Commit 89a734b5 authored by Oliver Upton's avatar Oliver Upton

Merge branch kvm-arm64/configurable-id-regs into kvmarm/next

* kvm-arm64/configurable-id-regs:
  : Configurable ID register infrastructure, courtesy of Jing Zhang
  :
  : Create generalized infrastructure for allowing userspace to select the
  : supported feature set for a VM, so long as the feature set is a subset
  : of what hardware + KVM allows. This does not add any new features that
  : are user-configurable, and instead focuses on the necessary refactoring
  : to enable future work.
  :
  : As a consequence of the series, feature asymmetry is now deliberately
  : disallowed for KVM. It is unlikely that VMMs ever configured VMs with
  : asymmetry, nor does it align with the kernel's overall stance that
  : features must be uniform across all cores in the system.
  :
  : Furthermore, KVM incorrectly advertised an IMP_DEF PMU to guests for
  : some time. Migrations from affected kernels was supported by explicitly
  : allowing such an ID register value from userspace, and forwarding that
  : along to the guest. KVM now allows an IMP_DEF PMU version to be restored
  : through the ID register interface, but reinterprets the user value as
  : not implemented (0).
  KVM: arm64: Rip out the vestiges of the 'old' ID register scheme
  KVM: arm64: Handle ID register reads using the VM-wide values
  KVM: arm64: Use generic sanitisation for ID_AA64PFR0_EL1
  KVM: arm64: Use generic sanitisation for ID_(AA64)DFR0_EL1
  KVM: arm64: Use arm64_ftr_bits to sanitise ID register writes
  KVM: arm64: Save ID registers' sanitized value per guest
  KVM: arm64: Reuse fields of sys_reg_desc for idreg
  KVM: arm64: Rewrite IMPDEF PMU version as NI
  KVM: arm64: Make vCPU feature flags consistent VM-wide
  KVM: arm64: Relax invariance of KVM_ARM_VCPU_POWER_OFF
  KVM: arm64: Separate out feature sanitisation and initialisation
Signed-off-by: default avatarOliver Upton <oliver.upton@linux.dev>
parents acfdf34c 68667240
...@@ -918,6 +918,7 @@ static inline unsigned int get_vmid_bits(u64 mmfr1) ...@@ -918,6 +918,7 @@ static inline unsigned int get_vmid_bits(u64 mmfr1)
return 8; return 8;
} }
s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur);
struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id); struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id);
extern struct arm64_ftr_override id_aa64mmfr1_override; extern struct arm64_ftr_override id_aa64mmfr1_override;
......
...@@ -62,12 +62,7 @@ static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) ...@@ -62,12 +62,7 @@ static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
#else #else
static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu)
{ {
struct kvm *kvm = vcpu->kvm; return test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features);
WARN_ON_ONCE(!test_bit(KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED,
&kvm->arch.flags));
return test_bit(KVM_ARCH_FLAG_EL1_32BIT, &kvm->arch.flags);
} }
#endif #endif
......
...@@ -39,6 +39,7 @@ ...@@ -39,6 +39,7 @@
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
#define KVM_VCPU_MAX_FEATURES 7 #define KVM_VCPU_MAX_FEATURES 7
#define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1)
#define KVM_REQ_SLEEP \ #define KVM_REQ_SLEEP \
KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
...@@ -229,25 +230,23 @@ struct kvm_arch { ...@@ -229,25 +230,23 @@ struct kvm_arch {
#define KVM_ARCH_FLAG_MTE_ENABLED 1 #define KVM_ARCH_FLAG_MTE_ENABLED 1
/* At least one vCPU has ran in the VM */ /* At least one vCPU has ran in the VM */
#define KVM_ARCH_FLAG_HAS_RAN_ONCE 2 #define KVM_ARCH_FLAG_HAS_RAN_ONCE 2
/* /* The vCPU feature set for the VM is configured */
* The following two bits are used to indicate the guest's EL1 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED 3
* register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT
* bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set.
* Otherwise, the guest's EL1 register width has not yet been
* determined yet.
*/
#define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED 3
#define KVM_ARCH_FLAG_EL1_32BIT 4
/* PSCI SYSTEM_SUSPEND enabled for the guest */ /* PSCI SYSTEM_SUSPEND enabled for the guest */
#define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 5 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 4
/* VM counter offset */ /* VM counter offset */
#define KVM_ARCH_FLAG_VM_COUNTER_OFFSET 6 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET 5
/* Timer PPIs made immutable */ /* Timer PPIs made immutable */
#define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE 7 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE 6
/* SMCCC filter initialized for the VM */ /* SMCCC filter initialized for the VM */
#define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED 8 #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED 7
/* Initial ID reg values loaded */
#define KVM_ARCH_FLAG_ID_REGS_INITIALIZED 8
unsigned long flags; unsigned long flags;
/* VM-wide vCPU feature set */
DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
/* /*
* VM-wide PMU filter, implemented as a bitmap and big enough for * VM-wide PMU filter, implemented as a bitmap and big enough for
* up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
...@@ -257,17 +256,23 @@ struct kvm_arch { ...@@ -257,17 +256,23 @@ struct kvm_arch {
cpumask_var_t supported_cpus; cpumask_var_t supported_cpus;
u8 pfr0_csv2;
u8 pfr0_csv3;
struct {
u8 imp:4;
u8 unimp:4;
} dfr0_pmuver;
/* Hypercall features firmware registers' descriptor */ /* Hypercall features firmware registers' descriptor */
struct kvm_smccc_features smccc_feat; struct kvm_smccc_features smccc_feat;
struct maple_tree smccc_filter; struct maple_tree smccc_filter;
/*
* Emulated CPU ID registers per VM
* (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
* is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
*
* These emulated idregs are VM-wide, but accessed from the context of a vCPU.
* Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
*/
#define IDREG_IDX(id) (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
#define IDREG(kvm, id) ((kvm)->arch.id_regs[IDREG_IDX(id)])
#define KVM_ARM_ID_REG_NUM (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
u64 id_regs[KVM_ARM_ID_REG_NUM];
/* /*
* For an untrusted host VM, 'pkvm.handle' is used to lookup * For an untrusted host VM, 'pkvm.handle' is used to lookup
* the associated pKVM instance in the hypervisor. * the associated pKVM instance in the hypervisor.
......
...@@ -800,7 +800,7 @@ static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg, ...@@ -800,7 +800,7 @@ static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
return reg; return reg;
} }
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
s64 cur) s64 cur)
{ {
s64 ret = 0; s64 ret = 0;
......
...@@ -121,22 +121,6 @@ static int kvm_arm_default_max_vcpus(void) ...@@ -121,22 +121,6 @@ static int kvm_arm_default_max_vcpus(void)
return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
} }
static void set_default_spectre(struct kvm *kvm)
{
/*
* The default is to expose CSV2 == 1 if the HW isn't affected.
* Although this is a per-CPU feature, we make it global because
* asymmetric systems are just a nuisance.
*
* Userspace can override this as long as it doesn't promise
* the impossible.
*/
if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
kvm->arch.pfr0_csv2 = 1;
if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
kvm->arch.pfr0_csv3 = 1;
}
/** /**
* kvm_arch_init_vm - initializes a VM data structure * kvm_arch_init_vm - initializes a VM data structure
* @kvm: pointer to the KVM struct * @kvm: pointer to the KVM struct
...@@ -180,14 +164,9 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) ...@@ -180,14 +164,9 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
/* The maximum number of VCPUs is limited by the host's GIC model */ /* The maximum number of VCPUs is limited by the host's GIC model */
kvm->max_vcpus = kvm_arm_default_max_vcpus(); kvm->max_vcpus = kvm_arm_default_max_vcpus();
set_default_spectre(kvm);
kvm_arm_init_hypercalls(kvm); kvm_arm_init_hypercalls(kvm);
/* bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
* Initialise the default PMUver before there is a chance to
* create an actual PMU.
*/
kvm->arch.dfr0_pmuver.imp = kvm_arm_pmu_get_pmuver_limit();
return 0; return 0;
...@@ -1195,58 +1174,115 @@ int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, ...@@ -1195,58 +1174,115 @@ int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
return -EINVAL; return -EINVAL;
} }
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
const struct kvm_vcpu_init *init) const struct kvm_vcpu_init *init)
{ {
unsigned int i, ret; unsigned long features = init->features[0];
u32 phys_target = kvm_target_cpu(); int i;
if (features & ~KVM_VCPU_VALID_FEATURES)
return -ENOENT;
for (i = 1; i < ARRAY_SIZE(init->features); i++) {
if (init->features[i])
return -ENOENT;
}
if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
return 0;
if (init->target != phys_target) if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
return -EINVAL; return -EINVAL;
/* /* MTE is incompatible with AArch32 */
* Secondary and subsequent calls to KVM_ARM_VCPU_INIT must if (kvm_has_mte(vcpu->kvm))
* use the same target.
*/
if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
return -EINVAL; return -EINVAL;
/* -ENOENT for unknown features, -EINVAL for invalid combinations. */ /* NV is incompatible with AArch32 */
for (i = 0; i < sizeof(init->features) * 8; i++) { if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
bool set = (init->features[i / 32] & (1 << (i % 32))); return -EINVAL;
if (set && i >= KVM_VCPU_MAX_FEATURES) return 0;
return -ENOENT; }
/* static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
* Secondary and subsequent calls to KVM_ARM_VCPU_INIT must const struct kvm_vcpu_init *init)
* use the same feature set. {
*/ unsigned long features = init->features[0];
if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
test_bit(i, vcpu->arch.features) != set)
return -EINVAL;
if (set) return !bitmap_equal(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES) ||
set_bit(i, vcpu->arch.features); vcpu->arch.target != init->target;
} }
static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
const struct kvm_vcpu_init *init)
{
unsigned long features = init->features[0];
struct kvm *kvm = vcpu->kvm;
int ret = -EINVAL;
mutex_lock(&kvm->arch.config_lock);
if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
!bitmap_equal(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES))
goto out_unlock;
vcpu->arch.target = phys_target; vcpu->arch.target = init->target;
bitmap_copy(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
/* Now we know what it is, we can reset it. */ /* Now we know what it is, we can reset it. */
ret = kvm_reset_vcpu(vcpu); ret = kvm_reset_vcpu(vcpu);
if (ret) { if (ret) {
vcpu->arch.target = -1; vcpu->arch.target = -1;
bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
goto out_unlock;
} }
bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
out_unlock:
mutex_unlock(&kvm->arch.config_lock);
return ret; return ret;
} }
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
const struct kvm_vcpu_init *init)
{
int ret;
if (init->target != kvm_target_cpu())
return -EINVAL;
ret = kvm_vcpu_init_check_features(vcpu, init);
if (ret)
return ret;
if (vcpu->arch.target == -1)
return __kvm_vcpu_set_target(vcpu, init);
if (kvm_vcpu_init_changed(vcpu, init))
return -EINVAL;
return kvm_reset_vcpu(vcpu);
}
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
struct kvm_vcpu_init *init) struct kvm_vcpu_init *init)
{ {
bool power_off = false;
int ret; int ret;
/*
* Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
* reflecting it in the finalized feature set, thus limiting its scope
* to a single KVM_ARM_VCPU_INIT call.
*/
if (init->features[0] & KVM_ARM_VCPU_POWER_OFF) {
init->features[0] &= ~KVM_ARM_VCPU_POWER_OFF;
power_off = true;
}
ret = kvm_vcpu_set_target(vcpu, init); ret = kvm_vcpu_set_target(vcpu, init);
if (ret) if (ret)
return ret; return ret;
...@@ -1275,7 +1311,7 @@ static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, ...@@ -1275,7 +1311,7 @@ static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
*/ */
spin_lock(&vcpu->arch.mp_state_lock); spin_lock(&vcpu->arch.mp_state_lock);
if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) if (power_off)
__kvm_arm_vcpu_power_off(vcpu); __kvm_arm_vcpu_power_off(vcpu);
else else
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
......
...@@ -186,57 +186,6 @@ static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu) ...@@ -186,57 +186,6 @@ static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
return 0; return 0;
} }
/**
* kvm_set_vm_width() - set the register width for the guest
* @vcpu: Pointer to the vcpu being configured
*
* Set both KVM_ARCH_FLAG_EL1_32BIT and KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED
* in the VM flags based on the vcpu's requested register width, the HW
* capabilities and other options (such as MTE).
* When REG_WIDTH_CONFIGURED is already set, the vcpu settings must be
* consistent with the value of the FLAG_EL1_32BIT bit in the flags.
*
* Return: 0 on success, negative error code on failure.
*/
static int kvm_set_vm_width(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
bool is32bit;
is32bit = vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
lockdep_assert_held(&kvm->arch.config_lock);
if (test_bit(KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED, &kvm->arch.flags)) {
/*
* The guest's register width is already configured.
* Make sure that the vcpu is consistent with it.
*/
if (is32bit == test_bit(KVM_ARCH_FLAG_EL1_32BIT, &kvm->arch.flags))
return 0;
return -EINVAL;
}
if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1) && is32bit)
return -EINVAL;
/* MTE is incompatible with AArch32 */
if (kvm_has_mte(kvm) && is32bit)
return -EINVAL;
/* NV is incompatible with AArch32 */
if (vcpu_has_nv(vcpu) && is32bit)
return -EINVAL;
if (is32bit)
set_bit(KVM_ARCH_FLAG_EL1_32BIT, &kvm->arch.flags);
set_bit(KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED, &kvm->arch.flags);
return 0;
}
/** /**
* kvm_reset_vcpu - sets core registers and sys_regs to reset value * kvm_reset_vcpu - sets core registers and sys_regs to reset value
* @vcpu: The VCPU pointer * @vcpu: The VCPU pointer
...@@ -262,13 +211,6 @@ int kvm_reset_vcpu(struct kvm_vcpu *vcpu) ...@@ -262,13 +211,6 @@ int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
bool loaded; bool loaded;
u32 pstate; u32 pstate;
mutex_lock(&vcpu->kvm->arch.config_lock);
ret = kvm_set_vm_width(vcpu);
mutex_unlock(&vcpu->kvm->arch.config_lock);
if (ret)
return ret;
spin_lock(&vcpu->arch.mp_state_lock); spin_lock(&vcpu->arch.mp_state_lock);
reset_state = vcpu->arch.reset_state; reset_state = vcpu->arch.reset_state;
vcpu->arch.reset_state.reset = false; vcpu->arch.reset_state.reset = false;
......
...@@ -42,6 +42,8 @@ ...@@ -42,6 +42,8 @@
*/ */
static u64 sys_reg_to_index(const struct sys_reg_desc *reg); static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
u64 val);
static bool read_from_write_only(struct kvm_vcpu *vcpu, static bool read_from_write_only(struct kvm_vcpu *vcpu,
struct sys_reg_params *params, struct sys_reg_params *params,
...@@ -540,10 +542,11 @@ static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, ...@@ -540,10 +542,11 @@ static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
return 0; return 0;
} }
static void reset_bvr(struct kvm_vcpu *vcpu, static u64 reset_bvr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd) const struct sys_reg_desc *rd)
{ {
vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
return rd->val;
} }
static bool trap_bcr(struct kvm_vcpu *vcpu, static bool trap_bcr(struct kvm_vcpu *vcpu,
...@@ -576,10 +579,11 @@ static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, ...@@ -576,10 +579,11 @@ static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
return 0; return 0;
} }
static void reset_bcr(struct kvm_vcpu *vcpu, static u64 reset_bcr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd) const struct sys_reg_desc *rd)
{ {
vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
return rd->val;
} }
static bool trap_wvr(struct kvm_vcpu *vcpu, static bool trap_wvr(struct kvm_vcpu *vcpu,
...@@ -613,10 +617,11 @@ static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, ...@@ -613,10 +617,11 @@ static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
return 0; return 0;
} }
static void reset_wvr(struct kvm_vcpu *vcpu, static u64 reset_wvr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd) const struct sys_reg_desc *rd)
{ {
vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
return rd->val;
} }
static bool trap_wcr(struct kvm_vcpu *vcpu, static bool trap_wcr(struct kvm_vcpu *vcpu,
...@@ -649,25 +654,28 @@ static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, ...@@ -649,25 +654,28 @@ static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
return 0; return 0;
} }
static void reset_wcr(struct kvm_vcpu *vcpu, static u64 reset_wcr(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd) const struct sys_reg_desc *rd)
{ {
vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
return rd->val;
} }
static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
u64 amair = read_sysreg(amair_el1); u64 amair = read_sysreg(amair_el1);
vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
return amair;
} }
static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
u64 actlr = read_sysreg(actlr_el1); u64 actlr = read_sysreg(actlr_el1);
vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
return actlr;
} }
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
u64 mpidr; u64 mpidr;
...@@ -681,7 +689,10 @@ static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) ...@@ -681,7 +689,10 @@ static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1); mpidr |= (1ULL << 31);
vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
return mpidr;
} }
static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
...@@ -693,13 +704,13 @@ static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, ...@@ -693,13 +704,13 @@ static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
return REG_HIDDEN; return REG_HIDDEN;
} }
static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX); u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
/* No PMU available, any PMU reg may UNDEF... */ /* No PMU available, any PMU reg may UNDEF... */
if (!kvm_arm_support_pmu_v3()) if (!kvm_arm_support_pmu_v3())
return; return 0;
n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT; n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
n &= ARMV8_PMU_PMCR_N_MASK; n &= ARMV8_PMU_PMCR_N_MASK;
...@@ -708,33 +719,41 @@ static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) ...@@ -708,33 +719,41 @@ static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
reset_unknown(vcpu, r); reset_unknown(vcpu, r);
__vcpu_sys_reg(vcpu, r->reg) &= mask; __vcpu_sys_reg(vcpu, r->reg) &= mask;
return __vcpu_sys_reg(vcpu, r->reg);
} }
static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
reset_unknown(vcpu, r); reset_unknown(vcpu, r);
__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
return __vcpu_sys_reg(vcpu, r->reg);
} }
static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
reset_unknown(vcpu, r); reset_unknown(vcpu, r);
__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK; __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
return __vcpu_sys_reg(vcpu, r->reg);
} }
static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
reset_unknown(vcpu, r); reset_unknown(vcpu, r);
__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK; __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
return __vcpu_sys_reg(vcpu, r->reg);
} }
static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
u64 pmcr; u64 pmcr;
/* No PMU available, PMCR_EL0 may UNDEF... */ /* No PMU available, PMCR_EL0 may UNDEF... */
if (!kvm_arm_support_pmu_v3()) if (!kvm_arm_support_pmu_v3())
return; return 0;
/* Only preserve PMCR_EL0.N, and reset the rest to 0 */ /* Only preserve PMCR_EL0.N, and reset the rest to 0 */
pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT); pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
...@@ -742,6 +761,8 @@ static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) ...@@ -742,6 +761,8 @@ static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
pmcr |= ARMV8_PMU_PMCR_LC; pmcr |= ARMV8_PMU_PMCR_LC;
__vcpu_sys_reg(vcpu, r->reg) = pmcr; __vcpu_sys_reg(vcpu, r->reg) = pmcr;
return __vcpu_sys_reg(vcpu, r->reg);
} }
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
...@@ -1174,25 +1195,89 @@ static bool access_arch_timer(struct kvm_vcpu *vcpu, ...@@ -1174,25 +1195,89 @@ static bool access_arch_timer(struct kvm_vcpu *vcpu,
return true; return true;
} }
static u8 vcpu_pmuver(const struct kvm_vcpu *vcpu) static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
s64 new, s64 cur)
{ {
if (kvm_vcpu_has_pmu(vcpu)) struct arm64_ftr_bits kvm_ftr = *ftrp;
return vcpu->kvm->arch.dfr0_pmuver.imp;
/* Some features have different safe value type in KVM than host features */
switch (id) {
case SYS_ID_AA64DFR0_EL1:
if (kvm_ftr.shift == ID_AA64DFR0_EL1_PMUVer_SHIFT)
kvm_ftr.type = FTR_LOWER_SAFE;
break;
case SYS_ID_DFR0_EL1:
if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
kvm_ftr.type = FTR_LOWER_SAFE;
break;
}
return vcpu->kvm->arch.dfr0_pmuver.unimp; return arm64_ftr_safe_value(&kvm_ftr, new, cur);
} }
static u8 perfmon_to_pmuver(u8 perfmon) /**
* arm64_check_features() - Check if a feature register value constitutes
* a subset of features indicated by the idreg's KVM sanitised limit.
*
* This function will check if each feature field of @val is the "safe" value
* against idreg's KVM sanitised limit return from reset() callback.
* If a field value in @val is the same as the one in limit, it is always
* considered the safe value regardless For register fields that are not in
* writable, only the value in limit is considered the safe value.
*
* Return: 0 if all the fields are safe. Otherwise, return negative errno.
*/
static int arm64_check_features(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd,
u64 val)
{ {
switch (perfmon) { const struct arm64_ftr_reg *ftr_reg;
case ID_DFR0_EL1_PerfMon_PMUv3: const struct arm64_ftr_bits *ftrp = NULL;
return ID_AA64DFR0_EL1_PMUVer_IMP; u32 id = reg_to_encoding(rd);
case ID_DFR0_EL1_PerfMon_IMPDEF: u64 writable_mask = rd->val;
return ID_AA64DFR0_EL1_PMUVer_IMP_DEF; u64 limit = rd->reset(vcpu, rd);
default: u64 mask = 0;
/* Anything ARMv8.1+ and NI have the same value. For now. */
return perfmon; /*
* Hidden and unallocated ID registers may not have a corresponding
* struct arm64_ftr_reg. Of course, if the register is RAZ we know the
* only safe value is 0.
*/
if (sysreg_visible_as_raz(vcpu, rd))
return val ? -E2BIG : 0;
ftr_reg = get_arm64_ftr_reg(id);
if (!ftr_reg)
return -EINVAL;
ftrp = ftr_reg->ftr_bits;
for (; ftrp && ftrp->width; ftrp++) {
s64 f_val, f_lim, safe_val;
u64 ftr_mask;
ftr_mask = arm64_ftr_mask(ftrp);
if ((ftr_mask & writable_mask) != ftr_mask)
continue;
f_val = arm64_ftr_value(ftrp, val);
f_lim = arm64_ftr_value(ftrp, limit);
mask |= ftr_mask;
if (f_val == f_lim)
safe_val = f_val;
else
safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
if (safe_val != f_val)
return -E2BIG;
} }
/* For fields that are not writable, values in limit are the safe values. */
if ((val & ~mask) != (limit & ~mask))
return -E2BIG;
return 0;
} }
static u8 pmuver_to_perfmon(u8 pmuver) static u8 pmuver_to_perfmon(u8 pmuver)
...@@ -1209,7 +1294,8 @@ static u8 pmuver_to_perfmon(u8 pmuver) ...@@ -1209,7 +1294,8 @@ static u8 pmuver_to_perfmon(u8 pmuver)
} }
/* Read a sanitised cpufeature ID register by sys_reg_desc */ /* Read a sanitised cpufeature ID register by sys_reg_desc */
static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r) static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *r)
{ {
u32 id = reg_to_encoding(r); u32 id = reg_to_encoding(r);
u64 val; u64 val;
...@@ -1220,19 +1306,6 @@ static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r ...@@ -1220,19 +1306,6 @@ static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r
val = read_sanitised_ftr_reg(id); val = read_sanitised_ftr_reg(id);
switch (id) { switch (id) {
case SYS_ID_AA64PFR0_EL1:
if (!vcpu_has_sve(vcpu))
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
if (kvm_vgic_global_state.type == VGIC_V3) {
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), 1);
}
break;
case SYS_ID_AA64PFR1_EL1: case SYS_ID_AA64PFR1_EL1:
if (!kvm_has_mte(vcpu->kvm)) if (!kvm_has_mte(vcpu->kvm))
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
...@@ -1253,22 +1326,6 @@ static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r ...@@ -1253,22 +1326,6 @@ static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r
if (!cpus_have_final_cap(ARM64_HAS_WFXT)) if (!cpus_have_final_cap(ARM64_HAS_WFXT))
val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
break; break;
case SYS_ID_AA64DFR0_EL1:
/* Limit debug to ARMv8.0 */
val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), 6);
/* Set PMUver to the required version */
val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer),
vcpu_pmuver(vcpu));
/* Hide SPE from guests */
val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer);
break;
case SYS_ID_DFR0_EL1:
val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon),
pmuver_to_perfmon(vcpu_pmuver(vcpu)));
break;
case SYS_ID_AA64MMFR2_EL1: case SYS_ID_AA64MMFR2_EL1:
val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK; val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
break; break;
...@@ -1280,6 +1337,28 @@ static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r ...@@ -1280,6 +1337,28 @@ static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r
return val; return val;
} }
static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *r)
{
return __kvm_read_sanitised_id_reg(vcpu, r);
}
static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
return IDREG(vcpu->kvm, reg_to_encoding(r));
}
/*
* Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
* (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
*/
static inline bool is_id_reg(u32 id)
{
return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
sys_reg_CRm(id) < 8);
}
static unsigned int id_visibility(const struct kvm_vcpu *vcpu, static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
const struct sys_reg_desc *r) const struct sys_reg_desc *r)
{ {
...@@ -1341,88 +1420,113 @@ static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, ...@@ -1341,88 +1420,113 @@ static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
return REG_HIDDEN; return REG_HIDDEN;
} }
static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd, const struct sys_reg_desc *rd)
u64 val)
{ {
u8 csv2, csv3; u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
if (!vcpu_has_sve(vcpu))
val &= ~ID_AA64PFR0_EL1_SVE_MASK;
/* /*
* Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as * The default is to expose CSV2 == 1 if the HW isn't affected.
* it doesn't promise more than what is actually provided (the * Although this is a per-CPU feature, we make it global because
* guest could otherwise be covered in ectoplasmic residue). * asymmetric systems are just a nuisance.
*
* Userspace can override this as long as it doesn't promise
* the impossible.
*/ */
csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV2_SHIFT); if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
if (csv2 > 1 || val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
(csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED)) val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
return -EINVAL; }
if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
}
/* Same thing for CSV3 */ if (kvm_vgic_global_state.type == VGIC_V3) {
csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV3_SHIFT); val &= ~ID_AA64PFR0_EL1_GIC_MASK;
if (csv3 > 1 || val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
(csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED)) }
return -EINVAL;
/* We can only differ with CSV[23], and anything else is an error */ val &= ~ID_AA64PFR0_EL1_AMU_MASK;
val ^= read_id_reg(vcpu, rd);
val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
if (val)
return -EINVAL;
vcpu->kvm->arch.pfr0_csv2 = csv2; return val;
vcpu->kvm->arch.pfr0_csv3 = csv3; }
return 0; static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd)
{
u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
/* Limit debug to ARMv8.0 */
val &= ~ID_AA64DFR0_EL1_DebugVer_MASK;
val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DebugVer, IMP);
/*
* Only initialize the PMU version if the vCPU was configured with one.
*/
val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
if (kvm_vcpu_has_pmu(vcpu))
val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
kvm_arm_pmu_get_pmuver_limit());
/* Hide SPE from guests */
val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
return val;
} }
static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd, const struct sys_reg_desc *rd,
u64 val) u64 val)
{ {
u8 pmuver, host_pmuver; u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
bool valid_pmu;
host_pmuver = kvm_arm_pmu_get_pmuver_limit();
/* /*
* Allow AA64DFR0_EL1.PMUver to be set from userspace as long * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
* as it doesn't promise more than what the HW gives us. We * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
* allow an IMPDEF PMU though, only if no PMU is supported * exposed an IMP_DEF PMU to userspace and the guest on systems w/
* (KVM backward compatibility handling). * non-architectural PMUs. Of course, PMUv3 is the only game in town for
* PMU virtualization, so the IMP_DEF value was rather user-hostile.
*
* At minimum, we're on the hook to allow values that were given to
* userspace by KVM. Cover our tracks here and replace the IMP_DEF value
* with a more sensible NI. The value of an ID register changing under
* the nose of the guest is unfortunate, but is certainly no more
* surprising than an ill-guided PMU driver poking at impdef system
* registers that end in an UNDEF...
*/ */
pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), val); if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
if ((pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF && pmuver > host_pmuver)) val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
return -EINVAL;
valid_pmu = (pmuver != 0 && pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF); return set_id_reg(vcpu, rd, val);
}
/* Make sure view register and PMU support do match */
if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
return -EINVAL;
/* We can only differ with PMUver, and anything else is an error */ static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
val ^= read_id_reg(vcpu, rd); const struct sys_reg_desc *rd)
val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer); {
if (val) u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
return -EINVAL; u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
if (valid_pmu) val &= ~ID_DFR0_EL1_PerfMon_MASK;
vcpu->kvm->arch.dfr0_pmuver.imp = pmuver; if (kvm_vcpu_has_pmu(vcpu))
else val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
vcpu->kvm->arch.dfr0_pmuver.unimp = pmuver;
return 0; return val;
} }
static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *rd, const struct sys_reg_desc *rd,
u64 val) u64 val)
{ {
u8 perfmon, host_perfmon; u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
bool valid_pmu;
host_perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
val &= ~ID_DFR0_EL1_PerfMon_MASK;
perfmon = 0;
}
/* /*
* Allow DFR0_EL1.PerfMon to be set from userspace as long as * Allow DFR0_EL1.PerfMon to be set from userspace as long as
...@@ -1430,29 +1534,10 @@ static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, ...@@ -1430,29 +1534,10 @@ static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
* AArch64 side (as everything is emulated with that), and * AArch64 side (as everything is emulated with that), and
* that this is a PMUv3. * that this is a PMUv3.
*/ */
perfmon = FIELD_GET(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon), val); if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
if ((perfmon != ID_DFR0_EL1_PerfMon_IMPDEF && perfmon > host_perfmon) ||
(perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3))
return -EINVAL; return -EINVAL;
valid_pmu = (perfmon != 0 && perfmon != ID_DFR0_EL1_PerfMon_IMPDEF); return set_id_reg(vcpu, rd, val);
/* Make sure view register and PMU support do match */
if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
return -EINVAL;
/* We can only differ with PerfMon, and anything else is an error */
val ^= read_id_reg(vcpu, rd);
val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
if (val)
return -EINVAL;
if (valid_pmu)
vcpu->kvm->arch.dfr0_pmuver.imp = perfmon_to_pmuver(perfmon);
else
vcpu->kvm->arch.dfr0_pmuver.unimp = perfmon_to_pmuver(perfmon);
return 0;
} }
/* /*
...@@ -1465,18 +1550,60 @@ static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, ...@@ -1465,18 +1550,60 @@ static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
u64 *val) u64 *val)
{ {
/*
* Avoid locking if the VM has already started, as the ID registers are
* guaranteed to be invariant at that point.
*/
if (kvm_vm_has_ran_once(vcpu->kvm)) {
*val = read_id_reg(vcpu, rd);
return 0;
}
mutex_lock(&vcpu->kvm->arch.config_lock);
*val = read_id_reg(vcpu, rd); *val = read_id_reg(vcpu, rd);
mutex_unlock(&vcpu->kvm->arch.config_lock);
return 0; return 0;
} }
static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
u64 val) u64 val)
{ {
/* This is what we mean by invariant: you can't change it. */ u32 id = reg_to_encoding(rd);
if (val != read_id_reg(vcpu, rd)) int ret;
return -EINVAL;
return 0; mutex_lock(&vcpu->kvm->arch.config_lock);
/*
* Once the VM has started the ID registers are immutable. Reject any
* write that does not match the final register value.
*/
if (kvm_vm_has_ran_once(vcpu->kvm)) {
if (val != read_id_reg(vcpu, rd))
ret = -EBUSY;
else
ret = 0;
mutex_unlock(&vcpu->kvm->arch.config_lock);
return ret;
}
ret = arm64_check_features(vcpu, rd, val);
if (!ret)
IDREG(vcpu->kvm, id) = val;
mutex_unlock(&vcpu->kvm->arch.config_lock);
/*
* arm64_check_features() returns -E2BIG to indicate the register's
* feature set is a superset of the maximally-allowed register value.
* While it would be nice to precisely describe this to userspace, the
* existing UAPI for KVM_SET_ONE_REG has it that invalid register
* writes return -EINVAL.
*/
if (ret == -E2BIG)
ret = -EINVAL;
return ret;
} }
static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
...@@ -1516,7 +1643,7 @@ static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, ...@@ -1516,7 +1643,7 @@ static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
* Fabricate a CLIDR_EL1 value instead of using the real value, which can vary * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
* by the physical CPU which the vcpu currently resides in. * by the physical CPU which the vcpu currently resides in.
*/ */
static void reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
u64 clidr; u64 clidr;
...@@ -1564,6 +1691,8 @@ static void reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) ...@@ -1564,6 +1691,8 @@ static void reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
clidr |= 2 << CLIDR_TTYPE_SHIFT(loc); clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
__vcpu_sys_reg(vcpu, r->reg) = clidr; __vcpu_sys_reg(vcpu, r->reg) = clidr;
return __vcpu_sys_reg(vcpu, r->reg);
} }
static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
...@@ -1663,6 +1792,17 @@ static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu, ...@@ -1663,6 +1792,17 @@ static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
.visibility = elx2_visibility, \ .visibility = elx2_visibility, \
} }
/*
* Since reset() callback and field val are not used for idregs, they will be
* used for specific purposes for idregs.
* The reset() would return KVM sanitised register value. The value would be the
* same as the host kernel sanitised value if there is no KVM sanitisation.
* The val would be used as a mask indicating writable fields for the idreg.
* Only bits with 1 are writable from userspace. This mask might not be
* necessary in the future whenever all ID registers are enabled as writable
* from userspace.
*/
/* sys_reg_desc initialiser for known cpufeature ID registers */ /* sys_reg_desc initialiser for known cpufeature ID registers */
#define ID_SANITISED(name) { \ #define ID_SANITISED(name) { \
SYS_DESC(SYS_##name), \ SYS_DESC(SYS_##name), \
...@@ -1670,6 +1810,8 @@ static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu, ...@@ -1670,6 +1810,8 @@ static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
.get_user = get_id_reg, \ .get_user = get_id_reg, \
.set_user = set_id_reg, \ .set_user = set_id_reg, \
.visibility = id_visibility, \ .visibility = id_visibility, \
.reset = kvm_read_sanitised_id_reg, \
.val = 0, \
} }
/* sys_reg_desc initialiser for known cpufeature ID registers */ /* sys_reg_desc initialiser for known cpufeature ID registers */
...@@ -1679,6 +1821,8 @@ static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu, ...@@ -1679,6 +1821,8 @@ static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
.get_user = get_id_reg, \ .get_user = get_id_reg, \
.set_user = set_id_reg, \ .set_user = set_id_reg, \
.visibility = aa32_id_visibility, \ .visibility = aa32_id_visibility, \
.reset = kvm_read_sanitised_id_reg, \
.val = 0, \
} }
/* /*
...@@ -1691,7 +1835,9 @@ static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu, ...@@ -1691,7 +1835,9 @@ static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
.access = access_id_reg, \ .access = access_id_reg, \
.get_user = get_id_reg, \ .get_user = get_id_reg, \
.set_user = set_id_reg, \ .set_user = set_id_reg, \
.visibility = raz_visibility \ .visibility = raz_visibility, \
.reset = kvm_read_sanitised_id_reg, \
.val = 0, \
} }
/* /*
...@@ -1705,6 +1851,8 @@ static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu, ...@@ -1705,6 +1851,8 @@ static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
.get_user = get_id_reg, \ .get_user = get_id_reg, \
.set_user = set_id_reg, \ .set_user = set_id_reg, \
.visibility = raz_visibility, \ .visibility = raz_visibility, \
.reset = kvm_read_sanitised_id_reg, \
.val = 0, \
} }
static bool access_sp_el1(struct kvm_vcpu *vcpu, static bool access_sp_el1(struct kvm_vcpu *vcpu,
...@@ -1806,9 +1954,13 @@ static const struct sys_reg_desc sys_reg_descs[] = { ...@@ -1806,9 +1954,13 @@ static const struct sys_reg_desc sys_reg_descs[] = {
/* CRm=1 */ /* CRm=1 */
AA32_ID_SANITISED(ID_PFR0_EL1), AA32_ID_SANITISED(ID_PFR0_EL1),
AA32_ID_SANITISED(ID_PFR1_EL1), AA32_ID_SANITISED(ID_PFR1_EL1),
{ SYS_DESC(SYS_ID_DFR0_EL1), .access = access_id_reg, { SYS_DESC(SYS_ID_DFR0_EL1),
.get_user = get_id_reg, .set_user = set_id_dfr0_el1, .access = access_id_reg,
.visibility = aa32_id_visibility, }, .get_user = get_id_reg,
.set_user = set_id_dfr0_el1,
.visibility = aa32_id_visibility,
.reset = read_sanitised_id_dfr0_el1,
.val = ID_DFR0_EL1_PerfMon_MASK, },
ID_HIDDEN(ID_AFR0_EL1), ID_HIDDEN(ID_AFR0_EL1),
AA32_ID_SANITISED(ID_MMFR0_EL1), AA32_ID_SANITISED(ID_MMFR0_EL1),
AA32_ID_SANITISED(ID_MMFR1_EL1), AA32_ID_SANITISED(ID_MMFR1_EL1),
...@@ -1837,8 +1989,12 @@ static const struct sys_reg_desc sys_reg_descs[] = { ...@@ -1837,8 +1989,12 @@ static const struct sys_reg_desc sys_reg_descs[] = {
/* AArch64 ID registers */ /* AArch64 ID registers */
/* CRm=4 */ /* CRm=4 */
{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg, { SYS_DESC(SYS_ID_AA64PFR0_EL1),
.get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, }, .access = access_id_reg,
.get_user = get_id_reg,
.set_user = set_id_reg,
.reset = read_sanitised_id_aa64pfr0_el1,
.val = ID_AA64PFR0_EL1_CSV2_MASK | ID_AA64PFR0_EL1_CSV3_MASK, },
ID_SANITISED(ID_AA64PFR1_EL1), ID_SANITISED(ID_AA64PFR1_EL1),
ID_UNALLOCATED(4,2), ID_UNALLOCATED(4,2),
ID_UNALLOCATED(4,3), ID_UNALLOCATED(4,3),
...@@ -1848,8 +2004,12 @@ static const struct sys_reg_desc sys_reg_descs[] = { ...@@ -1848,8 +2004,12 @@ static const struct sys_reg_desc sys_reg_descs[] = {
ID_UNALLOCATED(4,7), ID_UNALLOCATED(4,7),
/* CRm=5 */ /* CRm=5 */
{ SYS_DESC(SYS_ID_AA64DFR0_EL1), .access = access_id_reg, { SYS_DESC(SYS_ID_AA64DFR0_EL1),
.get_user = get_id_reg, .set_user = set_id_aa64dfr0_el1, }, .access = access_id_reg,
.get_user = get_id_reg,
.set_user = set_id_aa64dfr0_el1,
.reset = read_sanitised_id_aa64dfr0_el1,
.val = ID_AA64DFR0_EL1_PMUVer_MASK, },
ID_SANITISED(ID_AA64DFR1_EL1), ID_SANITISED(ID_AA64DFR1_EL1),
ID_UNALLOCATED(5,2), ID_UNALLOCATED(5,2),
ID_UNALLOCATED(5,3), ID_UNALLOCATED(5,3),
...@@ -2237,6 +2397,8 @@ static const struct sys_reg_desc sys_reg_descs[] = { ...@@ -2237,6 +2397,8 @@ static const struct sys_reg_desc sys_reg_descs[] = {
EL2_REG(SP_EL2, NULL, reset_unknown, 0), EL2_REG(SP_EL2, NULL, reset_unknown, 0),
}; };
static const struct sys_reg_desc *first_idreg;
static bool trap_dbgdidr(struct kvm_vcpu *vcpu, static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p, struct sys_reg_params *p,
const struct sys_reg_desc *r) const struct sys_reg_desc *r)
...@@ -2927,6 +3089,28 @@ static bool emulate_sys_reg(struct kvm_vcpu *vcpu, ...@@ -2927,6 +3089,28 @@ static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
return false; return false;
} }
static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
{
const struct sys_reg_desc *idreg = first_idreg;
u32 id = reg_to_encoding(idreg);
struct kvm *kvm = vcpu->kvm;
if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
return;
lockdep_assert_held(&kvm->arch.config_lock);
/* Initialize all idregs */
while (is_id_reg(id)) {
IDREG(kvm, id) = idreg->reset(vcpu, idreg);
idreg++;
id = reg_to_encoding(idreg);
}
set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
}
/** /**
* kvm_reset_sys_regs - sets system registers to reset value * kvm_reset_sys_regs - sets system registers to reset value
* @vcpu: The VCPU pointer * @vcpu: The VCPU pointer
...@@ -2938,9 +3122,17 @@ void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) ...@@ -2938,9 +3122,17 @@ void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{ {
unsigned long i; unsigned long i;
for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) kvm_reset_id_regs(vcpu);
if (sys_reg_descs[i].reset)
sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]); for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
const struct sys_reg_desc *r = &sys_reg_descs[i];
if (is_id_reg(reg_to_encoding(r)))
continue;
if (r->reset)
r->reset(vcpu, r);
}
} }
/** /**
...@@ -3041,19 +3233,21 @@ id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, ...@@ -3041,19 +3233,21 @@ id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
*/ */
#define FUNCTION_INVARIANT(reg) \ #define FUNCTION_INVARIANT(reg) \
static void get_##reg(struct kvm_vcpu *v, \ static u64 get_##reg(struct kvm_vcpu *v, \
const struct sys_reg_desc *r) \ const struct sys_reg_desc *r) \
{ \ { \
((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
return ((struct sys_reg_desc *)r)->val; \
} }
FUNCTION_INVARIANT(midr_el1) FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1) FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(aidr_el1) FUNCTION_INVARIANT(aidr_el1)
static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r) static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
{ {
((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0); ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
return ((struct sys_reg_desc *)r)->val;
} }
/* ->val is filled in by kvm_sys_reg_table_init() */ /* ->val is filled in by kvm_sys_reg_table_init() */
...@@ -3345,6 +3539,7 @@ int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) ...@@ -3345,6 +3539,7 @@ int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
int __init kvm_sys_reg_table_init(void) int __init kvm_sys_reg_table_init(void)
{ {
struct sys_reg_params params;
bool valid = true; bool valid = true;
unsigned int i; unsigned int i;
...@@ -3363,5 +3558,11 @@ int __init kvm_sys_reg_table_init(void) ...@@ -3363,5 +3558,11 @@ int __init kvm_sys_reg_table_init(void)
for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
params = encoding_to_params(SYS_ID_PFR0_EL1);
first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
if (!first_idreg)
return -EINVAL;
return 0; return 0;
} }
...@@ -27,6 +27,13 @@ struct sys_reg_params { ...@@ -27,6 +27,13 @@ struct sys_reg_params {
bool is_write; bool is_write;
}; };
#define encoding_to_params(reg) \
((struct sys_reg_params){ .Op0 = sys_reg_Op0(reg), \
.Op1 = sys_reg_Op1(reg), \
.CRn = sys_reg_CRn(reg), \
.CRm = sys_reg_CRm(reg), \
.Op2 = sys_reg_Op2(reg) })
#define esr_sys64_to_params(esr) \ #define esr_sys64_to_params(esr) \
((struct sys_reg_params){ .Op0 = ((esr) >> 20) & 3, \ ((struct sys_reg_params){ .Op0 = ((esr) >> 20) & 3, \
.Op1 = ((esr) >> 14) & 0x7, \ .Op1 = ((esr) >> 14) & 0x7, \
...@@ -64,13 +71,16 @@ struct sys_reg_desc { ...@@ -64,13 +71,16 @@ struct sys_reg_desc {
struct sys_reg_params *, struct sys_reg_params *,
const struct sys_reg_desc *); const struct sys_reg_desc *);
/* Initialization for vcpu. */ /*
void (*reset)(struct kvm_vcpu *, const struct sys_reg_desc *); * Initialization for vcpu. Return initialized value, or KVM
* sanitized value for ID registers.
*/
u64 (*reset)(struct kvm_vcpu *, const struct sys_reg_desc *);
/* Index into sys_reg[], or 0 if we don't need to save it. */ /* Index into sys_reg[], or 0 if we don't need to save it. */
int reg; int reg;
/* Value (usually reset value) */ /* Value (usually reset value), or write mask for idregs */
u64 val; u64 val;
/* Custom get/set_user functions, fallback to generic if NULL */ /* Custom get/set_user functions, fallback to generic if NULL */
...@@ -123,19 +133,21 @@ static inline bool read_zero(struct kvm_vcpu *vcpu, ...@@ -123,19 +133,21 @@ static inline bool read_zero(struct kvm_vcpu *vcpu,
} }
/* Reset functions */ /* Reset functions */
static inline void reset_unknown(struct kvm_vcpu *vcpu, static inline u64 reset_unknown(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *r) const struct sys_reg_desc *r)
{ {
BUG_ON(!r->reg); BUG_ON(!r->reg);
BUG_ON(r->reg >= NR_SYS_REGS); BUG_ON(r->reg >= NR_SYS_REGS);
__vcpu_sys_reg(vcpu, r->reg) = 0x1de7ec7edbadc0deULL; __vcpu_sys_reg(vcpu, r->reg) = 0x1de7ec7edbadc0deULL;
return __vcpu_sys_reg(vcpu, r->reg);
} }
static inline void reset_val(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static inline u64 reset_val(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
BUG_ON(!r->reg); BUG_ON(!r->reg);
BUG_ON(r->reg >= NR_SYS_REGS); BUG_ON(r->reg >= NR_SYS_REGS);
__vcpu_sys_reg(vcpu, r->reg) = r->val; __vcpu_sys_reg(vcpu, r->reg) = r->val;
return __vcpu_sys_reg(vcpu, r->reg);
} }
static inline unsigned int sysreg_visibility(const struct kvm_vcpu *vcpu, static inline unsigned int sysreg_visibility(const struct kvm_vcpu *vcpu,
......
...@@ -92,8 +92,12 @@ void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu); ...@@ -92,8 +92,12 @@ void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
/* /*
* Evaluates as true when emulating PMUv3p5, and false otherwise. * Evaluates as true when emulating PMUv3p5, and false otherwise.
*/ */
#define kvm_pmu_is_3p5(vcpu) \ #define kvm_pmu_is_3p5(vcpu) ({ \
(vcpu->kvm->arch.dfr0_pmuver.imp >= ID_AA64DFR0_EL1_PMUVer_V3P5) u64 val = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1); \
u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val); \
\
pmuver >= ID_AA64DFR0_EL1_PMUVer_V3P5; \
})
u8 kvm_arm_pmu_get_pmuver_limit(void); u8 kvm_arm_pmu_get_pmuver_limit(void);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment