Commit 92c020d0 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:
 "The main scheduler changes in this cycle were:

   - support Intel Turbo Boost Max Technology 3.0 (TBM3) by introducig a
     notion of 'better cores', which the scheduler will prefer to
     schedule single threaded workloads on. (Tim Chen, Srinivas
     Pandruvada)

   - enhance the handling of asymmetric capacity CPUs further (Morten
     Rasmussen)

   - improve/fix load handling when moving tasks between task groups
     (Vincent Guittot)

   - simplify and clean up the cputime code (Stanislaw Gruszka)

   - improve mass fork()ed task spread a.k.a. hackbench speedup (Vincent
     Guittot)

   - make struct kthread kmalloc()ed and related fixes (Oleg Nesterov)

   - add uaccess atomicity debugging (when using access_ok() in the
     wrong context), under CONFIG_DEBUG_ATOMIC_SLEEP=y (Peter Zijlstra)

   - implement various fixes, cleanups and other enhancements (Daniel
     Bristot de Oliveira, Martin Schwidefsky, Rafael J. Wysocki)"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
  sched/core: Use load_avg for selecting idlest group
  sched/core: Fix find_idlest_group() for fork
  kthread: Don't abuse kthread_create_on_cpu() in __kthread_create_worker()
  kthread: Don't use to_live_kthread() in kthread_[un]park()
  kthread: Don't use to_live_kthread() in kthread_stop()
  Revert "kthread: Pin the stack via try_get_task_stack()/put_task_stack() in to_live_kthread() function"
  kthread: Make struct kthread kmalloc'ed
  x86/uaccess, sched/preempt: Verify access_ok() context
  sched/x86: Make CONFIG_SCHED_MC_PRIO=y easier to enable
  sched/x86: Change CONFIG_SCHED_ITMT to CONFIG_SCHED_MC_PRIO
  x86/sched: Use #include <linux/mutex.h> instead of #include <asm/mutex.h>
  cpufreq/intel_pstate: Use CPPC to get max performance
  acpi/bus: Set _OSC for diverse core support
  acpi/bus: Enable HWP CPPC objects
  x86/sched: Add SD_ASYM_PACKING flags to x86 ITMT CPU
  x86/sysctl: Add sysctl for ITMT scheduling feature
  x86: Enable Intel Turbo Boost Max Technology 3.0
  x86/topology: Define x86's arch_update_cpu_topology
  sched: Extend scheduler's asym packing
  sched/fair: Clean up the tunable parameter definitions
  ...
parents bca13ce4 6b94780e
......@@ -513,6 +513,9 @@ config HAVE_CONTEXT_TRACKING
config HAVE_VIRT_CPU_ACCOUNTING
bool
config ARCH_HAS_SCALED_CPUTIME
bool
config HAVE_VIRT_CPU_ACCOUNTING_GEN
bool
default y if 64BIT
......
......@@ -68,7 +68,7 @@ void vtime_account_user(struct task_struct *tsk)
if (ti->ac_utime) {
delta_utime = cycle_to_cputime(ti->ac_utime);
account_user_time(tsk, delta_utime, delta_utime);
account_user_time(tsk, delta_utime);
ti->ac_utime = 0;
}
}
......@@ -112,7 +112,7 @@ void vtime_account_system(struct task_struct *tsk)
{
cputime_t delta = vtime_delta(tsk);
account_system_time(tsk, 0, delta, delta);
account_system_time(tsk, 0, delta);
}
EXPORT_SYMBOL_GPL(vtime_account_system);
......
......@@ -160,6 +160,7 @@ config PPC
select HAVE_LIVEPATCH if HAVE_DYNAMIC_FTRACE_WITH_REGS
select GENERIC_CPU_AUTOPROBE
select HAVE_VIRT_CPU_ACCOUNTING
select ARCH_HAS_SCALED_CPUTIME if VIRT_CPU_ACCOUNTING_NATIVE
select HAVE_ARCH_HARDENED_USERCOPY
select HAVE_KERNEL_GZIP
......
......@@ -46,26 +46,12 @@ extern cputime_t cputime_one_jiffy;
* Convert cputime <-> jiffies
*/
extern u64 __cputime_jiffies_factor;
DECLARE_PER_CPU(unsigned long, cputime_last_delta);
DECLARE_PER_CPU(unsigned long, cputime_scaled_last_delta);
static inline unsigned long cputime_to_jiffies(const cputime_t ct)
{
return mulhdu((__force u64) ct, __cputime_jiffies_factor);
}
/* Estimate the scaled cputime by scaling the real cputime based on
* the last scaled to real ratio */
static inline cputime_t cputime_to_scaled(const cputime_t ct)
{
if (cpu_has_feature(CPU_FTR_SPURR) &&
__this_cpu_read(cputime_last_delta))
return (__force u64) ct *
__this_cpu_read(cputime_scaled_last_delta) /
__this_cpu_read(cputime_last_delta);
return ct;
}
static inline cputime_t jiffies_to_cputime(const unsigned long jif)
{
u64 ct;
......
......@@ -164,8 +164,6 @@ u64 __cputime_sec_factor;
EXPORT_SYMBOL(__cputime_sec_factor);
u64 __cputime_clockt_factor;
EXPORT_SYMBOL(__cputime_clockt_factor);
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
cputime_t cputime_one_jiffy;
......@@ -360,7 +358,8 @@ void vtime_account_system(struct task_struct *tsk)
unsigned long delta, sys_scaled, stolen;
delta = vtime_delta(tsk, &sys_scaled, &stolen);
account_system_time(tsk, 0, delta, sys_scaled);
account_system_time(tsk, 0, delta);
tsk->stimescaled += sys_scaled;
if (stolen)
account_steal_time(stolen);
}
......@@ -393,7 +392,8 @@ void vtime_account_user(struct task_struct *tsk)
acct->user_time = 0;
acct->user_time_scaled = 0;
acct->utime_sspurr = 0;
account_user_time(tsk, utime, utimescaled);
account_user_time(tsk, utime);
tsk->utimescaled += utimescaled;
}
#ifdef CONFIG_PPC32
......
......@@ -171,6 +171,7 @@ config S390
select SYSCTL_EXCEPTION_TRACE
select TTY
select VIRT_CPU_ACCOUNTING
select ARCH_HAS_SCALED_CPUTIME
select VIRT_TO_BUS
select HAVE_NMI
......
......@@ -137,8 +137,10 @@ static int do_account_vtime(struct task_struct *tsk, int hardirq_offset)
user_scaled = (user_scaled * mult) / div;
system_scaled = (system_scaled * mult) / div;
}
account_user_time(tsk, user, user_scaled);
account_system_time(tsk, hardirq_offset, system, system_scaled);
account_user_time(tsk, user);
tsk->utimescaled += user_scaled;
account_system_time(tsk, hardirq_offset, system);
tsk->stimescaled += system_scaled;
steal = S390_lowcore.steal_timer;
if ((s64) steal > 0) {
......@@ -202,7 +204,8 @@ void vtime_account_irq_enter(struct task_struct *tsk)
system_scaled = (system_scaled * mult) / div;
}
account_system_time(tsk, 0, system, system_scaled);
account_system_time(tsk, 0, system);
tsk->stimescaled += system_scaled;
virt_timer_forward(system);
}
......
......@@ -939,6 +939,27 @@ config SCHED_MC
making when dealing with multi-core CPU chips at a cost of slightly
increased overhead in some places. If unsure say N here.
config SCHED_MC_PRIO
bool "CPU core priorities scheduler support"
depends on SCHED_MC && CPU_SUP_INTEL
select X86_INTEL_PSTATE
select CPU_FREQ
default y
---help---
Intel Turbo Boost Max Technology 3.0 enabled CPUs have a
core ordering determined at manufacturing time, which allows
certain cores to reach higher turbo frequencies (when running
single threaded workloads) than others.
Enabling this kernel feature teaches the scheduler about
the TBM3 (aka ITMT) priority order of the CPU cores and adjusts the
scheduler's CPU selection logic accordingly, so that higher
overall system performance can be achieved.
This feature will have no effect on CPUs without this feature.
If unsure say Y here.
source "kernel/Kconfig.preempt"
config UP_LATE_INIT
......
......@@ -24,7 +24,13 @@ static __always_inline int preempt_count(void)
static __always_inline void preempt_count_set(int pc)
{
raw_cpu_write_4(__preempt_count, pc);
int old, new;
do {
old = raw_cpu_read_4(__preempt_count);
new = (old & PREEMPT_NEED_RESCHED) |
(pc & ~PREEMPT_NEED_RESCHED);
} while (raw_cpu_cmpxchg_4(__preempt_count, old, new) != old);
}
/*
......
......@@ -146,4 +146,36 @@ struct pci_bus;
int x86_pci_root_bus_node(int bus);
void x86_pci_root_bus_resources(int bus, struct list_head *resources);
extern bool x86_topology_update;
#ifdef CONFIG_SCHED_MC_PRIO
#include <asm/percpu.h>
DECLARE_PER_CPU_READ_MOSTLY(int, sched_core_priority);
extern unsigned int __read_mostly sysctl_sched_itmt_enabled;
/* Interface to set priority of a cpu */
void sched_set_itmt_core_prio(int prio, int core_cpu);
/* Interface to notify scheduler that system supports ITMT */
int sched_set_itmt_support(void);
/* Interface to notify scheduler that system revokes ITMT support */
void sched_clear_itmt_support(void);
#else /* CONFIG_SCHED_MC_PRIO */
#define sysctl_sched_itmt_enabled 0
static inline void sched_set_itmt_core_prio(int prio, int core_cpu)
{
}
static inline int sched_set_itmt_support(void)
{
return 0;
}
static inline void sched_clear_itmt_support(void)
{
}
#endif /* CONFIG_SCHED_MC_PRIO */
#endif /* _ASM_X86_TOPOLOGY_H */
......@@ -68,6 +68,12 @@ static inline bool __chk_range_not_ok(unsigned long addr, unsigned long size, un
__chk_range_not_ok((unsigned long __force)(addr), size, limit); \
})
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
# define WARN_ON_IN_IRQ() WARN_ON_ONCE(!in_task())
#else
# define WARN_ON_IN_IRQ()
#endif
/**
* access_ok: - Checks if a user space pointer is valid
* @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
......@@ -88,8 +94,11 @@ static inline bool __chk_range_not_ok(unsigned long addr, unsigned long size, un
* checks that the pointer is in the user space range - after calling
* this function, memory access functions may still return -EFAULT.
*/
#define access_ok(type, addr, size) \
likely(!__range_not_ok(addr, size, user_addr_max()))
#define access_ok(type, addr, size) \
({ \
WARN_ON_IN_IRQ(); \
likely(!__range_not_ok(addr, size, user_addr_max())); \
})
/*
* These are the main single-value transfer routines. They automatically
......
......@@ -123,6 +123,7 @@ obj-$(CONFIG_EFI) += sysfb_efi.o
obj-$(CONFIG_PERF_EVENTS) += perf_regs.o
obj-$(CONFIG_TRACING) += tracepoint.o
obj-$(CONFIG_SCHED_MC_PRIO) += itmt.o
ifdef CONFIG_FRAME_POINTER
obj-y += unwind_frame.o
......
......@@ -906,14 +906,14 @@ static int apm_cpu_idle(struct cpuidle_device *dev,
static int use_apm_idle; /* = 0 */
static unsigned int last_jiffies; /* = 0 */
static unsigned int last_stime; /* = 0 */
cputime_t stime;
cputime_t stime, utime;
int apm_idle_done = 0;
unsigned int jiffies_since_last_check = jiffies - last_jiffies;
unsigned int bucket;
recalc:
task_cputime(current, NULL, &stime);
task_cputime(current, &utime, &stime);
if (jiffies_since_last_check > IDLE_CALC_LIMIT) {
use_apm_idle = 0;
} else if (jiffies_since_last_check > idle_period) {
......
/*
* itmt.c: Support Intel Turbo Boost Max Technology 3.0
*
* (C) Copyright 2016 Intel Corporation
* Author: Tim Chen <tim.c.chen@linux.intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*
* On platforms supporting Intel Turbo Boost Max Technology 3.0, (ITMT),
* the maximum turbo frequencies of some cores in a CPU package may be
* higher than for the other cores in the same package. In that case,
* better performance can be achieved by making the scheduler prefer
* to run tasks on the CPUs with higher max turbo frequencies.
*
* This file provides functions and data structures for enabling the
* scheduler to favor scheduling on cores can be boosted to a higher
* frequency under ITMT.
*/
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/sysctl.h>
#include <linux/nodemask.h>
static DEFINE_MUTEX(itmt_update_mutex);
DEFINE_PER_CPU_READ_MOSTLY(int, sched_core_priority);
/* Boolean to track if system has ITMT capabilities */
static bool __read_mostly sched_itmt_capable;
/*
* Boolean to control whether we want to move processes to cpu capable
* of higher turbo frequency for cpus supporting Intel Turbo Boost Max
* Technology 3.0.
*
* It can be set via /proc/sys/kernel/sched_itmt_enabled
*/
unsigned int __read_mostly sysctl_sched_itmt_enabled;
static int sched_itmt_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
unsigned int old_sysctl;
int ret;
mutex_lock(&itmt_update_mutex);
if (!sched_itmt_capable) {
mutex_unlock(&itmt_update_mutex);
return -EINVAL;
}
old_sysctl = sysctl_sched_itmt_enabled;
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!ret && write && old_sysctl != sysctl_sched_itmt_enabled) {
x86_topology_update = true;
rebuild_sched_domains();
}
mutex_unlock(&itmt_update_mutex);
return ret;
}
static unsigned int zero;
static unsigned int one = 1;
static struct ctl_table itmt_kern_table[] = {
{
.procname = "sched_itmt_enabled",
.data = &sysctl_sched_itmt_enabled,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = sched_itmt_update_handler,
.extra1 = &zero,
.extra2 = &one,
},
{}
};
static struct ctl_table itmt_root_table[] = {
{
.procname = "kernel",
.mode = 0555,
.child = itmt_kern_table,
},
{}
};
static struct ctl_table_header *itmt_sysctl_header;
/**
* sched_set_itmt_support() - Indicate platform supports ITMT
*
* This function is used by the OS to indicate to scheduler that the platform
* is capable of supporting the ITMT feature.
*
* The current scheme has the pstate driver detects if the system
* is ITMT capable and call sched_set_itmt_support.
*
* This must be done only after sched_set_itmt_core_prio
* has been called to set the cpus' priorities.
* It must not be called with cpu hot plug lock
* held as we need to acquire the lock to rebuild sched domains
* later.
*
* Return: 0 on success
*/
int sched_set_itmt_support(void)
{
mutex_lock(&itmt_update_mutex);
if (sched_itmt_capable) {
mutex_unlock(&itmt_update_mutex);
return 0;
}
itmt_sysctl_header = register_sysctl_table(itmt_root_table);
if (!itmt_sysctl_header) {
mutex_unlock(&itmt_update_mutex);
return -ENOMEM;
}
sched_itmt_capable = true;
sysctl_sched_itmt_enabled = 1;
if (sysctl_sched_itmt_enabled) {
x86_topology_update = true;
rebuild_sched_domains();
}
mutex_unlock(&itmt_update_mutex);
return 0;
}
/**
* sched_clear_itmt_support() - Revoke platform's support of ITMT
*
* This function is used by the OS to indicate that it has
* revoked the platform's support of ITMT feature.
*
* It must not be called with cpu hot plug lock
* held as we need to acquire the lock to rebuild sched domains
* later.
*/
void sched_clear_itmt_support(void)
{
mutex_lock(&itmt_update_mutex);
if (!sched_itmt_capable) {
mutex_unlock(&itmt_update_mutex);
return;
}
sched_itmt_capable = false;
if (itmt_sysctl_header) {
unregister_sysctl_table(itmt_sysctl_header);
itmt_sysctl_header = NULL;
}
if (sysctl_sched_itmt_enabled) {
/* disable sched_itmt if we are no longer ITMT capable */
sysctl_sched_itmt_enabled = 0;
x86_topology_update = true;
rebuild_sched_domains();
}
mutex_unlock(&itmt_update_mutex);
}
int arch_asym_cpu_priority(int cpu)
{
return per_cpu(sched_core_priority, cpu);
}
/**
* sched_set_itmt_core_prio() - Set CPU priority based on ITMT
* @prio: Priority of cpu core
* @core_cpu: The cpu number associated with the core
*
* The pstate driver will find out the max boost frequency
* and call this function to set a priority proportional
* to the max boost frequency. CPU with higher boost
* frequency will receive higher priority.
*
* No need to rebuild sched domain after updating
* the CPU priorities. The sched domains have no
* dependency on CPU priorities.
*/
void sched_set_itmt_core_prio(int prio, int core_cpu)
{
int cpu, i = 1;
for_each_cpu(cpu, topology_sibling_cpumask(core_cpu)) {
int smt_prio;
/*
* Ensure that the siblings are moved to the end
* of the priority chain and only used when
* all other high priority cpus are out of capacity.
*/
smt_prio = prio * smp_num_siblings / i;
per_cpu(sched_core_priority, cpu) = smt_prio;
i++;
}
}
......@@ -109,6 +109,17 @@ static bool logical_packages_frozen __read_mostly;
/* Maximum number of SMT threads on any online core */
int __max_smt_threads __read_mostly;
/* Flag to indicate if a complete sched domain rebuild is required */
bool x86_topology_update;
int arch_update_cpu_topology(void)
{
int retval = x86_topology_update;
x86_topology_update = false;
return retval;
}
static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
{
unsigned long flags;
......@@ -471,22 +482,42 @@ static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
return false;
}
#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
static inline int x86_sched_itmt_flags(void)
{
return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
}
#ifdef CONFIG_SCHED_MC
static int x86_core_flags(void)
{
return cpu_core_flags() | x86_sched_itmt_flags();
}
#endif
#ifdef CONFIG_SCHED_SMT
static int x86_smt_flags(void)
{
return cpu_smt_flags() | x86_sched_itmt_flags();
}
#endif
#endif
static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
#ifdef CONFIG_SCHED_SMT
{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
#endif
{ NULL, },
};
static struct sched_domain_topology_level x86_topology[] = {
#ifdef CONFIG_SCHED_SMT
{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
#endif
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
{ NULL, },
......
......@@ -331,6 +331,16 @@ static void acpi_bus_osc_support(void)
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT;
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT;
#ifdef CONFIG_X86
if (boot_cpu_has(X86_FEATURE_HWP)) {
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT;
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT;
}
#endif
if (IS_ENABLED(CONFIG_SCHED_MC_PRIO))
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT;
if (!ghes_disable)
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT;
if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle)))
......
......@@ -6,6 +6,7 @@ config X86_INTEL_PSTATE
bool "Intel P state control"
depends on X86
select ACPI_PROCESSOR if ACPI
select ACPI_CPPC_LIB if X86_64 && ACPI && SCHED_MC_PRIO
help
This driver provides a P state for Intel core processors.
The driver implements an internal governor and will become
......
......@@ -44,6 +44,7 @@
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#include <acpi/cppc_acpi.h>
#endif
#define FRAC_BITS 8
......@@ -379,14 +380,67 @@ static bool intel_pstate_get_ppc_enable_status(void)
return acpi_ppc;
}
#ifdef CONFIG_ACPI_CPPC_LIB
/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
sched_set_itmt_support();
}
static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
static void intel_pstate_set_itmt_prio(int cpu)
{
struct cppc_perf_caps cppc_perf;
static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
int ret;
ret = cppc_get_perf_caps(cpu, &cppc_perf);
if (ret)
return;
/*
* The priorities can be set regardless of whether or not
* sched_set_itmt_support(true) has been called and it is valid to
* update them at any time after it has been called.
*/
sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
if (max_highest_perf <= min_highest_perf) {
if (cppc_perf.highest_perf > max_highest_perf)
max_highest_perf = cppc_perf.highest_perf;
if (cppc_perf.highest_perf < min_highest_perf)
min_highest_perf = cppc_perf.highest_perf;
if (max_highest_perf > min_highest_perf) {
/*
* This code can be run during CPU online under the
* CPU hotplug locks, so sched_set_itmt_support()
* cannot be called from here. Queue up a work item
* to invoke it.
*/
schedule_work(&sched_itmt_work);
}
}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
struct cpudata *cpu;
int ret;
int i;
if (hwp_active)
if (hwp_active) {
intel_pstate_set_itmt_prio(policy->cpu);
return;
}
if (!intel_pstate_get_ppc_enable_status())
return;
......
......@@ -7,7 +7,6 @@ typedef unsigned long __nocast cputime_t;
#define cputime_one_jiffy jiffies_to_cputime(1)
#define cputime_to_jiffies(__ct) (__force unsigned long)(__ct)
#define cputime_to_scaled(__ct) (__ct)
#define jiffies_to_cputime(__hz) (__force cputime_t)(__hz)
typedef u64 __nocast cputime64_t;
......
......@@ -34,7 +34,6 @@ typedef u64 __nocast cputime64_t;
*/
#define cputime_to_jiffies(__ct) \
cputime_div(__ct, NSEC_PER_SEC / HZ)
#define cputime_to_scaled(__ct) (__ct)
#define jiffies_to_cputime(__jif) \
(__force cputime_t)((__jif) * (NSEC_PER_SEC / HZ))
#define cputime64_to_jiffies64(__ct) \
......
......@@ -469,6 +469,7 @@ acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context);
#define OSC_SB_CPCV2_SUPPORT 0x00000040
#define OSC_SB_PCLPI_SUPPORT 0x00000080
#define OSC_SB_OSLPI_SUPPORT 0x00000100
#define OSC_SB_CPC_DIVERSE_HIGH_SUPPORT 0x00001000
extern bool osc_sb_apei_support_acked;
extern bool osc_pc_lpi_support_confirmed;
......
......@@ -78,8 +78,8 @@ static inline unsigned int kstat_cpu_irqs_sum(unsigned int cpu)
return kstat_cpu(cpu).irqs_sum;
}
extern void account_user_time(struct task_struct *, cputime_t, cputime_t);
extern void account_system_time(struct task_struct *, int, cputime_t, cputime_t);
extern void account_user_time(struct task_struct *, cputime_t);
extern void account_system_time(struct task_struct *, int, cputime_t);
extern void account_steal_time(cputime_t);
extern void account_idle_time(cputime_t);
......
......@@ -48,6 +48,7 @@ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
__k; \
})
void free_kthread_struct(struct task_struct *k);
void kthread_bind(struct task_struct *k, unsigned int cpu);
void kthread_bind_mask(struct task_struct *k, const struct cpumask *mask);
int kthread_stop(struct task_struct *k);
......
......@@ -65,19 +65,24 @@
/*
* Are we doing bottom half or hardware interrupt processing?
* Are we in a softirq context? Interrupt context?
* in_softirq - Are we currently processing softirq or have bh disabled?
* in_serving_softirq - Are we currently processing softirq?
*
* in_irq() - We're in (hard) IRQ context
* in_softirq() - We have BH disabled, or are processing softirqs
* in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
* in_serving_softirq() - We're in softirq context
* in_nmi() - We're in NMI context
* in_task() - We're in task context
*
* Note: due to the BH disabled confusion: in_softirq(),in_interrupt() really
* should not be used in new code.
*/
#define in_irq() (hardirq_count())
#define in_softirq() (softirq_count())
#define in_interrupt() (irq_count())
#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET)
/*
* Are we in NMI context?
*/
#define in_nmi() (preempt_count() & NMI_MASK)
#define in_nmi() (preempt_count() & NMI_MASK)
#define in_task() (!(preempt_count() & \
(NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
/*
* The preempt_count offset after preempt_disable();
......
......@@ -262,20 +262,9 @@ extern char ___assert_task_state[1 - 2*!!(
#define set_task_state(tsk, state_value) \
do { \
(tsk)->task_state_change = _THIS_IP_; \
smp_store_mb((tsk)->state, (state_value)); \
smp_store_mb((tsk)->state, (state_value)); \
} while (0)
/*
* set_current_state() includes a barrier so that the write of current->state
* is correctly serialised wrt the caller's subsequent test of whether to
* actually sleep:
*
* set_current_state(TASK_UNINTERRUPTIBLE);
* if (do_i_need_to_sleep())
* schedule();
*
* If the caller does not need such serialisation then use __set_current_state()
*/
#define __set_current_state(state_value) \
do { \
current->task_state_change = _THIS_IP_; \
......@@ -284,11 +273,19 @@ extern char ___assert_task_state[1 - 2*!!(
#define set_current_state(state_value) \
do { \
current->task_state_change = _THIS_IP_; \
smp_store_mb(current->state, (state_value)); \
smp_store_mb(current->state, (state_value)); \
} while (0)
#else
/*
* @tsk had better be current, or you get to keep the pieces.
*
* The only reason is that computing current can be more expensive than
* using a pointer that's already available.
*
* Therefore, see set_current_state().
*/
#define __set_task_state(tsk, state_value) \
do { (tsk)->state = (state_value); } while (0)
#define set_task_state(tsk, state_value) \
......@@ -299,11 +296,34 @@ extern char ___assert_task_state[1 - 2*!!(
* is correctly serialised wrt the caller's subsequent test of whether to
* actually sleep:
*
* for (;;) {
* set_current_state(TASK_UNINTERRUPTIBLE);
* if (do_i_need_to_sleep())
* schedule();
* if (!need_sleep)
* break;
*
* schedule();
* }
* __set_current_state(TASK_RUNNING);
*
* If the caller does not need such serialisation (because, for instance, the
* condition test and condition change and wakeup are under the same lock) then
* use __set_current_state().
*
* The above is typically ordered against the wakeup, which does:
*
* need_sleep = false;
* wake_up_state(p, TASK_UNINTERRUPTIBLE);
*
* Where wake_up_state() (and all other wakeup primitives) imply enough
* barriers to order the store of the variable against wakeup.
*
* Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
* once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
* TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
*
* If the caller does not need such serialisation then use __set_current_state()
* This is obviously fine, since they both store the exact same value.
*
* Also see the comments of try_to_wake_up().
*/
#define __set_current_state(state_value) \
do { current->state = (state_value); } while (0)
......@@ -1057,6 +1077,8 @@ static inline int cpu_numa_flags(void)
}
#endif
extern int arch_asym_cpu_priority(int cpu);
struct sched_domain_attr {
int relax_domain_level;
};
......@@ -1627,7 +1649,10 @@ struct task_struct {
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
cputime_t utime, stime, utimescaled, stimescaled;
cputime_t utime, stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
cputime_t utimescaled, stimescaled;
#endif
cputime_t gtime;
struct prev_cputime prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
......@@ -2220,34 +2245,38 @@ struct task_struct *try_get_task_struct(struct task_struct **ptask);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
extern void task_cputime(struct task_struct *t,
cputime_t *utime, cputime_t *stime);
extern void task_cputime_scaled(struct task_struct *t,
cputime_t *utimescaled, cputime_t *stimescaled);
extern cputime_t task_gtime(struct task_struct *t);
#else
static inline void task_cputime(struct task_struct *t,
cputime_t *utime, cputime_t *stime)
{
if (utime)
*utime = t->utime;
if (stime)
*stime = t->stime;
*utime = t->utime;
*stime = t->stime;
}
static inline cputime_t task_gtime(struct task_struct *t)
{
return t->gtime;
}
#endif
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
static inline void task_cputime_scaled(struct task_struct *t,
cputime_t *utimescaled,
cputime_t *stimescaled)
{
if (utimescaled)
*utimescaled = t->utimescaled;
if (stimescaled)
*stimescaled = t->stimescaled;
*utimescaled = t->utimescaled;
*stimescaled = t->stimescaled;
}
static inline cputime_t task_gtime(struct task_struct *t)
#else
static inline void task_cputime_scaled(struct task_struct *t,
cputime_t *utimescaled,
cputime_t *stimescaled)
{
return t->gtime;
task_cputime(t, utimescaled, stimescaled);
}
#endif
extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
......
......@@ -36,7 +36,6 @@ extern unsigned int sysctl_numa_balancing_scan_size;
extern unsigned int sysctl_sched_migration_cost;
extern unsigned int sysctl_sched_nr_migrate;
extern unsigned int sysctl_sched_time_avg;
extern unsigned int sysctl_sched_shares_window;
int sched_proc_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length,
......
......@@ -354,6 +354,8 @@ void free_task(struct task_struct *tsk)
ftrace_graph_exit_task(tsk);
put_seccomp_filter(tsk);
arch_release_task_struct(tsk);
if (tsk->flags & PF_KTHREAD)
free_kthread_struct(tsk);
free_task_struct(tsk);
}
EXPORT_SYMBOL(free_task);
......@@ -1551,7 +1553,9 @@ static __latent_entropy struct task_struct *copy_process(
init_sigpending(&p->pending);
p->utime = p->stime = p->gtime = 0;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
p->utimescaled = p->stimescaled = 0;
#endif
prev_cputime_init(&p->prev_cputime);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
......
......@@ -53,20 +53,29 @@ enum KTHREAD_BITS {
KTHREAD_IS_PARKED,
};
#define __to_kthread(vfork) \
container_of(vfork, struct kthread, exited)
static inline void set_kthread_struct(void *kthread)
{
/*
* We abuse ->set_child_tid to avoid the new member and because it
* can't be wrongly copied by copy_process(). We also rely on fact
* that the caller can't exec, so PF_KTHREAD can't be cleared.
*/
current->set_child_tid = (__force void __user *)kthread;
}
static inline struct kthread *to_kthread(struct task_struct *k)
{
return __to_kthread(k->vfork_done);
WARN_ON(!(k->flags & PF_KTHREAD));
return (__force void *)k->set_child_tid;
}
static struct kthread *to_live_kthread(struct task_struct *k)
void free_kthread_struct(struct task_struct *k)
{
struct completion *vfork = ACCESS_ONCE(k->vfork_done);
if (likely(vfork) && try_get_task_stack(k))
return __to_kthread(vfork);
return NULL;
/*
* Can be NULL if this kthread was created by kernel_thread()
* or if kmalloc() in kthread() failed.
*/
kfree(to_kthread(k));
}
/**
......@@ -181,14 +190,11 @@ static int kthread(void *_create)
int (*threadfn)(void *data) = create->threadfn;
void *data = create->data;
struct completion *done;
struct kthread self;
struct kthread *self;
int ret;
self.flags = 0;
self.data = data;
init_completion(&self.exited);
init_completion(&self.parked);
current->vfork_done = &self.exited;
self = kmalloc(sizeof(*self), GFP_KERNEL);
set_kthread_struct(self);
/* If user was SIGKILLed, I release the structure. */
done = xchg(&create->done, NULL);
......@@ -196,6 +202,19 @@ static int kthread(void *_create)
kfree(create);
do_exit(-EINTR);
}
if (!self) {
create->result = ERR_PTR(-ENOMEM);
complete(done);
do_exit(-ENOMEM);
}
self->flags = 0;
self->data = data;
init_completion(&self->exited);
init_completion(&self->parked);
current->vfork_done = &self->exited;
/* OK, tell user we're spawned, wait for stop or wakeup */
__set_current_state(TASK_UNINTERRUPTIBLE);
create->result = current;
......@@ -203,12 +222,10 @@ static int kthread(void *_create)
schedule();
ret = -EINTR;
if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) {
__kthread_parkme(&self);
if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
__kthread_parkme(self);
ret = threadfn(data);
}
/* we can't just return, we must preserve "self" on stack */
do_exit(ret);
}
......@@ -409,8 +426,18 @@ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
return p;
}
static void __kthread_unpark(struct task_struct *k, struct kthread *kthread)
/**
* kthread_unpark - unpark a thread created by kthread_create().
* @k: thread created by kthread_create().
*
* Sets kthread_should_park() for @k to return false, wakes it, and
* waits for it to return. If the thread is marked percpu then its
* bound to the cpu again.
*/
void kthread_unpark(struct task_struct *k)
{
struct kthread *kthread = to_kthread(k);
clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
/*
* We clear the IS_PARKED bit here as we don't wait
......@@ -428,24 +455,6 @@ static void __kthread_unpark(struct task_struct *k, struct kthread *kthread)
wake_up_state(k, TASK_PARKED);
}
}
/**
* kthread_unpark - unpark a thread created by kthread_create().
* @k: thread created by kthread_create().
*
* Sets kthread_should_park() for @k to return false, wakes it, and
* waits for it to return. If the thread is marked percpu then its
* bound to the cpu again.
*/
void kthread_unpark(struct task_struct *k)
{
struct kthread *kthread = to_live_kthread(k);
if (kthread) {
__kthread_unpark(k, kthread);
put_task_stack(k);
}
}
EXPORT_SYMBOL_GPL(kthread_unpark);
/**
......@@ -462,21 +471,20 @@ EXPORT_SYMBOL_GPL(kthread_unpark);
*/
int kthread_park(struct task_struct *k)
{
struct kthread *kthread = to_live_kthread(k);
int ret = -ENOSYS;
if (kthread) {
if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
if (k != current) {
wake_up_process(k);
wait_for_completion(&kthread->parked);
}
struct kthread *kthread = to_kthread(k);
if (WARN_ON(k->flags & PF_EXITING))
return -ENOSYS;
if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
if (k != current) {
wake_up_process(k);
wait_for_completion(&kthread->parked);
}
put_task_stack(k);
ret = 0;
}
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(kthread_park);
......@@ -503,14 +511,11 @@ int kthread_stop(struct task_struct *k)
trace_sched_kthread_stop(k);
get_task_struct(k);
kthread = to_live_kthread(k);
if (kthread) {
set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
__kthread_unpark(k, kthread);
wake_up_process(k);
wait_for_completion(&kthread->exited);
put_task_stack(k);
}
kthread = to_kthread(k);
set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
kthread_unpark(k);
wake_up_process(k);
wait_for_completion(&kthread->exited);
ret = k->exit_code;
put_task_struct(k);
......@@ -636,6 +641,7 @@ __kthread_create_worker(int cpu, unsigned int flags,
{
struct kthread_worker *worker;
struct task_struct *task;
int node = -1;
worker = kzalloc(sizeof(*worker), GFP_KERNEL);
if (!worker)
......@@ -643,25 +649,17 @@ __kthread_create_worker(int cpu, unsigned int flags,
kthread_init_worker(worker);
if (cpu >= 0) {
char name[TASK_COMM_LEN];
/*
* kthread_create_worker_on_cpu() allows to pass a generic
* namefmt in compare with kthread_create_on_cpu. We need
* to format it here.
*/
vsnprintf(name, sizeof(name), namefmt, args);
task = kthread_create_on_cpu(kthread_worker_fn, worker,
cpu, name);
} else {
task = __kthread_create_on_node(kthread_worker_fn, worker,
-1, namefmt, args);
}
if (cpu >= 0)
node = cpu_to_node(cpu);
task = __kthread_create_on_node(kthread_worker_fn, worker,
node, namefmt, args);
if (IS_ERR(task))
goto fail_task;
if (cpu >= 0)
kthread_bind(task, cpu);
worker->flags = flags;
worker->task = task;
wake_up_process(task);
......
......@@ -1995,14 +1995,15 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
* @state: the mask of task states that can be woken
* @wake_flags: wake modifier flags (WF_*)
*
* Put it on the run-queue if it's not already there. The "current"
* thread is always on the run-queue (except when the actual
* re-schedule is in progress), and as such you're allowed to do
* the simpler "current->state = TASK_RUNNING" to mark yourself
* runnable without the overhead of this.
* If (@state & @p->state) @p->state = TASK_RUNNING.
*
* Return: %true if @p was woken up, %false if it was already running.
* or @state didn't match @p's state.
* If the task was not queued/runnable, also place it back on a runqueue.
*
* Atomic against schedule() which would dequeue a task, also see
* set_current_state().
*
* Return: %true if @p->state changes (an actual wakeup was done),
* %false otherwise.
*/
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
......@@ -5707,7 +5708,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
printk(KERN_CONT " %*pbl",
cpumask_pr_args(sched_group_cpus(group)));
if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
printk(KERN_CONT " (cpu_capacity = %d)",
printk(KERN_CONT " (cpu_capacity = %lu)",
group->sgc->capacity);
}
......@@ -6184,6 +6185,7 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu)
* die on a /0 trap.
*/
sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
/*
* Make sure the first group of this domain contains the
......@@ -6301,7 +6303,22 @@ static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
WARN_ON(!sg);
do {
int cpu, max_cpu = -1;
sg->group_weight = cpumask_weight(sched_group_cpus(sg));
if (!(sd->flags & SD_ASYM_PACKING))
goto next;
for_each_cpu(cpu, sched_group_cpus(sg)) {
if (max_cpu < 0)
max_cpu = cpu;
else if (sched_asym_prefer(cpu, max_cpu))
max_cpu = cpu;
}
sg->asym_prefer_cpu = max_cpu;
next:
sg = sg->next;
} while (sg != sd->groups);
......@@ -7602,6 +7619,7 @@ void __init sched_init(void)
#ifdef CONFIG_FAIR_GROUP_SCHED
root_task_group.shares = ROOT_TASK_GROUP_LOAD;
INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
/*
* How much cpu bandwidth does root_task_group get?
*
......
......@@ -297,7 +297,7 @@ static int cpuacct_stats_show(struct seq_file *sf, void *v)
for (stat = 0; stat < CPUACCT_STAT_NSTATS; stat++) {
seq_printf(sf, "%s %lld\n",
cpuacct_stat_desc[stat],
cputime64_to_clock_t(val[stat]));
(long long)cputime64_to_clock_t(val[stat]));
}
return 0;
......
......@@ -128,16 +128,13 @@ static inline void task_group_account_field(struct task_struct *p, int index,
* Account user cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in user space since the last update
* @cputime_scaled: cputime scaled by cpu frequency
*/
void account_user_time(struct task_struct *p, cputime_t cputime,
cputime_t cputime_scaled)
void account_user_time(struct task_struct *p, cputime_t cputime)
{
int index;
/* Add user time to process. */
p->utime += cputime;
p->utimescaled += cputime_scaled;
account_group_user_time(p, cputime);
index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
......@@ -153,16 +150,13 @@ void account_user_time(struct task_struct *p, cputime_t cputime,
* Account guest cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in virtual machine since the last update
* @cputime_scaled: cputime scaled by cpu frequency
*/
static void account_guest_time(struct task_struct *p, cputime_t cputime,
cputime_t cputime_scaled)
static void account_guest_time(struct task_struct *p, cputime_t cputime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
/* Add guest time to process. */
p->utime += cputime;
p->utimescaled += cputime_scaled;
account_group_user_time(p, cputime);
p->gtime += cputime;
......@@ -180,16 +174,13 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime,
* Account system cpu time to a process and desired cpustat field
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in kernel space since the last update
* @cputime_scaled: cputime scaled by cpu frequency
* @target_cputime64: pointer to cpustat field that has to be updated
* @index: pointer to cpustat field that has to be updated
*/
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
cputime_t cputime_scaled, int index)
void __account_system_time(struct task_struct *p, cputime_t cputime, int index)
{
/* Add system time to process. */
p->stime += cputime;
p->stimescaled += cputime_scaled;
account_group_system_time(p, cputime);
/* Add system time to cpustat. */
......@@ -204,15 +195,14 @@ void __account_system_time(struct task_struct *p, cputime_t cputime,
* @p: the process that the cpu time gets accounted to
* @hardirq_offset: the offset to subtract from hardirq_count()
* @cputime: the cpu time spent in kernel space since the last update
* @cputime_scaled: cputime scaled by cpu frequency
*/
void account_system_time(struct task_struct *p, int hardirq_offset,
cputime_t cputime, cputime_t cputime_scaled)
cputime_t cputime)
{
int index;
if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
account_guest_time(p, cputime, cputime_scaled);
account_guest_time(p, cputime);
return;
}
......@@ -223,7 +213,7 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
else
index = CPUTIME_SYSTEM;
__account_system_time(p, cputime, cputime_scaled, index);
__account_system_time(p, cputime, index);
}
/*
......@@ -390,7 +380,7 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
struct rq *rq, int ticks)
{
u64 cputime = (__force u64) cputime_one_jiffy * ticks;
cputime_t scaled, other;
cputime_t other;
/*
* When returning from idle, many ticks can get accounted at
......@@ -403,7 +393,6 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
if (other >= cputime)
return;
cputime -= other;
scaled = cputime_to_scaled(cputime);
if (this_cpu_ksoftirqd() == p) {
/*
......@@ -411,15 +400,15 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
* So, we have to handle it separately here.
* Also, p->stime needs to be updated for ksoftirqd.
*/
__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
__account_system_time(p, cputime, CPUTIME_SOFTIRQ);
} else if (user_tick) {
account_user_time(p, cputime, scaled);
account_user_time(p, cputime);
} else if (p == rq->idle) {
account_idle_time(cputime);
} else if (p->flags & PF_VCPU) { /* System time or guest time */
account_guest_time(p, cputime, scaled);
account_guest_time(p, cputime);
} else {
__account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
__account_system_time(p, cputime, CPUTIME_SYSTEM);
}
}
......@@ -502,7 +491,7 @@ void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime
*/
void account_process_tick(struct task_struct *p, int user_tick)
{
cputime_t cputime, scaled, steal;
cputime_t cputime, steal;
struct rq *rq = this_rq();
if (vtime_accounting_cpu_enabled())
......@@ -520,12 +509,11 @@ void account_process_tick(struct task_struct *p, int user_tick)
return;
cputime -= steal;
scaled = cputime_to_scaled(cputime);
if (user_tick)
account_user_time(p, cputime, scaled);
account_user_time(p, cputime);
else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
account_system_time(p, HARDIRQ_OFFSET, cputime);
else
account_idle_time(cputime);
}
......@@ -746,7 +734,7 @@ static void __vtime_account_system(struct task_struct *tsk)
{
cputime_t delta_cpu = get_vtime_delta(tsk);
account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
account_system_time(tsk, irq_count(), delta_cpu);
}
void vtime_account_system(struct task_struct *tsk)
......@@ -767,7 +755,7 @@ void vtime_account_user(struct task_struct *tsk)
tsk->vtime_snap_whence = VTIME_SYS;
if (vtime_delta(tsk)) {
delta_cpu = get_vtime_delta(tsk);
account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
account_user_time(tsk, delta_cpu);
}
write_seqcount_end(&tsk->vtime_seqcount);
}
......@@ -863,29 +851,25 @@ cputime_t task_gtime(struct task_struct *t)
* add up the pending nohz execution time since the last
* cputime snapshot.
*/
static void
fetch_task_cputime(struct task_struct *t,
cputime_t *u_dst, cputime_t *s_dst,
cputime_t *u_src, cputime_t *s_src,
cputime_t *udelta, cputime_t *sdelta)
void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
{
cputime_t delta;
unsigned int seq;
unsigned long long delta;
do {
*udelta = 0;
*sdelta = 0;
if (!vtime_accounting_enabled()) {
*utime = t->utime;
*stime = t->stime;
return;
}
do {
seq = read_seqcount_begin(&t->vtime_seqcount);
if (u_dst)
*u_dst = *u_src;
if (s_dst)
*s_dst = *s_src;
*utime = t->utime;
*stime = t->stime;
/* Task is sleeping, nothing to add */
if (t->vtime_snap_whence == VTIME_INACTIVE ||
is_idle_task(t))
if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t))
continue;
delta = vtime_delta(t);
......@@ -894,54 +878,10 @@ fetch_task_cputime(struct task_struct *t,
* Task runs either in user or kernel space, add pending nohz time to
* the right place.
*/
if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
*udelta = delta;
} else {
if (t->vtime_snap_whence == VTIME_SYS)
*sdelta = delta;
}
if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU)
*utime += delta;
else if (t->vtime_snap_whence == VTIME_SYS)
*stime += delta;
} while (read_seqcount_retry(&t->vtime_seqcount, seq));
}
void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
{
cputime_t udelta, sdelta;
if (!vtime_accounting_enabled()) {
if (utime)
*utime = t->utime;
if (stime)
*stime = t->stime;
return;
}
fetch_task_cputime(t, utime, stime, &t->utime,
&t->stime, &udelta, &sdelta);
if (utime)
*utime += udelta;
if (stime)
*stime += sdelta;
}
void task_cputime_scaled(struct task_struct *t,
cputime_t *utimescaled, cputime_t *stimescaled)
{
cputime_t udelta, sdelta;
if (!vtime_accounting_enabled()) {
if (utimescaled)
*utimescaled = t->utimescaled;
if (stimescaled)
*stimescaled = t->stimescaled;
return;
}
fetch_task_cputime(t, utimescaled, stimescaled,
&t->utimescaled, &t->stimescaled, &udelta, &sdelta);
if (utimescaled)
*utimescaled += cputime_to_scaled(udelta);
if (stimescaled)
*stimescaled += cputime_to_scaled(sdelta);
}
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
......@@ -586,7 +586,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
/*
* The task might have changed its scheduling policy to something
* different than SCHED_DEADLINE (through switched_fromd_dl()).
* different than SCHED_DEADLINE (through switched_from_dl()).
*/
if (!dl_task(p)) {
__dl_clear_params(p);
......@@ -1137,7 +1137,7 @@ pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie coo
pull_dl_task(rq);
lockdep_repin_lock(&rq->lock, cookie);
/*
* pull_rt_task() can drop (and re-acquire) rq->lock; this
* pull_dl_task() can drop (and re-acquire) rq->lock; this
* means a stop task can slip in, in which case we need to
* re-start task selection.
*/
......
......@@ -37,7 +37,6 @@
/*
* Targeted preemption latency for CPU-bound tasks:
* (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
*
* NOTE: this latency value is not the same as the concept of
* 'timeslice length' - timeslices in CFS are of variable length
......@@ -46,31 +45,35 @@
*
* (to see the precise effective timeslice length of your workload,
* run vmstat and monitor the context-switches (cs) field)
*
* (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
*/
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
/*
* The initial- and re-scaling of tunables is configurable
* (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
*
* Options are:
* SCHED_TUNABLESCALING_NONE - unscaled, always *1
* SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
* SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
*
* SCHED_TUNABLESCALING_NONE - unscaled, always *1
* SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
* SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
*
* (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
*/
enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG;
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
/*
* Minimal preemption granularity for CPU-bound tasks:
*
* (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
*/
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
/*
* is kept at sysctl_sched_latency / sysctl_sched_min_granularity
* This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
*/
static unsigned int sched_nr_latency = 8;
......@@ -82,23 +85,27 @@ unsigned int sysctl_sched_child_runs_first __read_mostly;
/*
* SCHED_OTHER wake-up granularity.
* (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
*
* This option delays the preemption effects of decoupled workloads
* and reduces their over-scheduling. Synchronous workloads will still
* have immediate wakeup/sleep latencies.
*
* (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
*/
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
#ifdef CONFIG_SMP
/*
* The exponential sliding window over which load is averaged for shares
* distribution.
* (default: 10msec)
* For asym packing, by default the lower numbered cpu has higher priority.
*/
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
int __weak arch_asym_cpu_priority(int cpu)
{
return -cpu;
}
#endif
#ifdef CONFIG_CFS_BANDWIDTH
/*
......@@ -109,16 +116,18 @@ unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
* to consumption or the quota being specified to be smaller than the slice)
* we will always only issue the remaining available time.
*
* default: 5 msec, units: microseconds
*/
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
* (default: 5 msec, units: microseconds)
*/
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif
/*
* The margin used when comparing utilization with CPU capacity:
* util * 1024 < capacity * margin
* util * margin < capacity * 1024
*
* (default: ~20%)
*/
unsigned int capacity_margin = 1280; /* ~20% */
unsigned int capacity_margin = 1280;
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
......@@ -290,19 +299,59 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
if (!cfs_rq->on_list) {
struct rq *rq = rq_of(cfs_rq);
int cpu = cpu_of(rq);
/*
* Ensure we either appear before our parent (if already
* enqueued) or force our parent to appear after us when it is
* enqueued. The fact that we always enqueue bottom-up
* reduces this to two cases.
* enqueued. The fact that we always enqueue bottom-up
* reduces this to two cases and a special case for the root
* cfs_rq. Furthermore, it also means that we will always reset
* tmp_alone_branch either when the branch is connected
* to a tree or when we reach the beg of the tree
*/
if (cfs_rq->tg->parent &&
cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
&rq_of(cfs_rq)->leaf_cfs_rq_list);
} else {
cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
/*
* If parent is already on the list, we add the child
* just before. Thanks to circular linked property of
* the list, this means to put the child at the tail
* of the list that starts by parent.
*/
list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
&rq_of(cfs_rq)->leaf_cfs_rq_list);
&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
/*
* The branch is now connected to its tree so we can
* reset tmp_alone_branch to the beginning of the
* list.
*/
rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
} else if (!cfs_rq->tg->parent) {
/*
* cfs rq without parent should be put
* at the tail of the list.
*/
list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
&rq->leaf_cfs_rq_list);
/*
* We have reach the beg of a tree so we can reset
* tmp_alone_branch to the beginning of the list.
*/
rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
} else {
/*
* The parent has not already been added so we want to
* make sure that it will be put after us.
* tmp_alone_branch points to the beg of the branch
* where we will add parent.
*/
list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
rq->tmp_alone_branch);
/*
* update tmp_alone_branch to points to the new beg
* of the branch
*/
rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
}
cfs_rq->on_list = 1;
......@@ -708,9 +757,7 @@ void init_entity_runnable_average(struct sched_entity *se)
}
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
static void attach_entity_cfs_rq(struct sched_entity *se);
/*
* With new tasks being created, their initial util_avgs are extrapolated
......@@ -742,7 +789,6 @@ void post_init_entity_util_avg(struct sched_entity *se)
struct cfs_rq *cfs_rq = cfs_rq_of(se);
struct sched_avg *sa = &se->avg;
long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
u64 now = cfs_rq_clock_task(cfs_rq);
if (cap > 0) {
if (cfs_rq->avg.util_avg != 0) {
......@@ -770,14 +816,12 @@ void post_init_entity_util_avg(struct sched_entity *se)
* such that the next switched_to_fair() has the
* expected state.
*/
se->avg.last_update_time = now;
se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
return;
}
}
update_cfs_rq_load_avg(now, cfs_rq, false);
attach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, false);
attach_entity_cfs_rq(se);
}
#else /* !CONFIG_SMP */
......@@ -2890,6 +2934,26 @@ __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
return decayed;
}
/*
* Signed add and clamp on underflow.
*
* Explicitly do a load-store to ensure the intermediate value never hits
* memory. This allows lockless observations without ever seeing the negative
* values.
*/
#define add_positive(_ptr, _val) do { \
typeof(_ptr) ptr = (_ptr); \
typeof(_val) val = (_val); \
typeof(*ptr) res, var = READ_ONCE(*ptr); \
\
res = var + val; \
\
if (val < 0 && res > var) \
res = 0; \
\
WRITE_ONCE(*ptr, res); \
} while (0)
#ifdef CONFIG_FAIR_GROUP_SCHED
/**
* update_tg_load_avg - update the tg's load avg
......@@ -2969,8 +3033,138 @@ void set_task_rq_fair(struct sched_entity *se,
se->avg.last_update_time = n_last_update_time;
}
}
/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct cfs_rq *gcfs_rq = group_cfs_rq(se);
long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
/* Nothing to update */
if (!delta)
return;
/* Set new sched_entity's utilization */
se->avg.util_avg = gcfs_rq->avg.util_avg;
se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
/* Update parent cfs_rq utilization */
add_positive(&cfs_rq->avg.util_avg, delta);
cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}
/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct cfs_rq *gcfs_rq = group_cfs_rq(se);
long delta, load = gcfs_rq->avg.load_avg;
/*
* If the load of group cfs_rq is null, the load of the
* sched_entity will also be null so we can skip the formula
*/
if (load) {
long tg_load;
/* Get tg's load and ensure tg_load > 0 */
tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
/* Ensure tg_load >= load and updated with current load*/
tg_load -= gcfs_rq->tg_load_avg_contrib;
tg_load += load;
/*
* We need to compute a correction term in the case that the
* task group is consuming more CPU than a task of equal
* weight. A task with a weight equals to tg->shares will have
* a load less or equal to scale_load_down(tg->shares).
* Similarly, the sched_entities that represent the task group
* at parent level, can't have a load higher than
* scale_load_down(tg->shares). And the Sum of sched_entities'
* load must be <= scale_load_down(tg->shares).
*/
if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
/* scale gcfs_rq's load into tg's shares*/
load *= scale_load_down(gcfs_rq->tg->shares);
load /= tg_load;
}
}
delta = load - se->avg.load_avg;
/* Nothing to update */
if (!delta)
return;
/* Set new sched_entity's load */
se->avg.load_avg = load;
se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
/* Update parent cfs_rq load */
add_positive(&cfs_rq->avg.load_avg, delta);
cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
/*
* If the sched_entity is already enqueued, we also have to update the
* runnable load avg.
*/
if (se->on_rq) {
/* Update parent cfs_rq runnable_load_avg */
add_positive(&cfs_rq->runnable_load_avg, delta);
cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
}
}
static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
cfs_rq->propagate_avg = 1;
}
static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = group_cfs_rq(se);
if (!cfs_rq->propagate_avg)
return 0;
cfs_rq->propagate_avg = 0;
return 1;
}
/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq;
if (entity_is_task(se))
return 0;
if (!test_and_clear_tg_cfs_propagate(se))
return 0;
cfs_rq = cfs_rq_of(se);
set_tg_cfs_propagate(cfs_rq);
update_tg_cfs_util(cfs_rq, se);
update_tg_cfs_load(cfs_rq, se);
return 1;
}
#else /* CONFIG_FAIR_GROUP_SCHED */
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
return 0;
}
static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
#endif /* CONFIG_FAIR_GROUP_SCHED */
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
......@@ -3041,6 +3235,7 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
sub_positive(&sa->load_avg, r);
sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
removed_load = 1;
set_tg_cfs_propagate(cfs_rq);
}
if (atomic_long_read(&cfs_rq->removed_util_avg)) {
......@@ -3048,6 +3243,7 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
sub_positive(&sa->util_avg, r);
sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
removed_util = 1;
set_tg_cfs_propagate(cfs_rq);
}
decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
......@@ -3064,23 +3260,35 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
return decayed || removed_load;
}
/*
* Optional action to be done while updating the load average
*/
#define UPDATE_TG 0x1
#define SKIP_AGE_LOAD 0x2
/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
static inline void update_load_avg(struct sched_entity *se, int flags)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 now = cfs_rq_clock_task(cfs_rq);
struct rq *rq = rq_of(cfs_rq);
int cpu = cpu_of(rq);
int decayed;
/*
* Track task load average for carrying it to new CPU after migrated, and
* track group sched_entity load average for task_h_load calc in migration
*/
__update_load_avg(now, cpu, &se->avg,
if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
__update_load_avg(now, cpu, &se->avg,
se->on_rq * scale_load_down(se->load.weight),
cfs_rq->curr == se, NULL);
}
if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
decayed |= propagate_entity_load_avg(se);
if (decayed && (flags & UPDATE_TG))
update_tg_load_avg(cfs_rq, 0);
}
......@@ -3094,31 +3302,12 @@ static inline void update_load_avg(struct sched_entity *se, int update_tg)
*/
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
if (!sched_feat(ATTACH_AGE_LOAD))
goto skip_aging;
/*
* If we got migrated (either between CPUs or between cgroups) we'll
* have aged the average right before clearing @last_update_time.
*
* Or we're fresh through post_init_entity_util_avg().
*/
if (se->avg.last_update_time) {
__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
&se->avg, 0, 0, NULL);
/*
* XXX: we could have just aged the entire load away if we've been
* absent from the fair class for too long.
*/
}
skip_aging:
se->avg.last_update_time = cfs_rq->avg.last_update_time;
cfs_rq->avg.load_avg += se->avg.load_avg;
cfs_rq->avg.load_sum += se->avg.load_sum;
cfs_rq->avg.util_avg += se->avg.util_avg;
cfs_rq->avg.util_sum += se->avg.util_sum;
set_tg_cfs_propagate(cfs_rq);
cfs_rq_util_change(cfs_rq);
}
......@@ -3133,14 +3322,12 @@ static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
*/
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
&se->avg, se->on_rq * scale_load_down(se->load.weight),
cfs_rq->curr == se, NULL);
sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
set_tg_cfs_propagate(cfs_rq);
cfs_rq_util_change(cfs_rq);
}
......@@ -3150,34 +3337,20 @@ static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct sched_avg *sa = &se->avg;
u64 now = cfs_rq_clock_task(cfs_rq);
int migrated, decayed;
migrated = !sa->last_update_time;
if (!migrated) {
__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
se->on_rq * scale_load_down(se->load.weight),
cfs_rq->curr == se, NULL);
}
decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
cfs_rq->runnable_load_avg += sa->load_avg;
cfs_rq->runnable_load_sum += sa->load_sum;
if (migrated)
if (!sa->last_update_time) {
attach_entity_load_avg(cfs_rq, se);
if (decayed || migrated)
update_tg_load_avg(cfs_rq, 0);
}
}
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
update_load_avg(se, 1);
cfs_rq->runnable_load_avg =
max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
cfs_rq->runnable_load_sum =
......@@ -3205,6 +3378,19 @@ static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
}
#endif
/*
* Synchronize entity load avg of dequeued entity without locking
* the previous rq.
*/
void sync_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 last_update_time;
last_update_time = cfs_rq_last_update_time(cfs_rq);
__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
}
/*
* Task first catches up with cfs_rq, and then subtract
* itself from the cfs_rq (task must be off the queue now).
......@@ -3212,7 +3398,6 @@ static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
void remove_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 last_update_time;
/*
* tasks cannot exit without having gone through wake_up_new_task() ->
......@@ -3224,9 +3409,7 @@ void remove_entity_load_avg(struct sched_entity *se)
* calls this.
*/
last_update_time = cfs_rq_last_update_time(cfs_rq);
__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
sync_entity_load_avg(se);
atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
}
......@@ -3251,7 +3434,10 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
return 0;
}
static inline void update_load_avg(struct sched_entity *se, int not_used)
#define UPDATE_TG 0x0
#define SKIP_AGE_LOAD 0x0
static inline void update_load_avg(struct sched_entity *se, int not_used1)
{
cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
}
......@@ -3396,6 +3582,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
if (renorm && !curr)
se->vruntime += cfs_rq->min_vruntime;
update_load_avg(se, UPDATE_TG);
enqueue_entity_load_avg(cfs_rq, se);
account_entity_enqueue(cfs_rq, se);
update_cfs_shares(cfs_rq);
......@@ -3470,6 +3657,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
update_load_avg(se, UPDATE_TG);
dequeue_entity_load_avg(cfs_rq, se);
update_stats_dequeue(cfs_rq, se, flags);
......@@ -3557,7 +3745,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
*/
update_stats_wait_end(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
update_load_avg(se, 1);
update_load_avg(se, UPDATE_TG);
}
update_stats_curr_start(cfs_rq, se);
......@@ -3675,7 +3863,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
/*
* Ensure that runnable average is periodically updated.
*/
update_load_avg(curr, 1);
update_load_avg(curr, UPDATE_TG);
update_cfs_shares(cfs_rq);
#ifdef CONFIG_SCHED_HRTICK
......@@ -4572,7 +4760,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
update_load_avg(se, 1);
update_load_avg(se, UPDATE_TG);
update_cfs_shares(cfs_rq);
}
......@@ -4631,7 +4819,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
update_load_avg(se, 1);
update_load_avg(se, UPDATE_TG);
update_cfs_shares(cfs_rq);
}
......@@ -5199,6 +5387,14 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p,
return 1;
}
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);
static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}
/*
* find_idlest_group finds and returns the least busy CPU group within the
* domain.
......@@ -5208,15 +5404,21 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
int this_cpu, int sd_flag)
{
struct sched_group *idlest = NULL, *group = sd->groups;
unsigned long min_load = ULONG_MAX, this_load = 0;
struct sched_group *most_spare_sg = NULL;
unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
unsigned long most_spare = 0, this_spare = 0;
int load_idx = sd->forkexec_idx;
int imbalance = 100 + (sd->imbalance_pct-100)/2;
int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
(sd->imbalance_pct-100) / 100;
if (sd_flag & SD_BALANCE_WAKE)
load_idx = sd->wake_idx;
do {
unsigned long load, avg_load;
unsigned long load, avg_load, runnable_load;
unsigned long spare_cap, max_spare_cap;
int local_group;
int i;
......@@ -5228,8 +5430,13 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
local_group = cpumask_test_cpu(this_cpu,
sched_group_cpus(group));
/* Tally up the load of all CPUs in the group */
/*
* Tally up the load of all CPUs in the group and find
* the group containing the CPU with most spare capacity.
*/
avg_load = 0;
runnable_load = 0;
max_spare_cap = 0;
for_each_cpu(i, sched_group_cpus(group)) {
/* Bias balancing toward cpus of our domain */
......@@ -5238,22 +5445,84 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
else
load = target_load(i, load_idx);
avg_load += load;
runnable_load += load;
avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
spare_cap = capacity_spare_wake(i, p);
if (spare_cap > max_spare_cap)
max_spare_cap = spare_cap;
}
/* Adjust by relative CPU capacity of the group */
avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
group->sgc->capacity;
runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
group->sgc->capacity;
if (local_group) {
this_load = avg_load;
} else if (avg_load < min_load) {
min_load = avg_load;
idlest = group;
this_runnable_load = runnable_load;
this_avg_load = avg_load;
this_spare = max_spare_cap;
} else {
if (min_runnable_load > (runnable_load + imbalance)) {
/*
* The runnable load is significantly smaller
* so we can pick this new cpu
*/
min_runnable_load = runnable_load;
min_avg_load = avg_load;
idlest = group;
} else if ((runnable_load < (min_runnable_load + imbalance)) &&
(100*min_avg_load > imbalance_scale*avg_load)) {
/*
* The runnable loads are close so take the
* blocked load into account through avg_load.
*/
min_avg_load = avg_load;
idlest = group;
}
if (most_spare < max_spare_cap) {
most_spare = max_spare_cap;
most_spare_sg = group;
}
}
} while (group = group->next, group != sd->groups);
if (!idlest || 100*this_load < imbalance*min_load)
/*
* The cross-over point between using spare capacity or least load
* is too conservative for high utilization tasks on partially
* utilized systems if we require spare_capacity > task_util(p),
* so we allow for some task stuffing by using
* spare_capacity > task_util(p)/2.
*
* Spare capacity can't be used for fork because the utilization has
* not been set yet, we must first select a rq to compute the initial
* utilization.
*/
if (sd_flag & SD_BALANCE_FORK)
goto skip_spare;
if (this_spare > task_util(p) / 2 &&
imbalance_scale*this_spare > 100*most_spare)
return NULL;
if (most_spare > task_util(p) / 2)
return most_spare_sg;
skip_spare:
if (!idlest)
return NULL;
if (min_runnable_load > (this_runnable_load + imbalance))
return NULL;
if ((this_runnable_load < (min_runnable_load + imbalance)) &&
(100*this_avg_load < imbalance_scale*min_avg_load))
return NULL;
return idlest;
}
......@@ -5589,6 +5858,24 @@ static inline int task_util(struct task_struct *p)
return p->se.avg.util_avg;
}
/*
* cpu_util_wake: Compute cpu utilization with any contributions from
* the waking task p removed.
*/
static int cpu_util_wake(int cpu, struct task_struct *p)
{
unsigned long util, capacity;
/* Task has no contribution or is new */
if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
return cpu_util(cpu);
capacity = capacity_orig_of(cpu);
util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
return (util >= capacity) ? capacity : util;
}
/*
* Disable WAKE_AFFINE in the case where task @p doesn't fit in the
* capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
......@@ -5607,6 +5894,9 @@ static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
if (max_cap - min_cap < max_cap >> 3)
return 0;
/* Bring task utilization in sync with prev_cpu */
sync_entity_load_avg(&p->se);
return min_cap * 1024 < task_util(p) * capacity_margin;
}
......@@ -6641,6 +6931,10 @@ static void update_blocked_averages(int cpu)
if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
update_tg_load_avg(cfs_rq, 0);
/* Propagate pending load changes to the parent */
if (cfs_rq->tg->se[cpu])
update_load_avg(cfs_rq->tg->se[cpu], 0);
}
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
......@@ -6845,13 +7139,14 @@ static void update_cpu_capacity(struct sched_domain *sd, int cpu)
cpu_rq(cpu)->cpu_capacity = capacity;
sdg->sgc->capacity = capacity;
sdg->sgc->min_capacity = capacity;
}
void update_group_capacity(struct sched_domain *sd, int cpu)
{
struct sched_domain *child = sd->child;
struct sched_group *group, *sdg = sd->groups;
unsigned long capacity;
unsigned long capacity, min_capacity;
unsigned long interval;
interval = msecs_to_jiffies(sd->balance_interval);
......@@ -6864,6 +7159,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
}
capacity = 0;
min_capacity = ULONG_MAX;
if (child->flags & SD_OVERLAP) {
/*
......@@ -6888,11 +7184,12 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
*/
if (unlikely(!rq->sd)) {
capacity += capacity_of(cpu);
continue;
} else {
sgc = rq->sd->groups->sgc;
capacity += sgc->capacity;
}
sgc = rq->sd->groups->sgc;
capacity += sgc->capacity;
min_capacity = min(capacity, min_capacity);
}
} else {
/*
......@@ -6902,12 +7199,16 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
group = child->groups;
do {
capacity += group->sgc->capacity;
struct sched_group_capacity *sgc = group->sgc;
capacity += sgc->capacity;
min_capacity = min(sgc->min_capacity, min_capacity);
group = group->next;
} while (group != child->groups);
}
sdg->sgc->capacity = capacity;
sdg->sgc->min_capacity = min_capacity;
}
/*
......@@ -6930,8 +7231,8 @@ check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
* cpumask covering 1 cpu of the first group and 3 cpus of the second group.
* Something like:
*
* { 0 1 2 3 } { 4 5 6 7 }
* * * * *
* { 0 1 2 3 } { 4 5 6 7 }
* * * * *
*
* If we were to balance group-wise we'd place two tasks in the first group and
* two tasks in the second group. Clearly this is undesired as it will overload
......@@ -7002,6 +7303,17 @@ group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
return false;
}
/*
* group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
* per-CPU capacity than sched_group ref.
*/
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
return sg->sgc->min_capacity * capacity_margin <
ref->sgc->min_capacity * 1024;
}
static inline enum
group_type group_classify(struct sched_group *group,
struct sg_lb_stats *sgs)
......@@ -7105,6 +7417,20 @@ static bool update_sd_pick_busiest(struct lb_env *env,
if (sgs->avg_load <= busiest->avg_load)
return false;
if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
goto asym_packing;
/*
* Candidate sg has no more than one task per CPU and
* has higher per-CPU capacity. Migrating tasks to less
* capable CPUs may harm throughput. Maximize throughput,
* power/energy consequences are not considered.
*/
if (sgs->sum_nr_running <= sgs->group_weight &&
group_smaller_cpu_capacity(sds->local, sg))
return false;
asym_packing:
/* This is the busiest node in its class. */
if (!(env->sd->flags & SD_ASYM_PACKING))
return true;
......@@ -7113,16 +7439,18 @@ static bool update_sd_pick_busiest(struct lb_env *env,
if (env->idle == CPU_NOT_IDLE)
return true;
/*
* ASYM_PACKING needs to move all the work to the lowest
* numbered CPUs in the group, therefore mark all groups
* higher than ourself as busy.
* ASYM_PACKING needs to move all the work to the highest
* prority CPUs in the group, therefore mark all groups
* of lower priority than ourself as busy.
*/
if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
if (sgs->sum_nr_running &&
sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
if (!sds->busiest)
return true;
/* Prefer to move from highest possible cpu's work */
if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
/* Prefer to move from lowest priority cpu's work */
if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
sg->asym_prefer_cpu))
return true;
}
......@@ -7274,8 +7602,8 @@ static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
if (!sds->busiest)
return 0;
busiest_cpu = group_first_cpu(sds->busiest);
if (env->dst_cpu > busiest_cpu)
busiest_cpu = sds->busiest->asym_prefer_cpu;
if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
return 0;
env->imbalance = DIV_ROUND_CLOSEST(
......@@ -7613,10 +7941,11 @@ static int need_active_balance(struct lb_env *env)
/*
* ASYM_PACKING needs to force migrate tasks from busy but
* higher numbered CPUs in order to pack all tasks in the
* lowest numbered CPUs.
* lower priority CPUs in order to pack all tasks in the
* highest priority CPUs.
*/
if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
if ((sd->flags & SD_ASYM_PACKING) &&
sched_asym_prefer(env->dst_cpu, env->src_cpu))
return 1;
}
......@@ -8465,7 +8794,7 @@ static inline bool nohz_kick_needed(struct rq *rq)
unsigned long now = jiffies;
struct sched_domain_shared *sds;
struct sched_domain *sd;
int nr_busy, cpu = rq->cpu;
int nr_busy, i, cpu = rq->cpu;
bool kick = false;
if (unlikely(rq->idle_balance))
......@@ -8516,12 +8845,18 @@ static inline bool nohz_kick_needed(struct rq *rq)
}
sd = rcu_dereference(per_cpu(sd_asym, cpu));
if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
sched_domain_span(sd)) < cpu)) {
kick = true;
goto unlock;
}
if (sd) {
for_each_cpu(i, sched_domain_span(sd)) {
if (i == cpu ||
!cpumask_test_cpu(i, nohz.idle_cpus_mask))
continue;
if (sched_asym_prefer(i, cpu)) {
kick = true;
goto unlock;
}
}
}
unlock:
rcu_read_unlock();
return kick;
......@@ -8687,32 +9022,45 @@ static inline bool vruntime_normalized(struct task_struct *p)
return false;
}
static void detach_task_cfs_rq(struct task_struct *p)
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* Propagate the changes of the sched_entity across the tg tree to make it
* visible to the root
*/
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 now = cfs_rq_clock_task(cfs_rq);
struct cfs_rq *cfs_rq;
if (!vruntime_normalized(p)) {
/*
* Fix up our vruntime so that the current sleep doesn't
* cause 'unlimited' sleep bonus.
*/
place_entity(cfs_rq, se, 0);
se->vruntime -= cfs_rq->min_vruntime;
/* Start to propagate at parent */
se = se->parent;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
if (cfs_rq_throttled(cfs_rq))
break;
update_load_avg(se, UPDATE_TG);
}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif
static void detach_entity_cfs_rq(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
/* Catch up with the cfs_rq and remove our load when we leave */
update_cfs_rq_load_avg(now, cfs_rq, false);
update_load_avg(se, 0);
detach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, false);
propagate_entity_cfs_rq(se);
}
static void attach_task_cfs_rq(struct task_struct *p)
static void attach_entity_cfs_rq(struct sched_entity *se)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 now = cfs_rq_clock_task(cfs_rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
......@@ -8722,10 +9070,36 @@ static void attach_task_cfs_rq(struct task_struct *p)
se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
/* Synchronize task with its cfs_rq */
update_cfs_rq_load_avg(now, cfs_rq, false);
/* Synchronize entity with its cfs_rq */
update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
attach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, false);
propagate_entity_cfs_rq(se);
}
static void detach_task_cfs_rq(struct task_struct *p)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
if (!vruntime_normalized(p)) {
/*
* Fix up our vruntime so that the current sleep doesn't
* cause 'unlimited' sleep bonus.
*/
place_entity(cfs_rq, se, 0);
se->vruntime -= cfs_rq->min_vruntime;
}
detach_entity_cfs_rq(se);
}
static void attach_task_cfs_rq(struct task_struct *p)
{
struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
attach_entity_cfs_rq(se);
if (!vruntime_normalized(p))
se->vruntime += cfs_rq->min_vruntime;
......@@ -8779,6 +9153,9 @@ void init_cfs_rq(struct cfs_rq *cfs_rq)
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
#ifdef CONFIG_SMP
#ifdef CONFIG_FAIR_GROUP_SCHED
cfs_rq->propagate_avg = 0;
#endif
atomic_long_set(&cfs_rq->removed_load_avg, 0);
atomic_long_set(&cfs_rq->removed_util_avg, 0);
#endif
......@@ -8887,7 +9264,7 @@ void online_fair_sched_group(struct task_group *tg)
se = tg->se[i];
raw_spin_lock_irq(&rq->lock);
post_init_entity_util_avg(se);
attach_entity_cfs_rq(se);
sync_throttle(tg, i);
raw_spin_unlock_irq(&rq->lock);
}
......
......@@ -404,6 +404,7 @@ struct cfs_rq {
unsigned long runnable_load_avg;
#ifdef CONFIG_FAIR_GROUP_SCHED
unsigned long tg_load_avg_contrib;
unsigned long propagate_avg;
#endif
atomic_long_t removed_load_avg, removed_util_avg;
#ifndef CONFIG_64BIT
......@@ -539,6 +540,11 @@ struct dl_rq {
#ifdef CONFIG_SMP
static inline bool sched_asym_prefer(int a, int b)
{
return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
}
/*
* We add the notion of a root-domain which will be used to define per-domain
* variables. Each exclusive cpuset essentially defines an island domain by
......@@ -623,6 +629,7 @@ struct rq {
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this cpu: */
struct list_head leaf_cfs_rq_list;
struct list_head *tmp_alone_branch;
#endif /* CONFIG_FAIR_GROUP_SCHED */
/*
......@@ -892,7 +899,8 @@ struct sched_group_capacity {
* CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
* for a single CPU.
*/
unsigned int capacity;
unsigned long capacity;
unsigned long min_capacity; /* Min per-CPU capacity in group */
unsigned long next_update;
int imbalance; /* XXX unrelated to capacity but shared group state */
......@@ -905,6 +913,7 @@ struct sched_group {
unsigned int group_weight;
struct sched_group_capacity *sgc;
int asym_prefer_cpu; /* cpu of highest priority in group */
/*
* The CPUs this group covers.
......
......@@ -347,13 +347,6 @@ static struct ctl_table kern_table[] = {
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "sched_shares_window_ns",
.data = &sysctl_sched_shares_window,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#ifdef CONFIG_SCHEDSTATS
{
.procname = "sched_schedstats",
......
......@@ -133,9 +133,9 @@ static inline unsigned long long prof_ticks(struct task_struct *p)
}
static inline unsigned long long virt_ticks(struct task_struct *p)
{
cputime_t utime;
cputime_t utime, stime;
task_cputime(p, &utime, NULL);
task_cputime(p, &utime, &stime);
return cputime_to_expires(utime);
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment