Commit 9dfe495c authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'edac/v4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-edac

Pull edac updates from Mauro Carvalho Chehab:
 "This contains the conversion of the EDAC uAPI documentation to ReST
  and the addition of the EDAC kAPI documentation to the driver-api
  docs.

  It also splits the EDAC headers by their functions"

* tag 'edac/v4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-edac:
  EDAC: Document HW_EVENT_ERR_DEFERRED type
  edac.rst: move concepts dictionary from edac.h
  edac: fix kenel-doc markups at edac.h
  edac: fix kernel-doc tags at the drivers/edac_*.h
  edac: adjust docs location at MAINTAINERS and 00-INDEX
  driver-api: create an edac.rst file with EDAC documentation
  edac: move documentation from edac_mc.c to edac_core.h
  edac: move documentation from edac_pci*.c to edac_pci.h
  edac: move documentation from edac_device to edac_core.h
  edac: rename edac_core.h to edac_mc.h
  edac: move EDAC device definitions to drivers/edac/edac_device.h
  edac: move EDAC PCI definitions to drivers/edac/edac_pci.h
  docs-rst: admin-guide: add documentation for EDAC
  edac.txt: Improve documentation, adding RAS introduction
  edac.txt: update information about newer Intel CPUs
  edac.txt: remove info that the Nehalem EDAC is experimental
  edac.txt: convert EDAC documentation to ReST
  edac.txt: add a section explaining the dimmX and rankX directories
  edac: edac_core.h: remove prototype for edac_pci_reset_delay_period()
  edac: edac_core.h: get rid of unused kobj_complete
parents 9936f44a 4838a0de
...@@ -152,8 +152,6 @@ driver-model/ ...@@ -152,8 +152,6 @@ driver-model/
- directory with info about Linux driver model. - directory with info about Linux driver model.
early-userspace/ early-userspace/
- info about initramfs, klibc, and userspace early during boot. - info about initramfs, klibc, and userspace early during boot.
edac.txt
- information on EDAC - Error Detection And Correction
efi-stub.txt efi-stub.txt
- How to use the EFI boot stub to bypass GRUB or elilo on EFI systems. - How to use the EFI boot stub to bypass GRUB or elilo on EFI systems.
eisa.txt eisa.txt
......
...@@ -59,6 +59,7 @@ configure specific aspects of kernel behavior to your liking. ...@@ -59,6 +59,7 @@ configure specific aspects of kernel behavior to your liking.
binfmt-misc binfmt-misc
mono mono
java java
ras
.. only:: subproject and html .. only:: subproject and html
......
.. include:: <isonum.txt>
============================================
Reliability, Availability and Serviceability
============================================
RAS concepts
************
Reliability, Availability and Serviceability (RAS) is a concept used on
servers meant to measure their robusteness.
Reliability
is the probability that a system will produce correct outputs.
* Generally measured as Mean Time Between Failures (MTBF)
* Enhanced by features that help to avoid, detect and repair hardware faults
Availability
is the probability that a system is operational at a given time
* Generally measured as a percentage of downtime per a period of time
* Often uses mechanisms to detect and correct hardware faults in
runtime;
Serviceability (or maintainability)
is the simplicity and speed with which a system can be repaired or
maintained
* Generally measured on Mean Time Between Repair (MTBR)
Improving RAS
-------------
In order to reduce systems downtime, a system should be capable of detecting
hardware errors, and, when possible correcting them in runtime. It should
also provide mechanisms to detect hardware degradation, in order to warn
the system administrator to take the action of replacing a component before
it causes data loss or system downtime.
Among the monitoring measures, the most usual ones include:
* CPU – detect errors at instruction execution and at L1/L2/L3 caches;
* Memory – add error correction logic (ECC) to detect and correct errors;
* I/O – add CRC checksums for tranfered data;
* Storage – RAID, journal file systems, checksums,
Self-Monitoring, Analysis and Reporting Technology (SMART).
By monitoring the number of occurrences of error detections, it is possible
to identify if the probability of hardware errors is increasing, and, on such
case, do a preventive maintainance to replace a degrated component while
those errors are correctable.
Types of errors
---------------
Most mechanisms used on modern systems use use technologies like Hamming
Codes that allow error correction when the number of errors on a bit packet
is below a threshold. If the number of errors is above, those mechanisms
can indicate with a high degree of confidence that an error happened, but
they can't correct.
Also, sometimes an error occur on a component that it is not used. For
example, a part of the memory that it is not currently allocated.
That defines some categories of errors:
* **Correctable Error (CE)** - the error detection mechanism detected and
corrected the error. Such errors are usually not fatal, although some
Kernel mechanisms allow the system administrator to consider them as fatal.
* **Uncorrected Error (UE)** - the amount of errors happened above the error
correction threshold, and the system was unable to auto-correct.
* **Fatal Error** - when an UE error happens on a critical component of the
system (for example, a piece of the Kernel got corrupted by an UE), the
only reliable way to avoid data corruption is to hang or reboot the machine.
* **Non-fatal Error** - when an UE error happens on an unused component,
like a CPU in power down state or an unused memory bank, the system may
still run, eventually replacing the affected hardware by a hot spare,
if available.
Also, when an error happens on an userspace process, it is also possible to
kill such process and let userspace restart it.
The mechanism for handling non-fatal errors is usually complex and may
require the help of some userspace application, in order to apply the
policy desired by the system administrator.
Identifying a bad hardware component
------------------------------------
Just detecting a hardware flaw is usually not enough, as the system needs
to pinpoint to the minimal replaceable unit (MRU) that should be exchanged
to make the hardware reliable again.
So, it requires not only error logging facilities, but also mechanisms that
will translate the error message to the silkscreen or component label for
the MRU.
Typically, it is very complex for memory, as modern CPUs interlace memory
from different memory modules, in order to provide a better performance. The
DMI BIOS usually have a list of memory module labels, with can be obtained
using the ``dmidecode`` tool. For example, on a desktop machine, it shows::
Memory Device
Total Width: 64 bits
Data Width: 64 bits
Size: 16384 MB
Form Factor: SODIMM
Set: None
Locator: ChannelA-DIMM0
Bank Locator: BANK 0
Type: DDR4
Type Detail: Synchronous
Speed: 2133 MHz
Rank: 2
Configured Clock Speed: 2133 MHz
On the above example, a DDR4 SO-DIMM memory module is located at the
system's memory labeled as "BANK 0", as given by the *bank locator* field.
Please notice that, on such system, the *total width* is equal to the
*data witdh*. It means that such memory module doesn't have error
detection/correction mechanisms.
Unfortunately, not all systems use the same field to specify the memory
bank. On this example, from an older server, ``dmidecode`` shows::
Memory Device
Array Handle: 0x1000
Error Information Handle: Not Provided
Total Width: 72 bits
Data Width: 64 bits
Size: 8192 MB
Form Factor: DIMM
Set: 1
Locator: DIMM_A1
Bank Locator: Not Specified
Type: DDR3
Type Detail: Synchronous Registered (Buffered)
Speed: 1600 MHz
Rank: 2
Configured Clock Speed: 1600 MHz
There, the DDR3 RDIMM memory module is located at the system's memory labeled
as "DIMM_A1", as given by the *locator* field. Please notice that this
memory module has 64 bits of *data witdh* and 72 bits of *total width*. So,
it has 8 extra bits to be used by error detection and correction mechanisms.
Such kind of memory is called Error-correcting code memory (ECC memory).
To make things even worse, it is not uncommon that systems with different
labels on their system's board to use exactly the same BIOS, meaning that
the labels provided by the BIOS won't match the real ones.
ECC memory
----------
As mentioned on the previous section, ECC memory has extra bits to be
used for error correction. So, on 64 bit systems, a memory module
has 64 bits of *data width*, and 74 bits of *total width*. So, there are
8 bits extra bits to be used for the error detection and correction
mechanisms. Those extra bits are called *syndrome*\ [#f1]_\ [#f2]_.
So, when the cpu requests the memory controller to write a word with
*data width*, the memory controller calculates the *syndrome* in real time,
using Hamming code, or some other error correction code, like SECDED+,
producing a code with *total width* size. Such code is then written
on the memory modules.
At read, the *total width* bits code is converted back, using the same
ECC code used on write, producing a word with *data width* and a *syndrome*.
The word with *data width* is sent to the CPU, even when errors happen.
The memory controller also looks at the *syndrome* in order to check if
there was an error, and if the ECC code was able to fix such error.
If the error was corrected, a Corrected Error (CE) happened. If not, an
Uncorrected Error (UE) happened.
The information about the CE/UE errors is stored on some special registers
at the memory controller and can be accessed by reading such registers,
either by BIOS, by some special CPUs or by Linux EDAC driver. On x86 64
bit CPUs, such errors can also be retrieved via the Machine Check
Architecture (MCA)\ [#f3]_.
.. [#f1] Please notice that several memory controllers allow operation on a
mode called "Lock-Step", where it groups two memory modules together,
doing 128-bit reads/writes. That gives 16 bits for error correction, with
significatively improves the error correction mechanism, at the expense
that, when an error happens, there's no way to know what memory module is
to blame. So, it has to blame both memory modules.
.. [#f2] Some memory controllers also allow using memory in mirror mode.
On such mode, the same data is written to two memory modules. At read,
the system checks both memory modules, in order to check if both provide
identical data. On such configuration, when an error happens, there's no
way to know what memory module is to blame. So, it has to blame both
memory modules (or 4 memory modules, if the system is also on Lock-step
mode).
.. [#f3] For more details about the Machine Check Architecture (MCA),
please read Documentation/x86/x86_64/machinecheck at the Kernel tree.
EDAC - Error Detection And Correction EDAC - Error Detection And Correction
===================================== *************************************
.. note::
"bluesmoke" was the name for this device driver when it "bluesmoke" was the name for this device driver subsystem when it
was "out-of-tree" and maintained at sourceforge.net - was "out-of-tree" and maintained at http://bluesmoke.sourceforge.net.
bluesmoke.sourceforge.net. That site is mostly archaic now and can be That site is mostly archaic now and can be used only for historical
used only for historical purposes. purposes.
When the subsystem was pushed into 2.6.16 for the first time, it was When the subsystem was pushed upstream for the first time, on
renamed to 'EDAC'. Kernel 2.6.16, for the first time, it was renamed to ``EDAC``.
PURPOSE Purpose
------- -------
The 'edac' kernel module's goal is to detect and report hardware errors The ``edac`` kernel module's goal is to detect and report hardware errors
that occur within the computer system running under linux. that occur within the computer system running under linux.
MEMORY Memory
------ ------
Memory Correctable Errors (CE) and Uncorrectable Errors (UE) are the Memory Correctable Errors (CE) and Uncorrectable Errors (UE) are the
primary errors being harvested. These types of errors are harvested by primary errors being harvested. These types of errors are harvested by
the 'edac_mc' device. the ``edac_mc`` device.
Detecting CE events, then harvesting those events and reporting them, Detecting CE events, then harvesting those events and reporting them,
*can* but must not necessarily be a predictor of future UE events. With **can** but must not necessarily be a predictor of future UE events. With
CE events only, the system can and will continue to operate as no data CE events only, the system can and will continue to operate as no data
has been damaged yet. has been damaged yet.
However, preventive maintenance and proactive part replacement of memory However, preventive maintenance and proactive part replacement of memory
DIMMs exhibiting CEs can reduce the likelihood of the dreaded UE events modules exhibiting CEs can reduce the likelihood of the dreaded UE events
and system panics. and system panics.
OTHER HARDWARE ELEMENTS Other hardware elements
----------------------- -----------------------
A new feature for EDAC, the edac_device class of device, was added in A new feature for EDAC, the ``edac_device`` class of device, was added in
the 2.6.23 version of the kernel. the 2.6.23 version of the kernel.
This new device type allows for non-memory type of ECC hardware detectors This new device type allows for non-memory type of ECC hardware detectors
...@@ -48,14 +253,14 @@ reports it, then a edac_device device probably can be constructed to ...@@ -48,14 +253,14 @@ reports it, then a edac_device device probably can be constructed to
harvest and present that to userspace. harvest and present that to userspace.
PCI BUS SCANNING PCI bus scanning
---------------- ----------------
In addition, PCI devices are scanned for PCI Bus Parity and SERR Errors In addition, PCI devices are scanned for PCI Bus Parity and SERR Errors
in order to determine if errors are occurring during data transfers. in order to determine if errors are occurring during data transfers.
The presence of PCI Parity errors must be examined with a grain of salt. The presence of PCI Parity errors must be examined with a grain of salt.
There are several add-in adapters that do *not* follow the PCI specification There are several add-in adapters that do **not** follow the PCI specification
with regards to Parity generation and reporting. The specification says with regards to Parity generation and reporting. The specification says
the vendor should tie the parity status bits to 0 if they do not intend the vendor should tie the parity status bits to 0 if they do not intend
to generate parity. Some vendors do not do this, and thus the parity bit to generate parity. Some vendors do not do this, and thus the parity bit
...@@ -63,94 +268,106 @@ can "float" giving false positives. ...@@ -63,94 +268,106 @@ can "float" giving false positives.
There is a PCI device attribute located in sysfs that is checked by There is a PCI device attribute located in sysfs that is checked by
the EDAC PCI scanning code. If that attribute is set, PCI parity/error the EDAC PCI scanning code. If that attribute is set, PCI parity/error
scanning is skipped for that device. The attribute is: scanning is skipped for that device. The attribute is::
broken_parity_status broken_parity_status
and is located in /sys/devices/pci<XXX>/0000:XX:YY.Z directories for and is located in ``/sys/devices/pci<XXX>/0000:XX:YY.Z`` directories for
PCI devices. PCI devices.
VERSIONING Versioning
---------- ----------
EDAC is composed of a "core" module (edac_core.ko) and several Memory EDAC is composed of a "core" module (``edac_core.ko``) and several Memory
Controller (MC) driver modules. On a given system, the CORE is loaded Controller (MC) driver modules. On a given system, the CORE is loaded
and one MC driver will be loaded. Both the CORE and the MC driver (or and one MC driver will be loaded. Both the CORE and the MC driver (or
edac_device driver) have individual versions that reflect current ``edac_device`` driver) have individual versions that reflect current
release level of their respective modules. release level of their respective modules.
Thus, to "report" on what version a system is running, one must report Thus, to "report" on what version a system is running, one must report
both the CORE's and the MC driver's versions. both the CORE's and the MC driver's versions.
LOADING Loading
------- -------
If 'edac' was statically linked with the kernel then no loading If ``edac`` was statically linked with the kernel then no loading
is necessary. If 'edac' was built as modules then simply modprobe is necessary. If ``edac`` was built as modules then simply modprobe
the 'edac' pieces that you need. You should be able to modprobe the ``edac`` pieces that you need. You should be able to modprobe
hardware-specific modules and have the dependencies load the necessary hardware-specific modules and have the dependencies load the necessary
core modules. core modules.
Example: Example::
$> modprobe amd76x_edac $ modprobe amd76x_edac
loads both the amd76x_edac.ko memory controller module and the edac_mc.ko loads both the ``amd76x_edac.ko`` memory controller module and the
core module. ``edac_mc.ko`` core module.
SYSFS INTERFACE Sysfs interface
--------------- ---------------
EDAC presents a 'sysfs' interface for control and reporting purposes. It EDAC presents a ``sysfs`` interface for control and reporting purposes. It
lives in the /sys/devices/system/edac directory. lives in the /sys/devices/system/edac directory.
Within this directory there currently reside 2 components: Within this directory there currently reside 2 components:
======= ==============================
mc memory controller(s) system mc memory controller(s) system
pci PCI control and status system pci PCI control and status system
======= ==============================
Memory Controller (mc) Model Memory Controller (mc) Model
---------------------------- ----------------------------
Each 'mc' device controls a set of DIMM memory modules. These modules Each ``mc`` device controls a set of memory modules [#f4]_. These modules
are laid out in a Chip-Select Row (csrowX) and Channel table (chX). are laid out in a Chip-Select Row (``csrowX``) and Channel table (``chX``).
There can be multiple csrows and multiple channels. There can be multiple csrows and multiple channels.
.. [#f4] Nowadays, the term DIMM (Dual In-line Memory Module) is widely
used to refer to a memory module, although there are other memory
packaging alternatives, like SO-DIMM, SIMM, etc. Along this document,
and inside the EDAC system, the term "dimm" is used for all memory
modules, even when they use a different kind of packaging.
Memory controllers allow for several csrows, with 8 csrows being a Memory controllers allow for several csrows, with 8 csrows being a
typical value. Yet, the actual number of csrows depends on the layout of typical value. Yet, the actual number of csrows depends on the layout of
a given motherboard, memory controller and DIMM characteristics. a given motherboard, memory controller and memory module characteristics.
Dual channels allows for 128 bit data transfers to/from the CPU from/to Dual channels allow for dual data length (e. g. 128 bits, on 64 bit systems)
memory. Some newer chipsets allow for more than 2 channels, like Fully data transfers to/from the CPU from/to memory. Some newer chipsets allow
Buffered DIMMs (FB-DIMMs). The following example will assume 2 channels: for more than 2 channels, like Fully Buffered DIMMs (FB-DIMMs) memory
controllers. The following example will assume 2 channels:
Channel 0 Channel 1 +------------+-----------------------+
=================================== | Chip | Channels |
csrow0 | DIMM_A0 | DIMM_B0 | | Select +-----------+-----------+
csrow1 | DIMM_A0 | DIMM_B0 | | rows | ``ch0`` | ``ch1`` |
=================================== +============+===========+===========+
| ``csrow0`` | DIMM_A0 | DIMM_B0 |
=================================== +------------+ | |
csrow2 | DIMM_A1 | DIMM_B1 | | ``csrow1`` | | |
csrow3 | DIMM_A1 | DIMM_B1 | +------------+-----------+-----------+
=================================== | ``csrow2`` | DIMM_A1 | DIMM_B1 |
+------------+ | |
In the above example table there are 4 physical slots on the motherboard | ``csrow3`` | | |
+------------+-----------+-----------+
In the above example, there are 4 physical slots on the motherboard
for memory DIMMs: for memory DIMMs:
DIMM_A0 +---------+---------+
DIMM_B0 | DIMM_A0 | DIMM_B0 |
DIMM_A1 +---------+---------+
DIMM_B1 | DIMM_A1 | DIMM_B1 |
+---------+---------+
Labels for these slots are usually silk-screened on the motherboard. Labels for these slots are usually silk-screened on the motherboard.
Slots labeled 'A' are channel 0 in this example. Slots labeled 'B' are Slots labeled ``A`` are channel 0 in this example. Slots labeled ``B`` are
channel 1. Notice that there are two csrows possible on a physical DIMM. channel 1. Notice that there are two csrows possible on a physical DIMM.
These csrows are allocated their csrow assignment based on the slot into These csrows are allocated their csrow assignment based on the slot into
which the memory DIMM is placed. Thus, when 1 DIMM is placed in each which the memory DIMM is placed. Thus, when 1 DIMM is placed in each
...@@ -158,16 +375,16 @@ Channel, the csrows cross both DIMMs. ...@@ -158,16 +375,16 @@ Channel, the csrows cross both DIMMs.
Memory DIMMs come single or dual "ranked". A rank is a populated csrow. Memory DIMMs come single or dual "ranked". A rank is a populated csrow.
Thus, 2 single ranked DIMMs, placed in slots DIMM_A0 and DIMM_B0 above Thus, 2 single ranked DIMMs, placed in slots DIMM_A0 and DIMM_B0 above
will have 1 csrow, csrow0. csrow1 will be empty. On the other hand, will have just one csrow (csrow0). csrow1 will be empty. On the other
when 2 dual ranked DIMMs are similarly placed, then both csrow0 and hand, when 2 dual ranked DIMMs are similarly placed, then both csrow0
csrow1 will be populated. The pattern repeats itself for csrow2 and and csrow1 will be populated. The pattern repeats itself for csrow2 and
csrow3. csrow3.
The representation of the above is reflected in the directory The representation of the above is reflected in the directory
tree in EDAC's sysfs interface. Starting in directory tree in EDAC's sysfs interface. Starting in directory
/sys/devices/system/edac/mc each memory controller will be represented ``/sys/devices/system/edac/mc``, each memory controller will be
by its own 'mcX' directory, where 'X' is the index of the MC. represented by its own ``mcX`` directory, where ``X`` is the
index of the MC::
..../edac/mc/ ..../edac/mc/
| |
...@@ -176,9 +393,8 @@ by its own 'mcX' directory, where 'X' is the index of the MC. ...@@ -176,9 +393,8 @@ by its own 'mcX' directory, where 'X' is the index of the MC.
|->mc2 |->mc2
.... ....
Under each 'mcX' directory each 'csrowX' is again represented by a Under each ``mcX`` directory each ``csrowX`` is again represented by a
'csrowX', where 'X' is the csrow index: ``csrowX``, where ``X`` is the csrow index::
.../mc/mc0/ .../mc/mc0/
| |
...@@ -193,37 +409,154 @@ order to have dual-channel mode be operational. Since both csrow2 and ...@@ -193,37 +409,154 @@ order to have dual-channel mode be operational. Since both csrow2 and
csrow3 are populated, this indicates a dual ranked set of DIMMs for csrow3 are populated, this indicates a dual ranked set of DIMMs for
channels 0 and 1. channels 0 and 1.
Within each of the ``mcX`` and ``csrowX`` directories are several EDAC
Within each of the 'mcX' and 'csrowX' directories are several EDAC
control and attribute files. control and attribute files.
``mcX`` directories
-------------------
'mcX' directories In ``mcX`` directories are EDAC control and attribute files for
----------------- this ``X`` instance of the memory controllers.
In 'mcX' directories are EDAC control and attribute files for
this 'X' instance of the memory controllers.
For a description of the sysfs API, please see: For a description of the sysfs API, please see:
Documentation/ABI/testing/sysfs-devices-edac Documentation/ABI/testing/sysfs-devices-edac
``dimmX`` or ``rankX`` directories
----------------------------------
The recommended way to use the EDAC subsystem is to look at the information
provided by the ``dimmX`` or ``rankX`` directories [#f5]_.
A typical EDAC system has the following structure under
``/sys/devices/system/edac/``\ [#f6]_::
/sys/devices/system/edac/
├── mc
│   ├── mc0
│   │   ├── ce_count
│   │   ├── ce_noinfo_count
│   │   ├── dimm0
│   │   │   ├── dimm_dev_type
│   │   │   ├── dimm_edac_mode
│   │   │   ├── dimm_label
│   │   │   ├── dimm_location
│   │   │   ├── dimm_mem_type
│   │   │   ├── size
│   │   │   └── uevent
│   │   ├── max_location
│   │   ├── mc_name
│   │   ├── reset_counters
│   │   ├── seconds_since_reset
│   │   ├── size_mb
│   │   ├── ue_count
│   │   ├── ue_noinfo_count
│   │   └── uevent
│   ├── mc1
│   │   ├── ce_count
│   │   ├── ce_noinfo_count
│   │   ├── dimm0
│   │   │   ├── dimm_dev_type
│   │   │   ├── dimm_edac_mode
│   │   │   ├── dimm_label
│   │   │   ├── dimm_location
│   │   │   ├── dimm_mem_type
│   │   │   ├── size
│   │   │   └── uevent
│   │   ├── max_location
│   │   ├── mc_name
│   │   ├── reset_counters
│   │   ├── seconds_since_reset
│   │   ├── size_mb
│   │   ├── ue_count
│   │   ├── ue_noinfo_count
│   │   └── uevent
│   └── uevent
└── uevent
In the ``dimmX`` directories are EDAC control and attribute files for
this ``X`` memory module:
- ``size`` - Total memory managed by this csrow attribute file
This attribute file displays, in count of megabytes, the memory
that this csrow contains.
'csrowX' directories - ``dimm_dev_type`` - Device type attribute file
--------------------
When CONFIG_EDAC_LEGACY_SYSFS is enabled, sysfs will contain the csrowX This attribute file will display what type of DRAM device is
being utilized on this DIMM.
Examples:
- x1
- x2
- x4
- x8
- ``dimm_edac_mode`` - EDAC Mode of operation attribute file
This attribute file will display what type of Error detection
and correction is being utilized.
- ``dimm_label`` - memory module label control file
This control file allows this DIMM to have a label assigned
to it. With this label in the module, when errors occur
the output can provide the DIMM label in the system log.
This becomes vital for panic events to isolate the
cause of the UE event.
DIMM Labels must be assigned after booting, with information
that correctly identifies the physical slot with its
silk screen label. This information is currently very
motherboard specific and determination of this information
must occur in userland at this time.
- ``dimm_location`` - location of the memory module
The location can have up to 3 levels, and describe how the
memory controller identifies the location of a memory module.
Depending on the type of memory and memory controller, it
can be:
- *csrow* and *channel* - used when the memory controller
doesn't identify a single DIMM - e. g. in ``rankX`` dir;
- *branch*, *channel*, *slot* - typically used on FB-DIMM memory
controllers;
- *channel*, *slot* - used on Nehalem and newer Intel drivers.
- ``dimm_mem_type`` - Memory Type attribute file
This attribute file will display what type of memory is currently
on this csrow. Normally, either buffered or unbuffered memory.
Examples:
- Registered-DDR
- Unbuffered-DDR
.. [#f5] On some systems, the memory controller doesn't have any logic
to identify the memory module. On such systems, the directory is called ``rankX`` and works on a similar way as the ``csrowX`` directories.
On modern Intel memory controllers, the memory controller identifies the
memory modules directly. On such systems, the directory is called ``dimmX``.
.. [#f6] There are also some ``power`` directories and ``subsystem``
symlinks inside the sysfs mapping that are automatically created by
the sysfs subsystem. Currently, they serve no purpose.
``csrowX`` directories
----------------------
When CONFIG_EDAC_LEGACY_SYSFS is enabled, sysfs will contain the ``csrowX``
directories. As this API doesn't work properly for Rambus, FB-DIMMs and directories. As this API doesn't work properly for Rambus, FB-DIMMs and
modern Intel Memory Controllers, this is being deprecated in favor of modern Intel Memory Controllers, this is being deprecated in favor of
dimmX directories. ``dimmX`` directories.
In the 'csrowX' directories are EDAC control and attribute files for
this 'X' instance of csrow:
In the ``csrowX`` directories are EDAC control and attribute files for
this ``X`` instance of csrow:
Total Uncorrectable Errors count attribute file:
'ue_count' - ``ue_count`` - Total Uncorrectable Errors count attribute file
This attribute file displays the total count of uncorrectable This attribute file displays the total count of uncorrectable
errors that have occurred on this csrow. If panic_on_ue is set errors that have occurred on this csrow. If panic_on_ue is set
...@@ -231,9 +564,7 @@ Total Uncorrectable Errors count attribute file: ...@@ -231,9 +564,7 @@ Total Uncorrectable Errors count attribute file:
will panic the system. will panic the system.
Total Correctable Errors count attribute file: - ``ce_count`` - Total Correctable Errors count attribute file
'ce_count'
This attribute file displays the total count of correctable This attribute file displays the total count of correctable
errors that have occurred on this csrow. This count is very errors that have occurred on this csrow. This count is very
...@@ -243,65 +574,54 @@ Total Correctable Errors count attribute file: ...@@ -243,65 +574,54 @@ Total Correctable Errors count attribute file:
to the system administrator. to the system administrator.
Total memory managed by this csrow attribute file: - ``size_mb`` - Total memory managed by this csrow attribute file
'size_mb'
This attribute file displays, in count of megabytes, the memory This attribute file displays, in count of megabytes, the memory
that this csrow contains. that this csrow contains.
Memory Type attribute file: - ``mem_type`` - Memory Type attribute file
'mem_type'
This attribute file will display what type of memory is currently This attribute file will display what type of memory is currently
on this csrow. Normally, either buffered or unbuffered memory. on this csrow. Normally, either buffered or unbuffered memory.
Examples: Examples:
Registered-DDR
Unbuffered-DDR
- Registered-DDR
- Unbuffered-DDR
EDAC Mode of operation attribute file:
'edac_mode' - ``edac_mode`` - EDAC Mode of operation attribute file
This attribute file will display what type of Error detection This attribute file will display what type of Error detection
and correction is being utilized. and correction is being utilized.
Device type attribute file: - ``dev_type`` - Device type attribute file
'dev_type'
This attribute file will display what type of DRAM device is This attribute file will display what type of DRAM device is
being utilized on this DIMM. being utilized on this DIMM.
Examples: Examples:
x1
x2
x4
x8
- x1
- x2
- x4
- x8
Channel 0 CE Count attribute file:
'ch0_ce_count' - ``ch0_ce_count`` - Channel 0 CE Count attribute file
This attribute file will display the count of CEs on this This attribute file will display the count of CEs on this
DIMM located in channel 0. DIMM located in channel 0.
Channel 0 UE Count attribute file: - ``ch0_ue_count`` - Channel 0 UE Count attribute file
'ch0_ue_count'
This attribute file will display the count of UEs on this This attribute file will display the count of UEs on this
DIMM located in channel 0. DIMM located in channel 0.
Channel 0 DIMM Label control file: - ``ch0_dimm_label`` - Channel 0 DIMM Label control file
'ch0_dimm_label'
This control file allows this DIMM to have a label assigned This control file allows this DIMM to have a label assigned
to it. With this label in the module, when errors occur to it. With this label in the module, when errors occur
...@@ -316,25 +636,21 @@ Channel 0 DIMM Label control file: ...@@ -316,25 +636,21 @@ Channel 0 DIMM Label control file:
must occur in userland at this time. must occur in userland at this time.
Channel 1 CE Count attribute file: - ``ch1_ce_count`` - Channel 1 CE Count attribute file
'ch1_ce_count'
This attribute file will display the count of CEs on this This attribute file will display the count of CEs on this
DIMM located in channel 1. DIMM located in channel 1.
Channel 1 UE Count attribute file: - ``ch1_ue_count`` - Channel 1 UE Count attribute file
'ch1_ue_count'
This attribute file will display the count of UEs on this This attribute file will display the count of UEs on this
DIMM located in channel 0. DIMM located in channel 0.
Channel 1 DIMM Label control file: - ``ch1_dimm_label`` - Channel 1 DIMM Label control file
'ch1_dimm_label'
This control file allows this DIMM to have a label assigned This control file allows this DIMM to have a label assigned
to it. With this label in the module, when errors occur to it. With this label in the module, when errors occur
...@@ -349,33 +665,44 @@ Channel 1 DIMM Label control file: ...@@ -349,33 +665,44 @@ Channel 1 DIMM Label control file:
must occur in userland at this time. must occur in userland at this time.
System Logging
SYSTEM LOGGING
-------------- --------------
If logging for UEs and CEs is enabled, then system logs will contain If logging for UEs and CEs is enabled, then system logs will contain
information indicating that errors have been detected: information indicating that errors have been detected::
EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0,
channel 1 "DIMM_B1": amd76x_edac
EDAC MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0, EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0, channel 1 "DIMM_B1": amd76x_edac
channel 1 "DIMM_B1": amd76x_edac EDAC MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0, channel 1 "DIMM_B1": amd76x_edac
The structure of the message is: The structure of the message is:
the memory controller (MC0)
Error type (CE) +---------------------------------------+-------------+
memory page (0x283) | Content + Example |
offset in the page (0xce0) +=======================================+=============+
the byte granularity (grain 8) | The memory controller | MC0 |
or resolution of the error +---------------------------------------+-------------+
the error syndrome (0xb741) | Error type | CE |
memory row (row 0) +---------------------------------------+-------------+
memory channel (channel 1) | Memory page | 0x283 |
DIMM label, if set prior (DIMM B1 +---------------------------------------+-------------+
and then an optional, driver-specific message that may | Offset in the page | 0xce0 |
have additional information. +---------------------------------------+-------------+
| The byte granularity | grain 8 |
| or resolution of the error | |
+---------------------------------------+-------------+
| The error syndrome | 0xb741 |
+---------------------------------------+-------------+
| Memory row | row 0 +
+---------------------------------------+-------------+
| Memory channel | channel 1 |
+---------------------------------------+-------------+
| DIMM label, if set prior | DIMM B1 |
+---------------------------------------+-------------+
| And then an optional, driver-specific | |
| message that may have additional | |
| information. | |
+---------------------------------------+-------------+
Both UEs and CEs with no info will lack all but memory controller, error Both UEs and CEs with no info will lack all but memory controller, error
type, a notice of "no info" and then an optional, driver-specific error type, a notice of "no info" and then an optional, driver-specific error
...@@ -392,43 +719,38 @@ Type 01 bridges, the secondary status register is also looked at to see ...@@ -392,43 +719,38 @@ Type 01 bridges, the secondary status register is also looked at to see
if parity occurred on the bus on the other side of the bridge. if parity occurred on the bus on the other side of the bridge.
SYSFS CONFIGURATION Sysfs configuration
------------------- -------------------
Under /sys/devices/system/edac/pci are control and attribute files as follows: Under ``/sys/devices/system/edac/pci`` are control and attribute files as
follows:
Enable/Disable PCI Parity checking control file:
'check_pci_parity'
- ``check_pci_parity`` - Enable/Disable PCI Parity checking control file
This control file enables or disables the PCI Bus Parity scanning This control file enables or disables the PCI Bus Parity scanning
operation. Writing a 1 to this file enables the scanning. Writing operation. Writing a 1 to this file enables the scanning. Writing
a 0 to this file disables the scanning. a 0 to this file disables the scanning.
Enable: Enable::
echo "1" >/sys/devices/system/edac/pci/check_pci_parity
echo "1" >/sys/devices/system/edac/pci/check_pci_parity
Disable: Disable::
echo "0" >/sys/devices/system/edac/pci/check_pci_parity
echo "0" >/sys/devices/system/edac/pci/check_pci_parity
Parity Count:
'pci_parity_count' - ``pci_parity_count`` - Parity Count
This attribute file will display the number of parity errors that This attribute file will display the number of parity errors that
have been detected. have been detected.
Module parameters
MODULE PARAMETERS
----------------- -----------------
Panic on UE control file: - ``edac_mc_panic_on_ue`` - Panic on UE control file
'edac_mc_panic_on_ue'
An uncorrectable error will cause a machine panic. This is usually An uncorrectable error will cause a machine panic. This is usually
desirable. It is a bad idea to continue when an uncorrectable error desirable. It is a bad idea to continue when an uncorrectable error
...@@ -437,40 +759,49 @@ Panic on UE control file: ...@@ -437,40 +759,49 @@ Panic on UE control file:
corruption. If the kernel has MCE configured, then EDAC will never corruption. If the kernel has MCE configured, then EDAC will never
notice the UE. notice the UE.
LOAD TIME: module/kernel parameter: edac_mc_panic_on_ue=[0|1] LOAD TIME::
module/kernel parameter: edac_mc_panic_on_ue=[0|1]
RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue RUN TIME::
echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue
Log UE control file:
'edac_mc_log_ue' - ``edac_mc_log_ue`` - Log UE control file
Generate kernel messages describing uncorrectable errors. These errors Generate kernel messages describing uncorrectable errors. These errors
are reported through the system message log system. UE statistics are reported through the system message log system. UE statistics
will be accumulated even when UE logging is disabled. will be accumulated even when UE logging is disabled.
LOAD TIME: module/kernel parameter: edac_mc_log_ue=[0|1] LOAD TIME::
module/kernel parameter: edac_mc_log_ue=[0|1]
RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue RUN TIME::
echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue
Log CE control file:
'edac_mc_log_ce' - ``edac_mc_log_ce`` - Log CE control file
Generate kernel messages describing correctable errors. These Generate kernel messages describing correctable errors. These
errors are reported through the system message log system. errors are reported through the system message log system.
CE statistics will be accumulated even when CE logging is disabled. CE statistics will be accumulated even when CE logging is disabled.
LOAD TIME: module/kernel parameter: edac_mc_log_ce=[0|1] LOAD TIME::
module/kernel parameter: edac_mc_log_ce=[0|1]
RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce RUN TIME::
echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce
Polling period control file:
'edac_mc_poll_msec' - ``edac_mc_poll_msec`` - Polling period control file
The time period, in milliseconds, for polling for error information. The time period, in milliseconds, for polling for error information.
Too small a value wastes resources. Too large a value might delay Too small a value wastes resources. Too large a value might delay
...@@ -479,60 +810,69 @@ Polling period control file: ...@@ -479,60 +810,69 @@ Polling period control file:
default. Systems which require all the bandwidth they can get, may default. Systems which require all the bandwidth they can get, may
increase this. increase this.
LOAD TIME: module/kernel parameter: edac_mc_poll_msec=[0|1] LOAD TIME::
module/kernel parameter: edac_mc_poll_msec=[0|1]
RUN TIME: echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec RUN TIME::
echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec
Panic on PCI PARITY Error:
'panic_on_pci_parity' - ``panic_on_pci_parity`` - Panic on PCI PARITY Error
This control file enables or disables panicking when a parity This control file enables or disables panicking when a parity
error has been detected. error has been detected.
module/kernel parameter: edac_panic_on_pci_pe=[0|1] module/kernel parameter::
edac_panic_on_pci_pe=[0|1]
Enable: Enable::
echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
Disable: echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
Disable::
echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
EDAC device type EDAC device type
---------------- ----------------
In the header file, edac_core.h, there is a series of edac_device structures In the header file, edac_pci.h, there is a series of edac_device structures
and APIs for the EDAC_DEVICE. and APIs for the EDAC_DEVICE.
User space access to an edac_device is through the sysfs interface. User space access to an edac_device is through the sysfs interface.
At the location /sys/devices/system/edac (sysfs) new edac_device devices will At the location ``/sys/devices/system/edac`` (sysfs) new edac_device devices
appear. will appear.
There is a three level tree beneath the above 'edac' directory. For example, There is a three level tree beneath the above ``edac`` directory. For example,
the 'test_device_edac' device (found at the bluesmoke.sourceforget.net website) the ``test_device_edac`` device (found at the http://bluesmoke.sourceforget.net
installs itself as: website) installs itself as::
/sys/devices/systm/edac/test-instance /sys/devices/system/edac/test-instance
in this directory are various controls, a symlink and one or more 'instance' in this directory are various controls, a symlink and one or more ``instance``
directories. directories.
The standard default controls are: The standard default controls are:
============== =======================================================
log_ce boolean to log CE events log_ce boolean to log CE events
log_ue boolean to log UE events log_ue boolean to log UE events
panic_on_ue boolean to 'panic' the system if an UE is encountered panic_on_ue boolean to ``panic`` the system if an UE is encountered
(default off, can be set true via startup script) (default off, can be set true via startup script)
poll_msec time period between POLL cycles for events poll_msec time period between POLL cycles for events
============== =======================================================
The test_device_edac device adds at least one of its own custom control: The test_device_edac device adds at least one of its own custom control:
============== ==================================================
test_bits which in the current test driver does nothing but test_bits which in the current test driver does nothing but
show how it is installed. A ported driver can show how it is installed. A ported driver can
add one or more such controls and/or attributes add one or more such controls and/or attributes
...@@ -540,42 +880,52 @@ The test_device_edac device adds at least one of its own custom control: ...@@ -540,42 +880,52 @@ The test_device_edac device adds at least one of its own custom control:
One out-of-tree driver uses controls here to allow One out-of-tree driver uses controls here to allow
for ERROR INJECTION operations to hardware for ERROR INJECTION operations to hardware
injection registers injection registers
============== ==================================================
The symlink points to the 'struct dev' that is registered for this edac_device. The symlink points to the 'struct dev' that is registered for this edac_device.
INSTANCES Instances
--------- ---------
One or more instance directories are present. For the 'test_device_edac' case: One or more instance directories are present. For the ``test_device_edac``
case:
test-instance0 +----------------+
| test-instance0 |
+----------------+
In this directory there are two default counter attributes, which are totals of In this directory there are two default counter attributes, which are totals of
counter in deeper subdirectories. counter in deeper subdirectories.
============== ====================================
ce_count total of CE events of subdirectories ce_count total of CE events of subdirectories
ue_count total of UE events of subdirectories ue_count total of UE events of subdirectories
============== ====================================
BLOCKS Blocks
------ ------
At the lowest directory level is the 'block' directory. There can be 0, 1 At the lowest directory level is the ``block`` directory. There can be 0, 1
or more blocks specified in each instance. or more blocks specified in each instance:
test-block0
+-------------+
| test-block0 |
+-------------+
In this directory the default attributes are: In this directory the default attributes are:
ce_count which is counter of CE events for this 'block' ============== ================================================
ce_count which is counter of CE events for this ``block``
of hardware being monitored of hardware being monitored
ue_count which is counter of UE events for this 'block' ue_count which is counter of UE events for this ``block``
of hardware being monitored of hardware being monitored
============== ================================================
The 'test_device_edac' device adds 4 attributes and 1 control: The ``test_device_edac`` device adds 4 attributes and 1 control:
================== ====================================================
test-block-bits-0 for every POLL cycle this counter test-block-bits-0 for every POLL cycle this counter
is incremented is incremented
test-block-bits-1 every 10 cycles, this counter is bumped once, test-block-bits-1 every 10 cycles, this counter is bumped once,
...@@ -584,30 +934,41 @@ The 'test_device_edac' device adds 4 attributes and 1 control: ...@@ -584,30 +934,41 @@ The 'test_device_edac' device adds 4 attributes and 1 control:
and test-block-bits-1 is set to 0 and test-block-bits-1 is set to 0
test-block-bits-3 every 1000 cycles, this counter is bumped once, test-block-bits-3 every 1000 cycles, this counter is bumped once,
and test-block-bits-2 is set to 0 and test-block-bits-2 is set to 0
================== ====================================================
================== ====================================================
reset-counters writing ANY thing to this control will reset-counters writing ANY thing to this control will
reset all the above counters. reset all the above counters.
================== ====================================================
Use of the 'test_device_edac' driver should enable any others to create their own Use of the ``test_device_edac`` driver should enable any others to create their own
unique drivers for their hardware systems. unique drivers for their hardware systems.
The 'test_device_edac' sample driver is located at the The ``test_device_edac`` sample driver is located at the
bluesmoke.sourceforge.net project site for EDAC. http://bluesmoke.sourceforge.net project site for EDAC.
Usage of EDAC APIs on Nehalem and newer Intel CPUs
--------------------------------------------------
NEHALEM USAGE OF EDAC APIs On older Intel architectures, the memory controller was part of the North
-------------------------- Bridge chipset. Nehalem, Sandy Bridge, Ivy Bridge, Haswell, Sky Lake and
newer Intel architectures integrated an enhanced version of the memory
controller (MC) inside the CPUs.
This chapter documents some EXPERIMENTAL mappings for EDAC API to handle This chapter will cover the differences of the enhanced memory controllers
Nehalem EDAC driver. They will likely be changed on future versions found on newer Intel CPUs, such as ``i7core_edac``, ``sb_edac`` and
of the driver. ``sbx_edac`` drivers.
Due to the way Nehalem exports Memory Controller data, some adjustments .. note::
were done at i7core_edac driver. This chapter will cover those differences
1) On Nehalem, there is one Memory Controller per Quick Patch Interconnect The Xeon E7 processor families use a separate chip for the memory
controller, called Intel Scalable Memory Buffer. This section doesn't
apply for such families.
1) There is one Memory Controller per Quick Patch Interconnect
(QPI). At the driver, the term "socket" means one QPI. This is (QPI). At the driver, the term "socket" means one QPI. This is
associated with a physical CPU socket. associated with a physical CPU socket.
...@@ -617,9 +978,10 @@ were done at i7core_edac driver. This chapter will cover those differences ...@@ -617,9 +978,10 @@ were done at i7core_edac driver. This chapter will cover those differences
The minimum known unity is DIMMs. There are no information about csrows. The minimum known unity is DIMMs. There are no information about csrows.
As EDAC API maps the minimum unity is csrows, the driver sequentially As EDAC API maps the minimum unity is csrows, the driver sequentially
maps channel/dimm into different csrows. maps channel/DIMM into different csrows.
For example, supposing the following layout::
For example, supposing the following layout:
Ch0 phy rd0, wr0 (0x063f4031): 2 ranks, UDIMMs Ch0 phy rd0, wr0 (0x063f4031): 2 ranks, UDIMMs
dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400 dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
dimm 1 1024 Mb offset: 4, bank: 8, rank: 1, row: 0x4000, col: 0x400 dimm 1 1024 Mb offset: 4, bank: 8, rank: 1, row: 0x4000, col: 0x400
...@@ -627,62 +989,69 @@ were done at i7core_edac driver. This chapter will cover those differences ...@@ -627,62 +989,69 @@ were done at i7core_edac driver. This chapter will cover those differences
dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400 dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
Ch2 phy rd3, wr3 (0x063f4031): 2 ranks, UDIMMs Ch2 phy rd3, wr3 (0x063f4031): 2 ranks, UDIMMs
dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400 dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
The driver will map it as:
The driver will map it as::
csrow0: channel 0, dimm0 csrow0: channel 0, dimm0
csrow1: channel 0, dimm1 csrow1: channel 0, dimm1
csrow2: channel 1, dimm0 csrow2: channel 1, dimm0
csrow3: channel 2, dimm0 csrow3: channel 2, dimm0
exports one exports one DIMM per csrow.
DIMM per csrow.
Each QPI is exported as a different memory controller. Each QPI is exported as a different memory controller.
2) Nehalem MC has the ability to generate errors. The driver implements this 2) The MC has the ability to inject errors to test drivers. The drivers
functionality via some error injection nodes: implement this functionality via some error injection nodes:
For injecting a memory error, there are some sysfs nodes, under For injecting a memory error, there are some sysfs nodes, under
/sys/devices/system/edac/mc/mc?/: ``/sys/devices/system/edac/mc/mc?/``:
inject_addrmatch/*: - ``inject_addrmatch/*``:
Controls the error injection mask register. It is possible to specify Controls the error injection mask register. It is possible to specify
several characteristics of the address to match an error code: several characteristics of the address to match an error code::
dimm = the affected dimm. Numbers are relative to a channel; dimm = the affected dimm. Numbers are relative to a channel;
rank = the memory rank; rank = the memory rank;
channel = the channel that will generate an error; channel = the channel that will generate an error;
bank = the affected bank; bank = the affected bank;
page = the page address; page = the page address;
column (or col) = the address column. column (or col) = the address column.
each of the above values can be set to "any" to match any valid value. each of the above values can be set to "any" to match any valid value.
At driver init, all values are set to any. At driver init, all values are set to any.
For example, to generate an error at rank 1 of dimm 2, for any channel, For example, to generate an error at rank 1 of dimm 2, for any channel,
any bank, any page, any column: any bank, any page, any column::
echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
echo 1 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank echo 1 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank
To return to the default behaviour of matching any, you can do: To return to the default behaviour of matching any, you can do::
echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank
inject_eccmask: - ``inject_eccmask``:
specifies what bits will have troubles, specifies what bits will have troubles,
- ``inject_section``:
specifies what ECC cache section will get the error::
inject_section:
specifies what ECC cache section will get the error:
3 for both 3 for both
2 for the highest 2 for the highest
1 for the lowest 1 for the lowest
inject_type: - ``inject_type``:
specifies the type of error, being a combination of the following bits: specifies the type of error, being a combination of the following bits::
bit 0 - repeat bit 0 - repeat
bit 1 - ecc bit 1 - ecc
bit 2 - parity bit 2 - parity
inject_enable starts the error generation when something different - ``inject_enable``:
than 0 is written. starts the error generation when something different than 0 is written.
All inject vars can be read. root permission is needed for write. All inject vars can be read. root permission is needed for write.
...@@ -691,35 +1060,36 @@ exports one ...@@ -691,35 +1060,36 @@ exports one
also produce an error. also produce an error.
For example, the following code will generate an error for any write access For example, the following code will generate an error for any write access
at socket 0, on any DIMM/address on channel 2: at socket 0, on any DIMM/address on channel 2::
echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/channel echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/channel
echo 2 >/sys/devices/system/edac/mc/mc0/inject_type echo 2 >/sys/devices/system/edac/mc/mc0/inject_type
echo 64 >/sys/devices/system/edac/mc/mc0/inject_eccmask echo 64 >/sys/devices/system/edac/mc/mc0/inject_eccmask
echo 3 >/sys/devices/system/edac/mc/mc0/inject_section echo 3 >/sys/devices/system/edac/mc/mc0/inject_section
echo 1 >/sys/devices/system/edac/mc/mc0/inject_enable echo 1 >/sys/devices/system/edac/mc/mc0/inject_enable
dd if=/dev/mem of=/dev/null seek=16k bs=4k count=1 >& /dev/null dd if=/dev/mem of=/dev/null seek=16k bs=4k count=1 >& /dev/null
For socket 1, it is needed to replace "mc0" by "mc1" at the above For socket 1, it is needed to replace "mc0" by "mc1" at the above
commands. commands.
The generated error message will look like: The generated error message will look like::
EDAC MC0: UE row 0, channel-a= 0 channel-b= 0 labels "-": NON_FATAL (addr = 0x0075b980, socket=0, Dimm=0, Channel=2, syndrome=0x00000040, count=1, Err=8c0000400001009f:4000080482 (read error: read ECC error)) EDAC MC0: UE row 0, channel-a= 0 channel-b= 0 labels "-": NON_FATAL (addr = 0x0075b980, socket=0, Dimm=0, Channel=2, syndrome=0x00000040, count=1, Err=8c0000400001009f:4000080482 (read error: read ECC error))
3) Nehalem specific Corrected Error memory counters 3) Corrected Error memory register counters
Nehalem have some registers to count memory errors. The driver uses those Those newer MCs have some registers to count memory errors. The driver
registers to report Corrected Errors on devices with Registered Dimms. uses those registers to report Corrected Errors on devices with Registered
DIMMs.
However, those counters don't work with Unregistered Dimms. As the chipset However, those counters don't work with Unregistered DIMM. As the chipset
offers some counters that also work with UDIMMS (but with a worse level of offers some counters that also work with UDIMMs (but with a worse level of
granularity than the default ones), the driver exposes those registers for granularity than the default ones), the driver exposes those registers for
UDIMM memories. UDIMM memories.
They can be read by looking at the contents of all_channel_counts/ They can be read by looking at the contents of ``all_channel_counts/``::
$ for i in /sys/devices/system/edac/mc/mc0/all_channel_counts/*; do echo $i; cat $i; done $ for i in /sys/devices/system/edac/mc/mc0/all_channel_counts/*; do echo $i; cat $i; done
/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm0 /sys/devices/system/edac/mc/mc0/all_channel_counts/udimm0
0 0
/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm1 /sys/devices/system/edac/mc/mc0/all_channel_counts/udimm1
...@@ -729,84 +1099,92 @@ exports one ...@@ -729,84 +1099,92 @@ exports one
What happens here is that errors on different csrows, but at the same What happens here is that errors on different csrows, but at the same
dimm number will increment the same counter. dimm number will increment the same counter.
So, in this memory mapping: So, in this memory mapping::
csrow0: channel 0, dimm0 csrow0: channel 0, dimm0
csrow1: channel 0, dimm1 csrow1: channel 0, dimm1
csrow2: channel 1, dimm0 csrow2: channel 1, dimm0
csrow3: channel 2, dimm0 csrow3: channel 2, dimm0
The hardware will increment udimm0 for an error at the first dimm at either The hardware will increment udimm0 for an error at the first dimm at either
csrow0, csrow2 or csrow3; csrow0, csrow2 or csrow3;
The hardware will increment udimm1 for an error at the second dimm at either The hardware will increment udimm1 for an error at the second dimm at either
csrow0, csrow2 or csrow3; csrow0, csrow2 or csrow3;
The hardware will increment udimm2 for an error at the third dimm at either The hardware will increment udimm2 for an error at the third dimm at either
csrow0, csrow2 or csrow3; csrow0, csrow2 or csrow3;
4) Standard error counters 4) Standard error counters
The standard error counters are generated when an mcelog error is received The standard error counters are generated when an mcelog error is received
by the driver. Since, with udimm, this is counted by software, it is by the driver. Since, with UDIMM, this is counted by software, it is
possible that some errors could be lost. With rdimm's, they display the possible that some errors could be lost. With RDIMM's, they display the
contents of the registers contents of the registers
AMD64_EDAC REFERENCE DOCUMENTS USED Reference documents used on ``amd64_edac``
----------------------------------- ------------------------------------------
amd64_edac module is based on the following documents
``amd64_edac`` module is based on the following documents
(available from http://support.amd.com/en-us/search/tech-docs): (available from http://support.amd.com/en-us/search/tech-docs):
1. Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD 1. :Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
Opteron Processors Opteron Processors
AMD publication #: 26094 :AMD publication #: 26094
Revision: 3.26 :Revision: 3.26
Link: http://support.amd.com/TechDocs/26094.PDF :Link: http://support.amd.com/TechDocs/26094.PDF
2. Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh 2. :Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
Processors Processors
AMD publication #: 32559 :AMD publication #: 32559
Revision: 3.00 :Revision: 3.00
Issue Date: May 2006 :Issue Date: May 2006
Link: http://support.amd.com/TechDocs/32559.pdf :Link: http://support.amd.com/TechDocs/32559.pdf
3. Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h 3. :Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
Processors Processors
AMD publication #: 31116 :AMD publication #: 31116
Revision: 3.00 :Revision: 3.00
Issue Date: September 07, 2007 :Issue Date: September 07, 2007
Link: http://support.amd.com/TechDocs/31116.pdf :Link: http://support.amd.com/TechDocs/31116.pdf
4. Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h 4. :Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h
Models 30h-3Fh Processors Models 30h-3Fh Processors
AMD publication #: 49125 :AMD publication #: 49125
Revision: 3.06 :Revision: 3.06
Issue Date: 2/12/2015 (latest release) :Issue Date: 2/12/2015 (latest release)
Link: http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf :Link: http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf
5. Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h 5. :Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h
Models 60h-6Fh Processors Models 60h-6Fh Processors
AMD publication #: 50742 :AMD publication #: 50742
Revision: 3.01 :Revision: 3.01
Issue Date: 7/23/2015 (latest release) :Issue Date: 7/23/2015 (latest release)
Link: http://support.amd.com/TechDocs/50742_15h_Models_60h-6Fh_BKDG.pdf :Link: http://support.amd.com/TechDocs/50742_15h_Models_60h-6Fh_BKDG.pdf
6. Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 16h 6. :Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 16h
Models 00h-0Fh Processors Models 00h-0Fh Processors
AMD publication #: 48751 :AMD publication #: 48751
Revision: 3.03 :Revision: 3.03
Issue Date: 2/23/2015 (latest release) :Issue Date: 2/23/2015 (latest release)
Link: http://support.amd.com/TechDocs/48751_16h_bkdg.pdf :Link: http://support.amd.com/TechDocs/48751_16h_bkdg.pdf
Credits
=======
* Written by Doug Thompson <dougthompson@xmission.com>
CREDITS: - 7 Dec 2005
======== - 17 Jul 2007 Updated
Written by Doug Thompson <dougthompson@xmission.com> * |copy| Mauro Carvalho Chehab
7 Dec 2005
17 Jul 2007 Updated
(c) Mauro Carvalho Chehab - 05 Aug 2009 Nehalem interface
05 Aug 2009 Nehalem interface - 26 Oct 2016 Converted to ReST and cleanups at the Nehalem section
EDAC authors/maintainers: * EDAC authors/maintainers:
Doug Thompson, Dave Jiang, Dave Peterson et al, - Doug Thompson, Dave Jiang, Dave Peterson et al,
Mauro Carvalho Chehab - Mauro Carvalho Chehab
Borislav Petkov - Borislav Petkov
original author: Thayne Harbaugh - original author: Thayne Harbaugh
Error Detection And Correction (EDAC) Devices
=============================================
Main Concepts used at the EDAC subsystem
----------------------------------------
There are several things to be aware of that aren't at all obvious, like
*sockets, *socket sets*, *banks*, *rows*, *chip-select rows*, *channels*,
etc...
These are some of the many terms that are thrown about that don't always
mean what people think they mean (Inconceivable!). In the interest of
creating a common ground for discussion, terms and their definitions
will be established.
* Memory devices
The individual DRAM chips on a memory stick. These devices commonly
output 4 and 8 bits each (x4, x8). Grouping several of these in parallel
provides the number of bits that the memory controller expects:
typically 72 bits, in order to provide 64 bits + 8 bits of ECC data.
* Memory Stick
A printed circuit board that aggregates multiple memory devices in
parallel. In general, this is the Field Replaceable Unit (FRU) which
gets replaced, in the case of excessive errors. Most often it is also
called DIMM (Dual Inline Memory Module).
* Memory Socket
A physical connector on the motherboard that accepts a single memory
stick. Also called as "slot" on several datasheets.
* Channel
A memory controller channel, responsible to communicate with a group of
DIMMs. Each channel has its own independent control (command) and data
bus, and can be used independently or grouped with other channels.
* Branch
It is typically the highest hierarchy on a Fully-Buffered DIMM memory
controller. Typically, it contains two channels. Two channels at the
same branch can be used in single mode or in lockstep mode. When
lockstep is enabled, the cacheline is doubled, but it generally brings
some performance penalty. Also, it is generally not possible to point to
just one memory stick when an error occurs, as the error correction code
is calculated using two DIMMs instead of one. Due to that, it is capable
of correcting more errors than on single mode.
* Single-channel
The data accessed by the memory controller is contained into one dimm
only. E. g. if the data is 64 bits-wide, the data flows to the CPU using
one 64 bits parallel access. Typically used with SDR, DDR, DDR2 and DDR3
memories. FB-DIMM and RAMBUS use a different concept for channel, so
this concept doesn't apply there.
* Double-channel
The data size accessed by the memory controller is interlaced into two
dimms, accessed at the same time. E. g. if the DIMM is 64 bits-wide (72
bits with ECC), the data flows to the CPU using a 128 bits parallel
access.
* Chip-select row
This is the name of the DRAM signal used to select the DRAM ranks to be
accessed. Common chip-select rows for single channel are 64 bits, for
dual channel 128 bits. It may not be visible by the memory controller,
as some DIMM types have a memory buffer that can hide direct access to
it from the Memory Controller.
* Single-Ranked stick
A Single-ranked stick has 1 chip-select row of memory. Motherboards
commonly drive two chip-select pins to a memory stick. A single-ranked
stick, will occupy only one of those rows. The other will be unused.
.. _doubleranked:
* Double-Ranked stick
A double-ranked stick has two chip-select rows which access different
sets of memory devices. The two rows cannot be accessed concurrently.
* Double-sided stick
**DEPRECATED TERM**, see :ref:`Double-Ranked stick <doubleranked>`.
A double-sided stick has two chip-select rows which access different sets
of memory devices. The two rows cannot be accessed concurrently.
"Double-sided" is irrespective of the memory devices being mounted on
both sides of the memory stick.
* Socket set
All of the memory sticks that are required for a single memory access or
all of the memory sticks spanned by a chip-select row. A single socket
set has two chip-select rows and if double-sided sticks are used these
will occupy those chip-select rows.
* Bank
This term is avoided because it is unclear when needing to distinguish
between chip-select rows and socket sets.
Memory Controllers
------------------
Most of the EDAC core is focused on doing Memory Controller error detection.
The :c:func:`edac_mc_alloc`. It uses internally the struct ``mem_ctl_info``
to describe the memory controllers, with is an opaque struct for the EDAC
drivers. Only the EDAC core is allowed to touch it.
.. kernel-doc:: include/linux/edac.h
.. kernel-doc:: drivers/edac/edac_mc.h
PCI Controllers
---------------
The EDAC subsystem provides a mechanism to handle PCI controllers by calling
the :c:func:`edac_pci_alloc_ctl_info`. It will use the struct
:c:type:`edac_pci_ctl_info` to describe the PCI controllers.
.. kernel-doc:: drivers/edac/edac_pci.h
EDAC Blocks
-----------
The EDAC subsystem also provides a generic mechanism to report errors on
other parts of the hardware via :c:func:`edac_device_alloc_ctl_info` function.
The structures :c:type:`edac_dev_sysfs_block_attribute`,
:c:type:`edac_device_block`, :c:type:`edac_device_instance` and
:c:type:`edac_device_ctl_info` provide a generic or abstract 'edac_device'
representation at sysfs.
This set of structures and the code that implements the APIs for the same, provide for registering EDAC type devices which are NOT standard memory or
PCI, like:
- CPU caches (L1 and L2)
- DMA engines
- Core CPU switches
- Fabric switch units
- PCIe interface controllers
- other EDAC/ECC type devices that can be monitored for
errors, etc.
It allows for a 2 level set of hierarchy.
For example, a cache could be composed of L1, L2 and L3 levels of cache.
Each CPU core would have its own L1 cache, while sharing L2 and maybe L3
caches. On such case, those can be represented via the following sysfs
nodes::
/sys/devices/system/edac/..
pci/ <existing pci directory (if available)>
mc/ <existing memory device directory>
cpu/cpu0/.. <L1 and L2 block directory>
/L1-cache/ce_count
/ue_count
/L2-cache/ce_count
/ue_count
cpu/cpu1/.. <L1 and L2 block directory>
/L1-cache/ce_count
/ue_count
/L2-cache/ce_count
/ue_count
...
the L1 and L2 directories would be "edac_device_block's"
.. kernel-doc:: drivers/edac/edac_device.h
...@@ -26,6 +26,7 @@ available subsections can be seen below. ...@@ -26,6 +26,7 @@ available subsections can be seen below.
spi spi
i2c i2c
hsi hsi
edac
miscellaneous miscellaneous
vme vme
80211/index 80211/index
......
...@@ -4588,7 +4588,8 @@ L: linux-edac@vger.kernel.org ...@@ -4588,7 +4588,8 @@ L: linux-edac@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp.git for-next T: git git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp.git for-next
T: git git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-edac.git linux_next T: git git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-edac.git linux_next
S: Supported S: Supported
F: Documentation/edac.txt F: Documentation/admin-guide/ras.rst
F: Documentation/driver-api/edac.rst
F: drivers/edac/ F: drivers/edac/
F: include/linux/edac.h F: include/linux/edac.h
......
...@@ -35,7 +35,6 @@ ...@@ -35,7 +35,6 @@
#include <linux/uaccess.h> #include <linux/uaccess.h>
#include "altera_edac.h" #include "altera_edac.h"
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
#define EDAC_MOD_STR "altera_edac" #define EDAC_MOD_STR "altera_edac"
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
#include <linux/mmzone.h> #include <linux/mmzone.h>
#include <linux/edac.h> #include <linux/edac.h>
#include <asm/msr.h> #include <asm/msr.h>
#include "edac_core.h" #include "edac_module.h"
#include "mce_amd.h" #include "mce_amd.h"
#define amd64_debug(fmt, arg...) \ #define amd64_debug(fmt, arg...) \
......
...@@ -17,7 +17,7 @@ ...@@ -17,7 +17,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_module.h"
#define AMD76X_REVISION " Ver: 2.0.2" #define AMD76X_REVISION " Ver: 2.0.2"
#define EDAC_MOD_STR "amd76x_edac" #define EDAC_MOD_STR "amd76x_edac"
......
...@@ -29,7 +29,6 @@ ...@@ -29,7 +29,6 @@
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include <asm/io.h> #include <asm/io.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
#include "amd8111_edac.h" #include "amd8111_edac.h"
......
...@@ -29,7 +29,6 @@ ...@@ -29,7 +29,6 @@
#include <linux/edac.h> #include <linux/edac.h>
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
#include "amd8131_edac.h" #include "amd8131_edac.h"
......
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
#include <asm/machdep.h> #include <asm/machdep.h>
#include <asm/cell-regs.h> #include <asm/cell-regs.h>
#include "edac_core.h" #include "edac_module.h"
struct cell_edac_priv struct cell_edac_priv
{ {
......
...@@ -27,7 +27,6 @@ ...@@ -27,7 +27,6 @@
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/gfp.h> #include <linux/gfp.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
#define CPC925_EDAC_REVISION " Ver: 1.0.0" #define CPC925_EDAC_REVISION " Ver: 1.0.0"
......
...@@ -24,7 +24,7 @@ ...@@ -24,7 +24,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_module.h"
#define E752X_REVISION " Ver: 2.0.2" #define E752X_REVISION " Ver: 2.0.2"
#define EDAC_MOD_STR "e752x_edac" #define EDAC_MOD_STR "e752x_edac"
......
...@@ -30,7 +30,7 @@ ...@@ -30,7 +30,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_module.h"
#define E7XXX_REVISION " Ver: 2.0.2" #define E7XXX_REVISION " Ver: 2.0.2"
#define EDAC_MOD_STR "e7xxx_edac" #define EDAC_MOD_STR "e7xxx_edac"
......
...@@ -12,23 +12,20 @@ ...@@ -12,23 +12,20 @@
* 19 Jan 2007 * 19 Jan 2007
*/ */
#include <asm/page.h>
#include <asm/uaccess.h>
#include <linux/ctype.h>
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/types.h> #include <linux/slab.h>
#include <linux/smp.h> #include <linux/smp.h>
#include <linux/init.h> #include <linux/spinlock.h>
#include <linux/sysctl.h> #include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/timer.h> #include <linux/timer.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/ctype.h>
#include <linux/workqueue.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include "edac_core.h" #include "edac_device.h"
#include "edac_module.h" #include "edac_module.h"
/* lock for the list: 'edac_device_list', manipulation of this list /* lock for the list: 'edac_device_list', manipulation of this list
...@@ -50,21 +47,6 @@ static void edac_device_dump_device(struct edac_device_ctl_info *edac_dev) ...@@ -50,21 +47,6 @@ static void edac_device_dump_device(struct edac_device_ctl_info *edac_dev)
} }
#endif /* CONFIG_EDAC_DEBUG */ #endif /* CONFIG_EDAC_DEBUG */
/*
* edac_device_alloc_ctl_info()
* Allocate a new edac device control info structure
*
* The control structure is allocated in complete chunk
* from the OS. It is in turn sub allocated to the
* various objects that compose the structure
*
* The structure has a 'nr_instance' array within itself.
* Each instance represents a major component
* Example: L1 cache and L2 cache are 2 instance components
*
* Within each instance is an array of 'nr_blocks' blockoffsets
*/
struct edac_device_ctl_info *edac_device_alloc_ctl_info( struct edac_device_ctl_info *edac_device_alloc_ctl_info(
unsigned sz_private, unsigned sz_private,
char *edac_device_name, unsigned nr_instances, char *edac_device_name, unsigned nr_instances,
...@@ -244,11 +226,6 @@ struct edac_device_ctl_info *edac_device_alloc_ctl_info( ...@@ -244,11 +226,6 @@ struct edac_device_ctl_info *edac_device_alloc_ctl_info(
} }
EXPORT_SYMBOL_GPL(edac_device_alloc_ctl_info); EXPORT_SYMBOL_GPL(edac_device_alloc_ctl_info);
/*
* edac_device_free_ctl_info()
* frees the memory allocated by the edac_device_alloc_ctl_info()
* function
*/
void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info) void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info)
{ {
edac_device_unregister_sysfs_main_kobj(ctl_info); edac_device_unregister_sysfs_main_kobj(ctl_info);
...@@ -460,12 +437,6 @@ void edac_device_reset_delay_period(struct edac_device_ctl_info *edac_dev, ...@@ -460,12 +437,6 @@ void edac_device_reset_delay_period(struct edac_device_ctl_info *edac_dev,
edac_mod_work(&edac_dev->work, jiffs); edac_mod_work(&edac_dev->work, jiffs);
} }
/*
* edac_device_alloc_index: Allocate a unique device index number
*
* Return:
* allocated index number
*/
int edac_device_alloc_index(void) int edac_device_alloc_index(void)
{ {
static atomic_t device_indexes = ATOMIC_INIT(0); static atomic_t device_indexes = ATOMIC_INIT(0);
...@@ -474,17 +445,6 @@ int edac_device_alloc_index(void) ...@@ -474,17 +445,6 @@ int edac_device_alloc_index(void)
} }
EXPORT_SYMBOL_GPL(edac_device_alloc_index); EXPORT_SYMBOL_GPL(edac_device_alloc_index);
/**
* edac_device_add_device: Insert the 'edac_dev' structure into the
* edac_device global list and create sysfs entries associated with
* edac_device structure.
* @edac_device: pointer to the edac_device structure to be added to the list
* 'edac_device' structure.
*
* Return:
* 0 Success
* !0 Failure
*/
int edac_device_add_device(struct edac_device_ctl_info *edac_dev) int edac_device_add_device(struct edac_device_ctl_info *edac_dev)
{ {
edac_dbg(0, "\n"); edac_dbg(0, "\n");
...@@ -541,19 +501,6 @@ int edac_device_add_device(struct edac_device_ctl_info *edac_dev) ...@@ -541,19 +501,6 @@ int edac_device_add_device(struct edac_device_ctl_info *edac_dev)
} }
EXPORT_SYMBOL_GPL(edac_device_add_device); EXPORT_SYMBOL_GPL(edac_device_add_device);
/**
* edac_device_del_device:
* Remove sysfs entries for specified edac_device structure and
* then remove edac_device structure from global list
*
* @dev:
* Pointer to 'struct device' representing edac_device
* structure to remove.
*
* Return:
* Pointer to removed edac_device structure,
* OR NULL if device not found.
*/
struct edac_device_ctl_info *edac_device_del_device(struct device *dev) struct edac_device_ctl_info *edac_device_del_device(struct device *dev)
{ {
struct edac_device_ctl_info *edac_dev; struct edac_device_ctl_info *edac_dev;
...@@ -608,10 +555,6 @@ static inline int edac_device_get_panic_on_ue(struct edac_device_ctl_info ...@@ -608,10 +555,6 @@ static inline int edac_device_get_panic_on_ue(struct edac_device_ctl_info
return edac_dev->panic_on_ue; return edac_dev->panic_on_ue;
} }
/*
* edac_device_handle_ce
* perform a common output and handling of an 'edac_dev' CE event
*/
void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev, void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
int inst_nr, int block_nr, const char *msg) int inst_nr, int block_nr, const char *msg)
{ {
...@@ -654,10 +597,6 @@ void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev, ...@@ -654,10 +597,6 @@ void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
} }
EXPORT_SYMBOL_GPL(edac_device_handle_ce); EXPORT_SYMBOL_GPL(edac_device_handle_ce);
/*
* edac_device_handle_ue
* perform a common output and handling of an 'edac_dev' UE event
*/
void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev, void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
int inst_nr, int block_nr, const char *msg) int inst_nr, int block_nr, const char *msg)
{ {
......
/* /*
* Defines, structures, APIs for edac_core module * Defines, structures, APIs for edac_device
* *
* (C) 2007 Linux Networx (http://lnxi.com) * (C) 2007 Linux Networx (http://lnxi.com)
* This file may be distributed under the terms of the * This file may be distributed under the terms of the
...@@ -15,86 +15,22 @@ ...@@ -15,86 +15,22 @@
* Refactored for multi-source files: * Refactored for multi-source files:
* Doug Thompson <norsk5@xmission.com> * Doug Thompson <norsk5@xmission.com>
* *
* Please look at Documentation/driver-api/edac.rst for more info about
* EDAC core structs and functions.
*/ */
#ifndef _EDAC_CORE_H_ #ifndef _EDAC_DEVICE_H_
#define _EDAC_CORE_H_ #define _EDAC_DEVICE_H_
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/pci.h>
#include <linux/time.h>
#include <linux/nmi.h>
#include <linux/rcupdate.h>
#include <linux/completion.h> #include <linux/completion.h>
#include <linux/device.h>
#include <linux/edac.h>
#include <linux/kobject.h> #include <linux/kobject.h>
#include <linux/platform_device.h> #include <linux/list.h>
#include <linux/types.h>
#include <linux/sysfs.h>
#include <linux/workqueue.h> #include <linux/workqueue.h>
#include <linux/edac.h>
#define EDAC_DEVICE_NAME_LEN 31
#define EDAC_ATTRIB_VALUE_LEN 15
#if PAGE_SHIFT < 20
#define PAGES_TO_MiB(pages) ((pages) >> (20 - PAGE_SHIFT))
#define MiB_TO_PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
#else /* PAGE_SHIFT > 20 */
#define PAGES_TO_MiB(pages) ((pages) << (PAGE_SHIFT - 20))
#define MiB_TO_PAGES(mb) ((mb) >> (PAGE_SHIFT - 20))
#endif
#define edac_printk(level, prefix, fmt, arg...) \
printk(level "EDAC " prefix ": " fmt, ##arg)
#define edac_mc_printk(mci, level, fmt, arg...) \
printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
#define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
#define edac_device_printk(ctl, level, fmt, arg...) \
printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg)
#define edac_pci_printk(ctl, level, fmt, arg...) \
printk(level "EDAC PCI%d: " fmt, ctl->pci_idx, ##arg)
/* prefixes for edac_printk() and edac_mc_printk() */
#define EDAC_MC "MC"
#define EDAC_PCI "PCI"
#define EDAC_DEBUG "DEBUG"
extern const char * const edac_mem_types[];
#ifdef CONFIG_EDAC_DEBUG
extern int edac_debug_level;
#define edac_dbg(level, fmt, ...) \
do { \
if (level <= edac_debug_level) \
edac_printk(KERN_DEBUG, EDAC_DEBUG, \
"%s: " fmt, __func__, ##__VA_ARGS__); \
} while (0)
#else /* !CONFIG_EDAC_DEBUG */
#define edac_dbg(level, fmt, ...) \
do { \
if (0) \
edac_printk(KERN_DEBUG, EDAC_DEBUG, \
"%s: " fmt, __func__, ##__VA_ARGS__); \
} while (0)
#endif /* !CONFIG_EDAC_DEBUG */
#define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
PCI_DEVICE_ID_ ## vend ## _ ## dev
#define edac_dev_name(dev) (dev)->dev_name
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
/* /*
* The following are the structures to provide for a generic * The following are the structures to provide for a generic
...@@ -321,197 +257,64 @@ extern struct edac_device_ctl_info *edac_device_alloc_ctl_info( ...@@ -321,197 +257,64 @@ extern struct edac_device_ctl_info *edac_device_alloc_ctl_info(
extern void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info); extern void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info);
#ifdef CONFIG_PCI /**
* edac_device_add_device: Insert the 'edac_dev' structure into the
struct edac_pci_counter { * edac_device global list and create sysfs entries associated with
atomic_t pe_count; * edac_device structure.
atomic_t npe_count; *
}; * @edac_dev: pointer to edac_device structure to be added to the list
* 'edac_device' structure.
/*
* Abstract edac_pci control info structure
* *
* Returns:
* 0 on Success, or an error code on failure
*/ */
struct edac_pci_ctl_info { extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev);
/* for global list of edac_pci_ctl_info structs */
struct list_head link;
int pci_idx;
struct bus_type *edac_subsys; /* pointer to subsystem */
/* the internal state of this controller instance */
int op_state;
/* work struct for this instance */
struct delayed_work work;
/* pointer to edac polling checking routine:
* If NOT NULL: points to polling check routine
* If NULL: Then assumes INTERRUPT operation, where
* MC driver will receive events
*/
void (*edac_check) (struct edac_pci_ctl_info * edac_dev);
struct device *dev; /* pointer to device structure */
const char *mod_name; /* module name */
const char *ctl_name; /* edac controller name */
const char *dev_name; /* pci/platform/etc... name */
void *pvt_info; /* pointer to 'private driver' info */
unsigned long start_time; /* edac_pci load start time (jiffies) */
struct completion complete;
/* sysfs top name under 'edac' directory
* and instance name:
* cpu/cpu0/...
* cpu/cpu1/...
* cpu/cpu2/...
* ...
*/
char name[EDAC_DEVICE_NAME_LEN + 1];
/* Event counters for the this whole EDAC Device */
struct edac_pci_counter counters;
/* edac sysfs device control for the 'name'
* device this structure controls
*/
struct kobject kobj;
struct completion kobj_complete;
};
#define to_edac_pci_ctl_work(w) \
container_of(w, struct edac_pci_ctl_info,work)
/* write all or some bits in a byte-register*/
static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
u8 mask)
{
if (mask != 0xff) {
u8 buf;
pci_read_config_byte(pdev, offset, &buf);
value &= mask;
buf &= ~mask;
value |= buf;
}
pci_write_config_byte(pdev, offset, value);
}
/* write all or some bits in a word-register*/
static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
u16 value, u16 mask)
{
if (mask != 0xffff) {
u16 buf;
pci_read_config_word(pdev, offset, &buf);
value &= mask;
buf &= ~mask;
value |= buf;
}
pci_write_config_word(pdev, offset, value);
}
/* /**
* pci_write_bits32 * edac_device_del_device:
* Remove sysfs entries for specified edac_device structure and
* then remove edac_device structure from global list
* *
* edac local routine to do pci_write_config_dword, but adds * @dev:
* a mask parameter. If mask is all ones, ignore the mask. * Pointer to struct &device representing the edac device
* Otherwise utilize the mask to isolate specified bits * structure to remove.
* *
* write all or some bits in a dword-register * Returns:
* Pointer to removed edac_device structure,
* or %NULL if device not found.
*/ */
static inline void pci_write_bits32(struct pci_dev *pdev, int offset, extern struct edac_device_ctl_info *edac_device_del_device(struct device *dev);
u32 value, u32 mask)
{
if (mask != 0xffffffff) {
u32 buf;
pci_read_config_dword(pdev, offset, &buf);
value &= mask;
buf &= ~mask;
value |= buf;
}
pci_write_config_dword(pdev, offset, value);
}
#endif /* CONFIG_PCI */
struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
unsigned n_layers,
struct edac_mc_layer *layers,
unsigned sz_pvt);
extern int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
const struct attribute_group **groups);
#define edac_mc_add_mc(mci) edac_mc_add_mc_with_groups(mci, NULL)
extern void edac_mc_free(struct mem_ctl_info *mci);
extern struct mem_ctl_info *edac_mc_find(int idx);
extern struct mem_ctl_info *find_mci_by_dev(struct device *dev);
extern struct mem_ctl_info *edac_mc_del_mc(struct device *dev);
extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
unsigned long page);
void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
struct mem_ctl_info *mci,
struct edac_raw_error_desc *e);
void edac_mc_handle_error(const enum hw_event_mc_err_type type,
struct mem_ctl_info *mci,
const u16 error_count,
const unsigned long page_frame_number,
const unsigned long offset_in_page,
const unsigned long syndrome,
const int top_layer,
const int mid_layer,
const int low_layer,
const char *msg,
const char *other_detail);
/* /**
* edac_device APIs * edac_device_handle_ue():
* perform a common output and handling of an 'edac_dev' UE event
*
* @edac_dev: pointer to struct &edac_device_ctl_info
* @inst_nr: number of the instance where the UE error happened
* @block_nr: number of the block where the UE error happened
* @msg: message to be printed
*/ */
extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev);
extern struct edac_device_ctl_info *edac_device_del_device(struct device *dev);
extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev, extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
int inst_nr, int block_nr, const char *msg); int inst_nr, int block_nr, const char *msg);
/**
* edac_device_handle_ce():
* perform a common output and handling of an 'edac_dev' CE event
*
* @edac_dev: pointer to struct &edac_device_ctl_info
* @inst_nr: number of the instance where the CE error happened
* @block_nr: number of the block where the CE error happened
* @msg: message to be printed
*/
extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev, extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
int inst_nr, int block_nr, const char *msg); int inst_nr, int block_nr, const char *msg);
extern int edac_device_alloc_index(void);
extern const char *edac_layer_name[];
/* /**
* edac_pci APIs * edac_device_alloc_index: Allocate a unique device index number
*/ *
extern struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt, * Returns:
const char *edac_pci_name); * allocated index number
extern void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci);
extern void edac_pci_reset_delay_period(struct edac_pci_ctl_info *pci,
unsigned long value);
extern int edac_pci_alloc_index(void);
extern int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx);
extern struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev);
extern struct edac_pci_ctl_info *edac_pci_create_generic_ctl(
struct device *dev,
const char *mod_name);
extern void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci);
extern int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci);
extern void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci);
/*
* edac misc APIs
*/ */
extern char *edac_op_state_to_string(int op_state); extern int edac_device_alloc_index(void);
extern const char *edac_layer_name[];
#endif /* _EDAC_CORE_H_ */ #endif
/* /*
* file for managing the edac_device subsystem of devices for EDAC * file for managing the edac_device subsystem of devices for EDAC
* *
* (C) 2007 SoftwareBitMaker * (C) 2007 SoftwareBitMaker
* *
* This file may be distributed under the terms of the * This file may be distributed under the terms of the
* GNU General Public License. * GNU General Public License.
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_device.h"
#include "edac_module.h" #include "edac_module.h"
#define EDAC_DEVICE_SYMLINK "device" #define EDAC_DEVICE_SYMLINK "device"
......
...@@ -30,7 +30,7 @@ ...@@ -30,7 +30,7 @@
#include <linux/bitops.h> #include <linux/bitops.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
#include <asm/page.h> #include <asm/page.h>
#include "edac_core.h" #include "edac_mc.h"
#include "edac_module.h" #include "edac_module.h"
#include <ras/ras_event.h> #include <ras/ras_event.h>
...@@ -239,30 +239,6 @@ static void _edac_mc_free(struct mem_ctl_info *mci) ...@@ -239,30 +239,6 @@ static void _edac_mc_free(struct mem_ctl_info *mci)
kfree(mci); kfree(mci);
} }
/**
* edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
* @mc_num: Memory controller number
* @n_layers: Number of MC hierarchy layers
* layers: Describes each layer as seen by the Memory Controller
* @size_pvt: size of private storage needed
*
*
* Everything is kmalloc'ed as one big chunk - more efficient.
* Only can be used if all structures have the same lifetime - otherwise
* you have to allocate and initialize your own structures.
*
* Use edac_mc_free() to free mc structures allocated by this function.
*
* NOTE: drivers handle multi-rank memories in different ways: in some
* drivers, one multi-rank memory stick is mapped as one entry, while, in
* others, a single multi-rank memory stick would be mapped into several
* entries. Currently, this function will allocate multiple struct dimm_info
* on such scenarios, as grouping the multiple ranks require drivers change.
*
* Returns:
* On failure: NULL
* On success: struct mem_ctl_info pointer
*/
struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
unsigned n_layers, unsigned n_layers,
struct edac_mc_layer *layers, struct edac_mc_layer *layers,
...@@ -460,11 +436,6 @@ struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, ...@@ -460,11 +436,6 @@ struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
} }
EXPORT_SYMBOL_GPL(edac_mc_alloc); EXPORT_SYMBOL_GPL(edac_mc_alloc);
/**
* edac_mc_free
* 'Free' a previously allocated 'mci' structure
* @mci: pointer to a struct mem_ctl_info structure
*/
void edac_mc_free(struct mem_ctl_info *mci) void edac_mc_free(struct mem_ctl_info *mci)
{ {
edac_dbg(1, "\n"); edac_dbg(1, "\n");
...@@ -646,12 +617,6 @@ static int del_mc_from_global_list(struct mem_ctl_info *mci) ...@@ -646,12 +617,6 @@ static int del_mc_from_global_list(struct mem_ctl_info *mci)
return handlers; return handlers;
} }
/**
* edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
*
* If found, return a pointer to the structure.
* Else return NULL.
*/
struct mem_ctl_info *edac_mc_find(int idx) struct mem_ctl_info *edac_mc_find(int idx)
{ {
struct mem_ctl_info *mci = NULL; struct mem_ctl_info *mci = NULL;
...@@ -676,16 +641,6 @@ struct mem_ctl_info *edac_mc_find(int idx) ...@@ -676,16 +641,6 @@ struct mem_ctl_info *edac_mc_find(int idx)
} }
EXPORT_SYMBOL(edac_mc_find); EXPORT_SYMBOL(edac_mc_find);
/**
* edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
* global list and create sysfs entries associated with mci structure
* @mci: pointer to the mci structure to be added to the list
* @groups: optional attribute groups for the driver-specific sysfs entries
*
* Return:
* 0 Success
* !0 Failure
*/
/* FIXME - should a warning be printed if no error detection? correction? */ /* FIXME - should a warning be printed if no error detection? correction? */
int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
...@@ -776,13 +731,6 @@ int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, ...@@ -776,13 +731,6 @@ int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
} }
EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
/**
* edac_mc_del_mc: Remove sysfs entries for specified mci structure and
* remove mci structure from global list
* @pdev: Pointer to 'struct device' representing mci structure to remove.
*
* Return pointer to removed mci structure, or NULL if device not found.
*/
struct mem_ctl_info *edac_mc_del_mc(struct device *dev) struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
{ {
struct mem_ctl_info *mci; struct mem_ctl_info *mci;
...@@ -1046,18 +994,6 @@ static void edac_ue_error(struct mem_ctl_info *mci, ...@@ -1046,18 +994,6 @@ static void edac_ue_error(struct mem_ctl_info *mci,
edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
} }
/**
* edac_raw_mc_handle_error - reports a memory event to userspace without doing
* anything to discover the error location
*
* @type: severity of the error (CE/UE/Fatal)
* @mci: a struct mem_ctl_info pointer
* @e: error description
*
* This raw function is used internally by edac_mc_handle_error(). It should
* only be called directly when the hardware error come directly from BIOS,
* like in the case of APEI GHES driver.
*/
void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
struct mem_ctl_info *mci, struct mem_ctl_info *mci,
struct edac_raw_error_desc *e) struct edac_raw_error_desc *e)
...@@ -1087,24 +1023,6 @@ void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, ...@@ -1087,24 +1023,6 @@ void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
} }
EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
/**
* edac_mc_handle_error - reports a memory event to userspace
*
* @type: severity of the error (CE/UE/Fatal)
* @mci: a struct mem_ctl_info pointer
* @error_count: Number of errors of the same type
* @page_frame_number: mem page where the error occurred
* @offset_in_page: offset of the error inside the page
* @syndrome: ECC syndrome
* @top_layer: Memory layer[0] position
* @mid_layer: Memory layer[1] position
* @low_layer: Memory layer[2] position
* @msg: Message meaningful to the end users that
* explains the event
* @other_detail: Technical details about the event that
* may help hardware manufacturers and
* EDAC developers to analyse the event
*/
void edac_mc_handle_error(const enum hw_event_mc_err_type type, void edac_mc_handle_error(const enum hw_event_mc_err_type type,
struct mem_ctl_info *mci, struct mem_ctl_info *mci,
const u16 error_count, const u16 error_count,
......
/*
* Defines, structures, APIs for edac_mc module
*
* (C) 2007 Linux Networx (http://lnxi.com)
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Written by Thayne Harbaugh
* Based on work by Dan Hollis <goemon at anime dot net> and others.
* http://www.anime.net/~goemon/linux-ecc/
*
* NMI handling support added by
* Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
*
* Refactored for multi-source files:
* Doug Thompson <norsk5@xmission.com>
*
* Please look at Documentation/driver-api/edac.rst for more info about
* EDAC core structs and functions.
*/
#ifndef _EDAC_MC_H_
#define _EDAC_MC_H_
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/pci.h>
#include <linux/time.h>
#include <linux/nmi.h>
#include <linux/rcupdate.h>
#include <linux/completion.h>
#include <linux/kobject.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <linux/edac.h>
#if PAGE_SHIFT < 20
#define PAGES_TO_MiB(pages) ((pages) >> (20 - PAGE_SHIFT))
#define MiB_TO_PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
#else /* PAGE_SHIFT > 20 */
#define PAGES_TO_MiB(pages) ((pages) << (PAGE_SHIFT - 20))
#define MiB_TO_PAGES(mb) ((mb) >> (PAGE_SHIFT - 20))
#endif
#define edac_printk(level, prefix, fmt, arg...) \
printk(level "EDAC " prefix ": " fmt, ##arg)
#define edac_mc_printk(mci, level, fmt, arg...) \
printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
#define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
#define edac_device_printk(ctl, level, fmt, arg...) \
printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg)
#define edac_pci_printk(ctl, level, fmt, arg...) \
printk(level "EDAC PCI%d: " fmt, ctl->pci_idx, ##arg)
/* prefixes for edac_printk() and edac_mc_printk() */
#define EDAC_MC "MC"
#define EDAC_PCI "PCI"
#define EDAC_DEBUG "DEBUG"
extern const char * const edac_mem_types[];
#ifdef CONFIG_EDAC_DEBUG
extern int edac_debug_level;
#define edac_dbg(level, fmt, ...) \
do { \
if (level <= edac_debug_level) \
edac_printk(KERN_DEBUG, EDAC_DEBUG, \
"%s: " fmt, __func__, ##__VA_ARGS__); \
} while (0)
#else /* !CONFIG_EDAC_DEBUG */
#define edac_dbg(level, fmt, ...) \
do { \
if (0) \
edac_printk(KERN_DEBUG, EDAC_DEBUG, \
"%s: " fmt, __func__, ##__VA_ARGS__); \
} while (0)
#endif /* !CONFIG_EDAC_DEBUG */
#define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
PCI_DEVICE_ID_ ## vend ## _ ## dev
#define edac_dev_name(dev) (dev)->dev_name
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
/**
* edac_mc_alloc() - Allocate and partially fill a struct &mem_ctl_info.
*
* @mc_num: Memory controller number
* @n_layers: Number of MC hierarchy layers
* @layers: Describes each layer as seen by the Memory Controller
* @sz_pvt: size of private storage needed
*
*
* Everything is kmalloc'ed as one big chunk - more efficient.
* Only can be used if all structures have the same lifetime - otherwise
* you have to allocate and initialize your own structures.
*
* Use edac_mc_free() to free mc structures allocated by this function.
*
* .. note::
*
* drivers handle multi-rank memories in different ways: in some
* drivers, one multi-rank memory stick is mapped as one entry, while, in
* others, a single multi-rank memory stick would be mapped into several
* entries. Currently, this function will allocate multiple struct dimm_info
* on such scenarios, as grouping the multiple ranks require drivers change.
*
* Returns:
* On success, return a pointer to struct mem_ctl_info pointer;
* %NULL otherwise
*/
struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
unsigned n_layers,
struct edac_mc_layer *layers,
unsigned sz_pvt);
/**
* edac_mc_add_mc_with_groups() - Insert the @mci structure into the mci
* global list and create sysfs entries associated with @mci structure.
*
* @mci: pointer to the mci structure to be added to the list
* @groups: optional attribute groups for the driver-specific sysfs entries
*
* Returns:
* 0 on Success, or an error code on failure
*/
extern int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
const struct attribute_group **groups);
#define edac_mc_add_mc(mci) edac_mc_add_mc_with_groups(mci, NULL)
/**
* edac_mc_free() - Frees a previously allocated @mci structure
*
* @mci: pointer to a struct mem_ctl_info structure
*/
extern void edac_mc_free(struct mem_ctl_info *mci);
/**
* edac_mc_find() - Search for a mem_ctl_info structure whose index is @idx.
*
* @idx: index to be seek
*
* If found, return a pointer to the structure.
* Else return NULL.
*/
extern struct mem_ctl_info *edac_mc_find(int idx);
/**
* find_mci_by_dev() - Scan list of controllers looking for the one that
* manages the @dev device.
*
* @dev: pointer to a struct device related with the MCI
*
* Returns: on success, returns a pointer to struct &mem_ctl_info;
* %NULL otherwise.
*/
extern struct mem_ctl_info *find_mci_by_dev(struct device *dev);
/**
* edac_mc_del_mc() - Remove sysfs entries for mci structure associated with
* @dev and remove mci structure from global list.
*
* @dev: Pointer to struct &device representing mci structure to remove.
*
* Returns: pointer to removed mci structure, or %NULL if device not found.
*/
extern struct mem_ctl_info *edac_mc_del_mc(struct device *dev);
/**
* edac_mc_find_csrow_by_page() - Ancillary routine to identify what csrow
* contains a memory page.
*
* @mci: pointer to a struct mem_ctl_info structure
* @page: memory page to find
*
* Returns: on success, returns the csrow. -1 if not found.
*/
extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
unsigned long page);
/**
* edac_raw_mc_handle_error() - Reports a memory event to userspace without
* doing anything to discover the error location.
*
* @type: severity of the error (CE/UE/Fatal)
* @mci: a struct mem_ctl_info pointer
* @e: error description
*
* This raw function is used internally by edac_mc_handle_error(). It should
* only be called directly when the hardware error come directly from BIOS,
* like in the case of APEI GHES driver.
*/
void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
struct mem_ctl_info *mci,
struct edac_raw_error_desc *e);
/**
* edac_mc_handle_error() - Reports a memory event to userspace.
*
* @type: severity of the error (CE/UE/Fatal)
* @mci: a struct mem_ctl_info pointer
* @error_count: Number of errors of the same type
* @page_frame_number: mem page where the error occurred
* @offset_in_page: offset of the error inside the page
* @syndrome: ECC syndrome
* @top_layer: Memory layer[0] position
* @mid_layer: Memory layer[1] position
* @low_layer: Memory layer[2] position
* @msg: Message meaningful to the end users that
* explains the event
* @other_detail: Technical details about the event that
* may help hardware manufacturers and
* EDAC developers to analyse the event
*/
void edac_mc_handle_error(const enum hw_event_mc_err_type type,
struct mem_ctl_info *mci,
const u16 error_count,
const unsigned long page_frame_number,
const unsigned long offset_in_page,
const unsigned long syndrome,
const int top_layer,
const int mid_layer,
const int low_layer,
const char *msg,
const char *other_detail);
/*
* edac misc APIs
*/
extern char *edac_op_state_to_string(int op_state);
#endif /* _EDAC_MC_H_ */
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
#include <linux/pm_runtime.h> #include <linux/pm_runtime.h>
#include <linux/uaccess.h> #include <linux/uaccess.h>
#include "edac_core.h" #include "edac_mc.h"
#include "edac_module.h" #include "edac_module.h"
/* MC EDAC Controls, setable by module parameter, and sysfs */ /* MC EDAC Controls, setable by module parameter, and sysfs */
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
*/ */
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_mc.h"
#include "edac_module.h" #include "edac_module.h"
#define EDAC_VERSION "Ver: 3.0.0" #define EDAC_VERSION "Ver: 3.0.0"
......
...@@ -10,7 +10,9 @@ ...@@ -10,7 +10,9 @@
#ifndef __EDAC_MODULE_H__ #ifndef __EDAC_MODULE_H__
#define __EDAC_MODULE_H__ #define __EDAC_MODULE_H__
#include "edac_core.h" #include "edac_mc.h"
#include "edac_pci.h"
#include "edac_device.h"
/* /*
* INTERNAL EDAC MODULE: * INTERNAL EDAC MODULE:
......
...@@ -9,35 +9,25 @@ ...@@ -9,35 +9,25 @@
* or implied. * or implied.
* *
*/ */
#include <asm/page.h>
#include <asm/uaccess.h>
#include <linux/ctype.h>
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/types.h> #include <linux/slab.h>
#include <linux/smp.h> #include <linux/smp.h>
#include <linux/init.h> #include <linux/spinlock.h>
#include <linux/sysctl.h> #include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/timer.h> #include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/ctype.h>
#include <linux/workqueue.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include "edac_core.h" #include "edac_pci.h"
#include "edac_module.h" #include "edac_module.h"
static DEFINE_MUTEX(edac_pci_ctls_mutex); static DEFINE_MUTEX(edac_pci_ctls_mutex);
static LIST_HEAD(edac_pci_list); static LIST_HEAD(edac_pci_list);
static atomic_t pci_indexes = ATOMIC_INIT(0); static atomic_t pci_indexes = ATOMIC_INIT(0);
/*
* edac_pci_alloc_ctl_info
*
* The alloc() function for the 'edac_pci' control info
* structure. The chip driver will allocate one of these for each
* edac_pci it is going to control/register with the EDAC CORE.
*/
struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt, struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt,
const char *edac_pci_name) const char *edac_pci_name)
{ {
...@@ -68,16 +58,6 @@ struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt, ...@@ -68,16 +58,6 @@ struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt,
} }
EXPORT_SYMBOL_GPL(edac_pci_alloc_ctl_info); EXPORT_SYMBOL_GPL(edac_pci_alloc_ctl_info);
/*
* edac_pci_free_ctl_info()
*
* Last action on the pci control structure.
*
* call the remove sysfs information, which will unregister
* this control struct's kobj. When that kobj's ref count
* goes to zero, its release function will be call and then
* kfree() the memory.
*/
void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci) void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci)
{ {
edac_dbg(1, "\n"); edac_dbg(1, "\n");
...@@ -215,31 +195,12 @@ static void edac_pci_workq_function(struct work_struct *work_req) ...@@ -215,31 +195,12 @@ static void edac_pci_workq_function(struct work_struct *work_req)
mutex_unlock(&edac_pci_ctls_mutex); mutex_unlock(&edac_pci_ctls_mutex);
} }
/*
* edac_pci_alloc_index: Allocate a unique PCI index number
*
* Return:
* allocated index number
*
*/
int edac_pci_alloc_index(void) int edac_pci_alloc_index(void)
{ {
return atomic_inc_return(&pci_indexes) - 1; return atomic_inc_return(&pci_indexes) - 1;
} }
EXPORT_SYMBOL_GPL(edac_pci_alloc_index); EXPORT_SYMBOL_GPL(edac_pci_alloc_index);
/*
* edac_pci_add_device: Insert the 'edac_dev' structure into the
* edac_pci global list and create sysfs entries associated with
* edac_pci structure.
* @pci: pointer to the edac_device structure to be added to the list
* @edac_idx: A unique numeric identifier to be assigned to the
* 'edac_pci' structure.
*
* Return:
* 0 Success
* !0 Failure
*/
int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx) int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx)
{ {
edac_dbg(0, "\n"); edac_dbg(0, "\n");
...@@ -285,19 +246,6 @@ int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx) ...@@ -285,19 +246,6 @@ int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx)
} }
EXPORT_SYMBOL_GPL(edac_pci_add_device); EXPORT_SYMBOL_GPL(edac_pci_add_device);
/*
* edac_pci_del_device()
* Remove sysfs entries for specified edac_pci structure and
* then remove edac_pci structure from global list
*
* @dev:
* Pointer to 'struct device' representing edac_pci structure
* to remove
*
* Return:
* Pointer to removed edac_pci structure,
* or NULL if device not found
*/
struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev) struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev)
{ {
struct edac_pci_ctl_info *pci; struct edac_pci_ctl_info *pci;
...@@ -351,17 +299,6 @@ struct edac_pci_gen_data { ...@@ -351,17 +299,6 @@ struct edac_pci_gen_data {
int edac_idx; int edac_idx;
}; };
/*
* edac_pci_create_generic_ctl
*
* A generic constructor for a PCI parity polling device
* Some systems have more than one domain of PCI busses.
* For systems with one domain, then this API will
* provide for a generic poller.
*
* This routine calls the edac_pci_alloc_ctl_info() for
* the generic device, with default values
*/
struct edac_pci_ctl_info *edac_pci_create_generic_ctl(struct device *dev, struct edac_pci_ctl_info *edac_pci_create_generic_ctl(struct device *dev,
const char *mod_name) const char *mod_name)
{ {
...@@ -394,11 +331,6 @@ struct edac_pci_ctl_info *edac_pci_create_generic_ctl(struct device *dev, ...@@ -394,11 +331,6 @@ struct edac_pci_ctl_info *edac_pci_create_generic_ctl(struct device *dev,
} }
EXPORT_SYMBOL_GPL(edac_pci_create_generic_ctl); EXPORT_SYMBOL_GPL(edac_pci_create_generic_ctl);
/*
* edac_pci_release_generic_ctl
*
* The release function of a generic EDAC PCI polling device
*/
void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci) void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci)
{ {
edac_dbg(0, "pci mod=%s\n", pci->mod_name); edac_dbg(0, "pci mod=%s\n", pci->mod_name);
......
/*
* Defines, structures, APIs for edac_pci and edac_pci_sysfs
*
* (C) 2007 Linux Networx (http://lnxi.com)
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Written by Thayne Harbaugh
* Based on work by Dan Hollis <goemon at anime dot net> and others.
* http://www.anime.net/~goemon/linux-ecc/
*
* NMI handling support added by
* Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
*
* Refactored for multi-source files:
* Doug Thompson <norsk5@xmission.com>
*
* Please look at Documentation/driver-api/edac.rst for more info about
* EDAC core structs and functions.
*/
#ifndef _EDAC_PCI_H_
#define _EDAC_PCI_H_
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/edac.h>
#include <linux/kobject.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#ifdef CONFIG_PCI
struct edac_pci_counter {
atomic_t pe_count;
atomic_t npe_count;
};
/*
* Abstract edac_pci control info structure
*
*/
struct edac_pci_ctl_info {
/* for global list of edac_pci_ctl_info structs */
struct list_head link;
int pci_idx;
struct bus_type *edac_subsys; /* pointer to subsystem */
/* the internal state of this controller instance */
int op_state;
/* work struct for this instance */
struct delayed_work work;
/* pointer to edac polling checking routine:
* If NOT NULL: points to polling check routine
* If NULL: Then assumes INTERRUPT operation, where
* MC driver will receive events
*/
void (*edac_check) (struct edac_pci_ctl_info * edac_dev);
struct device *dev; /* pointer to device structure */
const char *mod_name; /* module name */
const char *ctl_name; /* edac controller name */
const char *dev_name; /* pci/platform/etc... name */
void *pvt_info; /* pointer to 'private driver' info */
unsigned long start_time; /* edac_pci load start time (jiffies) */
struct completion complete;
/* sysfs top name under 'edac' directory
* and instance name:
* cpu/cpu0/...
* cpu/cpu1/...
* cpu/cpu2/...
* ...
*/
char name[EDAC_DEVICE_NAME_LEN + 1];
/* Event counters for the this whole EDAC Device */
struct edac_pci_counter counters;
/* edac sysfs device control for the 'name'
* device this structure controls
*/
struct kobject kobj;
};
#define to_edac_pci_ctl_work(w) \
container_of(w, struct edac_pci_ctl_info,work)
/* write all or some bits in a byte-register*/
static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
u8 mask)
{
if (mask != 0xff) {
u8 buf;
pci_read_config_byte(pdev, offset, &buf);
value &= mask;
buf &= ~mask;
value |= buf;
}
pci_write_config_byte(pdev, offset, value);
}
/* write all or some bits in a word-register*/
static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
u16 value, u16 mask)
{
if (mask != 0xffff) {
u16 buf;
pci_read_config_word(pdev, offset, &buf);
value &= mask;
buf &= ~mask;
value |= buf;
}
pci_write_config_word(pdev, offset, value);
}
/*
* pci_write_bits32
*
* edac local routine to do pci_write_config_dword, but adds
* a mask parameter. If mask is all ones, ignore the mask.
* Otherwise utilize the mask to isolate specified bits
*
* write all or some bits in a dword-register
*/
static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
u32 value, u32 mask)
{
if (mask != 0xffffffff) {
u32 buf;
pci_read_config_dword(pdev, offset, &buf);
value &= mask;
buf &= ~mask;
value |= buf;
}
pci_write_config_dword(pdev, offset, value);
}
#endif /* CONFIG_PCI */
/*
* edac_pci APIs
*/
/**
* edac_pci_alloc_ctl_info:
* The alloc() function for the 'edac_pci' control info
* structure.
*
* @sz_pvt: size of the private info at struct &edac_pci_ctl_info
* @edac_pci_name: name of the PCI device
*
* The chip driver will allocate one of these for each
* edac_pci it is going to control/register with the EDAC CORE.
*
* Returns: a pointer to struct &edac_pci_ctl_info on success; %NULL otherwise.
*/
extern struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt,
const char *edac_pci_name);
/**
* edac_pci_free_ctl_info():
* Last action on the pci control structure.
*
* @pci: pointer to struct &edac_pci_ctl_info
*
* Calls the remove sysfs information, which will unregister
* this control struct's kobj. When that kobj's ref count
* goes to zero, its release function will be call and then
* kfree() the memory.
*/
extern void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci);
/**
* edac_pci_alloc_index: Allocate a unique PCI index number
*
* Returns:
* allocated index number
*
*/
extern int edac_pci_alloc_index(void);
/**
* edac_pci_add_device(): Insert the 'edac_dev' structure into the
* edac_pci global list and create sysfs entries associated with
* edac_pci structure.
*
* @pci: pointer to the edac_device structure to be added to the list
* @edac_idx: A unique numeric identifier to be assigned to the
* 'edac_pci' structure.
*
* Returns:
* 0 on Success, or an error code on failure
*/
extern int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx);
/**
* edac_pci_del_device()
* Remove sysfs entries for specified edac_pci structure and
* then remove edac_pci structure from global list
*
* @dev:
* Pointer to 'struct device' representing edac_pci structure
* to remove
*
* Returns:
* Pointer to removed edac_pci structure,
* or %NULL if device not found
*/
extern struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev);
/**
* edac_pci_create_generic_ctl()
* A generic constructor for a PCI parity polling device
* Some systems have more than one domain of PCI busses.
* For systems with one domain, then this API will
* provide for a generic poller.
*
* @dev: pointer to struct &device;
* @mod_name: name of the PCI device
*
* This routine calls the edac_pci_alloc_ctl_info() for
* the generic device, with default values
*
* Returns: Pointer to struct &edac_pci_ctl_info on success, %NULL on
* failure.
*/
extern struct edac_pci_ctl_info *edac_pci_create_generic_ctl(
struct device *dev,
const char *mod_name);
/**
* edac_pci_release_generic_ctl
* The release function of a generic EDAC PCI polling device
*
* @pci: pointer to struct &edac_pci_ctl_info
*/
extern void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci);
/**
* edac_pci_create_sysfs
* Create the controls/attributes for the specified EDAC PCI device
*
* @pci: pointer to struct &edac_pci_ctl_info
*/
extern int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci);
/**
* edac_pci_remove_sysfs()
* remove the controls and attributes for this EDAC PCI device
*
* @pci: pointer to struct &edac_pci_ctl_info
*/
extern void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci);
#endif
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/ctype.h> #include <linux/ctype.h>
#include "edac_core.h" #include "edac_pci.h"
#include "edac_module.h" #include "edac_module.h"
#define EDAC_PCI_SYMLINK "device" #define EDAC_PCI_SYMLINK "device"
...@@ -418,12 +418,6 @@ static void edac_pci_main_kobj_teardown(void) ...@@ -418,12 +418,6 @@ static void edac_pci_main_kobj_teardown(void)
} }
} }
/*
*
* edac_pci_create_sysfs
*
* Create the controls/attributes for the specified EDAC PCI device
*/
int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci) int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci)
{ {
int err; int err;
...@@ -459,11 +453,6 @@ int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci) ...@@ -459,11 +453,6 @@ int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci)
return err; return err;
} }
/*
* edac_pci_remove_sysfs
*
* remove the controls and attributes for this EDAC PCI device
*/
void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci) void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci)
{ {
edac_dbg(0, "index=%d\n", pci->pci_idx); edac_dbg(0, "index=%d\n", pci->pci_idx);
......
...@@ -28,7 +28,6 @@ ...@@ -28,7 +28,6 @@
#include <linux/of_device.h> #include <linux/of_device.h>
#include <linux/of_address.h> #include <linux/of_address.h>
#include "edac_module.h" #include "edac_module.h"
#include "edac_core.h"
#include "fsl_ddr_edac.h" #include "fsl_ddr_edac.h"
#define EDAC_MOD_STR "fsl_ddr_edac" #define EDAC_MOD_STR "fsl_ddr_edac"
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
#include <acpi/ghes.h> #include <acpi/ghes.h>
#include <linux/edac.h> #include <linux/edac.h>
#include <linux/dmi.h> #include <linux/dmi.h>
#include "edac_core.h" #include "edac_module.h"
#include <ras/ras_event.h> #include <ras/ras_event.h>
#define GHES_EDAC_REVISION " Ver: 1.0.0" #define GHES_EDAC_REVISION " Ver: 1.0.0"
......
...@@ -21,7 +21,6 @@ ...@@ -21,7 +21,6 @@
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/of_platform.h> #include <linux/of_platform.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
#define SR_CLR_SB_ECC_INTR 0x0 #define SR_CLR_SB_ECC_INTR 0x0
......
...@@ -22,7 +22,6 @@ ...@@ -22,7 +22,6 @@
#include <linux/of_platform.h> #include <linux/of_platform.h>
#include <linux/uaccess.h> #include <linux/uaccess.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
/* DDR Ctrlr Error Registers */ /* DDR Ctrlr Error Registers */
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_module.h"
#define I3000_REVISION "1.1" #define I3000_REVISION "1.1"
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include <linux/edac.h> #include <linux/edac.h>
#include <linux/io.h> #include <linux/io.h>
#include "edac_core.h" #include "edac_module.h"
#include <linux/io-64-nonatomic-lo-hi.h> #include <linux/io-64-nonatomic-lo-hi.h>
......
...@@ -22,7 +22,7 @@ ...@@ -22,7 +22,7 @@
#include <linux/edac.h> #include <linux/edac.h>
#include <asm/mmzone.h> #include <asm/mmzone.h>
#include "edac_core.h" #include "edac_module.h"
/* /*
* Alter this version for the I5000 module when modifications are made * Alter this version for the I5000 module when modifications are made
......
...@@ -29,7 +29,6 @@ ...@@ -29,7 +29,6 @@
#include <linux/mmzone.h> #include <linux/mmzone.h>
#include <linux/debugfs.h> #include <linux/debugfs.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
/* register addresses */ /* register addresses */
......
...@@ -32,7 +32,7 @@ ...@@ -32,7 +32,7 @@
#include <linux/edac.h> #include <linux/edac.h>
#include <linux/mmzone.h> #include <linux/mmzone.h>
#include "edac_core.h" #include "edac_module.h"
/* /*
* Alter this version for the I5400 module when modifications are made * Alter this version for the I5400 module when modifications are made
......
...@@ -26,7 +26,7 @@ ...@@ -26,7 +26,7 @@
#include <linux/edac.h> #include <linux/edac.h>
#include <linux/mmzone.h> #include <linux/mmzone.h>
#include "edac_core.h" #include "edac_module.h"
/* /*
* Alter this version for the I7300 module when modifications are made * Alter this version for the I7300 module when modifications are made
......
...@@ -39,7 +39,7 @@ ...@@ -39,7 +39,7 @@
#include <asm/processor.h> #include <asm/processor.h>
#include <asm/div64.h> #include <asm/div64.h>
#include "edac_core.h" #include "edac_module.h"
/* Static vars */ /* Static vars */
static LIST_HEAD(i7core_edac_list); static LIST_HEAD(i7core_edac_list);
......
...@@ -29,7 +29,7 @@ ...@@ -29,7 +29,7 @@
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_module.h"
#define I82443_REVISION "0.1" #define I82443_REVISION "0.1"
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_module.h"
#define I82860_REVISION " Ver: 2.0.2" #define I82860_REVISION " Ver: 2.0.2"
#define EDAC_MOD_STR "i82860_edac" #define EDAC_MOD_STR "i82860_edac"
......
...@@ -18,7 +18,7 @@ ...@@ -18,7 +18,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_module.h"
#define I82875P_REVISION " Ver: 2.0.2" #define I82875P_REVISION " Ver: 2.0.2"
#define EDAC_MOD_STR "i82875p_edac" #define EDAC_MOD_STR "i82875p_edac"
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_module.h"
#define I82975X_REVISION " Ver: 1.0.0" #define I82975X_REVISION " Ver: 1.0.0"
#define EDAC_MOD_STR "i82975x_edac" #define EDAC_MOD_STR "i82975x_edac"
......
...@@ -41,7 +41,7 @@ ...@@ -41,7 +41,7 @@
#include <linux/edac.h> #include <linux/edac.h>
#include <linux/io-64-nonatomic-lo-hi.h> #include <linux/io-64-nonatomic-lo-hi.h>
#include "edac_core.h" #include "edac_module.h"
#define IE31200_REVISION "1.0" #define IE31200_REVISION "1.0"
#define EDAC_MOD_STR "ie31200_edac" #define EDAC_MOD_STR "ie31200_edac"
......
...@@ -16,7 +16,7 @@ ...@@ -16,7 +16,7 @@
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "edac_core.h" #include "edac_module.h"
#include "fsl_ddr_edac.h" #include "fsl_ddr_edac.h"
static const struct of_device_id fsl_ddr_mc_err_of_match[] = { static const struct of_device_id fsl_ddr_mc_err_of_match[] = {
......
...@@ -25,7 +25,6 @@ ...@@ -25,7 +25,6 @@
#include <linux/of_platform.h> #include <linux/of_platform.h>
#include <linux/of_device.h> #include <linux/of_device.h>
#include "edac_module.h" #include "edac_module.h"
#include "edac_core.h"
#include "mpc85xx_edac.h" #include "mpc85xx_edac.h"
#include "fsl_ddr_edac.h" #include "fsl_ddr_edac.h"
......
...@@ -17,7 +17,6 @@ ...@@ -17,7 +17,6 @@
#include <linux/edac.h> #include <linux/edac.h>
#include <linux/gfp.h> #include <linux/gfp.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
#include "mv64x60_edac.h" #include "mv64x60_edac.h"
......
...@@ -16,7 +16,6 @@ ...@@ -16,7 +16,6 @@
#include <asm/octeon/cvmx.h> #include <asm/octeon/cvmx.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
#define EDAC_MOD_STR "octeon-l2c" #define EDAC_MOD_STR "octeon-l2c"
......
...@@ -19,7 +19,6 @@ ...@@ -19,7 +19,6 @@
#include <asm/octeon/octeon.h> #include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-lmcx-defs.h> #include <asm/octeon/cvmx-lmcx-defs.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
#define OCTEON_MAX_MC 4 #define OCTEON_MAX_MC 4
......
...@@ -15,7 +15,6 @@ ...@@ -15,7 +15,6 @@
#include <linux/io.h> #include <linux/io.h>
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
#include <asm/octeon/cvmx.h> #include <asm/octeon/cvmx.h>
......
...@@ -18,7 +18,6 @@ ...@@ -18,7 +18,6 @@
#include <asm/octeon/cvmx-pci-defs.h> #include <asm/octeon/cvmx-pci-defs.h>
#include <asm/octeon/octeon.h> #include <asm/octeon/octeon.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
static void octeon_pci_poll(struct edac_pci_ctl_info *pci) static void octeon_pci_poll(struct edac_pci_ctl_info *pci)
......
...@@ -26,7 +26,7 @@ ...@@ -26,7 +26,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_module.h"
#define MODULE_NAME "pasemi_edac" #define MODULE_NAME "pasemi_edac"
......
...@@ -21,7 +21,7 @@ ...@@ -21,7 +21,7 @@
#include <asm/dcr.h> #include <asm/dcr.h>
#include "edac_core.h" #include "edac_module.h"
#include "ppc4xx_edac.h" #include "ppc4xx_edac.h"
/* /*
......
...@@ -20,7 +20,7 @@ ...@@ -20,7 +20,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/pci_ids.h> #include <linux/pci_ids.h>
#include <linux/edac.h> #include <linux/edac.h>
#include "edac_core.h" #include "edac_module.h"
#define R82600_REVISION " Ver: 2.0.2" #define R82600_REVISION " Ver: 2.0.2"
#define EDAC_MOD_STR "r82600_edac" #define EDAC_MOD_STR "r82600_edac"
......
...@@ -27,7 +27,7 @@ ...@@ -27,7 +27,7 @@
#include <asm/processor.h> #include <asm/processor.h>
#include <asm/mce.h> #include <asm/mce.h>
#include "edac_core.h" #include "edac_module.h"
/* Static vars */ /* Static vars */
static LIST_HEAD(sbridge_edac_list); static LIST_HEAD(sbridge_edac_list);
......
...@@ -29,7 +29,7 @@ ...@@ -29,7 +29,7 @@
#include <asm/processor.h> #include <asm/processor.h>
#include <asm/mce.h> #include <asm/mce.h>
#include "edac_core.h" #include "edac_module.h"
#define SKX_REVISION " Ver: 1.0 " #define SKX_REVISION " Ver: 1.0 "
......
...@@ -23,7 +23,7 @@ ...@@ -23,7 +23,7 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include "edac_core.h" #include "edac_module.h"
/* Number of cs_rows needed per memory controller */ /* Number of cs_rows needed per memory controller */
#define SYNPS_EDAC_NR_CSROWS 1 #define SYNPS_EDAC_NR_CSROWS 1
......
...@@ -30,7 +30,7 @@ ...@@ -30,7 +30,7 @@
#include <hv/hypervisor.h> #include <hv/hypervisor.h>
#include <hv/drv_mshim_intf.h> #include <hv/drv_mshim_intf.h>
#include "edac_core.h" #include "edac_module.h"
#define DRV_NAME "tile-edac" #define DRV_NAME "tile-edac"
......
...@@ -16,7 +16,7 @@ ...@@ -16,7 +16,7 @@
#include <linux/edac.h> #include <linux/edac.h>
#include <linux/io-64-nonatomic-lo-hi.h> #include <linux/io-64-nonatomic-lo-hi.h>
#include "edac_core.h" #include "edac_module.h"
#define X38_REVISION "1.1" #define X38_REVISION "1.1"
......
...@@ -28,7 +28,6 @@ ...@@ -28,7 +28,6 @@
#include <linux/of_address.h> #include <linux/of_address.h>
#include <linux/regmap.h> #include <linux/regmap.h>
#include "edac_core.h"
#include "edac_module.h" #include "edac_module.h"
#define EDAC_MOD_STR "xgene_edac" #define EDAC_MOD_STR "xgene_edac"
......
...@@ -18,6 +18,8 @@ ...@@ -18,6 +18,8 @@
#include <linux/workqueue.h> #include <linux/workqueue.h>
#include <linux/debugfs.h> #include <linux/debugfs.h>
#define EDAC_DEVICE_NAME_LEN 31
struct device; struct device;
#define EDAC_OPSTATE_INVAL -1 #define EDAC_OPSTATE_INVAL -1
...@@ -128,8 +130,16 @@ enum dev_type { ...@@ -128,8 +130,16 @@ enum dev_type {
* fatal (maybe it is on an unused memory area, * fatal (maybe it is on an unused memory area,
* or the memory controller could recover from * or the memory controller could recover from
* it for example, by re-trying the operation). * it for example, by re-trying the operation).
* @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable
* error whose handling is not urgent. This could
* be due to hardware data poisoning where the
* system can continue operation until the poisoned
* data is consumed. Preemptive measures may also
* be taken, e.g. offlining pages, etc.
* @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
* be recovered. * be recovered.
* @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth
* type of error: informational logs.
*/ */
enum hw_event_mc_err_type { enum hw_event_mc_err_type {
HW_EVENT_ERR_CORRECTED, HW_EVENT_ERR_CORRECTED,
...@@ -160,7 +170,7 @@ static inline char *mc_event_error_type(const unsigned int err_type) ...@@ -160,7 +170,7 @@ static inline char *mc_event_error_type(const unsigned int err_type)
* enum mem_type - memory types. For a more detailed reference, please see * enum mem_type - memory types. For a more detailed reference, please see
* http://en.wikipedia.org/wiki/DRAM * http://en.wikipedia.org/wiki/DRAM
* *
* @MEM_EMPTY Empty csrow * @MEM_EMPTY: Empty csrow
* @MEM_RESERVED: Reserved csrow type * @MEM_RESERVED: Reserved csrow type
* @MEM_UNKNOWN: Unknown csrow type * @MEM_UNKNOWN: Unknown csrow type
* @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995. * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995.
...@@ -284,7 +294,7 @@ enum edac_type { ...@@ -284,7 +294,7 @@ enum edac_type {
/** /**
* enum scrub_type - scrubbing capabilities * enum scrub_type - scrubbing capabilities
* @SCRUB_UNKNOWN Unknown if scrubber is available * @SCRUB_UNKNOWN: Unknown if scrubber is available
* @SCRUB_NONE: No scrubber * @SCRUB_NONE: No scrubber
* @SCRUB_SW_PROG: SW progressive (sequential) scrubbing * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing
* @SCRUB_SW_SRC: Software scrub only errors * @SCRUB_SW_SRC: Software scrub only errors
...@@ -293,7 +303,7 @@ enum edac_type { ...@@ -293,7 +303,7 @@ enum edac_type {
* @SCRUB_HW_PROG: HW progressive (sequential) scrubbing * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing
* @SCRUB_HW_SRC: Hardware scrub only errors * @SCRUB_HW_SRC: Hardware scrub only errors
* @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error
* SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable
*/ */
enum scrub_type { enum scrub_type {
SCRUB_UNKNOWN = 0, SCRUB_UNKNOWN = 0,
...@@ -326,114 +336,6 @@ enum scrub_type { ...@@ -326,114 +336,6 @@ enum scrub_type {
#define OP_RUNNING_POLL_INTR 0x203 #define OP_RUNNING_POLL_INTR 0x203
#define OP_OFFLINE 0x300 #define OP_OFFLINE 0x300
/*
* Concepts used at the EDAC subsystem
*
* There are several things to be aware of that aren't at all obvious:
*
* SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
*
* These are some of the many terms that are thrown about that don't always
* mean what people think they mean (Inconceivable!). In the interest of
* creating a common ground for discussion, terms and their definitions
* will be established.
*
* Memory devices: The individual DRAM chips on a memory stick. These
* devices commonly output 4 and 8 bits each (x4, x8).
* Grouping several of these in parallel provides the
* number of bits that the memory controller expects:
* typically 72 bits, in order to provide 64 bits +
* 8 bits of ECC data.
*
* Memory Stick: A printed circuit board that aggregates multiple
* memory devices in parallel. In general, this is the
* Field Replaceable Unit (FRU) which gets replaced, in
* the case of excessive errors. Most often it is also
* called DIMM (Dual Inline Memory Module).
*
* Memory Socket: A physical connector on the motherboard that accepts
* a single memory stick. Also called as "slot" on several
* datasheets.
*
* Channel: A memory controller channel, responsible to communicate
* with a group of DIMMs. Each channel has its own
* independent control (command) and data bus, and can
* be used independently or grouped with other channels.
*
* Branch: It is typically the highest hierarchy on a
* Fully-Buffered DIMM memory controller.
* Typically, it contains two channels.
* Two channels at the same branch can be used in single
* mode or in lockstep mode.
* When lockstep is enabled, the cacheline is doubled,
* but it generally brings some performance penalty.
* Also, it is generally not possible to point to just one
* memory stick when an error occurs, as the error
* correction code is calculated using two DIMMs instead
* of one. Due to that, it is capable of correcting more
* errors than on single mode.
*
* Single-channel: The data accessed by the memory controller is contained
* into one dimm only. E. g. if the data is 64 bits-wide,
* the data flows to the CPU using one 64 bits parallel
* access.
* Typically used with SDR, DDR, DDR2 and DDR3 memories.
* FB-DIMM and RAMBUS use a different concept for channel,
* so this concept doesn't apply there.
*
* Double-channel: The data size accessed by the memory controller is
* interlaced into two dimms, accessed at the same time.
* E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
* the data flows to the CPU using a 128 bits parallel
* access.
*
* Chip-select row: This is the name of the DRAM signal used to select the
* DRAM ranks to be accessed. Common chip-select rows for
* single channel are 64 bits, for dual channel 128 bits.
* It may not be visible by the memory controller, as some
* DIMM types have a memory buffer that can hide direct
* access to it from the Memory Controller.
*
* Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory.
* Motherboards commonly drive two chip-select pins to
* a memory stick. A single-ranked stick, will occupy
* only one of those rows. The other will be unused.
*
* Double-Ranked stick: A double-ranked stick has two chip-select rows which
* access different sets of memory devices. The two
* rows cannot be accessed concurrently.
*
* Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
* A double-sided stick has two chip-select rows which
* access different sets of memory devices. The two
* rows cannot be accessed concurrently. "Double-sided"
* is irrespective of the memory devices being mounted
* on both sides of the memory stick.
*
* Socket set: All of the memory sticks that are required for
* a single memory access or all of the memory sticks
* spanned by a chip-select row. A single socket set
* has two chip-select rows and if double-sided sticks
* are used these will occupy those chip-select rows.
*
* Bank: This term is avoided because it is unclear when
* needing to distinguish between chip-select rows and
* socket sets.
*
* Controller pages:
*
* Physical pages:
*
* Virtual pages:
*
*
* STRUCTURE ORGANIZATION AND CHOICES
*
*
*
* PS - I enjoyed writing all that about as much as you enjoyed reading it.
*/
/** /**
* enum edac_mc_layer - memory controller hierarchy layer * enum edac_mc_layer - memory controller hierarchy layer
* *
...@@ -458,7 +360,7 @@ enum edac_mc_layer_type { ...@@ -458,7 +360,7 @@ enum edac_mc_layer_type {
/** /**
* struct edac_mc_layer - describes the memory controller hierarchy * struct edac_mc_layer - describes the memory controller hierarchy
* @layer: layer type * @type: layer type
* @size: number of components per layer. For example, * @size: number of components per layer. For example,
* if the channel layer has two channels, size = 2 * if the channel layer has two channels, size = 2
* @is_virt_csrow: This layer is part of the "csrow" when old API * @is_virt_csrow: This layer is part of the "csrow" when old API
...@@ -481,24 +383,28 @@ struct edac_mc_layer { ...@@ -481,24 +383,28 @@ struct edac_mc_layer {
#define EDAC_MAX_LAYERS 3 #define EDAC_MAX_LAYERS 3
/** /**
* EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer
* for the element given by [layer0,layer1,layer2] position * array for the element given by [layer0,layer1,layer2]
* position
* *
* @layers: a struct edac_mc_layer array, describing how many elements * @layers: a struct edac_mc_layer array, describing how many elements
* were allocated for each layer * were allocated for each layer
* @n_layers: Number of layers at the @layers array * @nlayers: Number of layers at the @layers array
* @layer0: layer0 position * @layer0: layer0 position
* @layer1: layer1 position. Unused if n_layers < 2 * @layer1: layer1 position. Unused if n_layers < 2
* @layer2: layer2 position. Unused if n_layers < 3 * @layer2: layer2 position. Unused if n_layers < 3
* *
* For 1 layer, this macro returns &var[layer0] - &var * For 1 layer, this macro returns "var[layer0] - var";
*
* For 2 layers, this macro is similar to allocate a bi-dimensional array * For 2 layers, this macro is similar to allocate a bi-dimensional array
* and to return "&var[layer0][layer1] - &var" * and to return "var[layer0][layer1] - var";
*
* For 3 layers, this macro is similar to allocate a tri-dimensional array * For 3 layers, this macro is similar to allocate a tri-dimensional array
* and to return "&var[layer0][layer1][layer2] - &var" * and to return "var[layer0][layer1][layer2] - var".
* *
* A loop could be used here to make it more generic, but, as we only have * A loop could be used here to make it more generic, but, as we only have
* 3 layers, this is a little faster. * 3 layers, this is a little faster.
*
* By design, layers can never be 0 or more than 3. If that ever happens, * By design, layers can never be 0 or more than 3. If that ever happens,
* a NULL is returned, causing an OOPS during the memory allocation routine, * a NULL is returned, causing an OOPS during the memory allocation routine,
* with would point to the developer that he's doing something wrong. * with would point to the developer that he's doing something wrong.
...@@ -525,16 +431,18 @@ struct edac_mc_layer { ...@@ -525,16 +431,18 @@ struct edac_mc_layer {
* were allocated for each layer * were allocated for each layer
* @var: name of the var where we want to get the pointer * @var: name of the var where we want to get the pointer
* (like mci->dimms) * (like mci->dimms)
* @n_layers: Number of layers at the @layers array * @nlayers: Number of layers at the @layers array
* @layer0: layer0 position * @layer0: layer0 position
* @layer1: layer1 position. Unused if n_layers < 2 * @layer1: layer1 position. Unused if n_layers < 2
* @layer2: layer2 position. Unused if n_layers < 3 * @layer2: layer2 position. Unused if n_layers < 3
* *
* For 1 layer, this macro returns &var[layer0] * For 1 layer, this macro returns "var[layer0]";
*
* For 2 layers, this macro is similar to allocate a bi-dimensional array * For 2 layers, this macro is similar to allocate a bi-dimensional array
* and to return "&var[layer0][layer1]" * and to return "var[layer0][layer1]";
*
* For 3 layers, this macro is similar to allocate a tri-dimensional array * For 3 layers, this macro is similar to allocate a tri-dimensional array
* and to return "&var[layer0][layer1][layer2]" * and to return "var[layer0][layer1][layer2]";
*/ */
#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \ #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \
typeof(*var) __p; \ typeof(*var) __p; \
...@@ -620,7 +528,7 @@ struct errcount_attribute_data { ...@@ -620,7 +528,7 @@ struct errcount_attribute_data {
}; };
/** /**
* edac_raw_error_desc - Raw error report structure * struct edac_raw_error_desc - Raw error report structure
* @grain: minimum granularity for an error report, in bytes * @grain: minimum granularity for an error report, in bytes
* @error_count: number of errors of the same type * @error_count: number of errors of the same type
* @top_layer: top layer of the error (layer[0]) * @top_layer: top layer of the error (layer[0])
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment