Commit 8a3f30c4 authored by Palmer Dabbelt's avatar Palmer Dabbelt

Merge tag 'efi-riscv-shared-for-v5.10' of...

Merge tag 'efi-riscv-shared-for-v5.10' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/efi/efi into for-next

Stable branch for v5.10 shared between the EFI and RISC-V trees

The RISC-V EFI boot and runtime support will be merged for v5.10 via
the RISC-V tree. However, it incorporates some changes that conflict
with other EFI changes that are in flight, so this tag serves as a
shared base that allows those conflicts to be resolved beforehand.

* tag 'efi-riscv-shared-for-v5.10' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/efi/efi:
  efi/libstub: arm32: Use low allocation for the uncompressed kernel
  efi/libstub: Export efi_low_alloc_above() to other units
  efi/libstub: arm32: Base FDT and initrd placement on image address
  efi: Rename arm-init to efi-init common for all arch
  include: pe.h: Add RISC-V related PE definition
parents 54701a0d 762cd288
......@@ -66,25 +66,24 @@ static inline void efifb_setup_from_dmi(struct screen_info *si, const char *opt)
#define MAX_UNCOMP_KERNEL_SIZE SZ_32M
/*
* The kernel zImage should preferably be located between 32 MB and 128 MB
* from the base of DRAM. The min address leaves space for a maximal size
* uncompressed image, and the max address is due to how the zImage decompressor
* picks a destination address.
* phys-to-virt patching requires that the physical to virtual offset fits
* into the immediate field of an add/sub instruction, which comes down to the
* 24 least significant bits being zero, and so the offset should be a multiple
* of 16 MB. Since PAGE_OFFSET itself is a multiple of 16 MB, the physical
* base should be aligned to 16 MB as well.
*/
#define ZIMAGE_OFFSET_LIMIT SZ_128M
#define MIN_ZIMAGE_OFFSET MAX_UNCOMP_KERNEL_SIZE
#define EFI_PHYS_ALIGN SZ_16M
/* on ARM, the FDT should be located in the first 128 MB of RAM */
static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base)
/* on ARM, the FDT should be located in a lowmem region */
static inline unsigned long efi_get_max_fdt_addr(unsigned long image_addr)
{
return dram_base + ZIMAGE_OFFSET_LIMIT;
return round_down(image_addr, EFI_PHYS_ALIGN) + SZ_512M;
}
/* on ARM, the initrd should be loaded in a lowmem region */
static inline unsigned long efi_get_max_initrd_addr(unsigned long dram_base,
unsigned long image_addr)
static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr)
{
return dram_base + SZ_512M;
return round_down(image_addr, EFI_PHYS_ALIGN) + SZ_512M;
}
struct efi_arm_entry_state {
......
......@@ -65,7 +65,7 @@ efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...);
(SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN)
/* on arm64, the FDT may be located anywhere in system RAM */
static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base)
static inline unsigned long efi_get_max_fdt_addr(unsigned long image_addr)
{
return ULONG_MAX;
}
......@@ -80,8 +80,7 @@ static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base)
* apply to other bootloaders, and are required for some kernel
* configurations.
*/
static inline unsigned long efi_get_max_initrd_addr(unsigned long dram_base,
unsigned long image_addr)
static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr)
{
return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1));
}
......
......@@ -32,7 +32,7 @@ obj-$(CONFIG_EFI_EMBEDDED_FIRMWARE) += embedded-firmware.o
fake_map-y += fake_mem.o
fake_map-$(CONFIG_X86) += x86_fake_mem.o
arm-obj-$(CONFIG_EFI) := arm-init.o arm-runtime.o
arm-obj-$(CONFIG_EFI) := efi-init.o arm-runtime.o
obj-$(CONFIG_ARM) += $(arm-obj-y)
obj-$(CONFIG_ARM64) += $(arm-obj-y)
obj-$(CONFIG_EFI_CAPSULE_LOADER) += capsule-loader.o
......
......@@ -113,162 +113,58 @@ void free_screen_info(struct screen_info *si)
efi_bs_call(free_pool, si);
}
static efi_status_t reserve_kernel_base(unsigned long dram_base,
efi_status_t handle_kernel_image(unsigned long *image_addr,
unsigned long *image_size,
unsigned long *reserve_addr,
unsigned long *reserve_size)
unsigned long *reserve_size,
efi_loaded_image_t *image)
{
efi_physical_addr_t alloc_addr;
efi_memory_desc_t *memory_map;
unsigned long nr_pages, map_size, desc_size, buff_size;
const int slack = TEXT_OFFSET - 5 * PAGE_SIZE;
int alloc_size = MAX_UNCOMP_KERNEL_SIZE + EFI_PHYS_ALIGN;
unsigned long alloc_base, kernel_base;
efi_status_t status;
unsigned long l;
struct efi_boot_memmap map = {
.map = &memory_map,
.map_size = &map_size,
.desc_size = &desc_size,
.desc_ver = NULL,
.key_ptr = NULL,
.buff_size = &buff_size,
};
/*
* Reserve memory for the uncompressed kernel image. This is
* all that prevents any future allocations from conflicting
* with the kernel. Since we can't tell from the compressed
* image how much DRAM the kernel actually uses (due to BSS
* size uncertainty) we allocate the maximum possible size.
* Do this very early, as prints can cause memory allocations
* that may conflict with this.
*/
alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
if (status == EFI_SUCCESS) {
if (alloc_addr == dram_base) {
*reserve_addr = alloc_addr;
*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
return EFI_SUCCESS;
}
/*
* If we end up here, the allocation succeeded but starts below
* dram_base. This can only occur if the real base of DRAM is
* not a multiple of 128 MB, in which case dram_base will have
* been rounded up. Since this implies that a part of the region
* was already occupied, we need to fall through to the code
* below to ensure that the existing allocations don't conflict.
* For this reason, we use EFI_BOOT_SERVICES_DATA above and not
* EFI_LOADER_DATA, which we wouldn't able to distinguish from
* allocations that we want to disallow.
*/
}
/*
* If the allocation above failed, we may still be able to proceed:
* if the only allocations in the region are of types that will be
* released to the OS after ExitBootServices(), the decompressor can
* safely overwrite them.
* Allocate space for the decompressed kernel as low as possible.
* The region should be 16 MiB aligned, but the first 'slack' bytes
* are not used by Linux, so we allow those to be occupied by the
* firmware.
*/
status = efi_get_memory_map(&map);
status = efi_low_alloc_above(alloc_size, EFI_PAGE_SIZE, &alloc_base, 0x0);
if (status != EFI_SUCCESS) {
efi_err("reserve_kernel_base(): Unable to retrieve memory map.\n");
efi_err("Unable to allocate memory for uncompressed kernel.\n");
return status;
}
for (l = 0; l < map_size; l += desc_size) {
efi_memory_desc_t *desc;
u64 start, end;
desc = (void *)memory_map + l;
start = desc->phys_addr;
end = start + desc->num_pages * EFI_PAGE_SIZE;
/* Skip if entry does not intersect with region */
if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
end <= dram_base)
continue;
switch (desc->type) {
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
/* Ignore types that are released to the OS anyway */
continue;
case EFI_CONVENTIONAL_MEMORY:
/* Skip soft reserved conventional memory */
if (efi_soft_reserve_enabled() &&
(desc->attribute & EFI_MEMORY_SP))
continue;
if ((alloc_base % EFI_PHYS_ALIGN) > slack) {
/*
* Reserve the intersection between this entry and the
* region.
* More than 'slack' bytes are already occupied at the base of
* the allocation, so we need to advance to the next 16 MiB block.
*/
start = max(start, (u64)dram_base);
end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
status = efi_bs_call(allocate_pages,
EFI_ALLOCATE_ADDRESS,
EFI_LOADER_DATA,
(end - start) / EFI_PAGE_SIZE,
&start);
if (status != EFI_SUCCESS) {
efi_err("reserve_kernel_base(): alloc failed.\n");
goto out;
kernel_base = round_up(alloc_base, EFI_PHYS_ALIGN);
efi_info("Free memory starts at 0x%lx, setting kernel_base to 0x%lx\n",
alloc_base, kernel_base);
} else {
kernel_base = round_down(alloc_base, EFI_PHYS_ALIGN);
}
break;
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
/*
* These regions may be released and reallocated for
* another purpose (including EFI_RUNTIME_SERVICE_DATA)
* at any time during the execution of the OS loader,
* so we cannot consider them as safe.
*/
default:
/*
* Treat any other allocation in the region as unsafe */
status = EFI_OUT_OF_RESOURCES;
goto out;
}
}
status = EFI_SUCCESS;
out:
efi_bs_call(free_pool, memory_map);
return status;
}
efi_status_t handle_kernel_image(unsigned long *image_addr,
unsigned long *image_size,
unsigned long *reserve_addr,
unsigned long *reserve_size,
unsigned long dram_base,
efi_loaded_image_t *image)
{
unsigned long kernel_base;
efi_status_t status;
/* use a 16 MiB aligned base for the decompressed kernel */
kernel_base = round_up(dram_base, SZ_16M) + TEXT_OFFSET;
*reserve_addr = kernel_base + slack;
*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
/*
* Note that some platforms (notably, the Raspberry Pi 2) put
* spin-tables and other pieces of firmware at the base of RAM,
* abusing the fact that the window of TEXT_OFFSET bytes at the
* base of the kernel image is only partially used at the moment.
* (Up to 5 pages are used for the swapper page tables)
*/
status = reserve_kernel_base(kernel_base - 5 * PAGE_SIZE, reserve_addr,
reserve_size);
if (status != EFI_SUCCESS) {
efi_err("Unable to allocate memory for uncompressed kernel.\n");
return status;
/* now free the parts that we will not use */
if (*reserve_addr > alloc_base) {
efi_bs_call(free_pages, alloc_base,
(*reserve_addr - alloc_base) / EFI_PAGE_SIZE);
alloc_size -= *reserve_addr - alloc_base;
}
efi_bs_call(free_pages, *reserve_addr + MAX_UNCOMP_KERNEL_SIZE,
(alloc_size - MAX_UNCOMP_KERNEL_SIZE) / EFI_PAGE_SIZE);
*image_addr = kernel_base;
*image_addr = kernel_base + TEXT_OFFSET;
*image_size = 0;
efi_debug("image addr == 0x%lx, reserve_addr == 0x%lx\n",
*image_addr, *reserve_addr);
return EFI_SUCCESS;
}
......@@ -50,7 +50,6 @@ efi_status_t handle_kernel_image(unsigned long *image_addr,
unsigned long *image_size,
unsigned long *reserve_addr,
unsigned long *reserve_size,
unsigned long dram_base,
efi_loaded_image_t *image)
{
efi_status_t status;
......
......@@ -87,40 +87,6 @@ static void install_memreserve_table(void)
efi_err("Failed to install memreserve config table!\n");
}
static unsigned long get_dram_base(void)
{
efi_status_t status;
unsigned long map_size, buff_size;
unsigned long membase = EFI_ERROR;
struct efi_memory_map map;
efi_memory_desc_t *md;
struct efi_boot_memmap boot_map;
boot_map.map = (efi_memory_desc_t **)&map.map;
boot_map.map_size = &map_size;
boot_map.desc_size = &map.desc_size;
boot_map.desc_ver = NULL;
boot_map.key_ptr = NULL;
boot_map.buff_size = &buff_size;
status = efi_get_memory_map(&boot_map);
if (status != EFI_SUCCESS)
return membase;
map.map_end = map.map + map_size;
for_each_efi_memory_desc_in_map(&map, md) {
if (md->attribute & EFI_MEMORY_WB) {
if (membase > md->phys_addr)
membase = md->phys_addr;
}
}
efi_bs_call(free_pool, map.map);
return membase;
}
/*
* EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
* that is described in the PE/COFF header. Most of the code is the same
......@@ -134,7 +100,6 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
efi_status_t status;
unsigned long image_addr;
unsigned long image_size = 0;
unsigned long dram_base;
/* addr/point and size pairs for memory management*/
unsigned long initrd_addr = 0;
unsigned long initrd_size = 0;
......@@ -174,13 +139,6 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
goto fail;
}
dram_base = get_dram_base();
if (dram_base == EFI_ERROR) {
efi_err("Failed to find DRAM base\n");
status = EFI_LOAD_ERROR;
goto fail;
}
/*
* Get the command line from EFI, using the LOADED_IMAGE
* protocol. We are going to copy the command line into the
......@@ -218,7 +176,7 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
status = handle_kernel_image(&image_addr, &image_size,
&reserve_addr,
&reserve_size,
dram_base, image);
image);
if (status != EFI_SUCCESS) {
efi_err("Failed to relocate kernel\n");
goto fail_free_screeninfo;
......@@ -262,7 +220,7 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
efi_info("Generating empty DTB\n");
if (!efi_noinitrd) {
max_addr = efi_get_max_initrd_addr(dram_base, image_addr);
max_addr = efi_get_max_initrd_addr(image_addr);
status = efi_load_initrd(image, &initrd_addr, &initrd_size,
ULONG_MAX, max_addr);
if (status != EFI_SUCCESS)
......@@ -306,7 +264,7 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
install_memreserve_table();
status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
efi_get_max_fdt_addr(dram_base),
efi_get_max_fdt_addr(image_addr),
initrd_addr, initrd_size,
cmdline_ptr, fdt_addr, fdt_size);
if (status != EFI_SUCCESS)
......
......@@ -10,9 +10,6 @@
#include <linux/types.h>
#include <asm/efi.h>
/* error code which can't be mistaken for valid address */
#define EFI_ERROR (~0UL)
/*
* __init annotations should not be used in the EFI stub, since the code is
* either included in the decompressor (x86, ARM) where they have no effect,
......@@ -740,6 +737,9 @@ efi_status_t efi_allocate_pages(unsigned long size, unsigned long *addr,
efi_status_t efi_allocate_pages_aligned(unsigned long size, unsigned long *addr,
unsigned long max, unsigned long align);
efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
unsigned long *addr, unsigned long min);
efi_status_t efi_relocate_kernel(unsigned long *image_addr,
unsigned long image_size,
unsigned long alloc_size,
......@@ -786,7 +786,6 @@ efi_status_t handle_kernel_image(unsigned long *image_addr,
unsigned long *image_size,
unsigned long *reserve_addr,
unsigned long *reserve_size,
unsigned long dram_base,
efi_loaded_image_t *image);
asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint,
......
......@@ -20,7 +20,7 @@
*
* Return: status code
*/
static efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
unsigned long *addr, unsigned long min)
{
unsigned long map_size, desc_size, buff_size;
......
......@@ -55,6 +55,9 @@
#define IMAGE_FILE_MACHINE_POWERPC 0x01f0
#define IMAGE_FILE_MACHINE_POWERPCFP 0x01f1
#define IMAGE_FILE_MACHINE_R4000 0x0166
#define IMAGE_FILE_MACHINE_RISCV32 0x5032
#define IMAGE_FILE_MACHINE_RISCV64 0x5064
#define IMAGE_FILE_MACHINE_RISCV128 0x5128
#define IMAGE_FILE_MACHINE_SH3 0x01a2
#define IMAGE_FILE_MACHINE_SH3DSP 0x01a3
#define IMAGE_FILE_MACHINE_SH3E 0x01a4
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment