMA channel count = %u/%u\n",
pdata->tx_ring_count, pdata->rx_ring_count);
}
/* Set the number of queues */ /* Set the number of queues */
ret = netif_set_real_num_tx_queues(netdev, pdata->tx_ring_count); ret = netif_set_real_num_tx_queues(netdev, pdata->tx_ring_count);
if (ret) { if (ret) {
...@@ -372,6 +397,14 @@ int xgbe_config_netdev(struct xgbe_prv_data *pdata) ...@@ -372,6 +397,14 @@ int xgbe_config_netdev(struct xgbe_prv_data *pdata)
snprintf(pdata->an_name, sizeof(pdata->an_name) - 1, "%s-pcs", snprintf(pdata->an_name, sizeof(pdata->an_name) - 1, "%s-pcs",
netdev_name(netdev)); netdev_name(netdev));
/* Create the ECC name based on netdev name */
snprintf(pdata->ecc_name, sizeof(pdata->ecc_name) - 1, "%s-ecc",
netdev_name(netdev));
/* Create the I2C name based on netdev name */
snprintf(pdata->i2c_name, sizeof(pdata->i2c_name) - 1, "%s-i2c",
netdev_name(netdev));
/* Create workqueues */ /* Create workqueues */
pdata->dev_workqueue = pdata->dev_workqueue =
create_singlethread_workqueue(netdev_name(netdev)); create_singlethread_workqueue(netdev_name(netdev));
...@@ -393,6 +426,11 @@ int xgbe_config_netdev(struct xgbe_prv_data *pdata) ...@@ -393,6 +426,11 @@ int xgbe_config_netdev(struct xgbe_prv_data *pdata)
xgbe_debugfs_init(pdata); xgbe_debugfs_init(pdata);
netif_dbg(pdata, drv, pdata->netdev, "%u Tx software queues\n",
pdata->tx_ring_count);
netif_dbg(pdata, drv, pdata->netdev, "%u Rx software queues\n",
pdata->rx_ring_count);
return 0; return 0;
err_wq: err_wq:
...@@ -431,11 +469,17 @@ static int __init xgbe_mod_init(void) ...@@ -431,11 +469,17 @@ static int __init xgbe_mod_init(void)
if (ret) if (ret)
return ret; return ret;
ret = xgbe_pci_init();
if (ret)
return ret;
return 0; return 0;
} }
static void __exit xgbe_mod_exit(void) static void __exit xgbe_mod_exit(void)
{ {
xgbe_pci_exit();
xgbe_platform_exit(); xgbe_platform_exit();
} }
......
...@@ -179,6 +179,7 @@ static void xgbe_an_enable_interrupts(struct xgbe_prv_data *pdata) ...@@ -179,6 +179,7 @@ static void xgbe_an_enable_interrupts(struct xgbe_prv_data *pdata)
{ {
switch (pdata->an_mode) { switch (pdata->an_mode) {
case XGBE_AN_MODE_CL73: case XGBE_AN_MODE_CL73:
case XGBE_AN_MODE_CL73_REDRV:
xgbe_an73_enable_interrupts(pdata); xgbe_an73_enable_interrupts(pdata);
break; break;
case XGBE_AN_MODE_CL37: case XGBE_AN_MODE_CL37:
...@@ -252,6 +253,58 @@ static void xgbe_kx_1000_mode(struct xgbe_prv_data *pdata) ...@@ -252,6 +253,58 @@ static void xgbe_kx_1000_mode(struct xgbe_prv_data *pdata)
pdata->phy_if.phy_impl.set_mode(pdata, XGBE_MODE_KX_1000); pdata->phy_if.phy_impl.set_mode(pdata, XGBE_MODE_KX_1000);
} }
static void xgbe_sfi_mode(struct xgbe_prv_data *pdata)
{
/* If a KR re-driver is present, change to KR mode instead */
if (pdata->kr_redrv)
return xgbe_kr_mode(pdata);
/* Disable KR training */
xgbe_an73_disable_kr_training(pdata);
/* Set MAC to 10G speed */
pdata->hw_if.set_speed(pdata, SPEED_10000);
/* Call PHY implementation support to complete rate change */
pdata->phy_if.phy_impl.set_mode(pdata, XGBE_MODE_SFI);
}
static void xgbe_x_mode(struct xgbe_prv_data *pdata)
{
/* Disable KR training */
xgbe_an73_disable_kr_training(pdata);
/* Set MAC to 1G speed */
pdata->hw_if.set_speed(pdata, SPEED_1000);
/* Call PHY implementation support to complete rate change */
pdata->phy_if.phy_impl.set_mode(pdata, XGBE_MODE_X);
}
static void xgbe_sgmii_1000_mode(struct xgbe_prv_data *pdata)
{
/* Disable KR training */
xgbe_an73_disable_kr_training(pdata);
/* Set MAC to 1G speed */
pdata->hw_if.set_speed(pdata, SPEED_1000);
/* Call PHY implementation support to complete rate change */
pdata->phy_if.phy_impl.set_mode(pdata, XGBE_MODE_SGMII_1000);
}
static void xgbe_sgmii_100_mode(struct xgbe_prv_data *pdata)
{
/* Disable KR training */
xgbe_an73_disable_kr_training(pdata);
/* Set MAC to 1G speed */
pdata->hw_if.set_speed(pdata, SPEED_1000);
/* Call PHY implementation support to complete rate change */
pdata->phy_if.phy_impl.set_mode(pdata, XGBE_MODE_SGMII_100);
}
static enum xgbe_mode xgbe_cur_mode(struct xgbe_prv_data *pdata) static enum xgbe_mode xgbe_cur_mode(struct xgbe_prv_data *pdata)
{ {
return pdata->phy_if.phy_impl.cur_mode(pdata); return pdata->phy_if.phy_impl.cur_mode(pdata);
...@@ -275,6 +328,18 @@ static void xgbe_change_mode(struct xgbe_prv_data *pdata, ...@@ -275,6 +328,18 @@ static void xgbe_change_mode(struct xgbe_prv_data *pdata,
case XGBE_MODE_KR: case XGBE_MODE_KR:
xgbe_kr_mode(pdata); xgbe_kr_mode(pdata);
break; break;
case XGBE_MODE_SGMII_100:
xgbe_sgmii_100_mode(pdata);
break;
case XGBE_MODE_SGMII_1000:
xgbe_sgmii_1000_mode(pdata);
break;
case XGBE_MODE_X:
xgbe_x_mode(pdata);
break;
case XGBE_MODE_SFI:
xgbe_sfi_mode(pdata);
break;
case XGBE_MODE_UNKNOWN: case XGBE_MODE_UNKNOWN:
break; break;
default: default:
...@@ -373,6 +438,7 @@ static void xgbe_an_restart(struct xgbe_prv_data *pdata) ...@@ -373,6 +438,7 @@ static void xgbe_an_restart(struct xgbe_prv_data *pdata)
{ {
switch (pdata->an_mode) { switch (pdata->an_mode) {
case XGBE_AN_MODE_CL73: case XGBE_AN_MODE_CL73:
case XGBE_AN_MODE_CL73_REDRV:
xgbe_an73_restart(pdata); xgbe_an73_restart(pdata);
break; break;
case XGBE_AN_MODE_CL37: case XGBE_AN_MODE_CL37:
...@@ -388,6 +454,7 @@ static void xgbe_an_disable(struct xgbe_prv_data *pdata) ...@@ -388,6 +454,7 @@ static void xgbe_an_disable(struct xgbe_prv_data *pdata)
{ {
switch (pdata->an_mode) { switch (pdata->an_mode) {
case XGBE_AN_MODE_CL73: case XGBE_AN_MODE_CL73:
case XGBE_AN_MODE_CL73_REDRV:
xgbe_an73_disable(pdata); xgbe_an73_disable(pdata);
break; break;
case XGBE_AN_MODE_CL37: case XGBE_AN_MODE_CL37:
...@@ -627,6 +694,7 @@ static irqreturn_t xgbe_an_isr(int irq, void *data) ...@@ -627,6 +694,7 @@ static irqreturn_t xgbe_an_isr(int irq, void *data)
switch (pdata->an_mode) { switch (pdata->an_mode) {
case XGBE_AN_MODE_CL73: case XGBE_AN_MODE_CL73:
case XGBE_AN_MODE_CL73_REDRV:
xgbe_an73_isr(pdata); xgbe_an73_isr(pdata);
break; break;
case XGBE_AN_MODE_CL37: case XGBE_AN_MODE_CL37:
...@@ -640,6 +708,11 @@ static irqreturn_t xgbe_an_isr(int irq, void *data) ...@@ -640,6 +708,11 @@ static irqreturn_t xgbe_an_isr(int irq, void *data)
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static irqreturn_t xgbe_an_combined_isr(int irq, struct xgbe_prv_data *pdata)
{
return xgbe_an_isr(irq, pdata);
}
static void xgbe_an_irq_work(struct work_struct *work) static void xgbe_an_irq_work(struct work_struct *work)
{ {
struct xgbe_prv_data *pdata = container_of(work, struct xgbe_prv_data *pdata = container_of(work,
...@@ -830,6 +903,7 @@ static void xgbe_an_state_machine(struct work_struct *work) ...@@ -830,6 +903,7 @@ static void xgbe_an_state_machine(struct work_struct *work)
switch (pdata->an_mode) { switch (pdata->an_mode) {
case XGBE_AN_MODE_CL73: case XGBE_AN_MODE_CL73:
case XGBE_AN_MODE_CL73_REDRV:
xgbe_an73_state_machine(pdata); xgbe_an73_state_machine(pdata);
break; break;
case XGBE_AN_MODE_CL37: case XGBE_AN_MODE_CL37:
...@@ -845,16 +919,18 @@ static void xgbe_an_state_machine(struct work_struct *work) ...@@ -845,16 +919,18 @@ static void xgbe_an_state_machine(struct work_struct *work)
static void xgbe_an37_init(struct xgbe_prv_data *pdata) static void xgbe_an37_init(struct xgbe_prv_data *pdata)
{ {
unsigned int reg; unsigned int advertising, reg;
advertising = pdata->phy_if.phy_impl.an_advertising(pdata);
/* Set up Advertisement register */ /* Set up Advertisement register */
reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_ADVERTISE); reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_ADVERTISE);
if (pdata->phy.advertising & ADVERTISED_Pause) if (advertising & ADVERTISED_Pause)
reg |= 0x100; reg |= 0x100;
else else
reg &= ~0x100; reg &= ~0x100;
if (pdata->phy.advertising & ADVERTISED_Asym_Pause) if (advertising & ADVERTISED_Asym_Pause)
reg |= 0x80; reg |= 0x80;
else else
reg &= ~0x80; reg &= ~0x80;
...@@ -889,11 +965,13 @@ static void xgbe_an37_init(struct xgbe_prv_data *pdata) ...@@ -889,11 +965,13 @@ static void xgbe_an37_init(struct xgbe_prv_data *pdata)
static void xgbe_an73_init(struct xgbe_prv_data *pdata) static void xgbe_an73_init(struct xgbe_prv_data *pdata)
{ {
unsigned int reg; unsigned int advertising, reg;
advertising = pdata->phy_if.phy_impl.an_advertising(pdata);
/* Set up Advertisement register 3 first */ /* Set up Advertisement register 3 first */
reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2); reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
if (pdata->phy.advertising & ADVERTISED_10000baseR_FEC) if (advertising & ADVERTISED_10000baseR_FEC)
reg |= 0xc000; reg |= 0xc000;
else else
reg &= ~0xc000; reg &= ~0xc000;
...@@ -902,13 +980,13 @@ static void xgbe_an73_init(struct xgbe_prv_data *pdata) ...@@ -902,13 +980,13 @@ static void xgbe_an73_init(struct xgbe_prv_data *pdata)
/* Set up Advertisement register 2 next */ /* Set up Advertisement register 2 next */
reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1); reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
if (pdata->phy.advertising & ADVERTISED_10000baseKR_Full) if (advertising & ADVERTISED_10000baseKR_Full)
reg |= 0x80; reg |= 0x80;
else else
reg &= ~0x80; reg &= ~0x80;
if ((pdata->phy.advertising & ADVERTISED_1000baseKX_Full) || if ((advertising & ADVERTISED_1000baseKX_Full) ||
(pdata->phy.advertising & ADVERTISED_2500baseX_Full)) (advertising & ADVERTISED_2500baseX_Full))
reg |= 0x20; reg |= 0x20;
else else
reg &= ~0x20; reg &= ~0x20;
...@@ -917,12 +995,12 @@ static void xgbe_an73_init(struct xgbe_prv_data *pdata) ...@@ -917,12 +995,12 @@ static void xgbe_an73_init(struct xgbe_prv_data *pdata)
/* Set up Advertisement register 1 last */ /* Set up Advertisement register 1 last */
reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE); reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
if (pdata->phy.advertising & ADVERTISED_Pause) if (advertising & ADVERTISED_Pause)
reg |= 0x400; reg |= 0x400;
else else
reg &= ~0x400; reg &= ~0x400;
if (pdata->phy.advertising & ADVERTISED_Asym_Pause) if (advertising & ADVERTISED_Asym_Pause)
reg |= 0x800; reg |= 0x800;
else else
reg &= ~0x800; reg &= ~0x800;
...@@ -941,6 +1019,7 @@ static void xgbe_an_init(struct xgbe_prv_data *pdata) ...@@ -941,6 +1019,7 @@ static void xgbe_an_init(struct xgbe_prv_data *pdata)
pdata->an_mode = pdata->phy_if.phy_impl.an_mode(pdata); pdata->an_mode = pdata->phy_if.phy_impl.an_mode(pdata);
switch (pdata->an_mode) { switch (pdata->an_mode) {
case XGBE_AN_MODE_CL73: case XGBE_AN_MODE_CL73:
case XGBE_AN_MODE_CL73_REDRV:
xgbe_an73_init(pdata); xgbe_an73_init(pdata);
break; break;
case XGBE_AN_MODE_CL37: case XGBE_AN_MODE_CL37:
...@@ -967,6 +1046,8 @@ static const char *xgbe_phy_fc_string(struct xgbe_prv_data *pdata) ...@@ -967,6 +1046,8 @@ static const char *xgbe_phy_fc_string(struct xgbe_prv_data *pdata)
static const char *xgbe_phy_speed_string(int speed) static const char *xgbe_phy_speed_string(int speed)
{ {
switch (speed) { switch (speed) {
case SPEED_100:
return "100Mbps";
case SPEED_1000: case SPEED_1000:
return "1Gbps"; return "1Gbps";
case SPEED_2500: case SPEED_2500:
...@@ -1052,6 +1133,10 @@ static int xgbe_phy_config_fixed(struct xgbe_prv_data *pdata) ...@@ -1052,6 +1133,10 @@ static int xgbe_phy_config_fixed(struct xgbe_prv_data *pdata)
case XGBE_MODE_KX_1000: case XGBE_MODE_KX_1000:
case XGBE_MODE_KX_2500: case XGBE_MODE_KX_2500:
case XGBE_MODE_KR: case XGBE_MODE_KR:
case XGBE_MODE_SGMII_100:
case XGBE_MODE_SGMII_1000:
case XGBE_MODE_X:
case XGBE_MODE_SFI:
break; break;
case XGBE_MODE_UNKNOWN: case XGBE_MODE_UNKNOWN:
default: default:
...@@ -1069,13 +1154,24 @@ static int xgbe_phy_config_fixed(struct xgbe_prv_data *pdata) ...@@ -1069,13 +1154,24 @@ static int xgbe_phy_config_fixed(struct xgbe_prv_data *pdata)
static int __xgbe_phy_config_aneg(struct xgbe_prv_data *pdata) static int __xgbe_phy_config_aneg(struct xgbe_prv_data *pdata)
{ {
int ret;
set_bit(XGBE_LINK_INIT, &pdata->dev_state); set_bit(XGBE_LINK_INIT, &pdata->dev_state);
pdata->link_check = jiffies; pdata->link_check = jiffies;
if (pdata->phy.autoneg != AUTONEG_ENABLE) ret = pdata->phy_if.phy_impl.an_config(pdata);
return xgbe_phy_config_fixed(pdata); if (ret)
return ret;
if (pdata->phy.autoneg != AUTONEG_ENABLE) {
ret = xgbe_phy_config_fixed(pdata);
if (ret || !pdata->kr_redrv)
return ret;
netif_dbg(pdata, link, pdata->netdev, "AN redriver support\n");
} else {
netif_dbg(pdata, link, pdata->netdev, "AN PHY configuration\n"); netif_dbg(pdata, link, pdata->netdev, "AN PHY configuration\n");
}
/* Disable auto-negotiation interrupt */ /* Disable auto-negotiation interrupt */
disable_irq(pdata->an_irq); disable_irq(pdata->an_irq);
...@@ -1087,6 +1183,14 @@ static int __xgbe_phy_config_aneg(struct xgbe_prv_data *pdata) ...@@ -1087,6 +1183,14 @@ static int __xgbe_phy_config_aneg(struct xgbe_prv_data *pdata)
xgbe_set_mode(pdata, XGBE_MODE_KX_2500); xgbe_set_mode(pdata, XGBE_MODE_KX_2500);
} else if (xgbe_use_mode(pdata, XGBE_MODE_KX_1000)) { } else if (xgbe_use_mode(pdata, XGBE_MODE_KX_1000)) {
xgbe_set_mode(pdata, XGBE_MODE_KX_1000); xgbe_set_mode(pdata, XGBE_MODE_KX_1000);
} else if (xgbe_use_mode(pdata, XGBE_MODE_SFI)) {
xgbe_set_mode(pdata, XGBE_MODE_SFI);
} else if (xgbe_use_mode(pdata, XGBE_MODE_X)) {
xgbe_set_mode(pdata, XGBE_MODE_X);
} else if (xgbe_use_mode(pdata, XGBE_MODE_SGMII_1000)) {
xgbe_set_mode(pdata, XGBE_MODE_SGMII_1000);
} else if (xgbe_use_mode(pdata, XGBE_MODE_SGMII_100)) {
xgbe_set_mode(pdata, XGBE_MODE_SGMII_100);
} else { } else {
enable_irq(pdata->an_irq); enable_irq(pdata->an_irq);
return -EINVAL; return -EINVAL;
...@@ -1162,13 +1266,19 @@ static void xgbe_phy_status_result(struct xgbe_prv_data *pdata) ...@@ -1162,13 +1266,19 @@ static void xgbe_phy_status_result(struct xgbe_prv_data *pdata)
mode = xgbe_phy_status_aneg(pdata); mode = xgbe_phy_status_aneg(pdata);
switch (mode) { switch (mode) {
case XGBE_MODE_SGMII_100:
pdata->phy.speed = SPEED_100;
break;
case XGBE_MODE_X:
case XGBE_MODE_KX_1000: case XGBE_MODE_KX_1000:
case XGBE_MODE_SGMII_1000:
pdata->phy.speed = SPEED_1000; pdata->phy.speed = SPEED_1000;
break; break;
case XGBE_MODE_KX_2500: case XGBE_MODE_KX_2500:
pdata->phy.speed = SPEED_2500; pdata->phy.speed = SPEED_2500;
break; break;
case XGBE_MODE_KR: case XGBE_MODE_KR:
case XGBE_MODE_SFI:
pdata->phy.speed = SPEED_10000; pdata->phy.speed = SPEED_10000;
break; break;
case XGBE_MODE_UNKNOWN: case XGBE_MODE_UNKNOWN:
...@@ -1184,6 +1294,7 @@ static void xgbe_phy_status_result(struct xgbe_prv_data *pdata) ...@@ -1184,6 +1294,7 @@ static void xgbe_phy_status_result(struct xgbe_prv_data *pdata)
static void xgbe_phy_status(struct xgbe_prv_data *pdata) static void xgbe_phy_status(struct xgbe_prv_data *pdata)
{ {
unsigned int link_aneg; unsigned int link_aneg;
int an_restart;
if (test_bit(XGBE_LINK_ERR, &pdata->dev_state)) { if (test_bit(XGBE_LINK_ERR, &pdata->dev_state)) {
netif_carrier_off(pdata->netdev); netif_carrier_off(pdata->netdev);
...@@ -1194,7 +1305,13 @@ static void xgbe_phy_status(struct xgbe_prv_data *pdata) ...@@ -1194,7 +1305,13 @@ static void xgbe_phy_status(struct xgbe_prv_data *pdata)
link_aneg = (pdata->phy.autoneg == AUTONEG_ENABLE); link_aneg = (pdata->phy.autoneg == AUTONEG_ENABLE);
pdata->phy.link = pdata->phy_if.phy_impl.link_status(pdata); pdata->phy.link = pdata->phy_if.phy_impl.link_status(pdata,
&an_restart);
if (an_restart) {
xgbe_phy_config_aneg(pdata);
return;
}
if (pdata->phy.link) { if (pdata->phy.link) {
if (link_aneg && !xgbe_phy_aneg_done(pdata)) { if (link_aneg && !xgbe_phy_aneg_done(pdata)) {
xgbe_check_link_timeout(pdata); xgbe_check_link_timeout(pdata);
...@@ -1237,6 +1354,7 @@ static void xgbe_phy_stop(struct xgbe_prv_data *pdata) ...@@ -1237,6 +1354,7 @@ static void xgbe_phy_stop(struct xgbe_prv_data *pdata)
/* Disable auto-negotiation */ /* Disable auto-negotiation */
xgbe_an_disable_all(pdata); xgbe_an_disable_all(pdata);
if (pdata->dev_irq != pdata->an_irq)
devm_free_irq(pdata->dev, pdata->an_irq, pdata); devm_free_irq(pdata->dev, pdata->an_irq, pdata);
pdata->phy_if.phy_impl.stop(pdata); pdata->phy_if.phy_impl.stop(pdata);
...@@ -1258,6 +1376,8 @@ static int xgbe_phy_start(struct xgbe_prv_data *pdata) ...@@ -1258,6 +1376,8 @@ static int xgbe_phy_start(struct xgbe_prv_data *pdata)
if (ret) if (ret)
return ret; return ret;
/* If we have a separate AN irq, enable it */
if (pdata->dev_irq != pdata->an_irq) {
ret = devm_request_irq(pdata->dev, pdata->an_irq, ret = devm_request_irq(pdata->dev, pdata->an_irq,
xgbe_an_isr, 0, pdata->an_name, xgbe_an_isr, 0, pdata->an_name,
pdata); pdata);
...@@ -1265,6 +1385,7 @@ static int xgbe_phy_start(struct xgbe_prv_data *pdata) ...@@ -1265,6 +1385,7 @@ static int xgbe_phy_start(struct xgbe_prv_data *pdata)
netdev_err(netdev, "phy irq request failed\n"); netdev_err(netdev, "phy irq request failed\n");
goto err_stop; goto err_stop;
} }
}
/* Set initial mode - call the mode setting routines /* Set initial mode - call the mode setting routines
* directly to insure we are properly configured * directly to insure we are properly configured
...@@ -1275,6 +1396,14 @@ static int xgbe_phy_start(struct xgbe_prv_data *pdata) ...@@ -1275,6 +1396,14 @@ static int xgbe_phy_start(struct xgbe_prv_data *pdata)
xgbe_kx_2500_mode(pdata); xgbe_kx_2500_mode(pdata);
} else if (xgbe_use_mode(pdata, XGBE_MODE_KX_1000)) { } else if (xgbe_use_mode(pdata, XGBE_MODE_KX_1000)) {
xgbe_kx_1000_mode(pdata); xgbe_kx_1000_mode(pdata);
} else if (xgbe_use_mode(pdata, XGBE_MODE_SFI)) {
xgbe_sfi_mode(pdata);
} else if (xgbe_use_mode(pdata, XGBE_MODE_X)) {
xgbe_x_mode(pdata);
} else if (xgbe_use_mode(pdata, XGBE_MODE_SGMII_1000)) {
xgbe_sgmii_1000_mode(pdata);
} else if (xgbe_use_mode(pdata, XGBE_MODE_SGMII_100)) {
xgbe_sgmii_100_mode(pdata);
} else { } else {
ret = -EINVAL; ret = -EINVAL;
goto err_irq; goto err_irq;
...@@ -1289,6 +1418,7 @@ static int xgbe_phy_start(struct xgbe_prv_data *pdata) ...@@ -1289,6 +1418,7 @@ static int xgbe_phy_start(struct xgbe_prv_data *pdata)
return xgbe_phy_config_aneg(pdata); return xgbe_phy_config_aneg(pdata);
err_irq: err_irq:
if (pdata->dev_irq != pdata->an_irq)
devm_free_irq(pdata->dev, pdata->an_irq, pdata); devm_free_irq(pdata->dev, pdata->an_irq, pdata);
err_stop: err_stop:
...@@ -1357,10 +1487,16 @@ static int xgbe_phy_best_advertised_speed(struct xgbe_prv_data *pdata) ...@@ -1357,10 +1487,16 @@ static int xgbe_phy_best_advertised_speed(struct xgbe_prv_data *pdata)
{ {
if (pdata->phy.advertising & ADVERTISED_10000baseKR_Full) if (pdata->phy.advertising & ADVERTISED_10000baseKR_Full)
return SPEED_10000; return SPEED_10000;
else if (pdata->phy.advertising & ADVERTISED_10000baseT_Full)
return SPEED_10000;
else if (pdata->phy.advertising & ADVERTISED_2500baseX_Full) else if (pdata->phy.advertising & ADVERTISED_2500baseX_Full)
return SPEED_2500; return SPEED_2500;
else if (pdata->phy.advertising & ADVERTISED_1000baseKX_Full) else if (pdata->phy.advertising & ADVERTISED_1000baseKX_Full)
return SPEED_1000; return SPEED_1000;
else if (pdata->phy.advertising & ADVERTISED_1000baseT_Full)
return SPEED_1000;
else if (pdata->phy.advertising & ADVERTISED_100baseT_Full)
return SPEED_100;
return SPEED_UNKNOWN; return SPEED_UNKNOWN;
} }
...@@ -1442,4 +1578,6 @@ void xgbe_init_function_ptrs_phy(struct xgbe_phy_if *phy_if) ...@@ -1442,4 +1578,6 @@ void xgbe_init_function_ptrs_phy(struct xgbe_phy_if *phy_if)
phy_if->phy_config_aneg = xgbe_phy_config_aneg; phy_if->phy_config_aneg = xgbe_phy_config_aneg;
phy_if->phy_valid_speed = xgbe_phy_valid_speed; phy_if->phy_valid_speed = xgbe_phy_valid_speed;
phy_if->an_isr = xgbe_an_combined_isr;
} }
/*
* AMD 10Gb Ethernet driver
*
* This file is available to you under your choice of the following two
* licenses:
*
* License 1: GPLv2
*
* Copyright (c) 2016 Advanced Micro Devices, Inc.
*
* This file is free software; you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or (at
* your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*
* License 2: Modified BSD
*
* Copyright (c) 2016 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/log2.h>
#include "xgbe.h"
#include "xgbe-common.h"
static int xgbe_config_msi(struct xgbe_prv_data *pdata)
{
unsigned int msi_count;
unsigned int i, j;
int ret;
msi_count = XGBE_MSIX_BASE_COUNT;
msi_count += max(pdata->rx_ring_count,
pdata->tx_ring_count);
msi_count = roundup_pow_of_two(msi_count);
ret = pci_enable_msi_exact(pdata->pcidev, msi_count);
if (ret < 0) {
dev_info(pdata->dev, "MSI request for %u interrupts failed\n",
msi_count);
ret = pci_enable_msi(pdata->pcidev);
if (ret < 0) {
dev_info(pdata->dev, "MSI enablement failed\n");
return ret;
}
msi_count = 1;
}
pdata->irq_count = msi_count;
pdata->dev_irq = pdata->pcidev->irq;
if (msi_count > 1) {
pdata->ecc_irq = pdata->pcidev->irq + 1;
pdata->i2c_irq = pdata->pcidev->irq + 2;
pdata->an_irq = pdata->pcidev->irq + 3;
for (i = XGBE_MSIX_BASE_COUNT, j = 0;
(i < msi_count) && (j < XGBE_MAX_DMA_CHANNELS);
i++, j++)
pdata->channel_irq[j] = pdata->pcidev->irq + i;
pdata->channel_irq_count = j;
pdata->per_channel_irq = 1;
pdata->channel_irq_mode = XGBE_IRQ_MODE_LEVEL;
} else {
pdata->ecc_irq = pdata->pcidev->irq;
pdata->i2c_irq = pdata->pcidev->irq;
pdata->an_irq = pdata->pcidev->irq;
}
if (netif_msg_probe(pdata))
dev_dbg(pdata->dev, "MSI interrupts enabled\n");
return 0;
}
static int xgbe_config_msix(struct xgbe_prv_data *pdata)
{
unsigned int msix_count;
unsigned int i, j;
int ret;
msix_count = XGBE_MSIX_BASE_COUNT;
msix_count += max(pdata->rx_ring_count,
pdata->tx_ring_count);
pdata->msix_entries = devm_kcalloc(pdata->dev, msix_count,
sizeof(struct msix_entry),
GFP_KERNEL);
if (!pdata->msix_entries)
return -ENOMEM;
for (i = 0; i < msix_count; i++)
pdata->msix_entries[i].entry = i;
ret = pci_enable_msix_range(pdata->pcidev, pdata->msix_entries,
XGBE_MSIX_MIN_COUNT, msix_count);
if (ret < 0) {
dev_info(pdata->dev, "MSI-X enablement failed\n");
devm_kfree(pdata->dev, pdata->msix_entries);
pdata->msix_entries = NULL;
return ret;
}
pdata->irq_count = ret;
pdata->dev_irq = pdata->msix_entries[0].vector;
pdata->ecc_irq = pdata->msix_entries[1].vector;
pdata->i2c_irq = pdata->msix_entries[2].vector;
pdata->an_irq = pdata->msix_entries[3].vector;
for (i = XGBE_MSIX_BASE_COUNT, j = 0; i < ret; i++, j++)
pdata->channel_irq[j] = pdata->msix_entries[i].vector;
pdata->channel_irq_count = j;
pdata->per_channel_irq = 1;
pdata->channel_irq_mode = XGBE_IRQ_MODE_LEVEL;
if (netif_msg_probe(pdata))
dev_dbg(pdata->dev, "MSI-X interrupts enabled\n");
return 0;
}
static int xgbe_config_irqs(struct xgbe_prv_data *pdata)
{
int ret;
ret = xgbe_config_msix(pdata);
if (!ret)
goto out;
ret = xgbe_config_msi(pdata);
if (!ret)
goto out;
pdata->irq_count = 1;
pdata->irq_shared = 1;
pdata->dev_irq = pdata->pcidev->irq;
pdata->ecc_irq = pdata->pcidev->irq;
pdata->i2c_irq = pdata->pcidev->irq;
pdata->an_irq = pdata->pcidev->irq;
out:
if (netif_msg_probe(pdata)) {
unsigned int i;
dev_dbg(pdata->dev, " dev irq=%d\n", pdata->dev_irq);
dev_dbg(pdata->dev, " ecc irq=%d\n", pdata->ecc_irq);
dev_dbg(pdata->dev, " i2c irq=%d\n", pdata->i2c_irq);
dev_dbg(pdata->dev, " an irq=%d\n", pdata->an_irq);
for (i = 0; i < pdata->channel_irq_count; i++)
dev_dbg(pdata->dev, " dma%u irq=%d\n",
i, pdata->channel_irq[i]);
}
return 0;
}
static int xgbe_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct xgbe_prv_data *pdata;
struct device *dev = &pdev->dev;
void __iomem * const *iomap_table;
unsigned int ma_lo, ma_hi;
unsigned int reg;
int bar_mask;
int ret;
pdata = xgbe_alloc_pdata(dev);
if (IS_ERR(pdata)) {
ret = PTR_ERR(pdata);
goto err_alloc;
}
pdata->pcidev = pdev;
pci_set_drvdata(pdev, pdata);
/* Get the version data */
pdata->vdata = (struct xgbe_version_data *)id->driver_data;
ret = pcim_enable_device(pdev);
if (ret) {
dev_err(dev, "pcim_enable_device failed\n");
goto err_pci_enable;
}
/* Obtain the mmio areas for the device */
bar_mask = pci_select_bars(pdev, IORESOURCE_MEM);
ret = pcim_iomap_regions(pdev, bar_mask, XGBE_DRV_NAME);
if (ret) {
dev_err(dev, "pcim_iomap_regions failed\n");
goto err_pci_enable;
}
iomap_table = pcim_iomap_table(pdev);
if (!iomap_table) {
dev_err(dev, "pcim_iomap_table failed\n");
ret = -ENOMEM;
goto err_pci_enable;
}
pdata->xgmac_regs = iomap_table[XGBE_XGMAC_BAR];
if (!pdata->xgmac_regs) {
dev_err(dev, "xgmac ioremap failed\n");
ret = -ENOMEM;
goto err_pci_enable;
}
pdata->xprop_regs = pdata->xgmac_regs + XGBE_MAC_PROP_OFFSET;
pdata->xi2c_regs = pdata->xgmac_regs + XGBE_I2C_CTRL_OFFSET;
if (netif_msg_probe(pdata)) {
dev_dbg(dev, "xgmac_regs = %p\n", pdata->xgmac_regs);
dev_dbg(dev, "xprop_regs = %p\n", pdata->xprop_regs);
dev_dbg(dev, "xi2c_regs = %p\n", pdata->xi2c_regs);
}
pdata->xpcs_regs = iomap_table[XGBE_XPCS_BAR];
if (!pdata->xpcs_regs) {
dev_err(dev, "xpcs ioremap failed\n");
ret = -ENOMEM;
goto err_pci_enable;
}
if (netif_msg_probe(pdata))
dev_dbg(dev, "xpcs_regs = %p\n", pdata->xpcs_regs);
/* Configure the PCS indirect addressing support */
reg = XPCS32_IOREAD(pdata, PCS_V2_WINDOW_DEF);
pdata->xpcs_window = XPCS_GET_BITS(reg, PCS_V2_WINDOW_DEF, OFFSET);
pdata->xpcs_window <<= 6;
pdata->xpcs_window_size = XPCS_GET_BITS(reg, PCS_V2_WINDOW_DEF, SIZE);
pdata->xpcs_window_size = 1 << (pdata->xpcs_window_size + 7);
pdata->xpcs_window_mask = pdata->xpcs_window_size - 1;
if (netif_msg_probe(pdata)) {
dev_dbg(dev, "xpcs window = %#010x\n",
pdata->xpcs_window);
dev_dbg(dev, "xpcs window size = %#010x\n",
pdata->xpcs_window_size);
dev_dbg(dev, "xpcs window mask = %#010x\n",
pdata->xpcs_window_mask);
}
pci_set_master(pdev);
/* Enable all interrupts in the hardware */
XP_IOWRITE(pdata, XP_INT_EN, 0x1fffff);
/* Retrieve the MAC address */
ma_lo = XP_IOREAD(pdata, XP_MAC_ADDR_LO);
ma_hi = XP_IOREAD(pdata, XP_MAC_ADDR_HI);
pdata->mac_addr[0] = ma_lo & 0xff;
pdata->mac_addr[1] = (ma_lo >> 8) & 0xff;
pdata->mac_addr[2] = (ma_lo >> 16) & 0xff;
pdata->mac_addr[3] = (ma_lo >> 24) & 0xff;
pdata->mac_addr[4] = ma_hi & 0xff;
pdata->mac_addr[5] = (ma_hi >> 8) & 0xff;
if (!XP_GET_BITS(ma_hi, XP_MAC_ADDR_HI, VALID) ||
!is_valid_ether_addr(pdata->mac_addr)) {
dev_err(dev, "invalid mac address\n");
ret = -EINVAL;
goto err_pci_enable;
}
/* Clock settings */
pdata->sysclk_rate = XGBE_V2_DMA_CLOCK_FREQ;
pdata->ptpclk_rate = XGBE_V2_PTP_CLOCK_FREQ;
/* Set the DMA coherency values */
pdata->coherent = 1;
pdata->axdomain = XGBE_DMA_OS_AXDOMAIN;
pdata->arcache = XGBE_DMA_OS_ARCACHE;
pdata->awcache = XGBE_DMA_OS_AWCACHE;
/* Set the maximum channels and queues */
reg = XP_IOREAD(pdata, XP_PROP_1);
pdata->tx_max_channel_count = XP_GET_BITS(reg, XP_PROP_1, MAX_TX_DMA);
pdata->rx_max_channel_count = XP_GET_BITS(reg, XP_PROP_1, MAX_RX_DMA);
pdata->tx_max_q_count = XP_GET_BITS(reg, XP_PROP_1, MAX_TX_QUEUES);
pdata->rx_max_q_count = XP_GET_BITS(reg, XP_PROP_1, MAX_RX_QUEUES);
if (netif_msg_probe(pdata)) {
dev_dbg(dev, "max tx/rx channel count = %u/%u\n",
pdata->tx_max_channel_count,
pdata->tx_max_channel_count);
dev_dbg(dev, "max tx/rx hw queue count = %u/%u\n",
pdata->tx_max_q_count, pdata->rx_max_q_count);
}
/* Set the hardware channel and queue counts */
xgbe_set_counts(pdata);
/* Set the maximum fifo amounts */
reg = XP_IOREAD(pdata, XP_PROP_2);
pdata->tx_max_fifo_size = XP_GET_BITS(reg, XP_PROP_2, TX_FIFO_SIZE);
pdata->tx_max_fifo_size *= 16384;
pdata->tx_max_fifo_size = min(pdata->tx_max_fifo_size,
pdata->vdata->tx_max_fifo_size);
pdata->rx_max_fifo_size = XP_GET_BITS(reg, XP_PROP_2, RX_FIFO_SIZE);
pdata->rx_max_fifo_size *= 16384;
pdata->rx_max_fifo_size = min(pdata->rx_max_fifo_size,
pdata->vdata->rx_max_fifo_size);
if (netif_msg_probe(pdata))
dev_dbg(dev, "max tx/rx max fifo size = %u/%u\n",
pdata->tx_max_fifo_size, pdata->rx_max_fifo_size);
/* Configure interrupt support */
ret = xgbe_config_irqs(pdata);
if (ret)
goto err_pci_enable;
/* Configure the netdev resource */
ret = xgbe_config_netdev(pdata);
if (ret)
goto err_pci_enable;
netdev_notice(pdata->netdev, "net device enabled\n");
return 0;
err_pci_enable:
xgbe_free_pdata(pdata);
err_alloc:
dev_notice(dev, "net device not enabled\n");
return ret;
}
static void xgbe_pci_remove(struct pci_dev *pdev)
{
struct xgbe_prv_data *pdata = pci_get_drvdata(pdev);
xgbe_deconfig_netdev(pdata);
xgbe_free_pdata(pdata);
}
#ifdef CONFIG_PM
static int xgbe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct xgbe_prv_data *pdata = pci_get_drvdata(pdev);
struct net_device *netdev = pdata->netdev;
int ret = 0;
if (netif_running(netdev))
ret = xgbe_powerdown(netdev, XGMAC_DRIVER_CONTEXT);
pdata->lpm_ctrl = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL1);
pdata->lpm_ctrl |= MDIO_CTRL1_LPOWER;
XMDIO_WRITE(pdata, MDIO_MMD_PCS, MDIO_CTRL1, pdata->lpm_ctrl);
return ret;
}
static int xgbe_pci_resume(struct pci_dev *pdev)
{
struct xgbe_prv_data *pdata = pci_get_drvdata(pdev);
struct net_device *netdev = pdata->netdev;
int ret = 0;
pdata->lpm_ctrl &= ~MDIO_CTRL1_LPOWER;
XMDIO_WRITE(pdata, MDIO_MMD_PCS, MDIO_CTRL1, pdata->lpm_ctrl);
if (netif_running(netdev)) {
ret = xgbe_powerup(netdev, XGMAC_DRIVER_CONTEXT);
/* Schedule a restart in case the link or phy state changed
* while we were powered down.
*/
schedule_work(&pdata->restart_work);
}
return ret;
}
#endif /* CONFIG_PM */
static const struct xgbe_version_data xgbe_v2a = {
.init_function_ptrs_phy_impl = xgbe_init_function_ptrs_phy_v2,
.xpcs_access = XGBE_XPCS_ACCESS_V2,
.mmc_64bit = 1,
.tx_max_fifo_size = 229376,
.rx_max_fifo_size = 229376,
.tx_tstamp_workaround = 1,
.ecc_support = 1,
.i2c_support = 1,
};
static const struct xgbe_version_data xgbe_v2b = {
.init_function_ptrs_phy_impl = xgbe_init_function_ptrs_phy_v2,
.xpcs_access = XGBE_XPCS_ACCESS_V2,
.mmc_64bit = 1,
.tx_max_fifo_size = 65536,
.rx_max_fifo_size = 65536,
.tx_tstamp_workaround = 1,
.ecc_support = 1,
.i2c_support = 1,
};
static const struct pci_device_id xgbe_pci_table[] = {
{ PCI_VDEVICE(AMD, 0x1458),
.driver_data = (kernel_ulong_t)&xgbe_v2a },
{ PCI_VDEVICE(AMD, 0x1459),
.driver_data = (kernel_ulong_t)&xgbe_v2b },
/* Last entry must be zero */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, xgbe_pci_table);
static struct pci_driver xgbe_driver = {
.name = XGBE_DRV_NAME,
.id_table = xgbe_pci_table,
.probe = xgbe_pci_probe,
.remove = xgbe_pci_remove,
#ifdef CONFIG_PM
.suspend = xgbe_pci_suspend,
.resume = xgbe_pci_resume,
#endif
};
int xgbe_pci_init(void)
{
return pci_register_driver(&xgbe_driver);
}
void xgbe_pci_exit(void)
{
pci_unregister_driver(&xgbe_driver);
}
...@@ -295,6 +295,17 @@ static enum xgbe_mode xgbe_phy_an_outcome(struct xgbe_prv_data *pdata) ...@@ -295,6 +295,17 @@ static enum xgbe_mode xgbe_phy_an_outcome(struct xgbe_prv_data *pdata)
return mode; return mode;
} }
static unsigned int xgbe_phy_an_advertising(struct xgbe_prv_data *pdata)
{
return pdata->phy.advertising;
}
static int xgbe_phy_an_config(struct xgbe_prv_data *pdata)
{
/* Nothing uniquely required for an configuration */
return 0;
}
static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata) static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata)
{ {
return XGBE_AN_MODE_CL73; return XGBE_AN_MODE_CL73;
...@@ -607,10 +618,12 @@ static bool xgbe_phy_valid_speed(struct xgbe_prv_data *pdata, int speed) ...@@ -607,10 +618,12 @@ static bool xgbe_phy_valid_speed(struct xgbe_prv_data *pdata, int speed)
} }
} }
static int xgbe_phy_link_status(struct xgbe_prv_data *pdata) static int xgbe_phy_link_status(struct xgbe_prv_data *pdata, int *an_restart)
{ {
unsigned int reg; unsigned int reg;
*an_restart = 0;
/* Link status is latched low, so read once to clear /* Link status is latched low, so read once to clear
* and then read again to get current state * and then read again to get current state
*/ */
...@@ -821,6 +834,10 @@ void xgbe_init_function_ptrs_phy_v1(struct xgbe_phy_if *phy_if) ...@@ -821,6 +834,10 @@ void xgbe_init_function_ptrs_phy_v1(struct xgbe_phy_if *phy_if)
phy_impl->an_mode = xgbe_phy_an_mode; phy_impl->an_mode = xgbe_phy_an_mode;
phy_impl->an_config = xgbe_phy_an_config;
phy_impl->an_advertising = xgbe_phy_an_advertising;
phy_impl->an_outcome = xgbe_phy_an_outcome; phy_impl->an_outcome = xgbe_phy_an_outcome;
phy_impl->kr_training_pre = xgbe_phy_kr_training_pre; phy_impl->kr_training_pre = xgbe_phy_kr_training_pre;
......
/*
* AMD 10Gb Ethernet driver
*
* This file is available to you under your choice of the following two
* licenses:
*
* License 1: GPLv2
*
* Copyright (c) 2016 Advanced Micro Devices, Inc.
*
* This file is free software; you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or (at
* your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*
* License 2: Modified BSD
*
* Copyright (c) 2016 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
* Inc. unless otherwise expressly agreed to in writing between Synopsys
* and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product
* under any End User Software License Agreement or Agreement for Licensed
* Product with Synopsys or any supplement thereto. Permission is hereby
* granted, free of charge, to any person obtaining a copy of this software
* annotated with this license and the Software, to deal in the Software
* without restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/kmod.h>
#include <linux/mdio.h>
#include <linux/phy.h>
#include "xgbe.h"
#include "xgbe-common.h"
#define XGBE_PHY_PORT_SPEED_100 BIT(0)
#define XGBE_PHY_PORT_SPEED_1000 BIT(1)
#define XGBE_PHY_PORT_SPEED_2500 BIT(2)
#define XGBE_PHY_PORT_SPEED_10000 BIT(3)
#define XGBE_MUTEX_RELEASE 0x80000000
#define XGBE_SFP_DIRECT 7
/* I2C target addresses */
#define XGBE_SFP_SERIAL_ID_ADDRESS 0x50
#define XGBE_SFP_DIAG_INFO_ADDRESS 0x51
#define XGBE_SFP_PHY_ADDRESS 0x56
#define XGBE_GPIO_ADDRESS_PCA9555 0x20
/* SFP sideband signal indicators */
#define XGBE_GPIO_NO_TX_FAULT BIT(0)
#define XGBE_GPIO_NO_RATE_SELECT BIT(1)
#define XGBE_GPIO_NO_MOD_ABSENT BIT(2)
#define XGBE_GPIO_NO_RX_LOS BIT(3)
/* Rate-change complete wait/retry count */
#define XGBE_RATECHANGE_COUNT 500
enum xgbe_port_mode {
XGBE_PORT_MODE_RSVD = 0,
XGBE_PORT_MODE_BACKPLANE,
XGBE_PORT_MODE_BACKPLANE_2500,
XGBE_PORT_MODE_1000BASE_T,
XGBE_PORT_MODE_1000BASE_X,
XGBE_PORT_MODE_NBASE_T,
XGBE_PORT_MODE_10GBASE_T,
XGBE_PORT_MODE_10GBASE_R,
XGBE_PORT_MODE_SFP,
XGBE_PORT_MODE_MAX,
};
enum xgbe_conn_type {
XGBE_CONN_TYPE_NONE = 0,
XGBE_CONN_TYPE_SFP,
XGBE_CONN_TYPE_MDIO,
XGBE_CONN_TYPE_BACKPLANE,
XGBE_CONN_TYPE_MAX,
};
/* SFP/SFP+ related definitions */
enum xgbe_sfp_comm {
XGBE_SFP_COMM_DIRECT = 0,
XGBE_SFP_COMM_PCA9545,
};
enum xgbe_sfp_cable {
XGBE_SFP_CABLE_UNKNOWN = 0,
XGBE_SFP_CABLE_ACTIVE,
XGBE_SFP_CABLE_PASSIVE,
};
enum xgbe_sfp_base {
XGBE_SFP_BASE_UNKNOWN = 0,
XGBE_SFP_BASE_1000_T,
XGBE_SFP_BASE_1000_SX,
XGBE_SFP_BASE_1000_LX,
XGBE_SFP_BASE_1000_CX,
XGBE_SFP_BASE_10000_SR,
XGBE_SFP_BASE_10000_LR,
XGBE_SFP_BASE_10000_LRM,
XGBE_SFP_BASE_10000_ER,
XGBE_SFP_BASE_10000_CR,
};
enum xgbe_sfp_speed {
XGBE_SFP_SPEED_UNKNOWN = 0,
XGBE_SFP_SPEED_100_1000,
XGBE_SFP_SPEED_1000,
XGBE_SFP_SPEED_10000,
};
/* SFP Serial ID Base ID values relative to an offset of 0 */
#define XGBE_SFP_BASE_ID 0
#define XGBE_SFP_ID_SFP 0x03
#define XGBE_SFP_BASE_EXT_ID 1
#define XGBE_SFP_EXT_ID_SFP 0x04
#define XGBE_SFP_BASE_10GBE_CC 3
#define XGBE_SFP_BASE_10GBE_CC_SR BIT(4)
#define XGBE_SFP_BASE_10GBE_CC_LR BIT(5)
#define XGBE_SFP_BASE_10GBE_CC_LRM BIT(6)
#define XGBE_SFP_BASE_10GBE_CC_ER BIT(7)
#define XGBE_SFP_BASE_1GBE_CC 6
#define XGBE_SFP_BASE_1GBE_CC_SX BIT(0)
#define XGBE_SFP_BASE_1GBE_CC_LX BIT(1)
#define XGBE_SFP_BASE_1GBE_CC_CX BIT(2)
#define XGBE_SFP_BASE_1GBE_CC_T BIT(3)
#define XGBE_SFP_BASE_CABLE 8
#define XGBE_SFP_BASE_CABLE_PASSIVE BIT(2)
#define XGBE_SFP_BASE_CABLE_ACTIVE BIT(3)
#define XGBE_SFP_BASE_BR 12
#define XGBE_SFP_BASE_BR_1GBE_MIN 0x0a
#define XGBE_SFP_BASE_BR_1GBE_MAX 0x0d
#define XGBE_SFP_BASE_BR_10GBE_MIN 0x64
#define XGBE_SFP_BASE_BR_10GBE_MAX 0x68
#define XGBE_SFP_BASE_CU_CABLE_LEN 18
#define XGBE_SFP_BASE_VENDOR_NAME 20
#define XGBE_SFP_BASE_VENDOR_NAME_LEN 16
#define XGBE_SFP_BASE_VENDOR_PN 40
#define XGBE_SFP_BASE_VENDOR_PN_LEN 16
#define XGBE_SFP_BASE_VENDOR_REV 56
#define XGBE_SFP_BASE_VENDOR_REV_LEN 4
#define XGBE_SFP_BASE_CC 63
/* SFP Serial ID Extended ID values relative to an offset of 64 */
#define XGBE_SFP_BASE_VENDOR_SN 4
#define XGBE_SFP_BASE_VENDOR_SN_LEN 16
#define XGBE_SFP_EXTD_DIAG 28
#define XGBE_SFP_EXTD_DIAG_ADDR_CHANGE BIT(2)
#define XGBE_SFP_EXTD_SFF_8472 30
#define XGBE_SFP_EXTD_CC 31
struct xgbe_sfp_eeprom {
u8 base[64];
u8 extd[32];
u8 vendor[32];
};
#define XGBE_BEL_FUSE_VENDOR "BEL-FUSE "
#define XGBE_BEL_FUSE_PARTNO "1GBT-SFP06 "
struct xgbe_sfp_ascii {
union {
char vendor[XGBE_SFP_BASE_VENDOR_NAME_LEN + 1];
char partno[XGBE_SFP_BASE_VENDOR_PN_LEN + 1];
char rev[XGBE_SFP_BASE_VENDOR_REV_LEN + 1];
char serno[XGBE_SFP_BASE_VENDOR_SN_LEN + 1];
} u;
};
/* MDIO PHY reset types */
enum xgbe_mdio_reset {
XGBE_MDIO_RESET_NONE = 0,
XGBE_MDIO_RESET_I2C_GPIO,
XGBE_MDIO_RESET_INT_GPIO,
XGBE_MDIO_RESET_MAX,
};
/* Re-driver related definitions */
enum xgbe_phy_redrv_if {
XGBE_PHY_REDRV_IF_MDIO = 0,
XGBE_PHY_REDRV_IF_I2C,
XGBE_PHY_REDRV_IF_MAX,
};
enum xgbe_phy_redrv_model {
XGBE_PHY_REDRV_MODEL_4223 = 0,
XGBE_PHY_REDRV_MODEL_4227,
XGBE_PHY_REDRV_MODEL_MAX,
};
enum xgbe_phy_redrv_mode {
XGBE_PHY_REDRV_MODE_CX = 5,
XGBE_PHY_REDRV_MODE_SR = 9,
};
#define XGBE_PHY_REDRV_MODE_REG 0x12b0
/* PHY related configuration information */
struct xgbe_phy_data {
enum xgbe_port_mode port_mode;
unsigned int port_id;
unsigned int port_speeds;
enum xgbe_conn_type conn_type;
enum xgbe_mode cur_mode;
enum xgbe_mode start_mode;
unsigned int rrc_count;
unsigned int mdio_addr;
unsigned int comm_owned;
/* SFP Support */
enum xgbe_sfp_comm sfp_comm;
unsigned int sfp_mux_address;
unsigned int sfp_mux_channel;
unsigned int sfp_gpio_address;
unsigned int sfp_gpio_mask;
unsigned int sfp_gpio_rx_los;
unsigned int sfp_gpio_tx_fault;
unsigned int sfp_gpio_mod_absent;
unsigned int sfp_gpio_rate_select;
unsigned int sfp_rx_los;
unsigned int sfp_tx_fault;
unsigned int sfp_mod_absent;
unsigned int sfp_diags;
unsigned int sfp_changed;
unsigned int sfp_phy_avail;
unsigned int sfp_cable_len;
enum xgbe_sfp_base sfp_base;
enum xgbe_sfp_cable sfp_cable;
enum xgbe_sfp_speed sfp_speed;
struct xgbe_sfp_eeprom sfp_eeprom;
/* External PHY support */
enum xgbe_mdio_mode phydev_mode;
struct mii_bus *mii;
struct phy_device *phydev;
enum xgbe_mdio_reset mdio_reset;
unsigned int mdio_reset_addr;
unsigned int mdio_reset_gpio;
/* Re-driver support */
unsigned int redrv;
unsigned int redrv_if;
unsigned int redrv_addr;
unsigned int redrv_lane;
unsigned int redrv_model;
};
/* I2C, MDIO and GPIO lines are muxed, so only one device at a time */
static DEFINE_MUTEX(xgbe_phy_comm_lock);
static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata);
static int xgbe_phy_i2c_xfer(struct xgbe_prv_data *pdata,
struct xgbe_i2c_op *i2c_op)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
/* Be sure we own the bus */
if (WARN_ON(!phy_data->comm_owned))
return -EIO;
return pdata->i2c_if.i2c_xfer(pdata, i2c_op);
}
static int xgbe_phy_redrv_write(struct xgbe_prv_data *pdata, unsigned int reg,
unsigned int val)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_i2c_op i2c_op;
__be16 *redrv_val;
u8 redrv_data[5], csum;
unsigned int i, retry;
int ret;
/* High byte of register contains read/write indicator */
redrv_data[0] = ((reg >> 8) & 0xff) << 1;
redrv_data[1] = reg & 0xff;
redrv_val = (__be16 *)&redrv_data[2];
*redrv_val = cpu_to_be16(val);
/* Calculate 1 byte checksum */
csum = 0;
for (i = 0; i < 4; i++) {
csum += redrv_data[i];
if (redrv_data[i] > csum)
csum++;
}
redrv_data[4] = ~csum;
retry = 1;
again1:
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
i2c_op.target = phy_data->redrv_addr;
i2c_op.len = sizeof(redrv_data);
i2c_op.buf = redrv_data;
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
if (ret) {
if ((ret == -EAGAIN) && retry--)
goto again1;
return ret;
}
retry = 1;
again2:
i2c_op.cmd = XGBE_I2C_CMD_READ;
i2c_op.target = phy_data->redrv_addr;
i2c_op.len = 1;
i2c_op.buf = redrv_data;
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
if (ret) {
if ((ret == -EAGAIN) && retry--)
goto again2;
return ret;
}
if (redrv_data[0] != 0xff) {
netif_dbg(pdata, drv, pdata->netdev,
"Redriver write checksum error\n");
ret = -EIO;
}
return ret;
}
static int xgbe_phy_i2c_write(struct xgbe_prv_data *pdata, unsigned int target,
void *val, unsigned int val_len)
{
struct xgbe_i2c_op i2c_op;
int retry, ret;
retry = 1;
again:
/* Write the specfied register */
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
i2c_op.target = target;
i2c_op.len = val_len;
i2c_op.buf = val;
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
if ((ret == -EAGAIN) && retry--)
goto again;
return ret;
}
static int xgbe_phy_i2c_read(struct xgbe_prv_data *pdata, unsigned int target,
void *reg, unsigned int reg_len,
void *val, unsigned int val_len)
{
struct xgbe_i2c_op i2c_op;
int retry, ret;
retry = 1;
again1:
/* Set the specified register to read */
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
i2c_op.target = target;
i2c_op.len = reg_len;
i2c_op.buf = reg;
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
if (ret) {
if ((ret == -EAGAIN) && retry--)
goto again1;
return ret;
}
retry = 1;
again2:
/* Read the specfied register */
i2c_op.cmd = XGBE_I2C_CMD_READ;
i2c_op.target = target;
i2c_op.len = val_len;
i2c_op.buf = val;
ret = xgbe_phy_i2c_xfer(pdata, &i2c_op);
if ((ret == -EAGAIN) && retry--)
goto again2;
return ret;
}
static int xgbe_phy_sfp_put_mux(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_i2c_op i2c_op;
u8 mux_channel;
if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT)
return 0;
/* Select no mux channels */
mux_channel = 0;
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
i2c_op.target = phy_data->sfp_mux_address;
i2c_op.len = sizeof(mux_channel);
i2c_op.buf = &mux_channel;
return xgbe_phy_i2c_xfer(pdata, &i2c_op);
}
static int xgbe_phy_sfp_get_mux(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_i2c_op i2c_op;
u8 mux_channel;
if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT)
return 0;
/* Select desired mux channel */
mux_channel = 1 << phy_data->sfp_mux_channel;
i2c_op.cmd = XGBE_I2C_CMD_WRITE;
i2c_op.target = phy_data->sfp_mux_address;
i2c_op.len = sizeof(mux_channel);
i2c_op.buf = &mux_channel;
return xgbe_phy_i2c_xfer(pdata, &i2c_op);
}
static void xgbe_phy_put_comm_ownership(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
phy_data->comm_owned = 0;
mutex_unlock(&xgbe_phy_comm_lock);
}
static int xgbe_phy_get_comm_ownership(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned long timeout;
unsigned int mutex_id;
if (phy_data->comm_owned)
return 0;
/* The I2C and MDIO/GPIO bus is multiplexed between multiple devices,
* the driver needs to take the software mutex and then the hardware
* mutexes before being able to use the busses.
*/
mutex_lock(&xgbe_phy_comm_lock);
/* Clear the mutexes */
XP_IOWRITE(pdata, XP_I2C_MUTEX, XGBE_MUTEX_RELEASE);
XP_IOWRITE(pdata, XP_MDIO_MUTEX, XGBE_MUTEX_RELEASE);
/* Mutex formats are the same for I2C and MDIO/GPIO */
mutex_id = 0;
XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ID, phy_data->port_id);
XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ACTIVE, 1);
timeout = jiffies + (5 * HZ);
while (time_before(jiffies, timeout)) {
/* Must be all zeroes in order to obtain the mutex */
if (XP_IOREAD(pdata, XP_I2C_MUTEX) ||
XP_IOREAD(pdata, XP_MDIO_MUTEX)) {
usleep_range(100, 200);
continue;
}
/* Obtain the mutex */
XP_IOWRITE(pdata, XP_I2C_MUTEX, mutex_id);
XP_IOWRITE(pdata, XP_MDIO_MUTEX, mutex_id);
phy_data->comm_owned = 1;
return 0;
}
mutex_unlock(&xgbe_phy_comm_lock);
netdev_err(pdata->netdev, "unable to obtain hardware mutexes\n");
return -ETIMEDOUT;
}
static int xgbe_phy_mdio_mii_write(struct xgbe_prv_data *pdata, int addr,
int reg, u16 val)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
if (reg & MII_ADDR_C45) {
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45)
return -ENOTSUPP;
} else {
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22)
return -ENOTSUPP;
}
return pdata->hw_if.write_ext_mii_regs(pdata, addr, reg, val);
}
static int xgbe_phy_i2c_mii_write(struct xgbe_prv_data *pdata, int reg, u16 val)
{
__be16 *mii_val;
u8 mii_data[3];
int ret;
ret = xgbe_phy_sfp_get_mux(pdata);
if (ret)
return ret;
mii_data[0] = reg & 0xff;
mii_val = (__be16 *)&mii_data[1];
*mii_val = cpu_to_be16(val);
ret = xgbe_phy_i2c_write(pdata, XGBE_SFP_PHY_ADDRESS,
mii_data, sizeof(mii_data));
xgbe_phy_sfp_put_mux(pdata);
return ret;
}
static int xgbe_phy_mii_write(struct mii_bus *mii, int addr, int reg, u16 val)
{
struct xgbe_prv_data *pdata = mii->priv;
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret)
return ret;
if (phy_data->conn_type == XGBE_CONN_TYPE_SFP)
ret = xgbe_phy_i2c_mii_write(pdata, reg, val);
else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO)
ret = xgbe_phy_mdio_mii_write(pdata, addr, reg, val);
else
ret = -ENOTSUPP;
xgbe_phy_put_comm_ownership(pdata);
return ret;
}
static int xgbe_phy_mdio_mii_read(struct xgbe_prv_data *pdata, int addr,
int reg)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
if (reg & MII_ADDR_C45) {
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45)
return -ENOTSUPP;
} else {
if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22)
return -ENOTSUPP;
}
return pdata->hw_if.read_ext_mii_regs(pdata, addr, reg);
}
static int xgbe_phy_i2c_mii_read(struct xgbe_prv_data *pdata, int reg)
{
__be16 mii_val;
u8 mii_reg;
int ret;
ret = xgbe_phy_sfp_get_mux(pdata);
if (ret)
return ret;
mii_reg = reg;
ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_PHY_ADDRESS,
&mii_reg, sizeof(mii_reg),
&mii_val, sizeof(mii_val));
if (!ret)
ret = be16_to_cpu(mii_val);
xgbe_phy_sfp_put_mux(pdata);
return ret;
}
static int xgbe_phy_mii_read(struct mii_bus *mii, int addr, int reg)
{
struct xgbe_prv_data *pdata = mii->priv;
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret)
return ret;
if (phy_data->conn_type == XGBE_CONN_TYPE_SFP)
ret = xgbe_phy_i2c_mii_read(pdata, reg);
else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO)
ret = xgbe_phy_mdio_mii_read(pdata, addr, reg);
else
ret = -ENOTSUPP;
xgbe_phy_put_comm_ownership(pdata);
return ret;
}
static void xgbe_phy_sfp_phy_settings(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
if (phy_data->sfp_mod_absent) {
pdata->phy.speed = SPEED_UNKNOWN;
pdata->phy.duplex = DUPLEX_UNKNOWN;
pdata->phy.autoneg = AUTONEG_ENABLE;
pdata->phy.advertising = pdata->phy.supported;
}
pdata->phy.advertising &= ~ADVERTISED_Autoneg;
pdata->phy.advertising &= ~ADVERTISED_TP;
pdata->phy.advertising &= ~ADVERTISED_FIBRE;
pdata->phy.advertising &= ~ADVERTISED_100baseT_Full;
pdata->phy.advertising &= ~ADVERTISED_1000baseT_Full;
pdata->phy.advertising &= ~ADVERTISED_10000baseT_Full;
pdata->phy.advertising &= ~ADVERTISED_10000baseR_FEC;
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_1000_T:
case XGBE_SFP_BASE_1000_SX:
case XGBE_SFP_BASE_1000_LX:
case XGBE_SFP_BASE_1000_CX:
pdata->phy.speed = SPEED_UNKNOWN;
pdata->phy.duplex = DUPLEX_UNKNOWN;
pdata->phy.autoneg = AUTONEG_ENABLE;
pdata->phy.advertising |= ADVERTISED_Autoneg;
break;
case XGBE_SFP_BASE_10000_SR:
case XGBE_SFP_BASE_10000_LR:
case XGBE_SFP_BASE_10000_LRM:
case XGBE_SFP_BASE_10000_ER:
case XGBE_SFP_BASE_10000_CR:
default:
pdata->phy.speed = SPEED_10000;
pdata->phy.duplex = DUPLEX_FULL;
pdata->phy.autoneg = AUTONEG_DISABLE;
break;
}
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_1000_T:
case XGBE_SFP_BASE_1000_CX:
case XGBE_SFP_BASE_10000_CR:
pdata->phy.advertising |= ADVERTISED_TP;
break;
default:
pdata->phy.advertising |= ADVERTISED_FIBRE;
}
switch (phy_data->sfp_speed) {
case XGBE_SFP_SPEED_100_1000:
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100)
pdata->phy.advertising |= ADVERTISED_100baseT_Full;
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
pdata->phy.advertising |= ADVERTISED_1000baseT_Full;
break;
case XGBE_SFP_SPEED_1000:
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
pdata->phy.advertising |= ADVERTISED_1000baseT_Full;
break;
case XGBE_SFP_SPEED_10000:
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)
pdata->phy.advertising |= ADVERTISED_10000baseT_Full;
break;
default:
/* Choose the fastest supported speed */
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)
pdata->phy.advertising |= ADVERTISED_10000baseT_Full;
else if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
pdata->phy.advertising |= ADVERTISED_1000baseT_Full;
else if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100)
pdata->phy.advertising |= ADVERTISED_100baseT_Full;
}
}
static bool xgbe_phy_sfp_bit_rate(struct xgbe_sfp_eeprom *sfp_eeprom,
enum xgbe_sfp_speed sfp_speed)
{
u8 *sfp_base, min, max;
sfp_base = sfp_eeprom->base;
switch (sfp_speed) {
case XGBE_SFP_SPEED_1000:
min = XGBE_SFP_BASE_BR_1GBE_MIN;
max = XGBE_SFP_BASE_BR_1GBE_MAX;
break;
case XGBE_SFP_SPEED_10000:
min = XGBE_SFP_BASE_BR_10GBE_MIN;
max = XGBE_SFP_BASE_BR_10GBE_MAX;
break;
default:
return false;
}
return ((sfp_base[XGBE_SFP_BASE_BR] >= min) &&
(sfp_base[XGBE_SFP_BASE_BR] <= max));
}
static void xgbe_phy_free_phy_device(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
if (phy_data->phydev) {
phy_detach(phy_data->phydev);
phy_device_remove(phy_data->phydev);
phy_device_free(phy_data->phydev);
phy_data->phydev = NULL;
}
}
static bool xgbe_phy_finisar_phy_quirks(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int phy_id = phy_data->phydev->phy_id;
if ((phy_id & 0xfffffff0) != 0x01ff0cc0)
return false;
/* Enable Base-T AN */
phy_write(phy_data->phydev, 0x16, 0x0001);
phy_write(phy_data->phydev, 0x00, 0x9140);
phy_write(phy_data->phydev, 0x16, 0x0000);
/* Enable SGMII at 100Base-T/1000Base-T Full Duplex */
phy_write(phy_data->phydev, 0x1b, 0x9084);
phy_write(phy_data->phydev, 0x09, 0x0e00);
phy_write(phy_data->phydev, 0x00, 0x8140);
phy_write(phy_data->phydev, 0x04, 0x0d01);
phy_write(phy_data->phydev, 0x00, 0x9140);
phy_data->phydev->supported = PHY_GBIT_FEATURES;
phy_data->phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
phy_data->phydev->advertising = phy_data->phydev->supported;
netif_dbg(pdata, drv, pdata->netdev,
"Finisar PHY quirk in place\n");
return true;
}
static void xgbe_phy_external_phy_quirks(struct xgbe_prv_data *pdata)
{
if (xgbe_phy_finisar_phy_quirks(pdata))
return;
}
static int xgbe_phy_find_phy_device(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct phy_device *phydev;
int ret;
/* If we already have a PHY, just return */
if (phy_data->phydev)
return 0;
/* Check for the use of an external PHY */
if (phy_data->phydev_mode == XGBE_MDIO_MODE_NONE)
return 0;
/* For SFP, only use an external PHY if available */
if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) &&
!phy_data->sfp_phy_avail)
return 0;
/* Create and connect to the PHY device */
phydev = get_phy_device(phy_data->mii, phy_data->mdio_addr,
(phy_data->phydev_mode == XGBE_MDIO_MODE_CL45));
if (IS_ERR(phydev)) {
netdev_err(pdata->netdev, "get_phy_device failed\n");
return -ENODEV;
}
netif_dbg(pdata, drv, pdata->netdev, "external PHY id is %#010x\n",
phydev->phy_id);
/*TODO: If c45, add request_module based on one of the MMD ids? */
ret = phy_device_register(phydev);
if (ret) {
netdev_err(pdata->netdev, "phy_device_register failed\n");
phy_device_free(phydev);
return ret;
}
ret = phy_attach_direct(pdata->netdev, phydev, phydev->dev_flags,
PHY_INTERFACE_MODE_SGMII);
if (ret) {
netdev_err(pdata->netdev, "phy_attach_direct failed\n");
phy_device_remove(phydev);
phy_device_free(phydev);
return ret;
}
phy_data->phydev = phydev;
xgbe_phy_external_phy_quirks(pdata);
phydev->advertising &= pdata->phy.advertising;
phy_start_aneg(phy_data->phydev);
return 0;
}
static void xgbe_phy_sfp_external_phy(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
if (!phy_data->sfp_changed)
return;
phy_data->sfp_phy_avail = 0;
if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T)
return;
/* Check access to the PHY by reading CTRL1 */
ret = xgbe_phy_i2c_mii_read(pdata, MII_BMCR);
if (ret < 0)
return;
/* Successfully accessed the PHY */
phy_data->sfp_phy_avail = 1;
}
static bool xgbe_phy_belfuse_parse_quirks(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom;
if (memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME],
XGBE_BEL_FUSE_VENDOR, XGBE_SFP_BASE_VENDOR_NAME_LEN))
return false;
if (!memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN],
XGBE_BEL_FUSE_PARTNO, XGBE_SFP_BASE_VENDOR_PN_LEN)) {
phy_data->sfp_base = XGBE_SFP_BASE_1000_SX;
phy_data->sfp_cable = XGBE_SFP_CABLE_ACTIVE;
phy_data->sfp_speed = XGBE_SFP_SPEED_1000;
if (phy_data->sfp_changed)
netif_dbg(pdata, drv, pdata->netdev,
"Bel-Fuse SFP quirk in place\n");
return true;
}
return false;
}
static bool xgbe_phy_sfp_parse_quirks(struct xgbe_prv_data *pdata)
{
if (xgbe_phy_belfuse_parse_quirks(pdata))
return true;
return false;
}
static void xgbe_phy_sfp_parse_eeprom(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom;
u8 *sfp_base;
sfp_base = sfp_eeprom->base;
if (sfp_base[XGBE_SFP_BASE_ID] != XGBE_SFP_ID_SFP)
return;
if (sfp_base[XGBE_SFP_BASE_EXT_ID] != XGBE_SFP_EXT_ID_SFP)
return;
if (xgbe_phy_sfp_parse_quirks(pdata))
return;
/* Assume ACTIVE cable unless told it is PASSIVE */
if (sfp_base[XGBE_SFP_BASE_CABLE] & XGBE_SFP_BASE_CABLE_PASSIVE) {
phy_data->sfp_cable = XGBE_SFP_CABLE_PASSIVE;
phy_data->sfp_cable_len = sfp_base[XGBE_SFP_BASE_CU_CABLE_LEN];
} else {
phy_data->sfp_cable = XGBE_SFP_CABLE_ACTIVE;
}
/* Determine the type of SFP */
if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_SR)
phy_data->sfp_base = XGBE_SFP_BASE_10000_SR;
else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LR)
phy_data->sfp_base = XGBE_SFP_BASE_10000_LR;
else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LRM)
phy_data->sfp_base = XGBE_SFP_BASE_10000_LRM;
else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_ER)
phy_data->sfp_base = XGBE_SFP_BASE_10000_ER;
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_SX)
phy_data->sfp_base = XGBE_SFP_BASE_1000_SX;
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_LX)
phy_data->sfp_base = XGBE_SFP_BASE_1000_LX;
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_CX)
phy_data->sfp_base = XGBE_SFP_BASE_1000_CX;
else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_T)
phy_data->sfp_base = XGBE_SFP_BASE_1000_T;
else if ((phy_data->sfp_cable == XGBE_SFP_CABLE_PASSIVE) &&
xgbe_phy_sfp_bit_rate(sfp_eeprom, XGBE_SFP_SPEED_10000))
phy_data->sfp_base = XGBE_SFP_BASE_10000_CR;
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_1000_T:
phy_data->sfp_speed = XGBE_SFP_SPEED_100_1000;
break;
case XGBE_SFP_BASE_1000_SX:
case XGBE_SFP_BASE_1000_LX:
case XGBE_SFP_BASE_1000_CX:
phy_data->sfp_speed = XGBE_SFP_SPEED_1000;
break;
case XGBE_SFP_BASE_10000_SR:
case XGBE_SFP_BASE_10000_LR:
case XGBE_SFP_BASE_10000_LRM:
case XGBE_SFP_BASE_10000_ER:
case XGBE_SFP_BASE_10000_CR:
phy_data->sfp_speed = XGBE_SFP_SPEED_10000;
break;
default:
break;
}
}
static void xgbe_phy_sfp_eeprom_info(struct xgbe_prv_data *pdata,
struct xgbe_sfp_eeprom *sfp_eeprom)
{
struct xgbe_sfp_ascii sfp_ascii;
char *sfp_data = (char *)&sfp_ascii;
netif_dbg(pdata, drv, pdata->netdev, "SFP detected:\n");
memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME],
XGBE_SFP_BASE_VENDOR_NAME_LEN);
sfp_data[XGBE_SFP_BASE_VENDOR_NAME_LEN] = '\0';
netif_dbg(pdata, drv, pdata->netdev, " vendor: %s\n",
sfp_data);
memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN],
XGBE_SFP_BASE_VENDOR_PN_LEN);
sfp_data[XGBE_SFP_BASE_VENDOR_PN_LEN] = '\0';
netif_dbg(pdata, drv, pdata->netdev, " part number: %s\n",
sfp_data);
memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_REV],
XGBE_SFP_BASE_VENDOR_REV_LEN);
sfp_data[XGBE_SFP_BASE_VENDOR_REV_LEN] = '\0';
netif_dbg(pdata, drv, pdata->netdev, " revision level: %s\n",
sfp_data);
memcpy(sfp_data, &sfp_eeprom->extd[XGBE_SFP_BASE_VENDOR_SN],
XGBE_SFP_BASE_VENDOR_SN_LEN);
sfp_data[XGBE_SFP_BASE_VENDOR_SN_LEN] = '\0';
netif_dbg(pdata, drv, pdata->netdev, " serial number: %s\n",
sfp_data);
}
static bool xgbe_phy_sfp_verify_eeprom(u8 cc_in, u8 *buf, unsigned int len)
{
u8 cc;
for (cc = 0; len; buf++, len--)
cc += *buf;
return (cc == cc_in) ? true : false;
}
static int xgbe_phy_sfp_read_eeprom(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
struct xgbe_sfp_eeprom sfp_eeprom;
u8 eeprom_addr;
int ret;
ret = xgbe_phy_sfp_get_mux(pdata);
if (ret) {
netdev_err(pdata->netdev, "I2C error setting SFP MUX\n");
return ret;
}
/* Read the SFP serial ID eeprom */
eeprom_addr = 0;
ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_SERIAL_ID_ADDRESS,
&eeprom_addr, sizeof(eeprom_addr),
&sfp_eeprom, sizeof(sfp_eeprom));
if (ret) {
netdev_err(pdata->netdev, "I2C error reading SFP EEPROM\n");
goto put;
}
/* Validate the contents read */
if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.base[XGBE_SFP_BASE_CC],
sfp_eeprom.base,
sizeof(sfp_eeprom.base) - 1)) {
ret = -EINVAL;
goto put;
}
if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.extd[XGBE_SFP_EXTD_CC],
sfp_eeprom.extd,
sizeof(sfp_eeprom.extd) - 1)) {
ret = -EINVAL;
goto put;
}
/* Check for an added or changed SFP */
if (memcmp(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom))) {
phy_data->sfp_changed = 1;
if (netif_msg_drv(pdata))
xgbe_phy_sfp_eeprom_info(pdata, &sfp_eeprom);
memcpy(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom));
if (sfp_eeprom.extd[XGBE_SFP_EXTD_SFF_8472]) {
u8 diag_type = sfp_eeprom.extd[XGBE_SFP_EXTD_DIAG];
if (!(diag_type & XGBE_SFP_EXTD_DIAG_ADDR_CHANGE))
phy_data->sfp_diags = 1;
}
xgbe_phy_free_phy_device(pdata);
} else {
phy_data->sfp_changed = 0;
}
put:
xgbe_phy_sfp_put_mux(pdata);
return ret;
}
static void xgbe_phy_sfp_signals(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int gpio_input;
u8 gpio_reg, gpio_ports[2];
int ret;
/* Read the input port registers */
gpio_reg = 0;
ret = xgbe_phy_i2c_read(pdata, phy_data->sfp_gpio_address,
&gpio_reg, sizeof(gpio_reg),
gpio_ports, sizeof(gpio_ports));
if (ret) {
netdev_err(pdata->netdev, "I2C error reading SFP GPIOs\n");
return;
}
gpio_input = (gpio_ports[1] << 8) | gpio_ports[0];
if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_MOD_ABSENT) {
/* No GPIO, just assume the module is present for now */
phy_data->sfp_mod_absent = 0;
} else {
if (!(gpio_input & (1 << phy_data->sfp_gpio_mod_absent)))
phy_data->sfp_mod_absent = 0;
}
if (!(phy_data->sfp_gpio_mask & XGBE_GPIO_NO_RX_LOS) &&
(gpio_input & (1 << phy_data->sfp_gpio_rx_los)))
phy_data->sfp_rx_los = 1;
if (!(phy_data->sfp_gpio_mask & XGBE_GPIO_NO_TX_FAULT) &&
(gpio_input & (1 << phy_data->sfp_gpio_tx_fault)))
phy_data->sfp_tx_fault = 1;
}
static void xgbe_phy_sfp_mod_absent(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
xgbe_phy_free_phy_device(pdata);
phy_data->sfp_mod_absent = 1;
phy_data->sfp_phy_avail = 0;
memset(&phy_data->sfp_eeprom, 0, sizeof(phy_data->sfp_eeprom));
}
static void xgbe_phy_sfp_reset(struct xgbe_phy_data *phy_data)
{
phy_data->sfp_rx_los = 0;
phy_data->sfp_tx_fault = 0;
phy_data->sfp_mod_absent = 1;
phy_data->sfp_diags = 0;
phy_data->sfp_base = XGBE_SFP_BASE_UNKNOWN;
phy_data->sfp_cable = XGBE_SFP_CABLE_UNKNOWN;
phy_data->sfp_speed = XGBE_SFP_SPEED_UNKNOWN;
}
static void xgbe_phy_sfp_detect(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
/* Reset the SFP signals and info */
xgbe_phy_sfp_reset(phy_data);
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret)
return;
/* Read the SFP signals and check for module presence */
xgbe_phy_sfp_signals(pdata);
if (phy_data->sfp_mod_absent) {
xgbe_phy_sfp_mod_absent(pdata);
goto put;
}
ret = xgbe_phy_sfp_read_eeprom(pdata);
if (ret) {
/* Treat any error as if there isn't an SFP plugged in */
xgbe_phy_sfp_reset(phy_data);
xgbe_phy_sfp_mod_absent(pdata);
goto put;
}
xgbe_phy_sfp_parse_eeprom(pdata);
xgbe_phy_sfp_external_phy(pdata);
put:
xgbe_phy_sfp_phy_settings(pdata);
xgbe_phy_put_comm_ownership(pdata);
}
static void xgbe_phy_phydev_flowctrl(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
u16 lcl_adv = 0, rmt_adv = 0;
u8 fc;
pdata->phy.tx_pause = 0;
pdata->phy.rx_pause = 0;
if (!phy_data->phydev)
return;
if (phy_data->phydev->advertising & ADVERTISED_Pause)
lcl_adv |= ADVERTISE_PAUSE_CAP;
if (phy_data->phydev->advertising & ADVERTISED_Asym_Pause)
lcl_adv |= ADVERTISE_PAUSE_ASYM;
if (phy_data->phydev->pause) {
pdata->phy.lp_advertising |= ADVERTISED_Pause;
rmt_adv |= LPA_PAUSE_CAP;
}
if (phy_data->phydev->asym_pause) {
pdata->phy.lp_advertising |= ADVERTISED_Asym_Pause;
rmt_adv |= LPA_PAUSE_ASYM;
}
fc = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
if (fc & FLOW_CTRL_TX)
pdata->phy.tx_pause = 1;
if (fc & FLOW_CTRL_RX)
pdata->phy.rx_pause = 1;
}
static enum xgbe_mode xgbe_phy_an37_sgmii_outcome(struct xgbe_prv_data *pdata)
{
enum xgbe_mode mode;
pdata->phy.lp_advertising |= ADVERTISED_Autoneg;
pdata->phy.lp_advertising |= ADVERTISED_TP;
/* Use external PHY to determine flow control */
if (pdata->phy.pause_autoneg)
xgbe_phy_phydev_flowctrl(pdata);
switch (pdata->an_status & XGBE_SGMII_AN_LINK_SPEED) {
case XGBE_SGMII_AN_LINK_SPEED_100:
if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) {
pdata->phy.lp_advertising |= ADVERTISED_100baseT_Full;
mode = XGBE_MODE_SGMII_100;
} else {
/* Half-duplex not supported */
pdata->phy.lp_advertising |= ADVERTISED_100baseT_Half;
mode = XGBE_MODE_UNKNOWN;
}
break;
case XGBE_SGMII_AN_LINK_SPEED_1000:
if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) {
pdata->phy.lp_advertising |= ADVERTISED_1000baseT_Full;
mode = XGBE_MODE_SGMII_1000;
} else {
/* Half-duplex not supported */
pdata->phy.lp_advertising |= ADVERTISED_1000baseT_Half;
mode = XGBE_MODE_UNKNOWN;
}
break;
default:
mode = XGBE_MODE_UNKNOWN;
}
return mode;
}
static enum xgbe_mode xgbe_phy_an37_outcome(struct xgbe_prv_data *pdata)
{
enum xgbe_mode mode;
unsigned int ad_reg, lp_reg;
pdata->phy.lp_advertising |= ADVERTISED_Autoneg;
pdata->phy.lp_advertising |= ADVERTISED_FIBRE;
/* Compare Advertisement and Link Partner register */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_ADVERTISE);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_LP_ABILITY);
if (lp_reg & 0x100)
pdata->phy.lp_advertising |= ADVERTISED_Pause;
if (lp_reg & 0x80)
pdata->phy.lp_advertising |= ADVERTISED_Asym_Pause;
if (pdata->phy.pause_autoneg) {
/* Set flow control based on auto-negotiation result */
pdata->phy.tx_pause = 0;
pdata->phy.rx_pause = 0;
if (ad_reg & lp_reg & 0x100) {
pdata->phy.tx_pause = 1;
pdata->phy.rx_pause = 1;
} else if (ad_reg & lp_reg & 0x80) {
if (ad_reg & 0x100)
pdata->phy.rx_pause = 1;
else if (lp_reg & 0x100)
pdata->phy.tx_pause = 1;
}
}
if (lp_reg & 0x40)
pdata->phy.lp_advertising |= ADVERTISED_1000baseT_Half;
if (lp_reg & 0x20)
pdata->phy.lp_advertising |= ADVERTISED_1000baseT_Full;
/* Half duplex is not supported */
ad_reg &= lp_reg;
mode = (ad_reg & 0x20) ? XGBE_MODE_X : XGBE_MODE_UNKNOWN;
return mode;
}
static enum xgbe_mode xgbe_phy_an73_redrv_outcome(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
enum xgbe_mode mode;
unsigned int ad_reg, lp_reg;
pdata->phy.lp_advertising |= ADVERTISED_Autoneg;
pdata->phy.lp_advertising |= ADVERTISED_Backplane;
/* Use external PHY to determine flow control */
if (pdata->phy.pause_autoneg)
xgbe_phy_phydev_flowctrl(pdata);
/* Compare Advertisement and Link Partner register 2 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1);
if (lp_reg & 0x80)
pdata->phy.lp_advertising |= ADVERTISED_10000baseKR_Full;
if (lp_reg & 0x20)
pdata->phy.lp_advertising |= ADVERTISED_1000baseKX_Full;
ad_reg &= lp_reg;
if (ad_reg & 0x80) {
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
mode = XGBE_MODE_KR;
break;
default:
mode = XGBE_MODE_SFI;
break;
}
} else if (ad_reg & 0x20) {
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
mode = XGBE_MODE_KX_1000;
break;
case XGBE_PORT_MODE_1000BASE_X:
mode = XGBE_MODE_X;
break;
case XGBE_PORT_MODE_SFP:
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_1000_T:
if (phy_data->phydev &&
(phy_data->phydev->speed == SPEED_100))
mode = XGBE_MODE_SGMII_100;
else
mode = XGBE_MODE_SGMII_1000;
break;
case XGBE_SFP_BASE_1000_SX:
case XGBE_SFP_BASE_1000_LX:
case XGBE_SFP_BASE_1000_CX:
default:
mode = XGBE_MODE_X;
break;
}
break;
default:
if (phy_data->phydev &&
(phy_data->phydev->speed == SPEED_100))
mode = XGBE_MODE_SGMII_100;
else
mode = XGBE_MODE_SGMII_1000;
break;
}
} else {
mode = XGBE_MODE_UNKNOWN;
}
/* Compare Advertisement and Link Partner register 3 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2);
if (lp_reg & 0xc000)
pdata->phy.lp_advertising |= ADVERTISED_10000baseR_FEC;
return mode;
}
static enum xgbe_mode xgbe_phy_an73_outcome(struct xgbe_prv_data *pdata)
{
enum xgbe_mode mode;
unsigned int ad_reg, lp_reg;
pdata->phy.lp_advertising |= ADVERTISED_Autoneg;
pdata->phy.lp_advertising |= ADVERTISED_Backplane;
/* Compare Advertisement and Link Partner register 1 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA);
if (lp_reg & 0x400)
pdata->phy.lp_advertising |= ADVERTISED_Pause;
if (lp_reg & 0x800)
pdata->phy.lp_advertising |= ADVERTISED_Asym_Pause;
if (pdata->phy.pause_autoneg) {
/* Set flow control based on auto-negotiation result */
pdata->phy.tx_pause = 0;
pdata->phy.rx_pause = 0;
if (ad_reg & lp_reg & 0x400) {
pdata->phy.tx_pause = 1;
pdata->phy.rx_pause = 1;
} else if (ad_reg & lp_reg & 0x800) {
if (ad_reg & 0x400)
pdata->phy.rx_pause = 1;
else if (lp_reg & 0x400)
pdata->phy.tx_pause = 1;
}
}
/* Compare Advertisement and Link Partner register 2 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1);
if (lp_reg & 0x80)
pdata->phy.lp_advertising |= ADVERTISED_10000baseKR_Full;
if (lp_reg & 0x20)
pdata->phy.lp_advertising |= ADVERTISED_1000baseKX_Full;
ad_reg &= lp_reg;
if (ad_reg & 0x80)
mode = XGBE_MODE_KR;
else if (ad_reg & 0x20)
mode = XGBE_MODE_KX_1000;
else
mode = XGBE_MODE_UNKNOWN;
/* Compare Advertisement and Link Partner register 3 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2);
if (lp_reg & 0xc000)
pdata->phy.lp_advertising |= ADVERTISED_10000baseR_FEC;
return mode;
}
static enum xgbe_mode xgbe_phy_an_outcome(struct xgbe_prv_data *pdata)
{
switch (pdata->an_mode) {
case XGBE_AN_MODE_CL73:
return xgbe_phy_an73_outcome(pdata);
case XGBE_AN_MODE_CL73_REDRV:
return xgbe_phy_an73_redrv_outcome(pdata);
case XGBE_AN_MODE_CL37:
return xgbe_phy_an37_outcome(pdata);
case XGBE_AN_MODE_CL37_SGMII:
return xgbe_phy_an37_sgmii_outcome(pdata);
default:
return XGBE_MODE_UNKNOWN;
}
}
static unsigned int xgbe_phy_an_advertising(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int advertising;
/* Without a re-driver, just return current advertising */
if (!phy_data->redrv)
return pdata->phy.advertising;
/* With the KR re-driver we need to advertise a single speed */
advertising = pdata->phy.advertising;
advertising &= ~ADVERTISED_1000baseKX_Full;
advertising &= ~ADVERTISED_10000baseKR_Full;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
advertising |= ADVERTISED_10000baseKR_Full;
break;
case XGBE_PORT_MODE_BACKPLANE_2500:
advertising |= ADVERTISED_1000baseKX_Full;
break;
case XGBE_PORT_MODE_1000BASE_T:
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_NBASE_T:
advertising |= ADVERTISED_1000baseKX_Full;
break;
case XGBE_PORT_MODE_10GBASE_T:
if (phy_data->phydev &&
(phy_data->phydev->speed == SPEED_10000))
advertising |= ADVERTISED_10000baseKR_Full;
else
advertising |= ADVERTISED_1000baseKX_Full;
break;
case XGBE_PORT_MODE_10GBASE_R:
advertising |= ADVERTISED_10000baseKR_Full;
break;
case XGBE_PORT_MODE_SFP:
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_1000_T:
case XGBE_SFP_BASE_1000_SX:
case XGBE_SFP_BASE_1000_LX:
case XGBE_SFP_BASE_1000_CX:
advertising |= ADVERTISED_1000baseKX_Full;
break;
default:
advertising |= ADVERTISED_10000baseKR_Full;
break;
}
break;
default:
advertising |= ADVERTISED_10000baseKR_Full;
break;
}
return advertising;
}
static int xgbe_phy_an_config(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
ret = xgbe_phy_find_phy_device(pdata);
if (ret)
return ret;
if (!phy_data->phydev)
return 0;
phy_data->phydev->autoneg = pdata->phy.autoneg;
phy_data->phydev->advertising = phy_data->phydev->supported &
pdata->phy.advertising;
if (pdata->phy.autoneg != AUTONEG_ENABLE) {
phy_data->phydev->speed = pdata->phy.speed;
phy_data->phydev->duplex = pdata->phy.duplex;
}
ret = phy_start_aneg(phy_data->phydev);
return ret;
}
static enum xgbe_an_mode xgbe_phy_an_sfp_mode(struct xgbe_phy_data *phy_data)
{
switch (phy_data->sfp_base) {
case XGBE_SFP_BASE_1000_T:
return XGBE_AN_MODE_CL37_SGMII;
case XGBE_SFP_BASE_1000_SX:
case XGBE_SFP_BASE_1000_LX:
case XGBE_SFP_BASE_1000_CX:
return XGBE_AN_MODE_CL37;
default:
return XGBE_AN_MODE_NONE;
}
}
static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
/* A KR re-driver will always require CL73 AN */
if (phy_data->redrv)
return XGBE_AN_MODE_CL73_REDRV;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
return XGBE_AN_MODE_CL73;
case XGBE_PORT_MODE_BACKPLANE_2500:
return XGBE_AN_MODE_NONE;
case XGBE_PORT_MODE_1000BASE_T:
return XGBE_AN_MODE_CL37_SGMII;
case XGBE_PORT_MODE_1000BASE_X:
return XGBE_AN_MODE_CL37;
case XGBE_PORT_MODE_NBASE_T:
return XGBE_AN_MODE_CL37_SGMII;
case XGBE_PORT_MODE_10GBASE_T:
return XGBE_AN_MODE_CL73;
case XGBE_PORT_MODE_10GBASE_R:
return XGBE_AN_MODE_NONE;
case XGBE_PORT_MODE_SFP:
return xgbe_phy_an_sfp_mode(phy_data);
default:
return XGBE_AN_MODE_NONE;
}
}
static int xgbe_phy_set_redrv_mode_mdio(struct xgbe_prv_data *pdata,
enum xgbe_phy_redrv_mode mode)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
u16 redrv_reg, redrv_val;
redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000);
redrv_val = (u16)mode;
return pdata->hw_if.write_ext_mii_regs(pdata, phy_data->redrv_addr,
redrv_reg, redrv_val);
}
static int xgbe_phy_set_redrv_mode_i2c(struct xgbe_prv_data *pdata,
enum xgbe_phy_redrv_mode mode)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int redrv_reg;
int ret;
/* Calculate the register to write */
redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000);
ret = xgbe_phy_redrv_write(pdata, redrv_reg, mode);
return ret;
}
static void xgbe_phy_set_redrv_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
enum xgbe_phy_redrv_mode mode;
int ret;
if (!phy_data->redrv)
return;
mode = XGBE_PHY_REDRV_MODE_CX;
if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) &&
(phy_data->sfp_base != XGBE_SFP_BASE_1000_CX) &&
(phy_data->sfp_base != XGBE_SFP_BASE_10000_CR))
mode = XGBE_PHY_REDRV_MODE_SR;
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret)
return;
if (phy_data->redrv_if)
xgbe_phy_set_redrv_mode_i2c(pdata, mode);
else
xgbe_phy_set_redrv_mode_mdio(pdata, mode);
xgbe_phy_put_comm_ownership(pdata);
}
static void xgbe_phy_start_ratechange(struct xgbe_prv_data *pdata)
{
if (!XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS))
return;
/* Log if a previous command did not complete */
netif_dbg(pdata, link, pdata->netdev,
"firmware mailbox not ready for command\n");
}
static void xgbe_phy_complete_ratechange(struct xgbe_prv_data *pdata)
{
unsigned int wait;
/* Wait for command to complete */
wait = XGBE_RATECHANGE_COUNT;
while (wait--) {
if (!XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS))
return;
usleep_range(1000, 2000);
}
netif_dbg(pdata, link, pdata->netdev,
"firmware mailbox command did not complete\n");
}
static void xgbe_phy_rrc(struct xgbe_prv_data *pdata)
{
unsigned int s0;
xgbe_phy_start_ratechange(pdata);
/* Receiver Reset Cycle */
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 5);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 0);
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
xgbe_phy_complete_ratechange(pdata);
netif_dbg(pdata, link, pdata->netdev, "receiver reset complete\n");
}
static void xgbe_phy_power_off(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
xgbe_phy_start_ratechange(pdata);
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, 0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
xgbe_phy_complete_ratechange(pdata);
phy_data->cur_mode = XGBE_MODE_UNKNOWN;
netif_dbg(pdata, link, pdata->netdev, "phy powered off\n");
}
static void xgbe_phy_sfi_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int s0;
xgbe_phy_set_redrv_mode(pdata);
xgbe_phy_start_ratechange(pdata);
/* 10G/SFI */
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 3);
if (phy_data->sfp_cable != XGBE_SFP_CABLE_PASSIVE) {
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 0);
} else {
if (phy_data->sfp_cable_len <= 1)
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 1);
else if (phy_data->sfp_cable_len <= 3)
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 2);
else if (phy_data->sfp_cable_len <= 5)
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 3);
else
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 3);
}
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
xgbe_phy_complete_ratechange(pdata);
phy_data->cur_mode = XGBE_MODE_SFI;
netif_dbg(pdata, link, pdata->netdev, "10GbE SFI mode set\n");
}
static void xgbe_phy_x_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int s0;
xgbe_phy_set_redrv_mode(pdata);
xgbe_phy_start_ratechange(pdata);
/* 1G/X */
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 1);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 3);
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
xgbe_phy_complete_ratechange(pdata);
phy_data->cur_mode = XGBE_MODE_X;
netif_dbg(pdata, link, pdata->netdev, "1GbE X mode set\n");
}
static void xgbe_phy_sgmii_1000_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int s0;
xgbe_phy_set_redrv_mode(pdata);
xgbe_phy_start_ratechange(pdata);
/* 1G/SGMII */
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 1);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 2);
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
xgbe_phy_complete_ratechange(pdata);
phy_data->cur_mode = XGBE_MODE_SGMII_1000;
netif_dbg(pdata, link, pdata->netdev, "1GbE SGMII mode set\n");
}
static void xgbe_phy_sgmii_100_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int s0;
xgbe_phy_set_redrv_mode(pdata);
xgbe_phy_start_ratechange(pdata);
/* 1G/SGMII */
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 1);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 1);
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
xgbe_phy_complete_ratechange(pdata);
phy_data->cur_mode = XGBE_MODE_SGMII_100;
netif_dbg(pdata, link, pdata->netdev, "100MbE SGMII mode set\n");
}
static void xgbe_phy_kr_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int s0;
xgbe_phy_set_redrv_mode(pdata);
xgbe_phy_start_ratechange(pdata);
/* 10G/KR */
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 4);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 0);
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
xgbe_phy_complete_ratechange(pdata);
phy_data->cur_mode = XGBE_MODE_KR;
netif_dbg(pdata, link, pdata->netdev, "10GbE KR mode set\n");
}
static void xgbe_phy_kx_2500_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int s0;
xgbe_phy_set_redrv_mode(pdata);
xgbe_phy_start_ratechange(pdata);
/* 2.5G/KX */
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 2);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 0);
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
xgbe_phy_complete_ratechange(pdata);
phy_data->cur_mode = XGBE_MODE_KX_2500;
netif_dbg(pdata, link, pdata->netdev, "2.5GbE KX mode set\n");
}
static void xgbe_phy_kx_1000_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int s0;
xgbe_phy_set_redrv_mode(pdata);
xgbe_phy_start_ratechange(pdata);
/* 1G/KX */
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 1);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 3);
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
xgbe_phy_complete_ratechange(pdata);
phy_data->cur_mode = XGBE_MODE_KX_1000;
netif_dbg(pdata, link, pdata->netdev, "1GbE KX mode set\n");
}
static enum xgbe_mode xgbe_phy_cur_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
return phy_data->cur_mode;
}
static enum xgbe_mode xgbe_phy_switch_baset_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
/* No switching if not 10GBase-T */
if (phy_data->port_mode != XGBE_PORT_MODE_10GBASE_T)
return xgbe_phy_cur_mode(pdata);
switch (xgbe_phy_cur_mode(pdata)) {
case XGBE_MODE_SGMII_100:
case XGBE_MODE_SGMII_1000:
return XGBE_MODE_KR;
case XGBE_MODE_KR:
default:
return XGBE_MODE_SGMII_1000;
}
}
static enum xgbe_mode xgbe_phy_switch_bp_2500_mode(struct xgbe_prv_data *pdata)
{
return XGBE_MODE_KX_2500;
}
static enum xgbe_mode xgbe_phy_switch_bp_mode(struct xgbe_prv_data *pdata)
{
/* If we are in KR switch to KX, and vice-versa */
switch (xgbe_phy_cur_mode(pdata)) {
case XGBE_MODE_KX_1000:
return XGBE_MODE_KR;
case XGBE_MODE_KR:
default:
return XGBE_MODE_KX_1000;
}
}
static enum xgbe_mode xgbe_phy_switch_mode(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
return xgbe_phy_switch_bp_mode(pdata);
case XGBE_PORT_MODE_BACKPLANE_2500:
return xgbe_phy_switch_bp_2500_mode(pdata);
case XGBE_PORT_MODE_1000BASE_T:
case XGBE_PORT_MODE_NBASE_T:
case XGBE_PORT_MODE_10GBASE_T:
return xgbe_phy_switch_baset_mode(pdata);
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_10GBASE_R:
case XGBE_PORT_MODE_SFP:
/* No switching, so just return current mode */
return xgbe_phy_cur_mode(pdata);
default:
return XGBE_MODE_UNKNOWN;
}
}
static enum xgbe_mode xgbe_phy_get_basex_mode(struct xgbe_phy_data *phy_data,
int speed)
{
switch (speed) {
case SPEED_1000:
return XGBE_MODE_X;
case SPEED_10000:
return XGBE_MODE_KR;
default:
return XGBE_MODE_UNKNOWN;
}
}
static enum xgbe_mode xgbe_phy_get_baset_mode(struct xgbe_phy_data *phy_data,
int speed)
{
switch (speed) {
case SPEED_100:
return XGBE_MODE_SGMII_100;
case SPEED_1000:
return XGBE_MODE_SGMII_1000;
case SPEED_10000:
return XGBE_MODE_KR;
default:
return XGBE_MODE_UNKNOWN;
}
}
static enum xgbe_mode xgbe_phy_get_sfp_mode(struct xgbe_phy_data *phy_data,
int speed)
{
switch (speed) {
case SPEED_100:
return XGBE_MODE_SGMII_100;
case SPEED_1000:
if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T)
return XGBE_MODE_SGMII_1000;
else
return XGBE_MODE_X;
case SPEED_10000:
case SPEED_UNKNOWN:
return XGBE_MODE_SFI;
default:
return XGBE_MODE_UNKNOWN;
}
}
static enum xgbe_mode xgbe_phy_get_bp_2500_mode(int speed)
{
switch (speed) {
case SPEED_2500:
return XGBE_MODE_KX_2500;
default:
return XGBE_MODE_UNKNOWN;
}
}
static enum xgbe_mode xgbe_phy_get_bp_mode(int speed)
{
switch (speed) {
case SPEED_1000:
return XGBE_MODE_KX_1000;
case SPEED_10000:
return XGBE_MODE_KR;
default:
return XGBE_MODE_UNKNOWN;
}
}
static enum xgbe_mode xgbe_phy_get_mode(struct xgbe_prv_data *pdata,
int speed)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
return xgbe_phy_get_bp_mode(speed);
case XGBE_PORT_MODE_BACKPLANE_2500:
return xgbe_phy_get_bp_2500_mode(speed);
case XGBE_PORT_MODE_1000BASE_T:
case XGBE_PORT_MODE_NBASE_T:
case XGBE_PORT_MODE_10GBASE_T:
return xgbe_phy_get_baset_mode(phy_data, speed);
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_10GBASE_R:
return xgbe_phy_get_basex_mode(phy_data, speed);
case XGBE_PORT_MODE_SFP:
return xgbe_phy_get_sfp_mode(phy_data, speed);
default:
return XGBE_MODE_UNKNOWN;
}
}
static void xgbe_phy_set_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode)
{
switch (mode) {
case XGBE_MODE_KX_1000:
xgbe_phy_kx_1000_mode(pdata);
break;
case XGBE_MODE_KX_2500:
xgbe_phy_kx_2500_mode(pdata);
break;
case XGBE_MODE_KR:
xgbe_phy_kr_mode(pdata);
break;
case XGBE_MODE_SGMII_100:
xgbe_phy_sgmii_100_mode(pdata);
break;
case XGBE_MODE_SGMII_1000:
xgbe_phy_sgmii_1000_mode(pdata);
break;
case XGBE_MODE_X:
xgbe_phy_x_mode(pdata);
break;
case XGBE_MODE_SFI:
xgbe_phy_sfi_mode(pdata);
break;
default:
break;
}
}
static bool xgbe_phy_check_mode(struct xgbe_prv_data *pdata,
enum xgbe_mode mode, u32 advert)
{
if (pdata->phy.autoneg == AUTONEG_ENABLE) {
if (pdata->phy.advertising & advert)
return true;
} else {
enum xgbe_mode cur_mode;
cur_mode = xgbe_phy_get_mode(pdata, pdata->phy.speed);
if (cur_mode == mode)
return true;
}
return false;
}
static bool xgbe_phy_use_basex_mode(struct xgbe_prv_data *pdata,
enum xgbe_mode mode)
{
switch (mode) {
case XGBE_MODE_X:
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_1000baseT_Full);
case XGBE_MODE_KR:
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_10000baseT_Full);
default:
return false;
}
}
static bool xgbe_phy_use_baset_mode(struct xgbe_prv_data *pdata,
enum xgbe_mode mode)
{
switch (mode) {
case XGBE_MODE_SGMII_100:
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_100baseT_Full);
case XGBE_MODE_SGMII_1000:
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_1000baseT_Full);
case XGBE_MODE_KR:
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_10000baseT_Full);
default:
return false;
}
}
static bool xgbe_phy_use_sfp_mode(struct xgbe_prv_data *pdata,
enum xgbe_mode mode)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (mode) {
case XGBE_MODE_X:
if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T)
return false;
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_1000baseT_Full);
case XGBE_MODE_SGMII_100:
if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T)
return false;
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_100baseT_Full);
case XGBE_MODE_SGMII_1000:
if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T)
return false;
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_1000baseT_Full);
case XGBE_MODE_SFI:
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_10000baseT_Full);
default:
return false;
}
}
static bool xgbe_phy_use_bp_2500_mode(struct xgbe_prv_data *pdata,
enum xgbe_mode mode)
{
switch (mode) {
case XGBE_MODE_KX_2500:
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_2500baseX_Full);
default:
return false;
}
}
static bool xgbe_phy_use_bp_mode(struct xgbe_prv_data *pdata,
enum xgbe_mode mode)
{
switch (mode) {
case XGBE_MODE_KX_1000:
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_1000baseKX_Full);
case XGBE_MODE_KR:
return xgbe_phy_check_mode(pdata, mode,
ADVERTISED_10000baseKR_Full);
default:
return false;
}
}
static bool xgbe_phy_use_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
return xgbe_phy_use_bp_mode(pdata, mode);
case XGBE_PORT_MODE_BACKPLANE_2500:
return xgbe_phy_use_bp_2500_mode(pdata, mode);
case XGBE_PORT_MODE_1000BASE_T:
case XGBE_PORT_MODE_NBASE_T:
case XGBE_PORT_MODE_10GBASE_T:
return xgbe_phy_use_baset_mode(pdata, mode);
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_10GBASE_R:
return xgbe_phy_use_basex_mode(pdata, mode);
case XGBE_PORT_MODE_SFP:
return xgbe_phy_use_sfp_mode(pdata, mode);
default:
return false;
}
}
static bool xgbe_phy_valid_speed_basex_mode(struct xgbe_phy_data *phy_data,
int speed)
{
switch (speed) {
case SPEED_1000:
return (phy_data->port_mode == XGBE_PORT_MODE_1000BASE_X);
case SPEED_10000:
return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_R);
default:
return false;
}
}
static bool xgbe_phy_valid_speed_baset_mode(struct xgbe_phy_data *phy_data,
int speed)
{
switch (speed) {
case SPEED_100:
case SPEED_1000:
return true;
case SPEED_10000:
return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_T);
default:
return false;
}
}
static bool xgbe_phy_valid_speed_sfp_mode(struct xgbe_phy_data *phy_data,
int speed)
{
switch (speed) {
case SPEED_100:
return (phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000);
case SPEED_1000:
return ((phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000) ||
(phy_data->sfp_speed == XGBE_SFP_SPEED_1000));
case SPEED_10000:
return (phy_data->sfp_speed == XGBE_SFP_SPEED_10000);
default:
return false;
}
}
static bool xgbe_phy_valid_speed_bp_2500_mode(int speed)
{
switch (speed) {
case SPEED_2500:
return true;
default:
return false;
}
}
static bool xgbe_phy_valid_speed_bp_mode(int speed)
{
switch (speed) {
case SPEED_1000:
case SPEED_10000:
return true;
default:
return false;
}
}
static bool xgbe_phy_valid_speed(struct xgbe_prv_data *pdata, int speed)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
return xgbe_phy_valid_speed_bp_mode(speed);
case XGBE_PORT_MODE_BACKPLANE_2500:
return xgbe_phy_valid_speed_bp_2500_mode(speed);
case XGBE_PORT_MODE_1000BASE_T:
case XGBE_PORT_MODE_NBASE_T:
case XGBE_PORT_MODE_10GBASE_T:
return xgbe_phy_valid_speed_baset_mode(phy_data, speed);
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_10GBASE_R:
return xgbe_phy_valid_speed_basex_mode(phy_data, speed);
case XGBE_PORT_MODE_SFP:
return xgbe_phy_valid_speed_sfp_mode(phy_data, speed);
default:
return false;
}
}
static int xgbe_phy_link_status(struct xgbe_prv_data *pdata, int *an_restart)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int ret, reg;
*an_restart = 0;
if (phy_data->port_mode == XGBE_PORT_MODE_SFP) {
/* Check SFP signals */
xgbe_phy_sfp_detect(pdata);
if (phy_data->sfp_changed) {
*an_restart = 1;
return 0;
}
if (phy_data->sfp_mod_absent || phy_data->sfp_rx_los)
return 0;
}
if (phy_data->phydev) {
/* Check external PHY */
ret = phy_read_status(phy_data->phydev);
if (ret < 0)
return 0;
if ((pdata->phy.autoneg == AUTONEG_ENABLE) &&
!phy_aneg_done(phy_data->phydev))
return 0;
if (!phy_data->phydev->link)
return 0;
}
/* Link status is latched low, so read once to clear
* and then read again to get current state
*/
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1);
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1);
if (reg & MDIO_STAT1_LSTATUS)
return 1;
/* No link, attempt a receiver reset cycle */
if (phy_data->rrc_count++) {
phy_data->rrc_count = 0;
xgbe_phy_rrc(pdata);
}
return 0;
}
static void xgbe_phy_sfp_gpio_setup(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int reg;
reg = XP_IOREAD(pdata, XP_PROP_3);
phy_data->sfp_gpio_address = XGBE_GPIO_ADDRESS_PCA9555 +
XP_GET_BITS(reg, XP_PROP_3, GPIO_ADDR);
phy_data->sfp_gpio_mask = XP_GET_BITS(reg, XP_PROP_3, GPIO_MASK);
phy_data->sfp_gpio_rx_los = XP_GET_BITS(reg, XP_PROP_3,
GPIO_RX_LOS);
phy_data->sfp_gpio_tx_fault = XP_GET_BITS(reg, XP_PROP_3,
GPIO_TX_FAULT);
phy_data->sfp_gpio_mod_absent = XP_GET_BITS(reg, XP_PROP_3,
GPIO_MOD_ABS);
phy_data->sfp_gpio_rate_select = XP_GET_BITS(reg, XP_PROP_3,
GPIO_RATE_SELECT);
if (netif_msg_probe(pdata)) {
dev_dbg(pdata->dev, "SFP: gpio_address=%#x\n",
phy_data->sfp_gpio_address);
dev_dbg(pdata->dev, "SFP: gpio_mask=%#x\n",
phy_data->sfp_gpio_mask);
dev_dbg(pdata->dev, "SFP: gpio_rx_los=%u\n",
phy_data->sfp_gpio_rx_los);
dev_dbg(pdata->dev, "SFP: gpio_tx_fault=%u\n",
phy_data->sfp_gpio_tx_fault);
dev_dbg(pdata->dev, "SFP: gpio_mod_absent=%u\n",
phy_data->sfp_gpio_mod_absent);
dev_dbg(pdata->dev, "SFP: gpio_rate_select=%u\n",
phy_data->sfp_gpio_rate_select);
}
}
static void xgbe_phy_sfp_comm_setup(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int reg, mux_addr_hi, mux_addr_lo;
reg = XP_IOREAD(pdata, XP_PROP_4);
mux_addr_hi = XP_GET_BITS(reg, XP_PROP_4, MUX_ADDR_HI);
mux_addr_lo = XP_GET_BITS(reg, XP_PROP_4, MUX_ADDR_LO);
if (mux_addr_lo == XGBE_SFP_DIRECT)
return;
phy_data->sfp_comm = XGBE_SFP_COMM_PCA9545;
phy_data->sfp_mux_address = (mux_addr_hi << 2) + mux_addr_lo;
phy_data->sfp_mux_channel = XP_GET_BITS(reg, XP_PROP_4, MUX_CHAN);
if (netif_msg_probe(pdata)) {
dev_dbg(pdata->dev, "SFP: mux_address=%#x\n",
phy_data->sfp_mux_address);
dev_dbg(pdata->dev, "SFP: mux_channel=%u\n",
phy_data->sfp_mux_channel);
}
}
static void xgbe_phy_sfp_setup(struct xgbe_prv_data *pdata)
{
xgbe_phy_sfp_comm_setup(pdata);
xgbe_phy_sfp_gpio_setup(pdata);
}
static int xgbe_phy_int_mdio_reset(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int ret;
ret = pdata->hw_if.set_gpio(pdata, phy_data->mdio_reset_gpio);
if (ret)
return ret;
ret = pdata->hw_if.clr_gpio(pdata, phy_data->mdio_reset_gpio);
return ret;
}
static int xgbe_phy_i2c_mdio_reset(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
u8 gpio_reg, gpio_ports[2], gpio_data[3];
int ret;
/* Read the output port registers */
gpio_reg = 2;
ret = xgbe_phy_i2c_read(pdata, phy_data->mdio_reset_addr,
&gpio_reg, sizeof(gpio_reg),
gpio_ports, sizeof(gpio_ports));
if (ret)
return ret;
/* Prepare to write the GPIO data */
gpio_data[0] = 2;
gpio_data[1] = gpio_ports[0];
gpio_data[2] = gpio_ports[1];
/* Set the GPIO pin */
if (phy_data->mdio_reset_gpio < 8)
gpio_data[1] |= (1 << (phy_data->mdio_reset_gpio % 8));
else
gpio_data[2] |= (1 << (phy_data->mdio_reset_gpio % 8));
/* Write the output port registers */
ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr,
gpio_data, sizeof(gpio_data));
if (ret)
return ret;
/* Clear the GPIO pin */
if (phy_data->mdio_reset_gpio < 8)
gpio_data[1] &= ~(1 << (phy_data->mdio_reset_gpio % 8));
else
gpio_data[2] &= ~(1 << (phy_data->mdio_reset_gpio % 8));
/* Write the output port registers */
ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr,
gpio_data, sizeof(gpio_data));
return ret;
}
static int xgbe_phy_mdio_reset(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO)
return 0;
ret = xgbe_phy_get_comm_ownership(pdata);
if (ret)
return ret;
if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO)
ret = xgbe_phy_i2c_mdio_reset(pdata);
else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO)
ret = xgbe_phy_int_mdio_reset(pdata);
xgbe_phy_put_comm_ownership(pdata);
return ret;
}
static bool xgbe_phy_redrv_error(struct xgbe_phy_data *phy_data)
{
if (!phy_data->redrv)
return false;
if (phy_data->redrv_if >= XGBE_PHY_REDRV_IF_MAX)
return true;
switch (phy_data->redrv_model) {
case XGBE_PHY_REDRV_MODEL_4223:
if (phy_data->redrv_lane > 3)
return true;
break;
case XGBE_PHY_REDRV_MODEL_4227:
if (phy_data->redrv_lane > 1)
return true;
break;
default:
return true;
}
return false;
}
static int xgbe_phy_mdio_reset_setup(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
unsigned int reg;
if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO)
return 0;
reg = XP_IOREAD(pdata, XP_PROP_3);
phy_data->mdio_reset = XP_GET_BITS(reg, XP_PROP_3, MDIO_RESET);
switch (phy_data->mdio_reset) {
case XGBE_MDIO_RESET_NONE:
case XGBE_MDIO_RESET_I2C_GPIO:
case XGBE_MDIO_RESET_INT_GPIO:
break;
default:
dev_err(pdata->dev, "unsupported MDIO reset (%#x)\n",
phy_data->mdio_reset);
return -EINVAL;
}
if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO) {
phy_data->mdio_reset_addr = XGBE_GPIO_ADDRESS_PCA9555 +
XP_GET_BITS(reg, XP_PROP_3,
MDIO_RESET_I2C_ADDR);
phy_data->mdio_reset_gpio = XP_GET_BITS(reg, XP_PROP_3,
MDIO_RESET_I2C_GPIO);
} else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO) {
phy_data->mdio_reset_gpio = XP_GET_BITS(reg, XP_PROP_3,
MDIO_RESET_INT_GPIO);
}
return 0;
}
static bool xgbe_phy_port_mode_mismatch(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000))
return false;
break;
case XGBE_PORT_MODE_BACKPLANE_2500:
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500)
return false;
break;
case XGBE_PORT_MODE_1000BASE_T:
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000))
return false;
break;
case XGBE_PORT_MODE_1000BASE_X:
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)
return false;
break;
case XGBE_PORT_MODE_NBASE_T:
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500))
return false;
break;
case XGBE_PORT_MODE_10GBASE_T:
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000))
return false;
break;
case XGBE_PORT_MODE_10GBASE_R:
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)
return false;
break;
case XGBE_PORT_MODE_SFP:
if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000))
return false;
break;
default:
break;
}
return true;
}
static bool xgbe_phy_conn_type_mismatch(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_BACKPLANE:
case XGBE_PORT_MODE_BACKPLANE_2500:
if (phy_data->conn_type == XGBE_CONN_TYPE_BACKPLANE)
return false;
break;
case XGBE_PORT_MODE_1000BASE_T:
case XGBE_PORT_MODE_1000BASE_X:
case XGBE_PORT_MODE_NBASE_T:
case XGBE_PORT_MODE_10GBASE_T:
case XGBE_PORT_MODE_10GBASE_R:
if (phy_data->conn_type == XGBE_CONN_TYPE_MDIO)
return false;
break;
case XGBE_PORT_MODE_SFP:
if (phy_data->conn_type == XGBE_CONN_TYPE_SFP)
return false;
break;
default:
break;
}
return true;
}
static bool xgbe_phy_port_enabled(struct xgbe_prv_data *pdata)
{
unsigned int reg;
reg = XP_IOREAD(pdata, XP_PROP_0);
if (!XP_GET_BITS(reg, XP_PROP_0, PORT_SPEEDS))
return false;
if (!XP_GET_BITS(reg, XP_PROP_0, CONN_TYPE))
return false;
return true;
}
static void xgbe_phy_stop(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
/* If we have an external PHY, free it */
xgbe_phy_free_phy_device(pdata);
/* Reset SFP data */
xgbe_phy_sfp_reset(phy_data);
xgbe_phy_sfp_mod_absent(pdata);
/* Power off the PHY */
xgbe_phy_power_off(pdata);
/* Stop the I2C controller */
pdata->i2c_if.i2c_stop(pdata);
}
static int xgbe_phy_start(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
int ret;
/* Start the I2C controller */
ret = pdata->i2c_if.i2c_start(pdata);
if (ret)
return ret;
/* Start in highest supported mode */
xgbe_phy_set_mode(pdata, phy_data->start_mode);
/* After starting the I2C controller, we can check for an SFP */
switch (phy_data->port_mode) {
case XGBE_PORT_MODE_SFP:
xgbe_phy_sfp_detect(pdata);
break;
default:
break;
}
/* If we have an external PHY, start it */
ret = xgbe_phy_find_phy_device(pdata);
if (ret)
goto err_i2c;
return 0;
err_i2c:
pdata->i2c_if.i2c_stop(pdata);
return ret;
}
static int xgbe_phy_reset(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
enum xgbe_mode cur_mode;
int ret;
/* Reset by power cycling the PHY */
cur_mode = phy_data->cur_mode;
xgbe_phy_power_off(pdata);
xgbe_phy_set_mode(pdata, cur_mode);
if (!phy_data->phydev)
return 0;
/* Reset the external PHY */
ret = xgbe_phy_mdio_reset(pdata);
if (ret)
return ret;
return phy_init_hw(phy_data->phydev);
}
static void xgbe_phy_exit(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data = pdata->phy_data;
/* Unregister for driving external PHYs */
mdiobus_unregister(phy_data->mii);
}
static int xgbe_phy_init(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_data *phy_data;
struct mii_bus *mii;
unsigned int reg;
int ret;
/* Check if enabled */
if (!xgbe_phy_port_enabled(pdata)) {
dev_info(pdata->dev, "device is not enabled\n");
return -ENODEV;
}
/* Initialize the I2C controller */
ret = pdata->i2c_if.i2c_init(pdata);
if (ret)
return ret;
phy_data = devm_kzalloc(pdata->dev, sizeof(*phy_data), GFP_KERNEL);
if (!phy_data)
return -ENOMEM;
pdata->phy_data = phy_data;
reg = XP_IOREAD(pdata, XP_PROP_0);
phy_data->port_mode = XP_GET_BITS(reg, XP_PROP_0, PORT_MODE);
phy_data->port_id = XP_GET_BITS(reg, XP_PROP_0, PORT_ID);
phy_data->port_speeds = XP_GET_BITS(reg, XP_PROP_0, PORT_SPEEDS);
phy_data->conn_type = XP_GET_BITS(reg, XP_PROP_0, CONN_TYPE);
phy_data->mdio_addr = XP_GET_BITS(reg, XP_PROP_0, MDIO_ADDR);
if (netif_msg_probe(pdata)) {
dev_dbg(pdata->dev, "port mode=%u\n", phy_data->port_mode);
dev_dbg(pdata->dev, "port id=%u\n", phy_data->port_id);
dev_dbg(pdata->dev, "port speeds=%#x\n", phy_data->port_speeds);
dev_dbg(pdata->dev, "conn type=%u\n", phy_data->conn_type);
dev_dbg(pdata->dev, "mdio addr=%u\n", phy_data->mdio_addr);
}
reg = XP_IOREAD(pdata, XP_PROP_4);
phy_data->redrv = XP_GET_BITS(reg, XP_PROP_4, REDRV_PRESENT);
phy_data->redrv_if = XP_GET_BITS(reg, XP_PROP_4, REDRV_IF);
phy_data->redrv_addr = XP_GET_BITS(reg, XP_PROP_4, REDRV_ADDR);
phy_data->redrv_lane = XP_GET_BITS(reg, XP_PROP_4, REDRV_LANE);
phy_data->redrv_model = XP_GET_BITS(reg, XP_PROP_4, REDRV_MODEL);
if (phy_data->redrv && netif_msg_probe(pdata)) {
dev_dbg(pdata->dev, "redrv present\n");
dev_dbg(pdata->dev, "redrv i/f=%u\n", phy_data->redrv_if);
dev_dbg(pdata->dev, "redrv addr=%#x\n", phy_data->redrv_addr);
dev_dbg(pdata->dev, "redrv lane=%u\n", phy_data->redrv_lane);
dev_dbg(pdata->dev, "redrv model=%u\n", phy_data->redrv_model);
}
/* Validate the connection requested */
if (xgbe_phy_conn_type_mismatch(pdata)) {
dev_err(pdata->dev, "phy mode/connection mismatch (%#x/%#x)\n",
phy_data->port_mode, phy_data->conn_type);
}
/* Validate the mode requested */
if (xgbe_phy_port_mode_mismatch(pdata)) {
dev_err(pdata->dev, "phy mode/speed mismatch (%#x/%#x)\n",
phy_data->port_mode, phy_data->port_speeds);
return -EINVAL;
}
/* Check for and validate MDIO reset support */
ret = xgbe_phy_mdio_reset_setup(pdata);
if (ret)
return ret;
/* Validate the re-driver information */
if (xgbe_phy_redrv_error(phy_data)) {
dev_err(pdata->dev, "phy re-driver settings error\n");
return -EINVAL;
}
pdata->kr_redrv = phy_data->redrv;
/* Indicate current mode is unknown */
phy_data->cur_mode = XGBE_MODE_UNKNOWN;
/* Initialize supported features */
pdata->phy.supported = 0;
switch (phy_data->port_mode) {
/* Backplane support */
case XGBE_PORT_MODE_BACKPLANE:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_Backplane;
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
pdata->phy.supported |= SUPPORTED_1000baseKX_Full;
phy_data->start_mode = XGBE_MODE_KX_1000;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) {
pdata->phy.supported |= SUPPORTED_10000baseKR_Full;
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
pdata->phy.supported |=
SUPPORTED_10000baseR_FEC;
phy_data->start_mode = XGBE_MODE_KR;
}
phy_data->phydev_mode = XGBE_MDIO_MODE_NONE;
break;
case XGBE_PORT_MODE_BACKPLANE_2500:
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_Backplane;
pdata->phy.supported |= SUPPORTED_2500baseX_Full;
phy_data->start_mode = XGBE_MODE_KX_2500;
phy_data->phydev_mode = XGBE_MDIO_MODE_NONE;
break;
/* MDIO 1GBase-T support */
case XGBE_PORT_MODE_1000BASE_T:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_TP;
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) {
pdata->phy.supported |= SUPPORTED_100baseT_Full;
phy_data->start_mode = XGBE_MODE_SGMII_100;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
phy_data->start_mode = XGBE_MODE_SGMII_1000;
}
phy_data->phydev_mode = XGBE_MDIO_MODE_CL22;
break;
/* MDIO Base-X support */
case XGBE_PORT_MODE_1000BASE_X:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_FIBRE;
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
phy_data->start_mode = XGBE_MODE_X;
phy_data->phydev_mode = XGBE_MDIO_MODE_CL22;
break;
/* MDIO NBase-T support */
case XGBE_PORT_MODE_NBASE_T:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_TP;
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) {
pdata->phy.supported |= SUPPORTED_100baseT_Full;
phy_data->start_mode = XGBE_MODE_SGMII_100;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
phy_data->start_mode = XGBE_MODE_SGMII_1000;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500) {
pdata->phy.supported |= SUPPORTED_2500baseX_Full;
phy_data->start_mode = XGBE_MODE_KX_2500;
}
phy_data->phydev_mode = XGBE_MDIO_MODE_CL45;
break;
/* 10GBase-T support */
case XGBE_PORT_MODE_10GBASE_T:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_TP;
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) {
pdata->phy.supported |= SUPPORTED_100baseT_Full;
phy_data->start_mode = XGBE_MODE_SGMII_100;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
phy_data->start_mode = XGBE_MODE_SGMII_1000;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) {
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
phy_data->start_mode = XGBE_MODE_KR;
}
phy_data->phydev_mode = XGBE_MDIO_MODE_NONE;
break;
/* 10GBase-R support */
case XGBE_PORT_MODE_10GBASE_R:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_TP;
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
pdata->phy.supported |= SUPPORTED_10000baseR_FEC;
phy_data->start_mode = XGBE_MODE_SFI;
phy_data->phydev_mode = XGBE_MDIO_MODE_NONE;
break;
/* SFP support */
case XGBE_PORT_MODE_SFP:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_TP;
pdata->phy.supported |= SUPPORTED_FIBRE;
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) {
pdata->phy.supported |= SUPPORTED_100baseT_Full;
phy_data->start_mode = XGBE_MODE_SGMII_100;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) {
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
phy_data->start_mode = XGBE_MODE_SGMII_1000;
}
if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) {
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
phy_data->start_mode = XGBE_MODE_SFI;
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
pdata->phy.supported |=
SUPPORTED_10000baseR_FEC;
}
phy_data->phydev_mode = XGBE_MDIO_MODE_CL22;
xgbe_phy_sfp_setup(pdata);
break;
default:
return -EINVAL;
}
if (netif_msg_probe(pdata))
dev_dbg(pdata->dev, "phy supported=%#x\n",
pdata->phy.supported);
if ((phy_data->conn_type & XGBE_CONN_TYPE_MDIO) &&
(phy_data->phydev_mode != XGBE_MDIO_MODE_NONE)) {
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr,
phy_data->phydev_mode);
if (ret) {
dev_err(pdata->dev,
"mdio port/clause not compatible (%d/%u)\n",
phy_data->mdio_addr, phy_data->phydev_mode);
return -EINVAL;
}
}
if (phy_data->redrv && !phy_data->redrv_if) {
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr,
XGBE_MDIO_MODE_CL22);
if (ret) {
dev_err(pdata->dev,
"redriver mdio port not compatible (%u)\n",
phy_data->redrv_addr);
return -EINVAL;
}
}
/* Register for driving external PHYs */
mii = devm_mdiobus_alloc(pdata->dev);
if (!mii) {
dev_err(pdata->dev, "mdiobus_alloc failed\n");
return -ENOMEM;
}
mii->priv = pdata;
mii->name = "amd-xgbe-mii";
mii->read = xgbe_phy_mii_read;
mii->write = xgbe_phy_mii_write;
mii->parent = pdata->dev;
mii->phy_mask = ~0;
snprintf(mii->id, sizeof(mii->id), "%s", dev_name(pdata->dev));
ret = mdiobus_register(mii);
if (ret) {
dev_err(pdata->dev, "mdiobus_register failed\n");
return ret;
}
phy_data->mii = mii;
return 0;
}
void xgbe_init_function_ptrs_phy_v2(struct xgbe_phy_if *phy_if)
{
struct xgbe_phy_impl_if *phy_impl = &phy_if->phy_impl;
phy_impl->init = xgbe_phy_init;
phy_impl->exit = xgbe_phy_exit;
phy_impl->reset = xgbe_phy_reset;
phy_impl->start = xgbe_phy_start;
phy_impl->stop = xgbe_phy_stop;
phy_impl->link_status = xgbe_phy_link_status;
phy_impl->valid_speed = xgbe_phy_valid_speed;
phy_impl->use_mode = xgbe_phy_use_mode;
phy_impl->set_mode = xgbe_phy_set_mode;
phy_impl->get_mode = xgbe_phy_get_mode;
phy_impl->switch_mode = xgbe_phy_switch_mode;
phy_impl->cur_mode = xgbe_phy_cur_mode;
phy_impl->an_mode = xgbe_phy_an_mode;
phy_impl->an_config = xgbe_phy_an_config;
phy_impl->an_advertising = xgbe_phy_an_advertising;
phy_impl->an_outcome = xgbe_phy_an_outcome;
}
...@@ -426,8 +426,10 @@ static int xgbe_platform_probe(struct platform_device *pdev) ...@@ -426,8 +426,10 @@ static int xgbe_platform_probe(struct platform_device *pdev)
pdata->phy_mode = PHY_INTERFACE_MODE_XGMII; pdata->phy_mode = PHY_INTERFACE_MODE_XGMII;
/* Check for per channel interrupt support */ /* Check for per channel interrupt support */
if (device_property_present(dev, XGBE_DMA_IRQS_PROPERTY)) if (device_property_present(dev, XGBE_DMA_IRQS_PROPERTY)) {
pdata->per_channel_irq = 1; pdata->per_channel_irq = 1;
pdata->channel_irq_mode = XGBE_IRQ_MODE_EDGE;
}
/* Obtain device settings unique to ACPI/OF */ /* Obtain device settings unique to ACPI/OF */
if (pdata->use_acpi) if (pdata->use_acpi)
...@@ -462,6 +464,9 @@ static int xgbe_platform_probe(struct platform_device *pdev) ...@@ -462,6 +464,9 @@ static int xgbe_platform_probe(struct platform_device *pdev)
/* Set the hardware channel and queue counts */ /* Set the hardware channel and queue counts */
xgbe_set_counts(pdata); xgbe_set_counts(pdata);
/* Always have XGMAC and XPCS (auto-negotiation) interrupts */
pdata->irq_count = 2;
/* Get the device interrupt */ /* Get the device interrupt */
ret = platform_get_irq(pdev, 0); ret = platform_get_irq(pdev, 0);
if (ret < 0) { if (ret < 0) {
...@@ -485,6 +490,10 @@ static int xgbe_platform_probe(struct platform_device *pdev) ...@@ -485,6 +490,10 @@ static int xgbe_platform_probe(struct platform_device *pdev)
pdata->channel_irq[i] = ret; pdata->channel_irq[i] = ret;
} }
pdata->channel_irq_count = max;
pdata->irq_count += max;
} }
/* Get the auto-negotiation interrupt */ /* Get the auto-negotiation interrupt */
...@@ -581,6 +590,7 @@ static const struct xgbe_version_data xgbe_v1 = { ...@@ -581,6 +590,7 @@ static const struct xgbe_version_data xgbe_v1 = {
.xpcs_access = XGBE_XPCS_ACCESS_V1, .xpcs_access = XGBE_XPCS_ACCESS_V1,
.tx_max_fifo_size = 81920, .tx_max_fifo_size = 81920,
.rx_max_fifo_size = 81920, .rx_max_fifo_size = 81920,
.tx_tstamp_workaround = 1,
}; };
#ifdef CONFIG_ACPI #ifdef CONFIG_ACPI
...@@ -608,7 +618,7 @@ static SIMPLE_DEV_PM_OPS(xgbe_platform_pm_ops, ...@@ -608,7 +618,7 @@ static SIMPLE_DEV_PM_OPS(xgbe_platform_pm_ops,
static struct platform_driver xgbe_driver = { static struct platform_driver xgbe_driver = {
.driver = { .driver = {
.name = "amd-xgbe", .name = XGBE_DRV_NAME,
#ifdef CONFIG_ACPI #ifdef CONFIG_ACPI
.acpi_match_table = xgbe_acpi_match, .acpi_match_table = xgbe_acpi_match,
#endif #endif
......
...@@ -127,6 +127,7 @@ ...@@ -127,6 +127,7 @@
#include <linux/timecounter.h> #include <linux/timecounter.h>
#include <linux/net_tstamp.h> #include <linux/net_tstamp.h>
#include <net/dcbnl.h> #include <net/dcbnl.h>
#include <linux/completion.h>
#define XGBE_DRV_NAME "amd-xgbe" #define XGBE_DRV_NAME "amd-xgbe"
#define XGBE_DRV_VERSION "1.0.3" #define XGBE_DRV_VERSION "1.0.3"
...@@ -171,6 +172,10 @@ ...@@ -171,6 +172,10 @@
#define XGBE_DMA_SYS_ARCACHE 0x0 #define XGBE_DMA_SYS_ARCACHE 0x0
#define XGBE_DMA_SYS_AWCACHE 0x0 #define XGBE_DMA_SYS_AWCACHE 0x0
/* DMA channel interrupt modes */
#define XGBE_IRQ_MODE_EDGE 0
#define XGBE_IRQ_MODE_LEVEL 1
#define XGBE_DMA_INTERRUPT_MASK 0x31c7 #define XGBE_DMA_INTERRUPT_MASK 0x31c7
#define XGMAC_MIN_PACKET 60 #define XGMAC_MIN_PACKET 60
...@@ -200,6 +205,20 @@ ...@@ -200,6 +205,20 @@
#define XGBE_ACPI_DMA_FREQ "amd,dma-freq" #define XGBE_ACPI_DMA_FREQ "amd,dma-freq"
#define XGBE_ACPI_PTP_FREQ "amd,ptp-freq" #define XGBE_ACPI_PTP_FREQ "amd,ptp-freq"
/* PCI BAR mapping */
#define XGBE_XGMAC_BAR 0
#define XGBE_XPCS_BAR 1
#define XGBE_MAC_PROP_OFFSET 0x1d000
#define XGBE_I2C_CTRL_OFFSET 0x1e000
/* PCI MSIx support */
#define XGBE_MSIX_BASE_COUNT 4
#define XGBE_MSIX_MIN_COUNT (XGBE_MSIX_BASE_COUNT + 1)
/* PCI clock frequencies */
#define XGBE_V2_DMA_CLOCK_FREQ 500000000 /* 500 MHz */
#define XGBE_V2_PTP_CLOCK_FREQ 125000000 /* 125 MHz */
/* Timestamp support - values based on 50MHz PTP clock /* Timestamp support - values based on 50MHz PTP clock
* 50MHz => 20 nsec * 50MHz => 20 nsec
*/ */
...@@ -267,6 +286,12 @@ ...@@ -267,6 +286,12 @@
#define XGBE_SGMII_AN_LINK_SPEED_1000 0x08 #define XGBE_SGMII_AN_LINK_SPEED_1000 0x08
#define XGBE_SGMII_AN_LINK_DUPLEX BIT(4) #define XGBE_SGMII_AN_LINK_DUPLEX BIT(4)
/* ECC correctable error notification window (seconds) */
#define XGBE_ECC_LIMIT 60
/* MDIO port types */
#define XGMAC_MAX_C22_PORT 3
struct xgbe_prv_data; struct xgbe_prv_data;
struct xgbe_packet_data { struct xgbe_packet_data {
...@@ -443,6 +468,7 @@ enum xgbe_state { ...@@ -443,6 +468,7 @@ enum xgbe_state {
XGBE_DOWN, XGBE_DOWN,
XGBE_LINK_INIT, XGBE_LINK_INIT,
XGBE_LINK_ERR, XGBE_LINK_ERR,
XGBE_STOPPED,
}; };
enum xgbe_int { enum xgbe_int {
...@@ -462,6 +488,12 @@ enum xgbe_int_state { ...@@ -462,6 +488,12 @@ enum xgbe_int_state {
XGMAC_INT_STATE_RESTORE, XGMAC_INT_STATE_RESTORE,
}; };
enum xgbe_ecc_sec {
XGBE_ECC_SEC_TX,
XGBE_ECC_SEC_RX,
XGBE_ECC_SEC_DESC,
};
enum xgbe_speed { enum xgbe_speed {
XGBE_SPEED_1000 = 0, XGBE_SPEED_1000 = 0,
XGBE_SPEED_2500, XGBE_SPEED_2500,
...@@ -476,6 +508,7 @@ enum xgbe_xpcs_access { ...@@ -476,6 +508,7 @@ enum xgbe_xpcs_access {
enum xgbe_an_mode { enum xgbe_an_mode {
XGBE_AN_MODE_CL73 = 0, XGBE_AN_MODE_CL73 = 0,
XGBE_AN_MODE_CL73_REDRV,
XGBE_AN_MODE_CL37, XGBE_AN_MODE_CL37,
XGBE_AN_MODE_CL37_SGMII, XGBE_AN_MODE_CL37_SGMII,
XGBE_AN_MODE_NONE, XGBE_AN_MODE_NONE,
...@@ -501,6 +534,10 @@ enum xgbe_mode { ...@@ -501,6 +534,10 @@ enum xgbe_mode {
XGBE_MODE_KX_1000 = 0, XGBE_MODE_KX_1000 = 0,
XGBE_MODE_KX_2500, XGBE_MODE_KX_2500,
XGBE_MODE_KR, XGBE_MODE_KR,
XGBE_MODE_X,
XGBE_MODE_SGMII_100,
XGBE_MODE_SGMII_1000,
XGBE_MODE_SFI,
XGBE_MODE_UNKNOWN, XGBE_MODE_UNKNOWN,
}; };
...@@ -509,6 +546,12 @@ enum xgbe_speedset { ...@@ -509,6 +546,12 @@ enum xgbe_speedset {
XGBE_SPEEDSET_2500_10000, XGBE_SPEEDSET_2500_10000,
}; };
enum xgbe_mdio_mode {
XGBE_MDIO_MODE_NONE = 0,
XGBE_MDIO_MODE_CL22,
XGBE_MDIO_MODE_CL45,
};
struct xgbe_phy { struct xgbe_phy {
u32 supported; u32 supported;
u32 advertising; u32 advertising;
...@@ -527,6 +570,43 @@ struct xgbe_phy { ...@@ -527,6 +570,43 @@ struct xgbe_phy {
int rx_pause; int rx_pause;
}; };
enum xgbe_i2c_cmd {
XGBE_I2C_CMD_READ = 0,
XGBE_I2C_CMD_WRITE,
};
struct xgbe_i2c_op {
enum xgbe_i2c_cmd cmd;
unsigned int target;
void *buf;
unsigned int len;
};
struct xgbe_i2c_op_state {
struct xgbe_i2c_op *op;
unsigned int tx_len;
unsigned char *tx_buf;
unsigned int rx_len;
unsigned char *rx_buf;
unsigned int tx_abort_source;
int ret;
};
struct xgbe_i2c {
unsigned int started;
unsigned int max_speed_mode;
unsigned int rx_fifo_size;
unsigned int tx_fifo_size;
struct xgbe_i2c_op_state op_state;
};
struct xgbe_mmc_stats { struct xgbe_mmc_stats {
/* Tx Stats */ /* Tx Stats */
u64 txoctetcount_gb; u64 txoctetcount_gb;
...@@ -599,6 +679,14 @@ struct xgbe_hw_if { ...@@ -599,6 +679,14 @@ struct xgbe_hw_if {
void (*write_mmd_regs)(struct xgbe_prv_data *, int, int, int); void (*write_mmd_regs)(struct xgbe_prv_data *, int, int, int);
int (*set_speed)(struct xgbe_prv_data *, int); int (*set_speed)(struct xgbe_prv_data *, int);
int (*set_ext_mii_mode)(struct xgbe_prv_data *, unsigned int,
enum xgbe_mdio_mode);
int (*read_ext_mii_regs)(struct xgbe_prv_data *, int, int);
int (*write_ext_mii_regs)(struct xgbe_prv_data *, int, int, u16);
int (*set_gpio)(struct xgbe_prv_data *, unsigned int);
int (*clr_gpio)(struct xgbe_prv_data *, unsigned int);
void (*enable_tx)(struct xgbe_prv_data *); void (*enable_tx)(struct xgbe_prv_data *);
void (*disable_tx)(struct xgbe_prv_data *); void (*disable_tx)(struct xgbe_prv_data *);
void (*enable_rx)(struct xgbe_prv_data *); void (*enable_rx)(struct xgbe_prv_data *);
...@@ -676,6 +764,10 @@ struct xgbe_hw_if { ...@@ -676,6 +764,10 @@ struct xgbe_hw_if {
int (*disable_rss)(struct xgbe_prv_data *); int (*disable_rss)(struct xgbe_prv_data *);
int (*set_rss_hash_key)(struct xgbe_prv_data *, const u8 *); int (*set_rss_hash_key)(struct xgbe_prv_data *, const u8 *);
int (*set_rss_lookup_table)(struct xgbe_prv_data *, const u32 *); int (*set_rss_lookup_table)(struct xgbe_prv_data *, const u32 *);
/* For ECC */
void (*disable_ecc_ded)(struct xgbe_prv_data *);
void (*disable_ecc_sec)(struct xgbe_prv_data *, enum xgbe_ecc_sec);
}; };
/* This structure represents implementation specific routines for an /* This structure represents implementation specific routines for an
...@@ -694,7 +786,7 @@ struct xgbe_phy_impl_if { ...@@ -694,7 +786,7 @@ struct xgbe_phy_impl_if {
void (*stop)(struct xgbe_prv_data *); void (*stop)(struct xgbe_prv_data *);
/* Return the link status */ /* Return the link status */
int (*link_status)(struct xgbe_prv_data *); int (*link_status)(struct xgbe_prv_data *, int *);
/* Indicate if a particular speed is valid */ /* Indicate if a particular speed is valid */
bool (*valid_speed)(struct xgbe_prv_data *, int); bool (*valid_speed)(struct xgbe_prv_data *, int);
...@@ -713,6 +805,12 @@ struct xgbe_phy_impl_if { ...@@ -713,6 +805,12 @@ struct xgbe_phy_impl_if {
/* Retrieve current auto-negotiation mode */ /* Retrieve current auto-negotiation mode */
enum xgbe_an_mode (*an_mode)(struct xgbe_prv_data *); enum xgbe_an_mode (*an_mode)(struct xgbe_prv_data *);
/* Configure auto-negotiation settings */
int (*an_config)(struct xgbe_prv_data *);
/* Set/override auto-negotiation advertisement settings */
unsigned int (*an_advertising)(struct xgbe_prv_data *);
/* Process results of auto-negotiation */ /* Process results of auto-negotiation */
enum xgbe_mode (*an_outcome)(struct xgbe_prv_data *); enum xgbe_mode (*an_outcome)(struct xgbe_prv_data *);
...@@ -738,10 +836,28 @@ struct xgbe_phy_if { ...@@ -738,10 +836,28 @@ struct xgbe_phy_if {
/* For PHY settings validation */ /* For PHY settings validation */
bool (*phy_valid_speed)(struct xgbe_prv_data *, int); bool (*phy_valid_speed)(struct xgbe_prv_data *, int);
/* For single interrupt support */
irqreturn_t (*an_isr)(int, struct xgbe_prv_data *);
/* PHY implementation specific services */ /* PHY implementation specific services */
struct xgbe_phy_impl_if phy_impl; struct xgbe_phy_impl_if phy_impl;
}; };
struct xgbe_i2c_if {
/* For initial I2C setup */
int (*i2c_init)(struct xgbe_prv_data *);
/* For I2C support when setting device up/down */
int (*i2c_start)(struct xgbe_prv_data *);
void (*i2c_stop)(struct xgbe_prv_data *);
/* For performing I2C operations */
int (*i2c_xfer)(struct xgbe_prv_data *, struct xgbe_i2c_op *);
/* For single interrupt support */
irqreturn_t (*i2c_isr)(int, struct xgbe_prv_data *);
};
struct xgbe_desc_if { struct xgbe_desc_if {
int (*alloc_ring_resources)(struct xgbe_prv_data *); int (*alloc_ring_resources)(struct xgbe_prv_data *);
void (*free_ring_resources)(struct xgbe_prv_data *); void (*free_ring_resources)(struct xgbe_prv_data *);
...@@ -805,10 +921,14 @@ struct xgbe_version_data { ...@@ -805,10 +921,14 @@ struct xgbe_version_data {
unsigned int mmc_64bit; unsigned int mmc_64bit;
unsigned int tx_max_fifo_size; unsigned int tx_max_fifo_size;
unsigned int rx_max_fifo_size; unsigned int rx_max_fifo_size;
unsigned int tx_tstamp_workaround;
unsigned int ecc_support;
unsigned int i2c_support;
}; };
struct xgbe_prv_data { struct xgbe_prv_data {
struct net_device *netdev; struct net_device *netdev;
struct pci_dev *pcidev;
struct platform_device *platdev; struct platform_device *platdev;
struct acpi_device *adev; struct acpi_device *adev;
struct device *dev; struct device *dev;
...@@ -827,6 +947,8 @@ struct xgbe_prv_data { ...@@ -827,6 +947,8 @@ struct xgbe_prv_data {
void __iomem *rxtx_regs; /* SerDes Rx/Tx CSRs */ void __iomem *rxtx_regs; /* SerDes Rx/Tx CSRs */
void __iomem *sir0_regs; /* SerDes integration registers (1/2) */ void __iomem *sir0_regs; /* SerDes integration registers (1/2) */
void __iomem *sir1_regs; /* SerDes integration registers (2/2) */ void __iomem *sir1_regs; /* SerDes integration registers (2/2) */
void __iomem *xprop_regs; /* XGBE property registers */
void __iomem *xi2c_regs; /* XGBE I2C CSRs */
/* Overall device lock */ /* Overall device lock */
spinlock_t lock; spinlock_t lock;
...@@ -843,13 +965,39 @@ struct xgbe_prv_data { ...@@ -843,13 +965,39 @@ struct xgbe_prv_data {
/* Flags representing xgbe_state */ /* Flags representing xgbe_state */
unsigned long dev_state; unsigned long dev_state;
/* ECC support */
unsigned long tx_sec_period;
unsigned long tx_ded_period;
unsigned long rx_sec_period;
unsigned long rx_ded_period;
unsigned long desc_sec_period;
unsigned long desc_ded_period;
unsigned int tx_sec_count;
unsigned int tx_ded_count;
unsigned int rx_sec_count;
unsigned int rx_ded_count;
unsigned int desc_ded_count;
unsigned int desc_sec_count;
struct msix_entry *msix_entries;
int dev_irq; int dev_irq;
unsigned int per_channel_irq; int ecc_irq;
int i2c_irq;
int channel_irq[XGBE_MAX_DMA_CHANNELS]; int channel_irq[XGBE_MAX_DMA_CHANNELS];
unsigned int per_channel_irq;
unsigned int irq_shared;
unsigned int irq_count;
unsigned int channel_irq_count;
unsigned int channel_irq_mode;
char ecc_name[IFNAMSIZ + 32];
struct xgbe_hw_if hw_if; struct xgbe_hw_if hw_if;
struct xgbe_phy_if phy_if; struct xgbe_phy_if phy_if;
struct xgbe_desc_if desc_if; struct xgbe_desc_if desc_if;
struct xgbe_i2c_if i2c_if;
/* AXI DMA settings */ /* AXI DMA settings */
unsigned int coherent; unsigned int coherent;
...@@ -957,8 +1105,9 @@ struct xgbe_prv_data { ...@@ -957,8 +1105,9 @@ struct xgbe_prv_data {
/* Hardware features of the device */ /* Hardware features of the device */
struct xgbe_hw_features hw_feat; struct xgbe_hw_features hw_feat;
/* Device restart work structure */ /* Device work structures */
struct work_struct restart_work; struct work_struct restart_work;
struct work_struct stopdev_work;
/* Keeps track of power mode */ /* Keeps track of power mode */
unsigned int power_down; unsigned int power_down;
...@@ -977,6 +1126,9 @@ struct xgbe_prv_data { ...@@ -977,6 +1126,9 @@ struct xgbe_prv_data {
struct xgbe_phy phy; struct xgbe_phy phy;
int mdio_mmd; int mdio_mmd;
unsigned long link_check; unsigned long link_check;
struct completion mdio_complete;
unsigned int kr_redrv;
char an_name[IFNAMSIZ + 32]; char an_name[IFNAMSIZ + 32];
struct workqueue_struct *an_workqueue; struct workqueue_struct *an_workqueue;
...@@ -999,6 +1151,12 @@ struct xgbe_prv_data { ...@@ -999,6 +1151,12 @@ struct xgbe_prv_data {
unsigned long an_start; unsigned long an_start;
enum xgbe_an_mode an_mode; enum xgbe_an_mode an_mode;
/* I2C support */
struct xgbe_i2c i2c;
struct mutex i2c_mutex;
struct completion i2c_complete;
char i2c_name[IFNAMSIZ + 32];
unsigned int lpm_ctrl; /* CTRL1 for resume */ unsigned int lpm_ctrl; /* CTRL1 for resume */
#ifdef CONFIG_DEBUG_FS #ifdef CONFIG_DEBUG_FS
...@@ -1008,6 +1166,10 @@ struct xgbe_prv_data { ...@@ -1008,6 +1166,10 @@ struct xgbe_prv_data {
unsigned int debugfs_xpcs_mmd; unsigned int debugfs_xpcs_mmd;
unsigned int debugfs_xpcs_reg; unsigned int debugfs_xpcs_reg;
unsigned int debugfs_xprop_reg;
unsigned int debugfs_xi2c_reg;
#endif #endif
}; };
...@@ -1020,11 +1182,20 @@ void xgbe_deconfig_netdev(struct xgbe_prv_data *); ...@@ -1020,11 +1182,20 @@ void xgbe_deconfig_netdev(struct xgbe_prv_data *);
int xgbe_platform_init(void); int xgbe_platform_init(void);
void xgbe_platform_exit(void); void xgbe_platform_exit(void);
#ifdef CONFIG_PCI
int xgbe_pci_init(void);
void xgbe_pci_exit(void);
#else
static inline int xgbe_pci_init(void) { return 0; }
static inline void xgbe_pci_exit(void) { }
#endif
void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *); void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *);
void xgbe_init_function_ptrs_phy(struct xgbe_phy_if *); void xgbe_init_function_ptrs_phy(struct xgbe_phy_if *);
void xgbe_init_function_ptrs_phy_v1(struct xgbe_phy_if *); void xgbe_init_function_ptrs_phy_v1(struct xgbe_phy_if *);
void xgbe_init_function_ptrs_phy_v2(struct xgbe_phy_if *);
void xgbe_init_function_ptrs_desc(struct xgbe_desc_if *); void xgbe_init_function_ptrs_desc(struct xgbe_desc_if *);
void xgbe_init_function_ptrs_i2c(struct xgbe_i2c_if *);
const struct net_device_ops *xgbe_get_netdev_ops(void); const struct net_device_ops *xgbe_get_netdev_ops(void);
const struct ethtool_ops *xgbe_get_ethtool_ops(void); const struct ethtool_ops *xgbe_get_ethtool_ops(void);
......
...@@ -143,13 +143,14 @@ static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts) ...@@ -143,13 +143,14 @@ static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
* Returns > 0 on success or < 0 on error. 0 means that auto-negotiation * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
* is still pending. * is still pending.
*/ */
static inline int phy_aneg_done(struct phy_device *phydev) int phy_aneg_done(struct phy_device *phydev)
{ {
if (phydev->drv->aneg_done) if (phydev->drv->aneg_done)
return phydev->drv->aneg_done(phydev); return phydev->drv->aneg_done(phydev);
return genphy_aneg_done(phydev); return genphy_aneg_done(phydev);
} }
EXPORT_SYMBOL(phy_aneg_done);
/* A structure for mapping a particular speed and duplex /* A structure for mapping a particular speed and duplex
* combination to a particular SUPPORTED and ADVERTISED value * combination to a particular SUPPORTED and ADVERTISED value
......
...@@ -786,6 +786,7 @@ void phy_detach(struct phy_device *phydev); ...@@ -786,6 +786,7 @@ void phy_detach(struct phy_device *phydev);
void phy_start(struct phy_device *phydev); void phy_start(struct phy_device *phydev);
void phy_stop(struct phy_device *phydev); void phy_stop(struct phy_device *phydev);
int phy_start_aneg(struct phy_device *phydev); int phy_start_aneg(struct phy_device *phydev);
int phy_aneg_done(struct phy_device *phydev);
int phy_stop_interrupts(struct phy_device *phydev); int phy_stop_interrupts(struct phy_device *phydev);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment