Commit 93dc3a11 authored by Jonathan Corbet's avatar Jonathan Corbet

doc: Convert the debugobjects DocBook template to sphinx

A couple of the most minor heading tweaks, otherwise no changes to the text
itself beyond the mechanical conversion.

Note that the inclusion of the kerneldoc comments from the source has never
worked, since exported symbols were asked for and none of those functions
are exported to modules.  It doesn't work here either :)

Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: default avatarJonathan Corbet <corbet@lwn.net>
parent 0bb33e25
......@@ -12,7 +12,7 @@ DOCBOOKS := z8530book.xml \
kernel-api.xml filesystems.xml lsm.xml kgdb.xml \
gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
80211.xml debugobjects.xml sh.xml regulator.xml \
80211.xml sh.xml regulator.xml \
tracepoint.xml w1.xml \
writing_musb_glue_layer.xml crypto-API.xml iio.xml
......
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
<book id="debug-objects-guide">
<bookinfo>
<title>Debug objects life time</title>
<authorgroup>
<author>
<firstname>Thomas</firstname>
<surname>Gleixner</surname>
<affiliation>
<address>
<email>tglx@linutronix.de</email>
</address>
</affiliation>
</author>
</authorgroup>
<copyright>
<year>2008</year>
<holder>Thomas Gleixner</holder>
</copyright>
<legalnotice>
<para>
This documentation is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public
License version 2 as published by the Free Software Foundation.
</para>
<para>
This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
</para>
<para>
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA
</para>
<para>
For more details see the file COPYING in the source
distribution of Linux.
</para>
</legalnotice>
</bookinfo>
<toc></toc>
<chapter id="intro">
<title>Introduction</title>
<para>
debugobjects is a generic infrastructure to track the life time
of kernel objects and validate the operations on those.
</para>
<para>
debugobjects is useful to check for the following error patterns:
<itemizedlist>
<listitem><para>Activation of uninitialized objects</para></listitem>
<listitem><para>Initialization of active objects</para></listitem>
<listitem><para>Usage of freed/destroyed objects</para></listitem>
</itemizedlist>
</para>
<para>
debugobjects is not changing the data structure of the real
object so it can be compiled in with a minimal runtime impact
and enabled on demand with a kernel command line option.
</para>
</chapter>
<chapter id="howto">
<title>Howto use debugobjects</title>
<para>
A kernel subsystem needs to provide a data structure which
describes the object type and add calls into the debug code at
appropriate places. The data structure to describe the object
type needs at minimum the name of the object type. Optional
functions can and should be provided to fixup detected problems
so the kernel can continue to work and the debug information can
be retrieved from a live system instead of hard core debugging
with serial consoles and stack trace transcripts from the
monitor.
</para>
<para>
The debug calls provided by debugobjects are:
<itemizedlist>
<listitem><para>debug_object_init</para></listitem>
<listitem><para>debug_object_init_on_stack</para></listitem>
<listitem><para>debug_object_activate</para></listitem>
<listitem><para>debug_object_deactivate</para></listitem>
<listitem><para>debug_object_destroy</para></listitem>
<listitem><para>debug_object_free</para></listitem>
<listitem><para>debug_object_assert_init</para></listitem>
</itemizedlist>
Each of these functions takes the address of the real object and
a pointer to the object type specific debug description
structure.
</para>
<para>
Each detected error is reported in the statistics and a limited
number of errors are printk'ed including a full stack trace.
</para>
<para>
The statistics are available via /sys/kernel/debug/debug_objects/stats.
They provide information about the number of warnings and the
number of successful fixups along with information about the
usage of the internal tracking objects and the state of the
internal tracking objects pool.
</para>
</chapter>
<chapter id="debugfunctions">
<title>Debug functions</title>
<sect1 id="prototypes">
<title>Debug object function reference</title>
!Elib/debugobjects.c
</sect1>
<sect1 id="debug_object_init">
<title>debug_object_init</title>
<para>
This function is called whenever the initialization function
of a real object is called.
</para>
<para>
When the real object is already tracked by debugobjects it is
checked, whether the object can be initialized. Initializing
is not allowed for active and destroyed objects. When
debugobjects detects an error, then it calls the fixup_init
function of the object type description structure if provided
by the caller. The fixup function can correct the problem
before the real initialization of the object happens. E.g. it
can deactivate an active object in order to prevent damage to
the subsystem.
</para>
<para>
When the real object is not yet tracked by debugobjects,
debugobjects allocates a tracker object for the real object
and sets the tracker object state to ODEBUG_STATE_INIT. It
verifies that the object is not on the callers stack. If it is
on the callers stack then a limited number of warnings
including a full stack trace is printk'ed. The calling code
must use debug_object_init_on_stack() and remove the object
before leaving the function which allocated it. See next
section.
</para>
</sect1>
<sect1 id="debug_object_init_on_stack">
<title>debug_object_init_on_stack</title>
<para>
This function is called whenever the initialization function
of a real object which resides on the stack is called.
</para>
<para>
When the real object is already tracked by debugobjects it is
checked, whether the object can be initialized. Initializing
is not allowed for active and destroyed objects. When
debugobjects detects an error, then it calls the fixup_init
function of the object type description structure if provided
by the caller. The fixup function can correct the problem
before the real initialization of the object happens. E.g. it
can deactivate an active object in order to prevent damage to
the subsystem.
</para>
<para>
When the real object is not yet tracked by debugobjects
debugobjects allocates a tracker object for the real object
and sets the tracker object state to ODEBUG_STATE_INIT. It
verifies that the object is on the callers stack.
</para>
<para>
An object which is on the stack must be removed from the
tracker by calling debug_object_free() before the function
which allocates the object returns. Otherwise we keep track of
stale objects.
</para>
</sect1>
<sect1 id="debug_object_activate">
<title>debug_object_activate</title>
<para>
This function is called whenever the activation function of a
real object is called.
</para>
<para>
When the real object is already tracked by debugobjects it is
checked, whether the object can be activated. Activating is
not allowed for active and destroyed objects. When
debugobjects detects an error, then it calls the
fixup_activate function of the object type description
structure if provided by the caller. The fixup function can
correct the problem before the real activation of the object
happens. E.g. it can deactivate an active object in order to
prevent damage to the subsystem.
</para>
<para>
When the real object is not yet tracked by debugobjects then
the fixup_activate function is called if available. This is
necessary to allow the legitimate activation of statically
allocated and initialized objects. The fixup function checks
whether the object is valid and calls the debug_objects_init()
function to initialize the tracking of this object.
</para>
<para>
When the activation is legitimate, then the state of the
associated tracker object is set to ODEBUG_STATE_ACTIVE.
</para>
</sect1>
<sect1 id="debug_object_deactivate">
<title>debug_object_deactivate</title>
<para>
This function is called whenever the deactivation function of
a real object is called.
</para>
<para>
When the real object is tracked by debugobjects it is checked,
whether the object can be deactivated. Deactivating is not
allowed for untracked or destroyed objects.
</para>
<para>
When the deactivation is legitimate, then the state of the
associated tracker object is set to ODEBUG_STATE_INACTIVE.
</para>
</sect1>
<sect1 id="debug_object_destroy">
<title>debug_object_destroy</title>
<para>
This function is called to mark an object destroyed. This is
useful to prevent the usage of invalid objects, which are
still available in memory: either statically allocated objects
or objects which are freed later.
</para>
<para>
When the real object is tracked by debugobjects it is checked,
whether the object can be destroyed. Destruction is not
allowed for active and destroyed objects. When debugobjects
detects an error, then it calls the fixup_destroy function of
the object type description structure if provided by the
caller. The fixup function can correct the problem before the
real destruction of the object happens. E.g. it can deactivate
an active object in order to prevent damage to the subsystem.
</para>
<para>
When the destruction is legitimate, then the state of the
associated tracker object is set to ODEBUG_STATE_DESTROYED.
</para>
</sect1>
<sect1 id="debug_object_free">
<title>debug_object_free</title>
<para>
This function is called before an object is freed.
</para>
<para>
When the real object is tracked by debugobjects it is checked,
whether the object can be freed. Free is not allowed for
active objects. When debugobjects detects an error, then it
calls the fixup_free function of the object type description
structure if provided by the caller. The fixup function can
correct the problem before the real free of the object
happens. E.g. it can deactivate an active object in order to
prevent damage to the subsystem.
</para>
<para>
Note that debug_object_free removes the object from the
tracker. Later usage of the object is detected by the other
debug checks.
</para>
</sect1>
<sect1 id="debug_object_assert_init">
<title>debug_object_assert_init</title>
<para>
This function is called to assert that an object has been
initialized.
</para>
<para>
When the real object is not tracked by debugobjects, it calls
fixup_assert_init of the object type description structure
provided by the caller, with the hardcoded object state
ODEBUG_NOT_AVAILABLE. The fixup function can correct the problem
by calling debug_object_init and other specific initializing
functions.
</para>
<para>
When the real object is already tracked by debugobjects it is
ignored.
</para>
</sect1>
</chapter>
<chapter id="fixupfunctions">
<title>Fixup functions</title>
<sect1 id="debug_obj_descr">
<title>Debug object type description structure</title>
!Iinclude/linux/debugobjects.h
</sect1>
<sect1 id="fixup_init">
<title>fixup_init</title>
<para>
This function is called from the debug code whenever a problem
in debug_object_init is detected. The function takes the
address of the object and the state which is currently
recorded in the tracker.
</para>
<para>
Called from debug_object_init when the object state is:
<itemizedlist>
<listitem><para>ODEBUG_STATE_ACTIVE</para></listitem>
</itemizedlist>
</para>
<para>
The function returns true when the fixup was successful,
otherwise false. The return value is used to update the
statistics.
</para>
<para>
Note, that the function needs to call the debug_object_init()
function again, after the damage has been repaired in order to
keep the state consistent.
</para>
</sect1>
<sect1 id="fixup_activate">
<title>fixup_activate</title>
<para>
This function is called from the debug code whenever a problem
in debug_object_activate is detected.
</para>
<para>
Called from debug_object_activate when the object state is:
<itemizedlist>
<listitem><para>ODEBUG_STATE_NOTAVAILABLE</para></listitem>
<listitem><para>ODEBUG_STATE_ACTIVE</para></listitem>
</itemizedlist>
</para>
<para>
The function returns true when the fixup was successful,
otherwise false. The return value is used to update the
statistics.
</para>
<para>
Note that the function needs to call the debug_object_activate()
function again after the damage has been repaired in order to
keep the state consistent.
</para>
<para>
The activation of statically initialized objects is a special
case. When debug_object_activate() has no tracked object for
this object address then fixup_activate() is called with
object state ODEBUG_STATE_NOTAVAILABLE. The fixup function
needs to check whether this is a legitimate case of a
statically initialized object or not. In case it is it calls
debug_object_init() and debug_object_activate() to make the
object known to the tracker and marked active. In this case
the function should return false because this is not a real
fixup.
</para>
</sect1>
<sect1 id="fixup_destroy">
<title>fixup_destroy</title>
<para>
This function is called from the debug code whenever a problem
in debug_object_destroy is detected.
</para>
<para>
Called from debug_object_destroy when the object state is:
<itemizedlist>
<listitem><para>ODEBUG_STATE_ACTIVE</para></listitem>
</itemizedlist>
</para>
<para>
The function returns true when the fixup was successful,
otherwise false. The return value is used to update the
statistics.
</para>
</sect1>
<sect1 id="fixup_free">
<title>fixup_free</title>
<para>
This function is called from the debug code whenever a problem
in debug_object_free is detected. Further it can be called
from the debug checks in kfree/vfree, when an active object is
detected from the debug_check_no_obj_freed() sanity checks.
</para>
<para>
Called from debug_object_free() or debug_check_no_obj_freed()
when the object state is:
<itemizedlist>
<listitem><para>ODEBUG_STATE_ACTIVE</para></listitem>
</itemizedlist>
</para>
<para>
The function returns true when the fixup was successful,
otherwise false. The return value is used to update the
statistics.
</para>
</sect1>
<sect1 id="fixup_assert_init">
<title>fixup_assert_init</title>
<para>
This function is called from the debug code whenever a problem
in debug_object_assert_init is detected.
</para>
<para>
Called from debug_object_assert_init() with a hardcoded state
ODEBUG_STATE_NOTAVAILABLE when the object is not found in the
debug bucket.
</para>
<para>
The function returns true when the fixup was successful,
otherwise false. The return value is used to update the
statistics.
</para>
<para>
Note, this function should make sure debug_object_init() is
called before returning.
</para>
<para>
The handling of statically initialized objects is a special
case. The fixup function should check if this is a legitimate
case of a statically initialized object or not. In this case only
debug_object_init() should be called to make the object known to
the tracker. Then the function should return false because this
is not
a real fixup.
</para>
</sect1>
</chapter>
<chapter id="bugs">
<title>Known Bugs And Assumptions</title>
<para>
None (knock on wood).
</para>
</chapter>
</book>
============================================
The object-lifetime debugging infrastructure
============================================
:Author: Thomas Gleixner
Introduction
============
debugobjects is a generic infrastructure to track the life time of
kernel objects and validate the operations on those.
debugobjects is useful to check for the following error patterns:
- Activation of uninitialized objects
- Initialization of active objects
- Usage of freed/destroyed objects
debugobjects is not changing the data structure of the real object so it
can be compiled in with a minimal runtime impact and enabled on demand
with a kernel command line option.
Howto use debugobjects
======================
A kernel subsystem needs to provide a data structure which describes the
object type and add calls into the debug code at appropriate places. The
data structure to describe the object type needs at minimum the name of
the object type. Optional functions can and should be provided to fixup
detected problems so the kernel can continue to work and the debug
information can be retrieved from a live system instead of hard core
debugging with serial consoles and stack trace transcripts from the
monitor.
The debug calls provided by debugobjects are:
- debug_object_init
- debug_object_init_on_stack
- debug_object_activate
- debug_object_deactivate
- debug_object_destroy
- debug_object_free
- debug_object_assert_init
Each of these functions takes the address of the real object and a
pointer to the object type specific debug description structure.
Each detected error is reported in the statistics and a limited number
of errors are printk'ed including a full stack trace.
The statistics are available via /sys/kernel/debug/debug_objects/stats.
They provide information about the number of warnings and the number of
successful fixups along with information about the usage of the internal
tracking objects and the state of the internal tracking objects pool.
Debug functions
===============
Debug object function reference
-------------------------------
.. kernel-doc:: lib/debugobjects.c
:export:
debug_object_init
-------------------
This function is called whenever the initialization function of a real
object is called.
When the real object is already tracked by debugobjects it is checked,
whether the object can be initialized. Initializing is not allowed for
active and destroyed objects. When debugobjects detects an error, then
it calls the fixup_init function of the object type description
structure if provided by the caller. The fixup function can correct the
problem before the real initialization of the object happens. E.g. it
can deactivate an active object in order to prevent damage to the
subsystem.
When the real object is not yet tracked by debugobjects, debugobjects
allocates a tracker object for the real object and sets the tracker
object state to ODEBUG_STATE_INIT. It verifies that the object is not
on the callers stack. If it is on the callers stack then a limited
number of warnings including a full stack trace is printk'ed. The
calling code must use debug_object_init_on_stack() and remove the
object before leaving the function which allocated it. See next section.
debug_object_init_on_stack
------------------------------
This function is called whenever the initialization function of a real
object which resides on the stack is called.
When the real object is already tracked by debugobjects it is checked,
whether the object can be initialized. Initializing is not allowed for
active and destroyed objects. When debugobjects detects an error, then
it calls the fixup_init function of the object type description
structure if provided by the caller. The fixup function can correct the
problem before the real initialization of the object happens. E.g. it
can deactivate an active object in order to prevent damage to the
subsystem.
When the real object is not yet tracked by debugobjects debugobjects
allocates a tracker object for the real object and sets the tracker
object state to ODEBUG_STATE_INIT. It verifies that the object is on
the callers stack.
An object which is on the stack must be removed from the tracker by
calling debug_object_free() before the function which allocates the
object returns. Otherwise we keep track of stale objects.
debug_object_activate
-----------------------
This function is called whenever the activation function of a real
object is called.
When the real object is already tracked by debugobjects it is checked,
whether the object can be activated. Activating is not allowed for
active and destroyed objects. When debugobjects detects an error, then
it calls the fixup_activate function of the object type description
structure if provided by the caller. The fixup function can correct the
problem before the real activation of the object happens. E.g. it can
deactivate an active object in order to prevent damage to the subsystem.
When the real object is not yet tracked by debugobjects then the
fixup_activate function is called if available. This is necessary to
allow the legitimate activation of statically allocated and initialized
objects. The fixup function checks whether the object is valid and calls
the debug_objects_init() function to initialize the tracking of this
object.
When the activation is legitimate, then the state of the associated
tracker object is set to ODEBUG_STATE_ACTIVE.
debug_object_deactivate
-------------------------
This function is called whenever the deactivation function of a real
object is called.
When the real object is tracked by debugobjects it is checked, whether
the object can be deactivated. Deactivating is not allowed for untracked
or destroyed objects.
When the deactivation is legitimate, then the state of the associated
tracker object is set to ODEBUG_STATE_INACTIVE.
debug_object_destroy
----------------------
This function is called to mark an object destroyed. This is useful to
prevent the usage of invalid objects, which are still available in
memory: either statically allocated objects or objects which are freed
later.
When the real object is tracked by debugobjects it is checked, whether
the object can be destroyed. Destruction is not allowed for active and
destroyed objects. When debugobjects detects an error, then it calls the
fixup_destroy function of the object type description structure if
provided by the caller. The fixup function can correct the problem
before the real destruction of the object happens. E.g. it can
deactivate an active object in order to prevent damage to the subsystem.
When the destruction is legitimate, then the state of the associated
tracker object is set to ODEBUG_STATE_DESTROYED.
debug_object_free
-------------------
This function is called before an object is freed.
When the real object is tracked by debugobjects it is checked, whether
the object can be freed. Free is not allowed for active objects. When
debugobjects detects an error, then it calls the fixup_free function of
the object type description structure if provided by the caller. The
fixup function can correct the problem before the real free of the
object happens. E.g. it can deactivate an active object in order to
prevent damage to the subsystem.
Note that debug_object_free removes the object from the tracker. Later
usage of the object is detected by the other debug checks.
debug_object_assert_init
---------------------------
This function is called to assert that an object has been initialized.
When the real object is not tracked by debugobjects, it calls
fixup_assert_init of the object type description structure provided by
the caller, with the hardcoded object state ODEBUG_NOT_AVAILABLE. The
fixup function can correct the problem by calling debug_object_init
and other specific initializing functions.
When the real object is already tracked by debugobjects it is ignored.
Fixup functions
===============
Debug object type description structure
---------------------------------------
.. kernel-doc:: include/linux/debugobjects.h
:internal:
fixup_init
-----------
This function is called from the debug code whenever a problem in
debug_object_init is detected. The function takes the address of the
object and the state which is currently recorded in the tracker.
Called from debug_object_init when the object state is:
- ODEBUG_STATE_ACTIVE
The function returns true when the fixup was successful, otherwise
false. The return value is used to update the statistics.
Note, that the function needs to call the debug_object_init() function
again, after the damage has been repaired in order to keep the state
consistent.
fixup_activate
---------------
This function is called from the debug code whenever a problem in
debug_object_activate is detected.
Called from debug_object_activate when the object state is:
- ODEBUG_STATE_NOTAVAILABLE
- ODEBUG_STATE_ACTIVE
The function returns true when the fixup was successful, otherwise
false. The return value is used to update the statistics.
Note that the function needs to call the debug_object_activate()
function again after the damage has been repaired in order to keep the
state consistent.
The activation of statically initialized objects is a special case. When
debug_object_activate() has no tracked object for this object address
then fixup_activate() is called with object state
ODEBUG_STATE_NOTAVAILABLE. The fixup function needs to check whether
this is a legitimate case of a statically initialized object or not. In
case it is it calls debug_object_init() and debug_object_activate()
to make the object known to the tracker and marked active. In this case
the function should return false because this is not a real fixup.
fixup_destroy
--------------
This function is called from the debug code whenever a problem in
debug_object_destroy is detected.
Called from debug_object_destroy when the object state is:
- ODEBUG_STATE_ACTIVE
The function returns true when the fixup was successful, otherwise
false. The return value is used to update the statistics.
fixup_free
-----------
This function is called from the debug code whenever a problem in
debug_object_free is detected. Further it can be called from the debug
checks in kfree/vfree, when an active object is detected from the
debug_check_no_obj_freed() sanity checks.
Called from debug_object_free() or debug_check_no_obj_freed() when
the object state is:
- ODEBUG_STATE_ACTIVE
The function returns true when the fixup was successful, otherwise
false. The return value is used to update the statistics.
fixup_assert_init
-------------------
This function is called from the debug code whenever a problem in
debug_object_assert_init is detected.
Called from debug_object_assert_init() with a hardcoded state
ODEBUG_STATE_NOTAVAILABLE when the object is not found in the debug
bucket.
The function returns true when the fixup was successful, otherwise
false. The return value is used to update the statistics.
Note, this function should make sure debug_object_init() is called
before returning.
The handling of statically initialized objects is a special case. The
fixup function should check if this is a legitimate case of a statically
initialized object or not. In this case only debug_object_init()
should be called to make the object known to the tracker. Then the
function should return false because this is not a real fixup.
Known Bugs And Assumptions
==========================
None (knock on wood).
======================
Core-API Documentation
Core API Documentation
======================
Kernel and driver related documentation.
This is the beginning of a manual for core kernel APIs. The conversion
(and writing!) of documents for this manual is much appreciated!
Core utilities
==============
.. toctree::
:maxdepth: 1
workqueue
Interfaces for kernel debugging
===============================
.. toctree::
:maxdepth: 1
debug-objects
.. only:: subproject
Indices
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment