Commit 9ffc30a6 authored by Arnd Bergmann's avatar Arnd Bergmann

Merge tag 'tegra-for-5.8-media' of...

Merge tag 'tegra-for-5.8-media' of git://git.kernel.org/pub/scm/linux/kernel/git/tegra/linux into arm/drivers

media: tegra: Changes for v5.8-rc1

This contains a V4L2 video capture driver for Tegra210.

* tag 'tegra-for-5.8-media' of git://git.kernel.org/pub/scm/linux/kernel/git/tegra/linux:
  media: tegra-video: Do not enable COMPILE_TEST
  MAINTAINERS: correct path in TEGRA VIDEO DRIVER
  media: tegra-video: Make tegra210_video_formats static
  MAINTAINERS: Add Tegra Video driver section
  media: tegra-video: Add Tegra210 Video input driver
  dt-bindings: i2c: tegra: Document Tegra210 VI I2C
  dt-bindings: tegra: Add VI and CSI bindings
  dt-bindings: cpufreq: Add binding for NVIDIA Tegra20/30
  dt-bindings: memory: tegra: Add external memory controller binding for Tegra210
  dt-bindings: clock: tegra: Remove PMC clock IDs
  dt-bindings: clock: tegra: Add clock ID for CSI TPG clock

Link: https://lore.kernel.org/r/20200515145311.1580134-7-thierry.reding@gmail.comSigned-off-by: default avatarArnd Bergmann <arnd@arndb.de>
parents 19207ea8 ba8f6682
Binding for NVIDIA Tegra20 CPUFreq
==================================
Required properties:
- clocks: Must contain an entry for the CPU clock.
See ../clocks/clock-bindings.txt for details.
- operating-points-v2: See ../bindings/opp/opp.txt for details.
- #cooling-cells: Should be 2. See ../thermal/thermal.txt for details.
For each opp entry in 'operating-points-v2' table:
- opp-supported-hw: Two bitfields indicating:
On Tegra20:
1. CPU process ID mask
2. SoC speedo ID mask
On Tegra30:
1. CPU process ID mask
2. CPU speedo ID mask
A bitwise AND is performed against these values and if any bit
matches, the OPP gets enabled.
- opp-microvolt: CPU voltage triplet.
Optional properties:
- cpu-supply: Phandle to the CPU power supply.
Example:
regulators {
cpu_reg: regulator0 {
regulator-name = "vdd_cpu";
};
};
cpu0_opp_table: opp_table0 {
compatible = "operating-points-v2";
opp@456000000 {
clock-latency-ns = <125000>;
opp-microvolt = <825000 825000 1125000>;
opp-supported-hw = <0x03 0x0001>;
opp-hz = /bits/ 64 <456000000>;
};
...
};
cpus {
cpu@0 {
compatible = "arm,cortex-a9";
clocks = <&tegra_car TEGRA20_CLK_CCLK>;
operating-points-v2 = <&cpu0_opp_table>;
cpu-supply = <&cpu_reg>;
#cooling-cells = <2>;
};
};
......@@ -40,14 +40,30 @@ of the following host1x client modules:
Required properties:
- compatible: "nvidia,tegra<chip>-vi"
- reg: Physical base address and length of the controller's registers.
- reg: Physical base address and length of the controller registers.
- interrupts: The interrupt outputs from the controller.
- clocks: Must contain one entry, for the module clock.
- clocks: clocks: Must contain one entry, for the module clock.
See ../clocks/clock-bindings.txt for details.
- resets: Must contain an entry for each entry in reset-names.
See ../reset/reset.txt for details.
- reset-names: Must include the following entries:
- vi
- Tegra20/Tegra30/Tegra114/Tegra124:
- resets: Must contain an entry for each entry in reset-names.
See ../reset/reset.txt for details.
- reset-names: Must include the following entries:
- vi
- Tegra210:
- power-domains: Must include venc powergate node as vi is in VE partition.
- Tegra210 has CSI part of VI sharing same host interface and register space.
So, VI device node should have CSI child node.
- csi: mipi csi interface to vi
Required properties:
- compatible: "nvidia,tegra210-csi"
- reg: Physical base address offset to parent and length of the controller
registers.
- clocks: Must contain entries csi, cilab, cilcd, cile, csi_tpg clocks.
See ../clocks/clock-bindings.txt for details.
- power-domains: Must include sor powergate node as csicil is in
SOR partition.
- epp: encoder pre-processor
......@@ -309,13 +325,44 @@ Example:
reset-names = "mpe";
};
vi {
compatible = "nvidia,tegra20-vi";
reg = <0x54080000 0x00040000>;
interrupts = <0 69 0x04>;
clocks = <&tegra_car TEGRA20_CLK_VI>;
resets = <&tegra_car 100>;
reset-names = "vi";
vi@54080000 {
compatible = "nvidia,tegra210-vi";
reg = <0x0 0x54080000 0x0 0x700>;
interrupts = <GIC_SPI 69 IRQ_TYPE_LEVEL_HIGH>;
assigned-clocks = <&tegra_car TEGRA210_CLK_VI>;
assigned-clock-parents = <&tegra_car TEGRA210_CLK_PLL_C4_OUT0>;
clocks = <&tegra_car TEGRA210_CLK_VI>;
power-domains = <&pd_venc>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0x0 0x0 0x54080000 0x2000>;
csi@838 {
compatible = "nvidia,tegra210-csi";
reg = <0x838 0x1300>;
assigned-clocks = <&tegra_car TEGRA210_CLK_CILAB>,
<&tegra_car TEGRA210_CLK_CILCD>,
<&tegra_car TEGRA210_CLK_CILE>,
<&tegra_car TEGRA210_CLK_CSI_TPG>;
assigned-clock-parents = <&tegra_car TEGRA210_CLK_PLL_P>,
<&tegra_car TEGRA210_CLK_PLL_P>,
<&tegra_car TEGRA210_CLK_PLL_P>;
assigned-clock-rates = <102000000>,
<102000000>,
<102000000>,
<972000000>;
clocks = <&tegra_car TEGRA210_CLK_CSI>,
<&tegra_car TEGRA210_CLK_CILAB>,
<&tegra_car TEGRA210_CLK_CILCD>,
<&tegra_car TEGRA210_CLK_CILE>,
<&tegra_car TEGRA210_CLK_CSI_TPG>;
clock-names = "csi", "cilab", "cilcd", "cile", "csi_tpg";
power-domains = <&pd_sor>;
};
};
epp {
......
......@@ -35,6 +35,12 @@ Required properties:
Due to above changes, Tegra114 I2C driver makes incompatible with
previous hardware driver. Hence, tegra114 I2C controller is compatible
with "nvidia,tegra114-i2c".
nvidia,tegra210-i2c-vi: Tegra210 has one I2C controller that is part of the
host1x domain and typically used for camera use-cases. This VI I2C
controller is mostly compatible with the programming model of the
regular I2C controllers with a few exceptions. The I2C registers start
at an offset of 0xc00 (instead of 0), registers are 16 bytes apart
(rather than 4) and the controller does not support slave mode.
- reg: Should contain I2C controller registers physical address and length.
- interrupts: Should contain I2C controller interrupts.
- address-cells: Address cells for I2C device address.
......
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/memory-controllers/nvidia,tegra210-emc.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: NVIDIA Tegra210 SoC External Memory Controller
maintainers:
- Thierry Reding <thierry.reding@gmail.com>
- Jon Hunter <jonathanh@nvidia.com>
description: |
The EMC interfaces with the off-chip SDRAM to service the request stream
sent from the memory controller.
properties:
compatible:
const: nvidia,tegra210-emc
reg:
maxItems: 3
clocks:
items:
- description: external memory clock
clock-names:
items:
- const: emc
interrupts:
items:
- description: EMC general interrupt
memory-region:
$ref: /schemas/types.yaml#/definitions/phandle
description:
phandle to a reserved memory region describing the table of EMC
frequencies trained by the firmware
nvidia,memory-controller:
$ref: /schemas/types.yaml#/definitions/phandle
description:
phandle of the memory controller node
required:
- compatible
- reg
- clocks
- clock-names
- nvidia,memory-controller
additionalProperties: false
examples:
- |
#include <dt-bindings/clock/tegra210-car.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
reserved-memory {
#address-cells = <1>;
#size-cells = <1>;
ranges;
emc_table: emc-table@83400000 {
compatible = "nvidia,tegra210-emc-table";
reg = <0x83400000 0x10000>;
};
};
external-memory-controller@7001b000 {
compatible = "nvidia,tegra210-emc";
reg = <0x7001b000 0x1000>,
<0x7001e000 0x1000>,
<0x7001f000 0x1000>;
clocks = <&tegra_car TEGRA210_CLK_EMC>;
clock-names = "emc";
interrupts = <GIC_SPI 78 IRQ_TYPE_LEVEL_HIGH>;
memory-region = <&emc_table>;
nvidia,memory-controller = <&mc>;
};
......@@ -16598,6 +16598,16 @@ M: Laxman Dewangan <ldewangan@nvidia.com>
S: Supported
F: drivers/spi/spi-tegra*
TEGRA VIDEO DRIVER
M: Thierry Reding <thierry.reding@gmail.com>
M: Jonathan Hunter <jonathanh@nvidia.com>
M: Sowjanya Komatineni <skomatineni@nvidia.com>
L: linux-media@vger.kernel.org
L: linux-tegra@vger.kernel.org
S: Maintained
F: Documentation/devicetree/bindings/display/tegra/nvidia,tegra20-host1x.txt
F: drivers/staging/media/tegra-video/
TEGRA XUSB PADCTL DRIVER
M: JC Kuo <jckuo@nvidia.com>
S: Supported
......
......@@ -34,6 +34,8 @@ source "drivers/staging/media/sunxi/Kconfig"
source "drivers/staging/media/tegra-vde/Kconfig"
source "drivers/staging/media/tegra-video/Kconfig"
source "drivers/staging/media/ipu3/Kconfig"
source "drivers/staging/media/soc_camera/Kconfig"
......
......@@ -4,6 +4,7 @@ obj-$(CONFIG_VIDEO_IMX_MEDIA) += imx/
obj-$(CONFIG_VIDEO_MESON_VDEC) += meson/vdec/
obj-$(CONFIG_VIDEO_OMAP4) += omap4iss/
obj-$(CONFIG_VIDEO_SUNXI) += sunxi/
obj-$(CONFIG_VIDEO_TEGRA) += tegra-video/
obj-$(CONFIG_TEGRA_VDE) += tegra-vde/
obj-$(CONFIG_VIDEO_HANTRO) += hantro/
obj-$(CONFIG_VIDEO_IPU3_IMGU) += ipu3/
......
# SPDX-License-Identifier: GPL-2.0-only
config VIDEO_TEGRA
tristate "NVIDIA Tegra VI driver"
depends on TEGRA_HOST1X
select VIDEO_V4L2
select MEDIA_CONTROLLER
select VIDEOBUF2_DMA_CONTIG
help
Choose this option if you have an NVIDIA Tegra SoC.
To compile this driver as a module, choose M here: the module
will be called tegra-video.
# SPDX-License-Identifier: GPL-2.0
tegra-video-objs := \
video.o \
vi.o \
csi.o
tegra-video-$(CONFIG_ARCH_TEGRA_210_SOC) += tegra210.o
obj-$(CONFIG_VIDEO_TEGRA) += tegra-video.o
TODO list
* Currently driver supports Tegra build-in TPG only with direct media links
from CSI to VI. Add kernel config CONFIG_VIDEO_TEGRA_TPG and update the
driver to do TPG Vs Sensor media links based on CONFIG_VIDEO_TEGRA_TPG.
* Add real camera sensor capture support.
* Add Tegra CSI MIPI pads calibration.
* Add MIPI clock Settle time computation based on the data rate.
* Add support for Ganged mode.
* Add RAW10 packed video format support to Tegra210 video formats.
* Add support for suspend and resume.
* Make sure v4l2-compliance tests pass with all of the above implementations.
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/clk/tegra.h>
#include <linux/device.h>
#include <linux/host1x.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include "csi.h"
#include "video.h"
static inline struct tegra_csi *
host1x_client_to_csi(struct host1x_client *client)
{
return container_of(client, struct tegra_csi, client);
}
static inline struct tegra_csi_channel *to_csi_chan(struct v4l2_subdev *subdev)
{
return container_of(subdev, struct tegra_csi_channel, subdev);
}
/*
* CSI is a separate subdevice which has 6 source pads to generate
* test pattern. CSI subdevice pad ops are used only for TPG and
* allows below TPG formats.
*/
static const struct v4l2_mbus_framefmt tegra_csi_tpg_fmts[] = {
{
TEGRA_DEF_WIDTH,
TEGRA_DEF_HEIGHT,
MEDIA_BUS_FMT_SRGGB10_1X10,
V4L2_FIELD_NONE,
V4L2_COLORSPACE_SRGB
},
{
TEGRA_DEF_WIDTH,
TEGRA_DEF_HEIGHT,
MEDIA_BUS_FMT_RGB888_1X32_PADHI,
V4L2_FIELD_NONE,
V4L2_COLORSPACE_SRGB
},
};
static const struct v4l2_frmsize_discrete tegra_csi_tpg_sizes[] = {
{ 1280, 720 },
{ 1920, 1080 },
{ 3840, 2160 },
};
/*
* V4L2 Subdevice Pad Operations
*/
static int csi_enum_bus_code(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index >= ARRAY_SIZE(tegra_csi_tpg_fmts))
return -EINVAL;
code->code = tegra_csi_tpg_fmts[code->index].code;
return 0;
}
static int csi_get_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct tegra_csi_channel *csi_chan = to_csi_chan(subdev);
fmt->format = csi_chan->format;
return 0;
}
static int csi_get_frmrate_table_index(struct tegra_csi *csi, u32 code,
u32 width, u32 height)
{
const struct tpg_framerate *frmrate;
unsigned int i;
frmrate = csi->soc->tpg_frmrate_table;
for (i = 0; i < csi->soc->tpg_frmrate_table_size; i++) {
if (frmrate[i].code == code &&
frmrate[i].frmsize.width == width &&
frmrate[i].frmsize.height == height) {
return i;
}
}
return -EINVAL;
}
static void csi_chan_update_blank_intervals(struct tegra_csi_channel *csi_chan,
u32 code, u32 width, u32 height)
{
struct tegra_csi *csi = csi_chan->csi;
const struct tpg_framerate *frmrate = csi->soc->tpg_frmrate_table;
int index;
index = csi_get_frmrate_table_index(csi_chan->csi, code,
width, height);
if (index >= 0) {
csi_chan->h_blank = frmrate[index].h_blank;
csi_chan->v_blank = frmrate[index].v_blank;
csi_chan->framerate = frmrate[index].framerate;
}
}
static int csi_enum_framesizes(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
unsigned int i;
if (fse->index >= ARRAY_SIZE(tegra_csi_tpg_sizes))
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(tegra_csi_tpg_fmts); i++)
if (fse->code == tegra_csi_tpg_fmts[i].code)
break;
if (i == ARRAY_SIZE(tegra_csi_tpg_fmts))
return -EINVAL;
fse->min_width = tegra_csi_tpg_sizes[fse->index].width;
fse->max_width = tegra_csi_tpg_sizes[fse->index].width;
fse->min_height = tegra_csi_tpg_sizes[fse->index].height;
fse->max_height = tegra_csi_tpg_sizes[fse->index].height;
return 0;
}
static int csi_enum_frameintervals(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct tegra_csi_channel *csi_chan = to_csi_chan(subdev);
struct tegra_csi *csi = csi_chan->csi;
const struct tpg_framerate *frmrate = csi->soc->tpg_frmrate_table;
int index;
/* one framerate per format and resolution */
if (fie->index > 0)
return -EINVAL;
index = csi_get_frmrate_table_index(csi_chan->csi, fie->code,
fie->width, fie->height);
if (index < 0)
return -EINVAL;
fie->interval.numerator = 1;
fie->interval.denominator = frmrate[index].framerate;
return 0;
}
static int csi_set_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct tegra_csi_channel *csi_chan = to_csi_chan(subdev);
struct v4l2_mbus_framefmt *format = &fmt->format;
const struct v4l2_frmsize_discrete *sizes;
unsigned int i;
sizes = v4l2_find_nearest_size(tegra_csi_tpg_sizes,
ARRAY_SIZE(tegra_csi_tpg_sizes),
width, height,
format->width, format->width);
format->width = sizes->width;
format->height = sizes->height;
for (i = 0; i < ARRAY_SIZE(tegra_csi_tpg_fmts); i++)
if (format->code == tegra_csi_tpg_fmts[i].code)
break;
if (i == ARRAY_SIZE(tegra_csi_tpg_fmts))
i = 0;
format->code = tegra_csi_tpg_fmts[i].code;
format->field = V4L2_FIELD_NONE;
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY)
return 0;
/* update blanking intervals from frame rate table and format */
csi_chan_update_blank_intervals(csi_chan, format->code,
format->width, format->height);
csi_chan->format = *format;
return 0;
}
/*
* V4L2 Subdevice Video Operations
*/
static int tegra_csi_g_frame_interval(struct v4l2_subdev *subdev,
struct v4l2_subdev_frame_interval *vfi)
{
struct tegra_csi_channel *csi_chan = to_csi_chan(subdev);
vfi->interval.numerator = 1;
vfi->interval.denominator = csi_chan->framerate;
return 0;
}
static int tegra_csi_s_stream(struct v4l2_subdev *subdev, int enable)
{
struct tegra_vi_channel *chan = v4l2_get_subdev_hostdata(subdev);
struct tegra_csi_channel *csi_chan = to_csi_chan(subdev);
struct tegra_csi *csi = csi_chan->csi;
int ret = 0;
csi_chan->pg_mode = chan->pg_mode;
if (enable) {
ret = pm_runtime_get_sync(csi->dev);
if (ret < 0) {
dev_err(csi->dev,
"failed to get runtime PM: %d\n", ret);
pm_runtime_put_noidle(csi->dev);
return ret;
}
ret = csi->ops->csi_start_streaming(csi_chan);
if (ret < 0)
goto rpm_put;
return 0;
}
csi->ops->csi_stop_streaming(csi_chan);
rpm_put:
pm_runtime_put(csi->dev);
return ret;
}
/*
* V4L2 Subdevice Operations
*/
static const struct v4l2_subdev_video_ops tegra_csi_video_ops = {
.s_stream = tegra_csi_s_stream,
.g_frame_interval = tegra_csi_g_frame_interval,
.s_frame_interval = tegra_csi_g_frame_interval,
};
static const struct v4l2_subdev_pad_ops tegra_csi_pad_ops = {
.enum_mbus_code = csi_enum_bus_code,
.enum_frame_size = csi_enum_framesizes,
.enum_frame_interval = csi_enum_frameintervals,
.get_fmt = csi_get_format,
.set_fmt = csi_set_format,
};
static const struct v4l2_subdev_ops tegra_csi_ops = {
.video = &tegra_csi_video_ops,
.pad = &tegra_csi_pad_ops,
};
static int tegra_csi_tpg_channels_alloc(struct tegra_csi *csi)
{
struct device_node *node = csi->dev->of_node;
unsigned int port_num;
struct tegra_csi_channel *chan;
unsigned int tpg_channels = csi->soc->csi_max_channels;
/* allocate CSI channel for each CSI x2 ports */
for (port_num = 0; port_num < tpg_channels; port_num++) {
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
list_add_tail(&chan->list, &csi->csi_chans);
chan->csi = csi;
chan->csi_port_num = port_num;
chan->numlanes = 2;
chan->of_node = node;
chan->numpads = 1;
chan->pads[0].flags = MEDIA_PAD_FL_SOURCE;
}
return 0;
}
static int tegra_csi_channel_init(struct tegra_csi_channel *chan)
{
struct tegra_csi *csi = chan->csi;
struct v4l2_subdev *subdev;
int ret;
/* initialize the default format */
chan->format.code = MEDIA_BUS_FMT_SRGGB10_1X10;
chan->format.field = V4L2_FIELD_NONE;
chan->format.colorspace = V4L2_COLORSPACE_SRGB;
chan->format.width = TEGRA_DEF_WIDTH;
chan->format.height = TEGRA_DEF_HEIGHT;
csi_chan_update_blank_intervals(chan, chan->format.code,
chan->format.width,
chan->format.height);
/* initialize V4L2 subdevice and media entity */
subdev = &chan->subdev;
v4l2_subdev_init(subdev, &tegra_csi_ops);
subdev->dev = csi->dev;
snprintf(subdev->name, V4L2_SUBDEV_NAME_SIZE, "%s-%d", "tpg",
chan->csi_port_num);
v4l2_set_subdevdata(subdev, chan);
subdev->fwnode = of_fwnode_handle(chan->of_node);
subdev->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
/* initialize media entity pads */
ret = media_entity_pads_init(&subdev->entity, chan->numpads,
chan->pads);
if (ret < 0) {
dev_err(csi->dev,
"failed to initialize media entity: %d\n", ret);
subdev->dev = NULL;
return ret;
}
return 0;
}
void tegra_csi_error_recover(struct v4l2_subdev *sd)
{
struct tegra_csi_channel *csi_chan = to_csi_chan(sd);
struct tegra_csi *csi = csi_chan->csi;
/* stop streaming during error recovery */
csi->ops->csi_stop_streaming(csi_chan);
csi->ops->csi_err_recover(csi_chan);
csi->ops->csi_start_streaming(csi_chan);
}
static int tegra_csi_channels_init(struct tegra_csi *csi)
{
struct tegra_csi_channel *chan;
int ret;
list_for_each_entry(chan, &csi->csi_chans, list) {
ret = tegra_csi_channel_init(chan);
if (ret) {
dev_err(csi->dev,
"failed to initialize channel-%d: %d\n",
chan->csi_port_num, ret);
return ret;
}
}
return 0;
}
static void tegra_csi_channels_cleanup(struct tegra_csi *csi)
{
struct v4l2_subdev *subdev;
struct tegra_csi_channel *chan, *tmp;
list_for_each_entry_safe(chan, tmp, &csi->csi_chans, list) {
subdev = &chan->subdev;
if (subdev->dev)
media_entity_cleanup(&subdev->entity);
list_del(&chan->list);
kfree(chan);
}
}
static int __maybe_unused csi_runtime_suspend(struct device *dev)
{
struct tegra_csi *csi = dev_get_drvdata(dev);
clk_bulk_disable_unprepare(csi->soc->num_clks, csi->clks);
return 0;
}
static int __maybe_unused csi_runtime_resume(struct device *dev)
{
struct tegra_csi *csi = dev_get_drvdata(dev);
int ret;
ret = clk_bulk_prepare_enable(csi->soc->num_clks, csi->clks);
if (ret < 0) {
dev_err(csi->dev, "failed to enable clocks: %d\n", ret);
return ret;
}
return 0;
}
static int tegra_csi_init(struct host1x_client *client)
{
struct tegra_csi *csi = host1x_client_to_csi(client);
struct tegra_video_device *vid = dev_get_drvdata(client->host);
int ret;
INIT_LIST_HEAD(&csi->csi_chans);
ret = tegra_csi_tpg_channels_alloc(csi);
if (ret < 0) {
dev_err(csi->dev,
"failed to allocate tpg channels: %d\n", ret);
goto cleanup;
}
ret = tegra_csi_channels_init(csi);
if (ret < 0)
goto cleanup;
vid->csi = csi;
return 0;
cleanup:
tegra_csi_channels_cleanup(csi);
return ret;
}
static int tegra_csi_exit(struct host1x_client *client)
{
struct tegra_csi *csi = host1x_client_to_csi(client);
tegra_csi_channels_cleanup(csi);
return 0;
}
static const struct host1x_client_ops csi_client_ops = {
.init = tegra_csi_init,
.exit = tegra_csi_exit,
};
static int tegra_csi_probe(struct platform_device *pdev)
{
struct tegra_csi *csi;
unsigned int i;
int ret;
csi = devm_kzalloc(&pdev->dev, sizeof(*csi), GFP_KERNEL);
if (!csi)
return -ENOMEM;
csi->iomem = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(csi->iomem))
return PTR_ERR(csi->iomem);
csi->soc = of_device_get_match_data(&pdev->dev);
csi->clks = devm_kcalloc(&pdev->dev, csi->soc->num_clks,
sizeof(*csi->clks), GFP_KERNEL);
if (!csi->clks)
return -ENOMEM;
for (i = 0; i < csi->soc->num_clks; i++)
csi->clks[i].id = csi->soc->clk_names[i];
ret = devm_clk_bulk_get(&pdev->dev, csi->soc->num_clks, csi->clks);
if (ret) {
dev_err(&pdev->dev, "failed to get the clocks: %d\n", ret);
return ret;
}
if (!pdev->dev.pm_domain) {
ret = -ENOENT;
dev_warn(&pdev->dev, "PM domain is not attached: %d\n", ret);
return ret;
}
csi->dev = &pdev->dev;
csi->ops = csi->soc->ops;
platform_set_drvdata(pdev, csi);
pm_runtime_enable(&pdev->dev);
/* initialize host1x interface */
INIT_LIST_HEAD(&csi->client.list);
csi->client.ops = &csi_client_ops;
csi->client.dev = &pdev->dev;
ret = host1x_client_register(&csi->client);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to register host1x client: %d\n", ret);
goto rpm_disable;
}
return 0;
rpm_disable:
pm_runtime_disable(&pdev->dev);
return ret;
}
static int tegra_csi_remove(struct platform_device *pdev)
{
struct tegra_csi *csi = platform_get_drvdata(pdev);
int err;
err = host1x_client_unregister(&csi->client);
if (err < 0) {
dev_err(&pdev->dev,
"failed to unregister host1x client: %d\n", err);
return err;
}
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct of_device_id tegra_csi_of_id_table[] = {
#if defined(CONFIG_ARCH_TEGRA_210_SOC)
{ .compatible = "nvidia,tegra210-csi", .data = &tegra210_csi_soc },
#endif
{ }
};
MODULE_DEVICE_TABLE(of, tegra_csi_of_id_table);
static const struct dev_pm_ops tegra_csi_pm_ops = {
SET_RUNTIME_PM_OPS(csi_runtime_suspend, csi_runtime_resume, NULL)
};
struct platform_driver tegra_csi_driver = {
.driver = {
.name = "tegra-csi",
.of_match_table = tegra_csi_of_id_table,
.pm = &tegra_csi_pm_ops,
},
.probe = tegra_csi_probe,
.remove = tegra_csi_remove,
};
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2020 NVIDIA CORPORATION. All rights reserved.
*/
#ifndef __TEGRA_CSI_H__
#define __TEGRA_CSI_H__
#include <media/media-entity.h>
#include <media/v4l2-subdev.h>
/*
* Each CSI brick supports max of 4 lanes that can be used as either
* one x4 port using both CILA and CILB partitions of a CSI brick or can
* be used as two x2 ports with one x2 from CILA and the other x2 from
* CILB.
*/
#define CSI_PORTS_PER_BRICK 2
/* each CSI channel can have one sink and one source pads */
#define TEGRA_CSI_PADS_NUM 2
enum tegra_csi_cil_port {
PORT_A = 0,
PORT_B,
};
enum tegra_csi_block {
CSI_CIL_AB = 0,
CSI_CIL_CD,
CSI_CIL_EF,
};
struct tegra_csi;
/**
* struct tegra_csi_channel - Tegra CSI channel
*
* @list: list head for this entry
* @subdev: V4L2 subdevice associated with this channel
* @pads: media pads for the subdevice entity
* @numpads: number of pads.
* @csi: Tegra CSI device structure
* @of_node: csi device tree node
* @numlanes: number of lanes used per port/channel
* @csi_port_num: CSI channel port number
* @pg_mode: test pattern generator mode for channel
* @format: active format of the channel
* @framerate: active framerate for TPG
* @h_blank: horizontal blanking for TPG active format
* @v_blank: vertical blanking for TPG active format
*/
struct tegra_csi_channel {
struct list_head list;
struct v4l2_subdev subdev;
struct media_pad pads[TEGRA_CSI_PADS_NUM];
unsigned int numpads;
struct tegra_csi *csi;
struct device_node *of_node;
unsigned int numlanes;
u8 csi_port_num;
u8 pg_mode;
struct v4l2_mbus_framefmt format;
unsigned int framerate;
unsigned int h_blank;
unsigned int v_blank;
};
/**
* struct tpg_framerate - Tegra CSI TPG framerate configuration
*
* @frmsize: frame resolution
* @code: media bus format code
* @h_blank: horizontal blanking used for TPG
* @v_blank: vertical blanking interval used for TPG
* @framerate: framerate achieved with the corresponding blanking intervals,
* format and resolution.
*/
struct tpg_framerate {
struct v4l2_frmsize_discrete frmsize;
u32 code;
unsigned int h_blank;
unsigned int v_blank;
unsigned int framerate;
};
/**
* struct tegra_csi_ops - Tegra CSI operations
*
* @csi_start_streaming: programs csi hardware to enable streaming.
* @csi_stop_streaming: programs csi hardware to disable streaming.
* @csi_err_recover: csi hardware block recovery in case of any capture errors
* due to missing source stream or due to improper csi input from
* the external source.
*/
struct tegra_csi_ops {
int (*csi_start_streaming)(struct tegra_csi_channel *csi_chan);
void (*csi_stop_streaming)(struct tegra_csi_channel *csi_chan);
void (*csi_err_recover)(struct tegra_csi_channel *csi_chan);
};
/**
* struct tegra_csi_soc - NVIDIA Tegra CSI SoC structure
*
* @ops: csi hardware operations
* @csi_max_channels: supported max streaming channels
* @clk_names: csi and cil clock names
* @num_clks: total clocks count
* @tpg_frmrate_table: csi tpg frame rate table with blanking intervals
* @tpg_frmrate_table_size: size of frame rate table
*/
struct tegra_csi_soc {
const struct tegra_csi_ops *ops;
unsigned int csi_max_channels;
const char * const *clk_names;
unsigned int num_clks;
const struct tpg_framerate *tpg_frmrate_table;
unsigned int tpg_frmrate_table_size;
};
/**
* struct tegra_csi - NVIDIA Tegra CSI device structure
*
* @dev: device struct
* @client: host1x_client struct
* @iomem: register base
* @clks: clock for CSI and CIL
* @soc: pointer to SoC data structure
* @ops: csi operations
* @channels: list head for CSI channels
*/
struct tegra_csi {
struct device *dev;
struct host1x_client client;
void __iomem *iomem;
struct clk_bulk_data *clks;
const struct tegra_csi_soc *soc;
const struct tegra_csi_ops *ops;
struct list_head csi_chans;
};
#if defined(CONFIG_ARCH_TEGRA_210_SOC)
extern const struct tegra_csi_soc tegra210_csi_soc;
#endif
void tegra_csi_error_recover(struct v4l2_subdev *subdev);
#endif
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 NVIDIA CORPORATION. All rights reserved.
*/
/*
* This source file contains Tegra210 supported video formats,
* VI and CSI SoC specific data, operations and registers accessors.
*/
#include <linux/clk.h>
#include <linux/clk/tegra.h>
#include <linux/delay.h>
#include <linux/host1x.h>
#include <linux/kthread.h>
#include "csi.h"
#include "vi.h"
#define TEGRA_VI_SYNCPT_WAIT_TIMEOUT msecs_to_jiffies(200)
/* Tegra210 VI registers */
#define TEGRA_VI_CFG_VI_INCR_SYNCPT 0x000
#define VI_CFG_VI_INCR_SYNCPT_COND(x) (((x) & 0xff) << 8)
#define VI_CSI_PP_FRAME_START(port) (5 + (port) * 4)
#define VI_CSI_MW_ACK_DONE(port) (7 + (port) * 4)
#define TEGRA_VI_CFG_VI_INCR_SYNCPT_CNTRL 0x004
#define VI_INCR_SYNCPT_NO_STALL BIT(8)
#define TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR 0x008
#define TEGRA_VI_CFG_CG_CTRL 0x0b8
#define VI_CG_2ND_LEVEL_EN 0x1
/* Tegra210 VI CSI registers */
#define TEGRA_VI_CSI_SW_RESET 0x000
#define TEGRA_VI_CSI_SINGLE_SHOT 0x004
#define SINGLE_SHOT_CAPTURE 0x1
#define TEGRA_VI_CSI_IMAGE_DEF 0x00c
#define BYPASS_PXL_TRANSFORM_OFFSET 24
#define IMAGE_DEF_FORMAT_OFFSET 16
#define IMAGE_DEF_DEST_MEM 0x1
#define TEGRA_VI_CSI_IMAGE_SIZE 0x018
#define IMAGE_SIZE_HEIGHT_OFFSET 16
#define TEGRA_VI_CSI_IMAGE_SIZE_WC 0x01c
#define TEGRA_VI_CSI_IMAGE_DT 0x020
#define TEGRA_VI_CSI_SURFACE0_OFFSET_MSB 0x024
#define TEGRA_VI_CSI_SURFACE0_OFFSET_LSB 0x028
#define TEGRA_VI_CSI_SURFACE1_OFFSET_MSB 0x02c
#define TEGRA_VI_CSI_SURFACE1_OFFSET_LSB 0x030
#define TEGRA_VI_CSI_SURFACE2_OFFSET_MSB 0x034
#define TEGRA_VI_CSI_SURFACE2_OFFSET_LSB 0x038
#define TEGRA_VI_CSI_SURFACE0_STRIDE 0x054
#define TEGRA_VI_CSI_SURFACE1_STRIDE 0x058
#define TEGRA_VI_CSI_SURFACE2_STRIDE 0x05c
#define TEGRA_VI_CSI_SURFACE_HEIGHT0 0x060
#define TEGRA_VI_CSI_ERROR_STATUS 0x084
/* Tegra210 CSI Pixel Parser registers: Starts from 0x838, offset 0x0 */
#define TEGRA_CSI_INPUT_STREAM_CONTROL 0x000
#define CSI_SKIP_PACKET_THRESHOLD_OFFSET 16
#define TEGRA_CSI_PIXEL_STREAM_CONTROL0 0x004
#define CSI_PP_PACKET_HEADER_SENT BIT(4)
#define CSI_PP_DATA_IDENTIFIER_ENABLE BIT(5)
#define CSI_PP_WORD_COUNT_SELECT_HEADER BIT(6)
#define CSI_PP_CRC_CHECK_ENABLE BIT(7)
#define CSI_PP_WC_CHECK BIT(8)
#define CSI_PP_OUTPUT_FORMAT_STORE (0x3 << 16)
#define CSI_PPA_PAD_LINE_NOPAD (0x2 << 24)
#define CSI_PP_HEADER_EC_DISABLE (0x1 << 27)
#define CSI_PPA_PAD_FRAME_NOPAD (0x2 << 28)
#define TEGRA_CSI_PIXEL_STREAM_CONTROL1 0x008
#define CSI_PP_TOP_FIELD_FRAME_OFFSET 0
#define CSI_PP_TOP_FIELD_FRAME_MASK_OFFSET 4
#define TEGRA_CSI_PIXEL_STREAM_GAP 0x00c
#define PP_FRAME_MIN_GAP_OFFSET 16
#define TEGRA_CSI_PIXEL_STREAM_PP_COMMAND 0x010
#define CSI_PP_ENABLE 0x1
#define CSI_PP_DISABLE 0x2
#define CSI_PP_RST 0x3
#define CSI_PP_SINGLE_SHOT_ENABLE (0x1 << 2)
#define CSI_PP_START_MARKER_FRAME_MAX_OFFSET 12
#define TEGRA_CSI_PIXEL_STREAM_EXPECTED_FRAME 0x014
#define TEGRA_CSI_PIXEL_PARSER_INTERRUPT_MASK 0x018
#define TEGRA_CSI_PIXEL_PARSER_STATUS 0x01c
/* Tegra210 CSI PHY registers */
/* CSI_PHY_CIL_COMMAND_0 offset 0x0d0 from TEGRA_CSI_PIXEL_PARSER_0_BASE */
#define TEGRA_CSI_PHY_CIL_COMMAND 0x0d0
#define CSI_A_PHY_CIL_NOP 0x0
#define CSI_A_PHY_CIL_ENABLE 0x1
#define CSI_A_PHY_CIL_DISABLE 0x2
#define CSI_A_PHY_CIL_ENABLE_MASK 0x3
#define CSI_B_PHY_CIL_NOP (0x0 << 8)
#define CSI_B_PHY_CIL_ENABLE (0x1 << 8)
#define CSI_B_PHY_CIL_DISABLE (0x2 << 8)
#define CSI_B_PHY_CIL_ENABLE_MASK (0x3 << 8)
#define TEGRA_CSI_CIL_PAD_CONFIG0 0x000
#define BRICK_CLOCK_A_4X (0x1 << 16)
#define BRICK_CLOCK_B_4X (0x2 << 16)
#define TEGRA_CSI_CIL_PAD_CONFIG1 0x004
#define TEGRA_CSI_CIL_PHY_CONTROL 0x008
#define TEGRA_CSI_CIL_INTERRUPT_MASK 0x00c
#define TEGRA_CSI_CIL_STATUS 0x010
#define TEGRA_CSI_CILX_STATUS 0x014
#define TEGRA_CSI_CIL_SW_SENSOR_RESET 0x020
#define TEGRA_CSI_PATTERN_GENERATOR_CTRL 0x000
#define PG_MODE_OFFSET 2
#define PG_ENABLE 0x1
#define PG_DISABLE 0x0
#define TEGRA_CSI_PG_BLANK 0x004
#define PG_VBLANK_OFFSET 16
#define TEGRA_CSI_PG_PHASE 0x008
#define TEGRA_CSI_PG_RED_FREQ 0x00c
#define PG_RED_VERT_INIT_FREQ_OFFSET 16
#define PG_RED_HOR_INIT_FREQ_OFFSET 0
#define TEGRA_CSI_PG_RED_FREQ_RATE 0x010
#define TEGRA_CSI_PG_GREEN_FREQ 0x014
#define PG_GREEN_VERT_INIT_FREQ_OFFSET 16
#define PG_GREEN_HOR_INIT_FREQ_OFFSET 0
#define TEGRA_CSI_PG_GREEN_FREQ_RATE 0x018
#define TEGRA_CSI_PG_BLUE_FREQ 0x01c
#define PG_BLUE_VERT_INIT_FREQ_OFFSET 16
#define PG_BLUE_HOR_INIT_FREQ_OFFSET 0
#define TEGRA_CSI_PG_BLUE_FREQ_RATE 0x020
#define TEGRA_CSI_PG_AOHDR 0x024
#define TEGRA_CSI_CSI_SW_STATUS_RESET 0x214
#define TEGRA_CSI_CLKEN_OVERRIDE 0x218
#define TEGRA210_CSI_PORT_OFFSET 0x34
#define TEGRA210_CSI_CIL_OFFSET 0x0f4
#define TEGRA210_CSI_TPG_OFFSET 0x18c
#define CSI_PP_OFFSET(block) ((block) * 0x800)
#define TEGRA210_VI_CSI_BASE(x) (0x100 + (x) * 0x100)
/* Tegra210 VI registers accessors */
static void tegra_vi_write(struct tegra_vi_channel *chan, unsigned int addr,
u32 val)
{
writel_relaxed(val, chan->vi->iomem + addr);
}
static u32 tegra_vi_read(struct tegra_vi_channel *chan, unsigned int addr)
{
return readl_relaxed(chan->vi->iomem + addr);
}
/* Tegra210 VI_CSI registers accessors */
static void vi_csi_write(struct tegra_vi_channel *chan, unsigned int addr,
u32 val)
{
void __iomem *vi_csi_base;
vi_csi_base = chan->vi->iomem + TEGRA210_VI_CSI_BASE(chan->portno);
writel_relaxed(val, vi_csi_base + addr);
}
static u32 vi_csi_read(struct tegra_vi_channel *chan, unsigned int addr)
{
void __iomem *vi_csi_base;
vi_csi_base = chan->vi->iomem + TEGRA210_VI_CSI_BASE(chan->portno);
return readl_relaxed(vi_csi_base + addr);
}
/*
* Tegra210 VI channel capture operations
*/
static int tegra_channel_capture_setup(struct tegra_vi_channel *chan)
{
u32 height = chan->format.height;
u32 width = chan->format.width;
u32 format = chan->fmtinfo->img_fmt;
u32 data_type = chan->fmtinfo->img_dt;
u32 word_count = (width * chan->fmtinfo->bit_width) / 8;
vi_csi_write(chan, TEGRA_VI_CSI_ERROR_STATUS, 0xffffffff);
vi_csi_write(chan, TEGRA_VI_CSI_IMAGE_DEF,
((chan->pg_mode ? 0 : 1) << BYPASS_PXL_TRANSFORM_OFFSET) |
(format << IMAGE_DEF_FORMAT_OFFSET) |
IMAGE_DEF_DEST_MEM);
vi_csi_write(chan, TEGRA_VI_CSI_IMAGE_DT, data_type);
vi_csi_write(chan, TEGRA_VI_CSI_IMAGE_SIZE_WC, word_count);
vi_csi_write(chan, TEGRA_VI_CSI_IMAGE_SIZE,
(height << IMAGE_SIZE_HEIGHT_OFFSET) | width);
return 0;
}
static void tegra_channel_vi_soft_reset(struct tegra_vi_channel *chan)
{
/* disable clock gating to enable continuous clock */
tegra_vi_write(chan, TEGRA_VI_CFG_CG_CTRL, 0);
/*
* Soft reset memory client interface, pixel format logic, sensor
* control logic, and a shadow copy logic to bring VI to clean state.
*/
vi_csi_write(chan, TEGRA_VI_CSI_SW_RESET, 0xf);
usleep_range(100, 200);
vi_csi_write(chan, TEGRA_VI_CSI_SW_RESET, 0x0);
/* enable back VI clock gating */
tegra_vi_write(chan, TEGRA_VI_CFG_CG_CTRL, VI_CG_2ND_LEVEL_EN);
}
static void tegra_channel_capture_error_recover(struct tegra_vi_channel *chan)
{
struct v4l2_subdev *subdev;
u32 val;
/*
* Recover VI and CSI hardware blocks in case of missing frame start
* events due to source not streaming or noisy csi inputs from the
* external source or many outstanding frame start or MW_ACK_DONE
* events which can cause CSI and VI hardware hang.
* This helps to have a clean capture for next frame.
*/
val = vi_csi_read(chan, TEGRA_VI_CSI_ERROR_STATUS);
dev_dbg(&chan->video.dev, "TEGRA_VI_CSI_ERROR_STATUS 0x%08x\n", val);
vi_csi_write(chan, TEGRA_VI_CSI_ERROR_STATUS, val);
val = tegra_vi_read(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR);
dev_dbg(&chan->video.dev,
"TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR 0x%08x\n", val);
tegra_vi_write(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR, val);
/* recover VI by issuing software reset and re-setup for capture */
tegra_channel_vi_soft_reset(chan);
tegra_channel_capture_setup(chan);
/* recover CSI block */
subdev = tegra_channel_get_remote_subdev(chan);
tegra_csi_error_recover(subdev);
}
static struct tegra_channel_buffer *
dequeue_buf_done(struct tegra_vi_channel *chan)
{
struct tegra_channel_buffer *buf = NULL;
spin_lock(&chan->done_lock);
if (list_empty(&chan->done)) {
spin_unlock(&chan->done_lock);
return NULL;
}
buf = list_first_entry(&chan->done,
struct tegra_channel_buffer, queue);
if (buf)
list_del_init(&buf->queue);
spin_unlock(&chan->done_lock);
return buf;
}
static void release_buffer(struct tegra_vi_channel *chan,
struct tegra_channel_buffer *buf,
enum vb2_buffer_state state)
{
struct vb2_v4l2_buffer *vb = &buf->buf;
vb->sequence = chan->sequence++;
vb->field = V4L2_FIELD_NONE;
vb->vb2_buf.timestamp = ktime_get_ns();
vb2_buffer_done(&vb->vb2_buf, state);
}
static int tegra_channel_capture_frame(struct tegra_vi_channel *chan,
struct tegra_channel_buffer *buf)
{
u32 thresh, value, frame_start, mw_ack_done;
int bytes_per_line = chan->format.bytesperline;
int err;
/* program buffer address by using surface 0 */
vi_csi_write(chan, TEGRA_VI_CSI_SURFACE0_OFFSET_MSB,
(u64)buf->addr >> 32);
vi_csi_write(chan, TEGRA_VI_CSI_SURFACE0_OFFSET_LSB, buf->addr);
vi_csi_write(chan, TEGRA_VI_CSI_SURFACE0_STRIDE, bytes_per_line);
/*
* Tegra VI block interacts with host1x syncpt for synchronizing
* programmed condition of capture state and hardware operation.
* Frame start and Memory write acknowledge syncpts has their own
* FIFO of depth 2.
*
* Syncpoint trigger conditions set through VI_INCR_SYNCPT register
* are added to HW syncpt FIFO and when the HW triggers, syncpt
* condition is removed from the FIFO and counter at syncpoint index
* will be incremented by the hardware and software can wait for
* counter to reach threshold to synchronize capturing frame with the
* hardware capture events.
*/
/* increase channel syncpoint threshold for FRAME_START */
thresh = host1x_syncpt_incr_max(chan->frame_start_sp, 1);
/* Program FRAME_START trigger condition syncpt request */
frame_start = VI_CSI_PP_FRAME_START(chan->portno);
value = VI_CFG_VI_INCR_SYNCPT_COND(frame_start) |
host1x_syncpt_id(chan->frame_start_sp);
tegra_vi_write(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT, value);
/* increase channel syncpoint threshold for MW_ACK_DONE */
buf->mw_ack_sp_thresh = host1x_syncpt_incr_max(chan->mw_ack_sp, 1);
/* Program MW_ACK_DONE trigger condition syncpt request */
mw_ack_done = VI_CSI_MW_ACK_DONE(chan->portno);
value = VI_CFG_VI_INCR_SYNCPT_COND(mw_ack_done) |
host1x_syncpt_id(chan->mw_ack_sp);
tegra_vi_write(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT, value);
/* enable single shot capture */
vi_csi_write(chan, TEGRA_VI_CSI_SINGLE_SHOT, SINGLE_SHOT_CAPTURE);
/* wait for syncpt counter to reach frame start event threshold */
err = host1x_syncpt_wait(chan->frame_start_sp, thresh,
TEGRA_VI_SYNCPT_WAIT_TIMEOUT, &value);
if (err) {
dev_err_ratelimited(&chan->video.dev,
"frame start syncpt timeout: %d\n", err);
/* increment syncpoint counter for timedout events */
host1x_syncpt_incr(chan->frame_start_sp);
spin_lock(&chan->sp_incr_lock);
host1x_syncpt_incr(chan->mw_ack_sp);
spin_unlock(&chan->sp_incr_lock);
/* clear errors and recover */
tegra_channel_capture_error_recover(chan);
release_buffer(chan, buf, VB2_BUF_STATE_ERROR);
return err;
}
/* move buffer to capture done queue */
spin_lock(&chan->done_lock);
list_add_tail(&buf->queue, &chan->done);
spin_unlock(&chan->done_lock);
/* wait up kthread for capture done */
wake_up_interruptible(&chan->done_wait);
return 0;
}
static void tegra_channel_capture_done(struct tegra_vi_channel *chan,
struct tegra_channel_buffer *buf)
{
enum vb2_buffer_state state = VB2_BUF_STATE_DONE;
u32 value;
int ret;
/* wait for syncpt counter to reach MW_ACK_DONE event threshold */
ret = host1x_syncpt_wait(chan->mw_ack_sp, buf->mw_ack_sp_thresh,
TEGRA_VI_SYNCPT_WAIT_TIMEOUT, &value);
if (ret) {
dev_err_ratelimited(&chan->video.dev,
"MW_ACK_DONE syncpt timeout: %d\n", ret);
state = VB2_BUF_STATE_ERROR;
/* increment syncpoint counter for timedout event */
spin_lock(&chan->sp_incr_lock);
host1x_syncpt_incr(chan->mw_ack_sp);
spin_unlock(&chan->sp_incr_lock);
}
release_buffer(chan, buf, state);
}
static int chan_capture_kthread_start(void *data)
{
struct tegra_vi_channel *chan = data;
struct tegra_channel_buffer *buf;
int err = 0;
while (1) {
/*
* Source is not streaming if error is non-zero.
* So, do not dequeue buffers on error and let the thread sleep
* till kthread stop signal is received.
*/
wait_event_interruptible(chan->start_wait,
kthread_should_stop() ||
(!list_empty(&chan->capture) &&
!err));
if (kthread_should_stop())
break;
/* dequeue the buffer and start capture */
spin_lock(&chan->start_lock);
if (list_empty(&chan->capture)) {
spin_unlock(&chan->start_lock);
continue;
}
buf = list_first_entry(&chan->capture,
struct tegra_channel_buffer, queue);
list_del_init(&buf->queue);
spin_unlock(&chan->start_lock);
err = tegra_channel_capture_frame(chan, buf);
if (err)
vb2_queue_error(&chan->queue);
}
return 0;
}
static int chan_capture_kthread_finish(void *data)
{
struct tegra_vi_channel *chan = data;
struct tegra_channel_buffer *buf;
while (1) {
wait_event_interruptible(chan->done_wait,
!list_empty(&chan->done) ||
kthread_should_stop());
/* dequeue buffers and finish capture */
buf = dequeue_buf_done(chan);
while (buf) {
tegra_channel_capture_done(chan, buf);
buf = dequeue_buf_done(chan);
}
if (kthread_should_stop())
break;
}
return 0;
}
static int tegra210_vi_start_streaming(struct vb2_queue *vq, u32 count)
{
struct tegra_vi_channel *chan = vb2_get_drv_priv(vq);
struct media_pipeline *pipe = &chan->video.pipe;
u32 val;
int ret;
tegra_vi_write(chan, TEGRA_VI_CFG_CG_CTRL, VI_CG_2ND_LEVEL_EN);
/* clear errors */
val = vi_csi_read(chan, TEGRA_VI_CSI_ERROR_STATUS);
vi_csi_write(chan, TEGRA_VI_CSI_ERROR_STATUS, val);
val = tegra_vi_read(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR);
tegra_vi_write(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT_ERROR, val);
/*
* Sync point FIFO full stalls the host interface.
* Setting NO_STALL will drop INCR_SYNCPT methods when fifos are
* full and the corresponding condition bits in INCR_SYNCPT_ERROR
* register will be set.
* This allows SW to process error recovery.
*/
tegra_vi_write(chan, TEGRA_VI_CFG_VI_INCR_SYNCPT_CNTRL,
VI_INCR_SYNCPT_NO_STALL);
/* start the pipeline */
ret = media_pipeline_start(&chan->video.entity, pipe);
if (ret < 0)
goto error_pipeline_start;
tegra_channel_capture_setup(chan);
ret = tegra_channel_set_stream(chan, true);
if (ret < 0)
goto error_set_stream;
chan->sequence = 0;
/* start kthreads to capture data to buffer and return them */
chan->kthread_start_capture = kthread_run(chan_capture_kthread_start,
chan, "%s:0",
chan->video.name);
if (IS_ERR(chan->kthread_start_capture)) {
ret = PTR_ERR(chan->kthread_start_capture);
chan->kthread_start_capture = NULL;
dev_err(&chan->video.dev,
"failed to run capture start kthread: %d\n", ret);
goto error_kthread_start;
}
chan->kthread_finish_capture = kthread_run(chan_capture_kthread_finish,
chan, "%s:1",
chan->video.name);
if (IS_ERR(chan->kthread_finish_capture)) {
ret = PTR_ERR(chan->kthread_finish_capture);
chan->kthread_finish_capture = NULL;
dev_err(&chan->video.dev,
"failed to run capture finish kthread: %d\n", ret);
goto error_kthread_done;
}
return 0;
error_kthread_done:
kthread_stop(chan->kthread_start_capture);
error_kthread_start:
tegra_channel_set_stream(chan, false);
error_set_stream:
media_pipeline_stop(&chan->video.entity);
error_pipeline_start:
tegra_channel_release_buffers(chan, VB2_BUF_STATE_QUEUED);
return ret;
}
static void tegra210_vi_stop_streaming(struct vb2_queue *vq)
{
struct tegra_vi_channel *chan = vb2_get_drv_priv(vq);
if (chan->kthread_start_capture) {
kthread_stop(chan->kthread_start_capture);
chan->kthread_start_capture = NULL;
}
if (chan->kthread_finish_capture) {
kthread_stop(chan->kthread_finish_capture);
chan->kthread_finish_capture = NULL;
}
tegra_channel_release_buffers(chan, VB2_BUF_STATE_ERROR);
tegra_channel_set_stream(chan, false);
media_pipeline_stop(&chan->video.entity);
}
/*
* Tegra210 VI Pixel memory format enum.
* These format enum value gets programmed into corresponding Tegra VI
* channel register bits.
*/
enum tegra210_image_format {
TEGRA210_IMAGE_FORMAT_T_L8 = 16,
TEGRA210_IMAGE_FORMAT_T_R16_I = 32,
TEGRA210_IMAGE_FORMAT_T_B5G6R5,
TEGRA210_IMAGE_FORMAT_T_R5G6B5,
TEGRA210_IMAGE_FORMAT_T_A1B5G5R5,
TEGRA210_IMAGE_FORMAT_T_A1R5G5B5,
TEGRA210_IMAGE_FORMAT_T_B5G5R5A1,
TEGRA210_IMAGE_FORMAT_T_R5G5B5A1,
TEGRA210_IMAGE_FORMAT_T_A4B4G4R4,
TEGRA210_IMAGE_FORMAT_T_A4R4G4B4,
TEGRA210_IMAGE_FORMAT_T_B4G4R4A4,
TEGRA210_IMAGE_FORMAT_T_R4G4B4A4,
TEGRA210_IMAGE_FORMAT_T_A8B8G8R8 = 64,
TEGRA210_IMAGE_FORMAT_T_A8R8G8B8,
TEGRA210_IMAGE_FORMAT_T_B8G8R8A8,
TEGRA210_IMAGE_FORMAT_T_R8G8B8A8,
TEGRA210_IMAGE_FORMAT_T_A2B10G10R10,
TEGRA210_IMAGE_FORMAT_T_A2R10G10B10,
TEGRA210_IMAGE_FORMAT_T_B10G10R10A2,
TEGRA210_IMAGE_FORMAT_T_R10G10B10A2,
TEGRA210_IMAGE_FORMAT_T_A8Y8U8V8 = 193,
TEGRA210_IMAGE_FORMAT_T_V8U8Y8A8,
TEGRA210_IMAGE_FORMAT_T_A2Y10U10V10 = 197,
TEGRA210_IMAGE_FORMAT_T_V10U10Y10A2,
TEGRA210_IMAGE_FORMAT_T_Y8_U8__Y8_V8,
TEGRA210_IMAGE_FORMAT_T_Y8_V8__Y8_U8,
TEGRA210_IMAGE_FORMAT_T_U8_Y8__V8_Y8,
TEGRA210_IMAGE_FORMAT_T_V8_Y8__U8_Y8,
TEGRA210_IMAGE_FORMAT_T_Y8__U8__V8_N444 = 224,
TEGRA210_IMAGE_FORMAT_T_Y8__U8V8_N444,
TEGRA210_IMAGE_FORMAT_T_Y8__V8U8_N444,
TEGRA210_IMAGE_FORMAT_T_Y8__U8__V8_N422,
TEGRA210_IMAGE_FORMAT_T_Y8__U8V8_N422,
TEGRA210_IMAGE_FORMAT_T_Y8__V8U8_N422,
TEGRA210_IMAGE_FORMAT_T_Y8__U8__V8_N420,
TEGRA210_IMAGE_FORMAT_T_Y8__U8V8_N420,
TEGRA210_IMAGE_FORMAT_T_Y8__V8U8_N420,
TEGRA210_IMAGE_FORMAT_T_X2LC10LB10LA10,
TEGRA210_IMAGE_FORMAT_T_A2R6R6R6R6R6,
};
#define TEGRA210_VIDEO_FMT(DATA_TYPE, BIT_WIDTH, MBUS_CODE, BPP, \
FORMAT, FOURCC) \
{ \
TEGRA_IMAGE_DT_##DATA_TYPE, \
BIT_WIDTH, \
MEDIA_BUS_FMT_##MBUS_CODE, \
BPP, \
TEGRA210_IMAGE_FORMAT_##FORMAT, \
V4L2_PIX_FMT_##FOURCC, \
}
/* Tegra210 supported video formats */
static const struct tegra_video_format tegra210_video_formats[] = {
/* RAW 8 */
TEGRA210_VIDEO_FMT(RAW8, 8, SRGGB8_1X8, 1, T_L8, SRGGB8),
TEGRA210_VIDEO_FMT(RAW8, 8, SGRBG8_1X8, 1, T_L8, SGRBG8),
TEGRA210_VIDEO_FMT(RAW8, 8, SGBRG8_1X8, 1, T_L8, SGBRG8),
TEGRA210_VIDEO_FMT(RAW8, 8, SBGGR8_1X8, 1, T_L8, SBGGR8),
/* RAW 10 */
TEGRA210_VIDEO_FMT(RAW10, 10, SRGGB10_1X10, 2, T_R16_I, SRGGB10),
TEGRA210_VIDEO_FMT(RAW10, 10, SGRBG10_1X10, 2, T_R16_I, SGRBG10),
TEGRA210_VIDEO_FMT(RAW10, 10, SGBRG10_1X10, 2, T_R16_I, SGBRG10),
TEGRA210_VIDEO_FMT(RAW10, 10, SBGGR10_1X10, 2, T_R16_I, SBGGR10),
/* RAW 12 */
TEGRA210_VIDEO_FMT(RAW12, 12, SRGGB12_1X12, 2, T_R16_I, SRGGB12),
TEGRA210_VIDEO_FMT(RAW12, 12, SGRBG12_1X12, 2, T_R16_I, SGRBG12),
TEGRA210_VIDEO_FMT(RAW12, 12, SGBRG12_1X12, 2, T_R16_I, SGBRG12),
TEGRA210_VIDEO_FMT(RAW12, 12, SBGGR12_1X12, 2, T_R16_I, SBGGR12),
/* RGB888 */
TEGRA210_VIDEO_FMT(RGB888, 24, RGB888_1X24, 4, T_A8R8G8B8, RGB24),
TEGRA210_VIDEO_FMT(RGB888, 24, RGB888_1X32_PADHI, 4, T_A8B8G8R8,
XBGR32),
/* YUV422 */
TEGRA210_VIDEO_FMT(YUV422_8, 16, UYVY8_1X16, 2, T_U8_Y8__V8_Y8, UYVY),
TEGRA210_VIDEO_FMT(YUV422_8, 16, VYUY8_1X16, 2, T_V8_Y8__U8_Y8, VYUY),
TEGRA210_VIDEO_FMT(YUV422_8, 16, YUYV8_1X16, 2, T_Y8_U8__Y8_V8, YUYV),
TEGRA210_VIDEO_FMT(YUV422_8, 16, YVYU8_1X16, 2, T_Y8_V8__Y8_U8, YVYU),
TEGRA210_VIDEO_FMT(YUV422_8, 16, UYVY8_1X16, 1, T_Y8__V8U8_N422, NV16),
TEGRA210_VIDEO_FMT(YUV422_8, 16, UYVY8_2X8, 2, T_U8_Y8__V8_Y8, UYVY),
TEGRA210_VIDEO_FMT(YUV422_8, 16, VYUY8_2X8, 2, T_V8_Y8__U8_Y8, VYUY),
TEGRA210_VIDEO_FMT(YUV422_8, 16, YUYV8_2X8, 2, T_Y8_U8__Y8_V8, YUYV),
TEGRA210_VIDEO_FMT(YUV422_8, 16, YVYU8_2X8, 2, T_Y8_V8__Y8_U8, YVYU),
};
/* Tegra210 VI operations */
static const struct tegra_vi_ops tegra210_vi_ops = {
.vi_start_streaming = tegra210_vi_start_streaming,
.vi_stop_streaming = tegra210_vi_stop_streaming,
};
/* Tegra210 VI SoC data */
const struct tegra_vi_soc tegra210_vi_soc = {
.video_formats = tegra210_video_formats,
.nformats = ARRAY_SIZE(tegra210_video_formats),
.ops = &tegra210_vi_ops,
.hw_revision = 3,
.vi_max_channels = 6,
.vi_max_clk_hz = 499200000,
};
/* Tegra210 CSI PHY registers accessors */
static void csi_write(struct tegra_csi *csi, u8 portno, unsigned int addr,
u32 val)
{
void __iomem *csi_pp_base;
csi_pp_base = csi->iomem + CSI_PP_OFFSET(portno >> 1);
writel_relaxed(val, csi_pp_base + addr);
}
/* Tegra210 CSI Pixel parser registers accessors */
static void pp_write(struct tegra_csi *csi, u8 portno, u32 addr, u32 val)
{
void __iomem *csi_pp_base;
unsigned int offset;
csi_pp_base = csi->iomem + CSI_PP_OFFSET(portno >> 1);
offset = (portno % CSI_PORTS_PER_BRICK) * TEGRA210_CSI_PORT_OFFSET;
writel_relaxed(val, csi_pp_base + offset + addr);
}
static u32 pp_read(struct tegra_csi *csi, u8 portno, u32 addr)
{
void __iomem *csi_pp_base;
unsigned int offset;
csi_pp_base = csi->iomem + CSI_PP_OFFSET(portno >> 1);
offset = (portno % CSI_PORTS_PER_BRICK) * TEGRA210_CSI_PORT_OFFSET;
return readl_relaxed(csi_pp_base + offset + addr);
}
/* Tegra210 CSI CIL A/B port registers accessors */
static void cil_write(struct tegra_csi *csi, u8 portno, u32 addr, u32 val)
{
void __iomem *csi_cil_base;
unsigned int offset;
csi_cil_base = csi->iomem + CSI_PP_OFFSET(portno >> 1) +
TEGRA210_CSI_CIL_OFFSET;
offset = (portno % CSI_PORTS_PER_BRICK) * TEGRA210_CSI_PORT_OFFSET;
writel_relaxed(val, csi_cil_base + offset + addr);
}
static u32 cil_read(struct tegra_csi *csi, u8 portno, u32 addr)
{
void __iomem *csi_cil_base;
unsigned int offset;
csi_cil_base = csi->iomem + CSI_PP_OFFSET(portno >> 1) +
TEGRA210_CSI_CIL_OFFSET;
offset = (portno % CSI_PORTS_PER_BRICK) * TEGRA210_CSI_PORT_OFFSET;
return readl_relaxed(csi_cil_base + offset + addr);
}
/* Tegra210 CSI Test pattern generator registers accessor */
static void tpg_write(struct tegra_csi *csi, u8 portno, unsigned int addr,
u32 val)
{
void __iomem *csi_pp_base;
unsigned int offset;
csi_pp_base = csi->iomem + CSI_PP_OFFSET(portno >> 1);
offset = (portno % CSI_PORTS_PER_BRICK) * TEGRA210_CSI_PORT_OFFSET +
TEGRA210_CSI_TPG_OFFSET;
writel_relaxed(val, csi_pp_base + offset + addr);
}
/*
* Tegra210 CSI operations
*/
static void tegra210_csi_error_recover(struct tegra_csi_channel *csi_chan)
{
struct tegra_csi *csi = csi_chan->csi;
unsigned int portno = csi_chan->csi_port_num;
u32 val;
/*
* Recover CSI hardware in case of capture errors by issuing
* software reset to CSICIL sensor, pixel parser, and clear errors
* to have clean capture on next streaming.
*/
val = pp_read(csi, portno, TEGRA_CSI_PIXEL_PARSER_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_PIXEL_PARSER_STATUS 0x%08x\n", val);
val = cil_read(csi, portno, TEGRA_CSI_CIL_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_CIL_STATUS 0x%08x\n", val);
val = cil_read(csi, portno, TEGRA_CSI_CILX_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_CILX_STATUS 0x%08x\n", val);
if (csi_chan->numlanes == 4) {
/* reset CSI CIL sensor */
cil_write(csi, portno, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x1);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x1);
/*
* SW_STATUS_RESET resets all status bits of PPA, PPB, CILA,
* CILB status registers and debug counters.
* So, SW_STATUS_RESET can be used only when CSI brick is in
* x4 mode.
*/
csi_write(csi, portno, TEGRA_CSI_CSI_SW_STATUS_RESET, 0x1);
/* sleep for 20 clock cycles to drain the FIFO */
usleep_range(10, 20);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x0);
cil_write(csi, portno, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x0);
csi_write(csi, portno, TEGRA_CSI_CSI_SW_STATUS_RESET, 0x0);
} else {
/* reset CSICIL sensor */
cil_write(csi, portno, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x1);
usleep_range(10, 20);
cil_write(csi, portno, TEGRA_CSI_CIL_SW_SENSOR_RESET, 0x0);
/* clear the errors */
pp_write(csi, portno, TEGRA_CSI_PIXEL_PARSER_STATUS,
0xffffffff);
cil_write(csi, portno, TEGRA_CSI_CIL_STATUS, 0xffffffff);
cil_write(csi, portno, TEGRA_CSI_CILX_STATUS, 0xffffffff);
}
}
static int tegra210_csi_start_streaming(struct tegra_csi_channel *csi_chan)
{
struct tegra_csi *csi = csi_chan->csi;
unsigned int portno = csi_chan->csi_port_num;
u32 val;
csi_write(csi, portno, TEGRA_CSI_CLKEN_OVERRIDE, 0);
/* clean up status */
pp_write(csi, portno, TEGRA_CSI_PIXEL_PARSER_STATUS, 0xffffffff);
cil_write(csi, portno, TEGRA_CSI_CIL_STATUS, 0xffffffff);
cil_write(csi, portno, TEGRA_CSI_CILX_STATUS, 0xffffffff);
cil_write(csi, portno, TEGRA_CSI_CIL_INTERRUPT_MASK, 0x0);
/* CIL PHY registers setup */
cil_write(csi, portno, TEGRA_CSI_CIL_PAD_CONFIG0, 0x0);
cil_write(csi, portno, TEGRA_CSI_CIL_PHY_CONTROL, 0xa);
/*
* The CSI unit provides for connection of up to six cameras in
* the system and is organized as three identical instances of
* two MIPI support blocks, each with a separate 4-lane
* interface that can be configured as a single camera with 4
* lanes or as a dual camera with 2 lanes available for each
* camera.
*/
if (csi_chan->numlanes == 4) {
cil_write(csi, portno + 1, TEGRA_CSI_CIL_STATUS, 0xffffffff);
cil_write(csi, portno + 1, TEGRA_CSI_CILX_STATUS, 0xffffffff);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_INTERRUPT_MASK, 0x0);
cil_write(csi, portno, TEGRA_CSI_CIL_PAD_CONFIG0,
BRICK_CLOCK_A_4X);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_PAD_CONFIG0, 0x0);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_INTERRUPT_MASK, 0x0);
cil_write(csi, portno + 1, TEGRA_CSI_CIL_PHY_CONTROL, 0xa);
csi_write(csi, portno, TEGRA_CSI_PHY_CIL_COMMAND,
CSI_A_PHY_CIL_ENABLE | CSI_B_PHY_CIL_ENABLE);
} else {
val = ((portno & 1) == PORT_A) ?
CSI_A_PHY_CIL_ENABLE | CSI_B_PHY_CIL_NOP :
CSI_B_PHY_CIL_ENABLE | CSI_A_PHY_CIL_NOP;
csi_write(csi, portno, TEGRA_CSI_PHY_CIL_COMMAND, val);
}
/* CSI pixel parser registers setup */
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_PP_COMMAND,
(0xf << CSI_PP_START_MARKER_FRAME_MAX_OFFSET) |
CSI_PP_SINGLE_SHOT_ENABLE | CSI_PP_RST);
pp_write(csi, portno, TEGRA_CSI_PIXEL_PARSER_INTERRUPT_MASK, 0x0);
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_CONTROL0,
CSI_PP_PACKET_HEADER_SENT |
CSI_PP_DATA_IDENTIFIER_ENABLE |
CSI_PP_WORD_COUNT_SELECT_HEADER |
CSI_PP_CRC_CHECK_ENABLE | CSI_PP_WC_CHECK |
CSI_PP_OUTPUT_FORMAT_STORE | CSI_PPA_PAD_LINE_NOPAD |
CSI_PP_HEADER_EC_DISABLE | CSI_PPA_PAD_FRAME_NOPAD |
(portno & 1));
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_CONTROL1,
(0x1 << CSI_PP_TOP_FIELD_FRAME_OFFSET) |
(0x1 << CSI_PP_TOP_FIELD_FRAME_MASK_OFFSET));
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_GAP,
0x14 << PP_FRAME_MIN_GAP_OFFSET);
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_EXPECTED_FRAME, 0x0);
pp_write(csi, portno, TEGRA_CSI_INPUT_STREAM_CONTROL,
(0x3f << CSI_SKIP_PACKET_THRESHOLD_OFFSET) |
(csi_chan->numlanes - 1));
/* TPG setup */
if (csi_chan->pg_mode) {
tpg_write(csi, portno, TEGRA_CSI_PATTERN_GENERATOR_CTRL,
((csi_chan->pg_mode - 1) << PG_MODE_OFFSET) |
PG_ENABLE);
tpg_write(csi, portno, TEGRA_CSI_PG_BLANK,
csi_chan->v_blank << PG_VBLANK_OFFSET |
csi_chan->h_blank);
tpg_write(csi, portno, TEGRA_CSI_PG_PHASE, 0x0);
tpg_write(csi, portno, TEGRA_CSI_PG_RED_FREQ,
(0x10 << PG_RED_VERT_INIT_FREQ_OFFSET) |
(0x10 << PG_RED_HOR_INIT_FREQ_OFFSET));
tpg_write(csi, portno, TEGRA_CSI_PG_RED_FREQ_RATE, 0x0);
tpg_write(csi, portno, TEGRA_CSI_PG_GREEN_FREQ,
(0x10 << PG_GREEN_VERT_INIT_FREQ_OFFSET) |
(0x10 << PG_GREEN_HOR_INIT_FREQ_OFFSET));
tpg_write(csi, portno, TEGRA_CSI_PG_GREEN_FREQ_RATE, 0x0);
tpg_write(csi, portno, TEGRA_CSI_PG_BLUE_FREQ,
(0x10 << PG_BLUE_VERT_INIT_FREQ_OFFSET) |
(0x10 << PG_BLUE_HOR_INIT_FREQ_OFFSET));
tpg_write(csi, portno, TEGRA_CSI_PG_BLUE_FREQ_RATE, 0x0);
}
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_PP_COMMAND,
(0xf << CSI_PP_START_MARKER_FRAME_MAX_OFFSET) |
CSI_PP_SINGLE_SHOT_ENABLE | CSI_PP_ENABLE);
return 0;
}
static void tegra210_csi_stop_streaming(struct tegra_csi_channel *csi_chan)
{
struct tegra_csi *csi = csi_chan->csi;
unsigned int portno = csi_chan->csi_port_num;
u32 val;
val = pp_read(csi, portno, TEGRA_CSI_PIXEL_PARSER_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_PIXEL_PARSER_STATUS 0x%08x\n", val);
pp_write(csi, portno, TEGRA_CSI_PIXEL_PARSER_STATUS, val);
val = cil_read(csi, portno, TEGRA_CSI_CIL_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_CIL_STATUS 0x%08x\n", val);
cil_write(csi, portno, TEGRA_CSI_CIL_STATUS, val);
val = cil_read(csi, portno, TEGRA_CSI_CILX_STATUS);
dev_dbg(csi->dev, "TEGRA_CSI_CILX_STATUS 0x%08x\n", val);
cil_write(csi, portno, TEGRA_CSI_CILX_STATUS, val);
pp_write(csi, portno, TEGRA_CSI_PIXEL_STREAM_PP_COMMAND,
(0xf << CSI_PP_START_MARKER_FRAME_MAX_OFFSET) |
CSI_PP_DISABLE);
if (csi_chan->pg_mode) {
tpg_write(csi, portno, TEGRA_CSI_PATTERN_GENERATOR_CTRL,
PG_DISABLE);
return;
}
if (csi_chan->numlanes == 4) {
csi_write(csi, portno, TEGRA_CSI_PHY_CIL_COMMAND,
CSI_A_PHY_CIL_DISABLE |
CSI_B_PHY_CIL_DISABLE);
} else {
val = ((portno & 1) == PORT_A) ?
CSI_A_PHY_CIL_DISABLE | CSI_B_PHY_CIL_NOP :
CSI_B_PHY_CIL_DISABLE | CSI_A_PHY_CIL_NOP;
csi_write(csi, portno, TEGRA_CSI_PHY_CIL_COMMAND, val);
}
}
/*
* Tegra210 CSI TPG frame rate table with horizontal and vertical
* blanking intervals for corresponding format and resolution.
* Blanking intervals are tuned values from design team for max TPG
* clock rate.
*/
static const struct tpg_framerate tegra210_tpg_frmrate_table[] = {
{
.frmsize = { 1280, 720 },
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.framerate = 120,
.h_blank = 512,
.v_blank = 8,
},
{
.frmsize = { 1920, 1080 },
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.framerate = 60,
.h_blank = 512,
.v_blank = 8,
},
{
.frmsize = { 3840, 2160 },
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.framerate = 20,
.h_blank = 8,
.v_blank = 8,
},
{
.frmsize = { 1280, 720 },
.code = MEDIA_BUS_FMT_RGB888_1X32_PADHI,
.framerate = 60,
.h_blank = 512,
.v_blank = 8,
},
{
.frmsize = { 1920, 1080 },
.code = MEDIA_BUS_FMT_RGB888_1X32_PADHI,
.framerate = 30,
.h_blank = 512,
.v_blank = 8,
},
{
.frmsize = { 3840, 2160 },
.code = MEDIA_BUS_FMT_RGB888_1X32_PADHI,
.framerate = 8,
.h_blank = 8,
.v_blank = 8,
},
};
static const char * const tegra210_csi_cil_clks[] = {
"csi",
"cilab",
"cilcd",
"cile",
"csi_tpg",
};
/* Tegra210 CSI operations */
static const struct tegra_csi_ops tegra210_csi_ops = {
.csi_start_streaming = tegra210_csi_start_streaming,
.csi_stop_streaming = tegra210_csi_stop_streaming,
.csi_err_recover = tegra210_csi_error_recover,
};
/* Tegra210 CSI SoC data */
const struct tegra_csi_soc tegra210_csi_soc = {
.ops = &tegra210_csi_ops,
.csi_max_channels = 6,
.clk_names = tegra210_csi_cil_clks,
.num_clks = ARRAY_SIZE(tegra210_csi_cil_clks),
.tpg_frmrate_table = tegra210_tpg_frmrate_table,
.tpg_frmrate_table_size = ARRAY_SIZE(tegra210_tpg_frmrate_table),
};
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/host1x.h>
#include <linux/lcm.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-ioctl.h>
#include <media/videobuf2-dma-contig.h>
#include <soc/tegra/pmc.h>
#include "vi.h"
#include "video.h"
#define SURFACE_ALIGN_BYTES 64
#define MAX_CID_CONTROLS 1
static const struct tegra_video_format tegra_default_format = {
.img_dt = TEGRA_IMAGE_DT_RAW10,
.bit_width = 10,
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.bpp = 2,
.img_fmt = TEGRA_IMAGE_FORMAT_DEF,
.fourcc = V4L2_PIX_FMT_SRGGB10,
};
static inline struct tegra_vi *
host1x_client_to_vi(struct host1x_client *client)
{
return container_of(client, struct tegra_vi, client);
}
static inline struct tegra_channel_buffer *
to_tegra_channel_buffer(struct vb2_v4l2_buffer *vb)
{
return container_of(vb, struct tegra_channel_buffer, buf);
}
static int tegra_get_format_idx_by_code(struct tegra_vi *vi,
unsigned int code)
{
unsigned int i;
for (i = 0; i < vi->soc->nformats; ++i) {
if (vi->soc->video_formats[i].code == code)
return i;
}
return -1;
}
static u32 tegra_get_format_fourcc_by_idx(struct tegra_vi *vi,
unsigned int index)
{
if (index >= vi->soc->nformats)
return -EINVAL;
return vi->soc->video_formats[index].fourcc;
}
static const struct tegra_video_format *
tegra_get_format_by_fourcc(struct tegra_vi *vi, u32 fourcc)
{
unsigned int i;
for (i = 0; i < vi->soc->nformats; ++i) {
if (vi->soc->video_formats[i].fourcc == fourcc)
return &vi->soc->video_formats[i];
}
return NULL;
}
/*
* videobuf2 queue operations
*/
static int tegra_channel_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers,
unsigned int *nplanes,
unsigned int sizes[],
struct device *alloc_devs[])
{
struct tegra_vi_channel *chan = vb2_get_drv_priv(vq);
if (*nplanes)
return sizes[0] < chan->format.sizeimage ? -EINVAL : 0;
*nplanes = 1;
sizes[0] = chan->format.sizeimage;
alloc_devs[0] = chan->vi->dev;
return 0;
}
static int tegra_channel_buffer_prepare(struct vb2_buffer *vb)
{
struct tegra_vi_channel *chan = vb2_get_drv_priv(vb->vb2_queue);
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct tegra_channel_buffer *buf = to_tegra_channel_buffer(vbuf);
unsigned long size = chan->format.sizeimage;
if (vb2_plane_size(vb, 0) < size) {
v4l2_err(chan->video.v4l2_dev,
"buffer too small (%lu < %lu)\n",
vb2_plane_size(vb, 0), size);
return -EINVAL;
}
vb2_set_plane_payload(vb, 0, size);
buf->chan = chan;
buf->addr = vb2_dma_contig_plane_dma_addr(vb, 0);
return 0;
}
static void tegra_channel_buffer_queue(struct vb2_buffer *vb)
{
struct tegra_vi_channel *chan = vb2_get_drv_priv(vb->vb2_queue);
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct tegra_channel_buffer *buf = to_tegra_channel_buffer(vbuf);
/* put buffer into the capture queue */
spin_lock(&chan->start_lock);
list_add_tail(&buf->queue, &chan->capture);
spin_unlock(&chan->start_lock);
/* wait up kthread for capture */
wake_up_interruptible(&chan->start_wait);
}
struct v4l2_subdev *
tegra_channel_get_remote_subdev(struct tegra_vi_channel *chan)
{
struct media_pad *pad;
struct v4l2_subdev *subdev;
struct media_entity *entity;
pad = media_entity_remote_pad(&chan->pad);
entity = pad->entity;
subdev = media_entity_to_v4l2_subdev(entity);
return subdev;
}
int tegra_channel_set_stream(struct tegra_vi_channel *chan, bool on)
{
struct v4l2_subdev *subdev;
int ret;
/* stream CSI */
subdev = tegra_channel_get_remote_subdev(chan);
ret = v4l2_subdev_call(subdev, video, s_stream, on);
if (on && ret < 0 && ret != -ENOIOCTLCMD)
return ret;
return 0;
}
void tegra_channel_release_buffers(struct tegra_vi_channel *chan,
enum vb2_buffer_state state)
{
struct tegra_channel_buffer *buf, *nbuf;
spin_lock(&chan->start_lock);
list_for_each_entry_safe(buf, nbuf, &chan->capture, queue) {
vb2_buffer_done(&buf->buf.vb2_buf, state);
list_del(&buf->queue);
}
spin_unlock(&chan->start_lock);
spin_lock(&chan->done_lock);
list_for_each_entry_safe(buf, nbuf, &chan->done, queue) {
vb2_buffer_done(&buf->buf.vb2_buf, state);
list_del(&buf->queue);
}
spin_unlock(&chan->done_lock);
}
static int tegra_channel_start_streaming(struct vb2_queue *vq, u32 count)
{
struct tegra_vi_channel *chan = vb2_get_drv_priv(vq);
int ret;
ret = pm_runtime_get_sync(chan->vi->dev);
if (ret < 0) {
dev_err(chan->vi->dev, "failed to get runtime PM: %d\n", ret);
pm_runtime_put_noidle(chan->vi->dev);
return ret;
}
ret = chan->vi->ops->vi_start_streaming(vq, count);
if (ret < 0)
pm_runtime_put(chan->vi->dev);
return ret;
}
static void tegra_channel_stop_streaming(struct vb2_queue *vq)
{
struct tegra_vi_channel *chan = vb2_get_drv_priv(vq);
chan->vi->ops->vi_stop_streaming(vq);
pm_runtime_put(chan->vi->dev);
}
static const struct vb2_ops tegra_channel_queue_qops = {
.queue_setup = tegra_channel_queue_setup,
.buf_prepare = tegra_channel_buffer_prepare,
.buf_queue = tegra_channel_buffer_queue,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.start_streaming = tegra_channel_start_streaming,
.stop_streaming = tegra_channel_stop_streaming,
};
/*
* V4L2 ioctl operations
*/
static int tegra_channel_querycap(struct file *file, void *fh,
struct v4l2_capability *cap)
{
struct tegra_vi_channel *chan = video_drvdata(file);
strscpy(cap->driver, "tegra-video", sizeof(cap->driver));
strscpy(cap->card, chan->video.name, sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
dev_name(chan->vi->dev));
return 0;
}
static int tegra_channel_g_parm(struct file *file, void *fh,
struct v4l2_streamparm *a)
{
struct tegra_vi_channel *chan = video_drvdata(file);
struct v4l2_subdev *subdev;
subdev = tegra_channel_get_remote_subdev(chan);
return v4l2_g_parm_cap(&chan->video, subdev, a);
}
static int tegra_channel_s_parm(struct file *file, void *fh,
struct v4l2_streamparm *a)
{
struct tegra_vi_channel *chan = video_drvdata(file);
struct v4l2_subdev *subdev;
subdev = tegra_channel_get_remote_subdev(chan);
return v4l2_s_parm_cap(&chan->video, subdev, a);
}
static int tegra_channel_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *sizes)
{
int ret;
struct tegra_vi_channel *chan = video_drvdata(file);
struct v4l2_subdev *subdev;
const struct tegra_video_format *fmtinfo;
struct v4l2_subdev_frame_size_enum fse = {
.index = sizes->index,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
fmtinfo = tegra_get_format_by_fourcc(chan->vi, sizes->pixel_format);
if (!fmtinfo)
return -EINVAL;
fse.code = fmtinfo->code;
subdev = tegra_channel_get_remote_subdev(chan);
ret = v4l2_subdev_call(subdev, pad, enum_frame_size, NULL, &fse);
if (ret)
return ret;
sizes->type = V4L2_FRMSIZE_TYPE_DISCRETE;
sizes->discrete.width = fse.max_width;
sizes->discrete.height = fse.max_height;
return 0;
}
static int tegra_channel_enum_frameintervals(struct file *file, void *fh,
struct v4l2_frmivalenum *ivals)
{
int ret;
struct tegra_vi_channel *chan = video_drvdata(file);
struct v4l2_subdev *subdev;
const struct tegra_video_format *fmtinfo;
struct v4l2_subdev_frame_interval_enum fie = {
.index = ivals->index,
.width = ivals->width,
.height = ivals->height,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
fmtinfo = tegra_get_format_by_fourcc(chan->vi, ivals->pixel_format);
if (!fmtinfo)
return -EINVAL;
fie.code = fmtinfo->code;
subdev = tegra_channel_get_remote_subdev(chan);
ret = v4l2_subdev_call(subdev, pad, enum_frame_interval, NULL, &fie);
if (ret)
return ret;
ivals->type = V4L2_FRMIVAL_TYPE_DISCRETE;
ivals->discrete.numerator = fie.interval.numerator;
ivals->discrete.denominator = fie.interval.denominator;
return 0;
}
static int tegra_channel_enum_format(struct file *file, void *fh,
struct v4l2_fmtdesc *f)
{
struct tegra_vi_channel *chan = video_drvdata(file);
unsigned int index = 0, i;
unsigned long *fmts_bitmap = chan->tpg_fmts_bitmap;
if (f->index >= bitmap_weight(fmts_bitmap, MAX_FORMAT_NUM))
return -EINVAL;
for (i = 0; i < f->index + 1; i++, index++)
index = find_next_bit(fmts_bitmap, MAX_FORMAT_NUM, index);
f->pixelformat = tegra_get_format_fourcc_by_idx(chan->vi, index - 1);
return 0;
}
static int tegra_channel_get_format(struct file *file, void *fh,
struct v4l2_format *format)
{
struct tegra_vi_channel *chan = video_drvdata(file);
format->fmt.pix = chan->format;
return 0;
}
static void tegra_channel_fmt_align(struct tegra_vi_channel *chan,
struct v4l2_pix_format *pix,
unsigned int bpp)
{
unsigned int align;
unsigned int min_width;
unsigned int max_width;
unsigned int width;
unsigned int min_bpl;
unsigned int max_bpl;
unsigned int bpl;
/*
* The transfer alignment requirements are expressed in bytes. Compute
* minimum and maximum values, clamp the requested width and convert
* it back to pixels. Use bytesperline to adjust the width.
*/
align = lcm(SURFACE_ALIGN_BYTES, bpp);
min_width = roundup(TEGRA_MIN_WIDTH, align);
max_width = rounddown(TEGRA_MAX_WIDTH, align);
width = roundup(pix->width * bpp, align);
pix->width = clamp(width, min_width, max_width) / bpp;
pix->height = clamp(pix->height, TEGRA_MIN_HEIGHT, TEGRA_MAX_HEIGHT);
/* Clamp the requested bytes per line value. If the maximum bytes per
* line value is zero, the module doesn't support user configurable
* line sizes. Override the requested value with the minimum in that
* case.
*/
min_bpl = pix->width * bpp;
max_bpl = rounddown(TEGRA_MAX_WIDTH, SURFACE_ALIGN_BYTES);
bpl = roundup(pix->bytesperline, SURFACE_ALIGN_BYTES);
pix->bytesperline = clamp(bpl, min_bpl, max_bpl);
pix->sizeimage = pix->bytesperline * pix->height;
}
static int __tegra_channel_try_format(struct tegra_vi_channel *chan,
struct v4l2_pix_format *pix)
{
const struct tegra_video_format *fmtinfo;
struct v4l2_subdev *subdev;
struct v4l2_subdev_format fmt;
struct v4l2_subdev_pad_config *pad_cfg;
subdev = tegra_channel_get_remote_subdev(chan);
pad_cfg = v4l2_subdev_alloc_pad_config(subdev);
if (!pad_cfg)
return -ENOMEM;
/*
* Retrieve the format information and if requested format isn't
* supported, keep the current format.
*/
fmtinfo = tegra_get_format_by_fourcc(chan->vi, pix->pixelformat);
if (!fmtinfo) {
pix->pixelformat = chan->format.pixelformat;
pix->colorspace = chan->format.colorspace;
fmtinfo = tegra_get_format_by_fourcc(chan->vi,
pix->pixelformat);
}
pix->field = V4L2_FIELD_NONE;
fmt.which = V4L2_SUBDEV_FORMAT_TRY;
fmt.pad = 0;
v4l2_fill_mbus_format(&fmt.format, pix, fmtinfo->code);
v4l2_subdev_call(subdev, pad, set_fmt, pad_cfg, &fmt);
v4l2_fill_pix_format(pix, &fmt.format);
tegra_channel_fmt_align(chan, pix, fmtinfo->bpp);
v4l2_subdev_free_pad_config(pad_cfg);
return 0;
}
static int tegra_channel_try_format(struct file *file, void *fh,
struct v4l2_format *format)
{
struct tegra_vi_channel *chan = video_drvdata(file);
return __tegra_channel_try_format(chan, &format->fmt.pix);
}
static int tegra_channel_set_format(struct file *file, void *fh,
struct v4l2_format *format)
{
struct tegra_vi_channel *chan = video_drvdata(file);
const struct tegra_video_format *fmtinfo;
struct v4l2_subdev_format fmt;
struct v4l2_subdev *subdev;
struct v4l2_pix_format *pix = &format->fmt.pix;
int ret;
if (vb2_is_busy(&chan->queue))
return -EBUSY;
/* get supported format by try_fmt */
ret = __tegra_channel_try_format(chan, pix);
if (ret)
return ret;
fmtinfo = tegra_get_format_by_fourcc(chan->vi, pix->pixelformat);
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
fmt.pad = 0;
v4l2_fill_mbus_format(&fmt.format, pix, fmtinfo->code);
subdev = tegra_channel_get_remote_subdev(chan);
v4l2_subdev_call(subdev, pad, set_fmt, NULL, &fmt);
v4l2_fill_pix_format(pix, &fmt.format);
tegra_channel_fmt_align(chan, pix, fmtinfo->bpp);
chan->format = *pix;
chan->fmtinfo = fmtinfo;
return 0;
}
static int tegra_channel_enum_input(struct file *file, void *fh,
struct v4l2_input *inp)
{
/* currently driver supports internal TPG only */
if (inp->index)
return -EINVAL;
inp->type = V4L2_INPUT_TYPE_CAMERA;
strscpy(inp->name, "Tegra TPG", sizeof(inp->name));
return 0;
}
static int tegra_channel_g_input(struct file *file, void *priv,
unsigned int *i)
{
*i = 0;
return 0;
}
static int tegra_channel_s_input(struct file *file, void *priv,
unsigned int input)
{
if (input > 0)
return -EINVAL;
return 0;
}
static const struct v4l2_ioctl_ops tegra_channel_ioctl_ops = {
.vidioc_querycap = tegra_channel_querycap,
.vidioc_g_parm = tegra_channel_g_parm,
.vidioc_s_parm = tegra_channel_s_parm,
.vidioc_enum_framesizes = tegra_channel_enum_framesizes,
.vidioc_enum_frameintervals = tegra_channel_enum_frameintervals,
.vidioc_enum_fmt_vid_cap = tegra_channel_enum_format,
.vidioc_g_fmt_vid_cap = tegra_channel_get_format,
.vidioc_s_fmt_vid_cap = tegra_channel_set_format,
.vidioc_try_fmt_vid_cap = tegra_channel_try_format,
.vidioc_enum_input = tegra_channel_enum_input,
.vidioc_g_input = tegra_channel_g_input,
.vidioc_s_input = tegra_channel_s_input,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
/*
* V4L2 file operations
*/
static const struct v4l2_file_operations tegra_channel_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = video_ioctl2,
.open = v4l2_fh_open,
.release = vb2_fop_release,
.read = vb2_fop_read,
.poll = vb2_fop_poll,
.mmap = vb2_fop_mmap,
};
/*
* V4L2 control operations
*/
static int vi_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct tegra_vi_channel *chan = container_of(ctrl->handler,
struct tegra_vi_channel,
ctrl_handler);
switch (ctrl->id) {
case V4L2_CID_TEST_PATTERN:
/* pattern change takes effect on next stream */
chan->pg_mode = ctrl->val + 1;
break;
default:
return -EINVAL;
}
return 0;
}
static const struct v4l2_ctrl_ops vi_ctrl_ops = {
.s_ctrl = vi_s_ctrl,
};
static const char *const vi_pattern_strings[] = {
"Black/White Direct Mode",
"Color Patch Mode",
};
static int tegra_channel_setup_ctrl_handler(struct tegra_vi_channel *chan)
{
int ret;
/* add test pattern control handler to v4l2 device */
v4l2_ctrl_new_std_menu_items(&chan->ctrl_handler, &vi_ctrl_ops,
V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(vi_pattern_strings) - 1,
0, 0, vi_pattern_strings);
if (chan->ctrl_handler.error) {
dev_err(chan->vi->dev, "failed to add TPG ctrl handler: %d\n",
chan->ctrl_handler.error);
v4l2_ctrl_handler_free(&chan->ctrl_handler);
return chan->ctrl_handler.error;
}
/* setup the controls */
ret = v4l2_ctrl_handler_setup(&chan->ctrl_handler);
if (ret < 0) {
dev_err(chan->vi->dev,
"failed to setup v4l2 ctrl handler: %d\n", ret);
return ret;
}
return 0;
}
/* VI only support 2 formats in TPG mode */
static void vi_tpg_fmts_bitmap_init(struct tegra_vi_channel *chan)
{
int index;
bitmap_zero(chan->tpg_fmts_bitmap, MAX_FORMAT_NUM);
index = tegra_get_format_idx_by_code(chan->vi,
MEDIA_BUS_FMT_SRGGB10_1X10);
bitmap_set(chan->tpg_fmts_bitmap, index, 1);
index = tegra_get_format_idx_by_code(chan->vi,
MEDIA_BUS_FMT_RGB888_1X32_PADHI);
bitmap_set(chan->tpg_fmts_bitmap, index, 1);
}
static void tegra_channel_cleanup(struct tegra_vi_channel *chan)
{
v4l2_ctrl_handler_free(&chan->ctrl_handler);
media_entity_cleanup(&chan->video.entity);
host1x_syncpt_free(chan->mw_ack_sp);
host1x_syncpt_free(chan->frame_start_sp);
mutex_destroy(&chan->video_lock);
}
void tegra_channels_cleanup(struct tegra_vi *vi)
{
struct tegra_vi_channel *chan, *tmp;
if (!vi)
return;
list_for_each_entry_safe(chan, tmp, &vi->vi_chans, list) {
tegra_channel_cleanup(chan);
list_del(&chan->list);
kfree(chan);
}
}
static int tegra_channel_init(struct tegra_vi_channel *chan)
{
struct tegra_vi *vi = chan->vi;
struct tegra_video_device *vid = dev_get_drvdata(vi->client.host);
unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
int ret;
mutex_init(&chan->video_lock);
INIT_LIST_HEAD(&chan->capture);
INIT_LIST_HEAD(&chan->done);
spin_lock_init(&chan->start_lock);
spin_lock_init(&chan->done_lock);
spin_lock_init(&chan->sp_incr_lock);
init_waitqueue_head(&chan->start_wait);
init_waitqueue_head(&chan->done_wait);
/* initialize the video format */
chan->fmtinfo = &tegra_default_format;
chan->format.pixelformat = chan->fmtinfo->fourcc;
chan->format.colorspace = V4L2_COLORSPACE_SRGB;
chan->format.field = V4L2_FIELD_NONE;
chan->format.width = TEGRA_DEF_WIDTH;
chan->format.height = TEGRA_DEF_HEIGHT;
chan->format.bytesperline = TEGRA_DEF_WIDTH * chan->fmtinfo->bpp;
chan->format.sizeimage = chan->format.bytesperline * TEGRA_DEF_HEIGHT;
tegra_channel_fmt_align(chan, &chan->format, chan->fmtinfo->bpp);
chan->frame_start_sp = host1x_syncpt_request(&vi->client, flags);
if (!chan->frame_start_sp) {
dev_err(vi->dev, "failed to request frame start syncpoint\n");
return -ENOMEM;
}
chan->mw_ack_sp = host1x_syncpt_request(&vi->client, flags);
if (!chan->mw_ack_sp) {
dev_err(vi->dev, "failed to request memory ack syncpoint\n");
ret = -ENOMEM;
goto free_fs_syncpt;
}
/* initialize the media entity */
chan->pad.flags = MEDIA_PAD_FL_SINK;
ret = media_entity_pads_init(&chan->video.entity, 1, &chan->pad);
if (ret < 0) {
dev_err(vi->dev,
"failed to initialize media entity: %d\n", ret);
goto free_mw_ack_syncpt;
}
ret = v4l2_ctrl_handler_init(&chan->ctrl_handler, MAX_CID_CONTROLS);
if (chan->ctrl_handler.error) {
dev_err(vi->dev,
"failed to initialize v4l2 ctrl handler: %d\n", ret);
goto cleanup_media;
}
/* initialize the video_device */
chan->video.fops = &tegra_channel_fops;
chan->video.v4l2_dev = &vid->v4l2_dev;
chan->video.release = video_device_release_empty;
chan->video.queue = &chan->queue;
snprintf(chan->video.name, sizeof(chan->video.name), "%s-%s-%u",
dev_name(vi->dev), "output", chan->portno);
chan->video.vfl_type = VFL_TYPE_VIDEO;
chan->video.vfl_dir = VFL_DIR_RX;
chan->video.ioctl_ops = &tegra_channel_ioctl_ops;
chan->video.ctrl_handler = &chan->ctrl_handler;
chan->video.lock = &chan->video_lock;
chan->video.device_caps = V4L2_CAP_VIDEO_CAPTURE |
V4L2_CAP_STREAMING |
V4L2_CAP_READWRITE;
video_set_drvdata(&chan->video, chan);
chan->queue.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
chan->queue.io_modes = VB2_MMAP | VB2_DMABUF | VB2_READ;
chan->queue.lock = &chan->video_lock;
chan->queue.drv_priv = chan;
chan->queue.buf_struct_size = sizeof(struct tegra_channel_buffer);
chan->queue.ops = &tegra_channel_queue_qops;
chan->queue.mem_ops = &vb2_dma_contig_memops;
chan->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
chan->queue.min_buffers_needed = 2;
chan->queue.dev = vi->dev;
ret = vb2_queue_init(&chan->queue);
if (ret < 0) {
dev_err(vi->dev, "failed to initialize vb2 queue: %d\n", ret);
goto free_v4l2_ctrl_hdl;
}
return 0;
free_v4l2_ctrl_hdl:
v4l2_ctrl_handler_free(&chan->ctrl_handler);
cleanup_media:
media_entity_cleanup(&chan->video.entity);
free_mw_ack_syncpt:
host1x_syncpt_free(chan->mw_ack_sp);
free_fs_syncpt:
host1x_syncpt_free(chan->frame_start_sp);
return ret;
}
static int tegra_vi_tpg_channels_alloc(struct tegra_vi *vi)
{
struct tegra_vi_channel *chan;
unsigned int port_num;
unsigned int nchannels = vi->soc->vi_max_channels;
for (port_num = 0; port_num < nchannels; port_num++) {
/*
* Do not use devm_kzalloc as memory is freed immediately
* when device instance is unbound but application might still
* be holding the device node open. Channel memory allocated
* with kzalloc is freed during video device release callback.
*/
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
chan->vi = vi;
chan->portno = port_num;
list_add_tail(&chan->list, &vi->vi_chans);
}
return 0;
}
static int tegra_vi_channels_init(struct tegra_vi *vi)
{
struct tegra_vi_channel *chan;
int ret;
list_for_each_entry(chan, &vi->vi_chans, list) {
ret = tegra_channel_init(chan);
if (ret < 0) {
dev_err(vi->dev,
"failed to initialize channel-%d: %d\n",
chan->portno, ret);
goto cleanup;
}
}
return 0;
cleanup:
list_for_each_entry_continue_reverse(chan, &vi->vi_chans, list)
tegra_channel_cleanup(chan);
return ret;
}
void tegra_v4l2_nodes_cleanup_tpg(struct tegra_video_device *vid)
{
struct tegra_vi *vi = vid->vi;
struct tegra_csi *csi = vid->csi;
struct tegra_csi_channel *csi_chan;
struct tegra_vi_channel *chan;
list_for_each_entry(chan, &vi->vi_chans, list) {
video_unregister_device(&chan->video);
mutex_lock(&chan->video_lock);
vb2_queue_release(&chan->queue);
mutex_unlock(&chan->video_lock);
}
list_for_each_entry(csi_chan, &csi->csi_chans, list)
v4l2_device_unregister_subdev(&csi_chan->subdev);
}
int tegra_v4l2_nodes_setup_tpg(struct tegra_video_device *vid)
{
struct tegra_vi *vi = vid->vi;
struct tegra_csi *csi = vid->csi;
struct tegra_vi_channel *vi_chan;
struct tegra_csi_channel *csi_chan;
u32 link_flags = MEDIA_LNK_FL_ENABLED;
int ret;
if (!vi || !csi)
return -ENODEV;
csi_chan = list_first_entry(&csi->csi_chans,
struct tegra_csi_channel, list);
list_for_each_entry(vi_chan, &vi->vi_chans, list) {
struct media_entity *source = &csi_chan->subdev.entity;
struct media_entity *sink = &vi_chan->video.entity;
struct media_pad *source_pad = csi_chan->pads;
struct media_pad *sink_pad = &vi_chan->pad;
ret = v4l2_device_register_subdev(&vid->v4l2_dev,
&csi_chan->subdev);
if (ret) {
dev_err(vi->dev,
"failed to register subdev: %d\n", ret);
goto cleanup;
}
ret = video_register_device(&vi_chan->video,
VFL_TYPE_VIDEO, -1);
if (ret < 0) {
dev_err(vi->dev,
"failed to register video device: %d\n", ret);
goto cleanup;
}
dev_dbg(vi->dev, "creating %s:%u -> %s:%u link\n",
source->name, source_pad->index,
sink->name, sink_pad->index);
ret = media_create_pad_link(source, source_pad->index,
sink, sink_pad->index,
link_flags);
if (ret < 0) {
dev_err(vi->dev,
"failed to create %s:%u -> %s:%u link: %d\n",
source->name, source_pad->index,
sink->name, sink_pad->index, ret);
goto cleanup;
}
ret = tegra_channel_setup_ctrl_handler(vi_chan);
if (ret < 0)
goto cleanup;
v4l2_set_subdev_hostdata(&csi_chan->subdev, vi_chan);
vi_tpg_fmts_bitmap_init(vi_chan);
csi_chan = list_next_entry(csi_chan, list);
}
return 0;
cleanup:
tegra_v4l2_nodes_cleanup_tpg(vid);
return ret;
}
static int __maybe_unused vi_runtime_resume(struct device *dev)
{
struct tegra_vi *vi = dev_get_drvdata(dev);
int ret;
ret = regulator_enable(vi->vdd);
if (ret) {
dev_err(dev, "failed to enable VDD supply: %d\n", ret);
return ret;
}
ret = clk_set_rate(vi->clk, vi->soc->vi_max_clk_hz);
if (ret) {
dev_err(dev, "failed to set vi clock rate: %d\n", ret);
goto disable_vdd;
}
ret = clk_prepare_enable(vi->clk);
if (ret) {
dev_err(dev, "failed to enable vi clock: %d\n", ret);
goto disable_vdd;
}
return 0;
disable_vdd:
regulator_disable(vi->vdd);
return ret;
}
static int __maybe_unused vi_runtime_suspend(struct device *dev)
{
struct tegra_vi *vi = dev_get_drvdata(dev);
clk_disable_unprepare(vi->clk);
regulator_disable(vi->vdd);
return 0;
}
static int tegra_vi_init(struct host1x_client *client)
{
struct tegra_video_device *vid = dev_get_drvdata(client->host);
struct tegra_vi *vi = host1x_client_to_vi(client);
struct tegra_vi_channel *chan, *tmp;
int ret;
vid->media_dev.hw_revision = vi->soc->hw_revision;
snprintf(vid->media_dev.bus_info, sizeof(vid->media_dev.bus_info),
"platform:%s", dev_name(vi->dev));
INIT_LIST_HEAD(&vi->vi_chans);
ret = tegra_vi_tpg_channels_alloc(vi);
if (ret < 0) {
dev_err(vi->dev, "failed to allocate tpg channels: %d\n", ret);
goto free_chans;
}
ret = tegra_vi_channels_init(vi);
if (ret < 0)
goto free_chans;
vid->vi = vi;
return 0;
free_chans:
list_for_each_entry_safe(chan, tmp, &vi->vi_chans, list) {
list_del(&chan->list);
kfree(chan);
}
return ret;
}
static int tegra_vi_exit(struct host1x_client *client)
{
/*
* Do not cleanup the channels here as application might still be
* holding video device nodes. Channels cleanup will happen during
* v4l2_device release callback which gets called after all video
* device nodes are released.
*/
return 0;
}
static const struct host1x_client_ops vi_client_ops = {
.init = tegra_vi_init,
.exit = tegra_vi_exit,
};
static int tegra_vi_probe(struct platform_device *pdev)
{
struct tegra_vi *vi;
int ret;
vi = devm_kzalloc(&pdev->dev, sizeof(*vi), GFP_KERNEL);
if (!vi)
return -ENOMEM;
vi->iomem = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(vi->iomem))
return PTR_ERR(vi->iomem);
vi->soc = of_device_get_match_data(&pdev->dev);
vi->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(vi->clk)) {
ret = PTR_ERR(vi->clk);
dev_err(&pdev->dev, "failed to get vi clock: %d\n", ret);
return ret;
}
vi->vdd = devm_regulator_get(&pdev->dev, "avdd-dsi-csi");
if (IS_ERR(vi->vdd)) {
ret = PTR_ERR(vi->vdd);
dev_err(&pdev->dev, "failed to get VDD supply: %d\n", ret);
return ret;
}
if (!pdev->dev.pm_domain) {
ret = -ENOENT;
dev_warn(&pdev->dev, "PM domain is not attached: %d\n", ret);
return ret;
}
ret = devm_of_platform_populate(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to populate vi child device: %d\n", ret);
return ret;
}
vi->dev = &pdev->dev;
vi->ops = vi->soc->ops;
platform_set_drvdata(pdev, vi);
pm_runtime_enable(&pdev->dev);
/* initialize host1x interface */
INIT_LIST_HEAD(&vi->client.list);
vi->client.ops = &vi_client_ops;
vi->client.dev = &pdev->dev;
ret = host1x_client_register(&vi->client);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to register host1x client: %d\n", ret);
goto rpm_disable;
}
return 0;
rpm_disable:
pm_runtime_disable(&pdev->dev);
return ret;
}
static int tegra_vi_remove(struct platform_device *pdev)
{
struct tegra_vi *vi = platform_get_drvdata(pdev);
int err;
err = host1x_client_unregister(&vi->client);
if (err < 0) {
dev_err(&pdev->dev,
"failed to unregister host1x client: %d\n", err);
return err;
}
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct of_device_id tegra_vi_of_id_table[] = {
#if defined(CONFIG_ARCH_TEGRA_210_SOC)
{ .compatible = "nvidia,tegra210-vi", .data = &tegra210_vi_soc },
#endif
{ }
};
MODULE_DEVICE_TABLE(of, tegra_vi_of_id_table);
static const struct dev_pm_ops tegra_vi_pm_ops = {
SET_RUNTIME_PM_OPS(vi_runtime_suspend, vi_runtime_resume, NULL)
};
struct platform_driver tegra_vi_driver = {
.driver = {
.name = "tegra-vi",
.of_match_table = tegra_vi_of_id_table,
.pm = &tegra_vi_pm_ops,
},
.probe = tegra_vi_probe,
.remove = tegra_vi_remove,
};
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2020 NVIDIA CORPORATION. All rights reserved.
*/
#ifndef __TEGRA_VI_H__
#define __TEGRA_VI_H__
#include <linux/host1x.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <media/media-entity.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-v4l2.h>
#define TEGRA_MIN_WIDTH 32U
#define TEGRA_MAX_WIDTH 32768U
#define TEGRA_MIN_HEIGHT 32U
#define TEGRA_MAX_HEIGHT 32768U
#define TEGRA_DEF_WIDTH 1920
#define TEGRA_DEF_HEIGHT 1080
#define TEGRA_IMAGE_FORMAT_DEF 32
#define MAX_FORMAT_NUM 64
enum tegra_vi_pg_mode {
TEGRA_VI_PG_DISABLED = 0,
TEGRA_VI_PG_DIRECT,
TEGRA_VI_PG_PATCH,
};
/**
* struct tegra_vi_ops - Tegra VI operations
* @vi_start_streaming: starts media pipeline, subdevice streaming, sets up
* VI for capture and runs capture start and capture finish
* kthreads for capturing frames to buffer and returns them back.
* @vi_stop_streaming: stops media pipeline and subdevice streaming and returns
* back any queued buffers.
*/
struct tegra_vi_ops {
int (*vi_start_streaming)(struct vb2_queue *vq, u32 count);
void (*vi_stop_streaming)(struct vb2_queue *vq);
};
/**
* struct tegra_vi_soc - NVIDIA Tegra Video Input SoC structure
*
* @video_formats: supported video formats
* @nformats: total video formats
* @ops: vi operations
* @hw_revision: VI hw_revision
* @vi_max_channels: supported max streaming channels
* @vi_max_clk_hz: VI clock max frequency
*/
struct tegra_vi_soc {
const struct tegra_video_format *video_formats;
const unsigned int nformats;
const struct tegra_vi_ops *ops;
u32 hw_revision;
unsigned int vi_max_channels;
unsigned int vi_max_clk_hz;
};
/**
* struct tegra_vi - NVIDIA Tegra Video Input device structure
*
* @dev: device struct
* @client: host1x_client struct
* @iomem: register base
* @clk: main clock for VI block
* @vdd: vdd regulator for VI hardware, normally it is avdd_dsi_csi
* @soc: pointer to SoC data structure
* @ops: vi operations
* @vi_chans: list head for VI channels
*/
struct tegra_vi {
struct device *dev;
struct host1x_client client;
void __iomem *iomem;
struct clk *clk;
struct regulator *vdd;
const struct tegra_vi_soc *soc;
const struct tegra_vi_ops *ops;
struct list_head vi_chans;
};
/**
* struct tegra_vi_channel - Tegra video channel
*
* @list: list head for this entry
* @video: V4L2 video device associated with the video channel
* @video_lock: protects the @format and @queue fields
* @pad: media pad for the video device entity
*
* @vi: Tegra video input device structure
* @frame_start_sp: host1x syncpoint pointer to synchronize programmed capture
* start condition with hardware frame start events through host1x
* syncpoint counters.
* @mw_ack_sp: host1x syncpoint pointer to synchronize programmed memory write
* ack trigger condition with hardware memory write done at end of
* frame through host1x syncpoint counters.
* @sp_incr_lock: protects cpu syncpoint increment.
*
* @kthread_start_capture: kthread to start capture of single frame when
* vb buffer is available. This thread programs VI CSI hardware
* for single frame capture and waits for frame start event from
* the hardware. On receiving frame start event, it wakes up
* kthread_finish_capture thread to wait for finishing frame data
* write to the memory. In case of missing frame start event, this
* thread returns buffer back to vb with VB2_BUF_STATE_ERROR.
* @start_wait: waitqueue for starting frame capture when buffer is available.
* @kthread_finish_capture: kthread to finish the buffer capture and return to.
* This thread is woken up by kthread_start_capture on receiving
* frame start event from the hardware and this thread waits for
* MW_ACK_DONE event which indicates completion of writing frame
* data to the memory. On receiving MW_ACK_DONE event, buffer is
* returned back to vb with VB2_BUF_STATE_DONE and in case of
* missing MW_ACK_DONE event, buffer is returned back to vb with
* VB2_BUF_STATE_ERROR.
* @done_wait: waitqueue for finishing capture data writes to memory.
*
* @format: active V4L2 pixel format
* @fmtinfo: format information corresponding to the active @format
* @queue: vb2 buffers queue
* @sequence: V4L2 buffers sequence number
*
* @capture: list of queued buffers for capture
* @start_lock: protects the capture queued list
* @done: list of capture done queued buffers
* @done_lock: protects the capture done queue list
*
* @portno: VI channel port number
*
* @ctrl_handler: V4L2 control handler of this video channel
* @tpg_fmts_bitmap: a bitmap for supported TPG formats
* @pg_mode: test pattern generator mode (disabled/direct/patch)
*/
struct tegra_vi_channel {
struct list_head list;
struct video_device video;
/* protects the @format and @queue fields */
struct mutex video_lock;
struct media_pad pad;
struct tegra_vi *vi;
struct host1x_syncpt *frame_start_sp;
struct host1x_syncpt *mw_ack_sp;
/* protects the cpu syncpoint increment */
spinlock_t sp_incr_lock;
struct task_struct *kthread_start_capture;
wait_queue_head_t start_wait;
struct task_struct *kthread_finish_capture;
wait_queue_head_t done_wait;
struct v4l2_pix_format format;
const struct tegra_video_format *fmtinfo;
struct vb2_queue queue;
u32 sequence;
struct list_head capture;
/* protects the capture queued list */
spinlock_t start_lock;
struct list_head done;
/* protects the capture done queue list */
spinlock_t done_lock;
unsigned char portno;
struct v4l2_ctrl_handler ctrl_handler;
DECLARE_BITMAP(tpg_fmts_bitmap, MAX_FORMAT_NUM);
enum tegra_vi_pg_mode pg_mode;
};
/**
* struct tegra_channel_buffer - video channel buffer
*
* @buf: vb2 buffer base object
* @queue: buffer list entry in the channel queued buffers list
* @chan: channel that uses the buffer
* @addr: Tegra IOVA buffer address for VI output
* @mw_ack_sp_thresh: MW_ACK_DONE syncpoint threshold corresponding
* to the capture buffer.
*/
struct tegra_channel_buffer {
struct vb2_v4l2_buffer buf;
struct list_head queue;
struct tegra_vi_channel *chan;
dma_addr_t addr;
u32 mw_ack_sp_thresh;
};
/*
* VI channel input data type enum.
* These data type enum value gets programmed into corresponding Tegra VI
* channel register bits.
*/
enum tegra_image_dt {
TEGRA_IMAGE_DT_YUV420_8 = 24,
TEGRA_IMAGE_DT_YUV420_10,
TEGRA_IMAGE_DT_YUV420CSPS_8 = 28,
TEGRA_IMAGE_DT_YUV420CSPS_10,
TEGRA_IMAGE_DT_YUV422_8,
TEGRA_IMAGE_DT_YUV422_10,
TEGRA_IMAGE_DT_RGB444,
TEGRA_IMAGE_DT_RGB555,
TEGRA_IMAGE_DT_RGB565,
TEGRA_IMAGE_DT_RGB666,
TEGRA_IMAGE_DT_RGB888,
TEGRA_IMAGE_DT_RAW6 = 40,
TEGRA_IMAGE_DT_RAW7,
TEGRA_IMAGE_DT_RAW8,
TEGRA_IMAGE_DT_RAW10,
TEGRA_IMAGE_DT_RAW12,
TEGRA_IMAGE_DT_RAW14,
};
/**
* struct tegra_video_format - Tegra video format description
*
* @img_dt: image data type
* @bit_width: format width in bits per component
* @code: media bus format code
* @bpp: bytes per pixel (when stored in memory)
* @img_fmt: image format
* @fourcc: V4L2 pixel format FCC identifier
*/
struct tegra_video_format {
enum tegra_image_dt img_dt;
unsigned int bit_width;
unsigned int code;
unsigned int bpp;
u32 img_fmt;
u32 fourcc;
};
#if defined(CONFIG_ARCH_TEGRA_210_SOC)
extern const struct tegra_vi_soc tegra210_vi_soc;
#endif
struct v4l2_subdev *
tegra_channel_get_remote_subdev(struct tegra_vi_channel *chan);
int tegra_channel_set_stream(struct tegra_vi_channel *chan, bool on);
void tegra_channel_release_buffers(struct tegra_vi_channel *chan,
enum vb2_buffer_state state);
void tegra_channels_cleanup(struct tegra_vi *vi);
#endif
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/host1x.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "video.h"
static void tegra_v4l2_dev_release(struct v4l2_device *v4l2_dev)
{
struct tegra_video_device *vid;
vid = container_of(v4l2_dev, struct tegra_video_device, v4l2_dev);
/* cleanup channels here as all video device nodes are released */
tegra_channels_cleanup(vid->vi);
v4l2_device_unregister(v4l2_dev);
media_device_unregister(&vid->media_dev);
media_device_cleanup(&vid->media_dev);
kfree(vid);
}
static int host1x_video_probe(struct host1x_device *dev)
{
struct tegra_video_device *vid;
int ret;
vid = kzalloc(sizeof(*vid), GFP_KERNEL);
if (!vid)
return -ENOMEM;
dev_set_drvdata(&dev->dev, vid);
vid->media_dev.dev = &dev->dev;
strscpy(vid->media_dev.model, "NVIDIA Tegra Video Input Device",
sizeof(vid->media_dev.model));
media_device_init(&vid->media_dev);
ret = media_device_register(&vid->media_dev);
if (ret < 0) {
dev_err(&dev->dev,
"failed to register media device: %d\n", ret);
goto cleanup;
}
vid->v4l2_dev.mdev = &vid->media_dev;
vid->v4l2_dev.release = tegra_v4l2_dev_release;
ret = v4l2_device_register(&dev->dev, &vid->v4l2_dev);
if (ret < 0) {
dev_err(&dev->dev,
"V4L2 device registration failed: %d\n", ret);
goto unregister_media;
}
ret = host1x_device_init(dev);
if (ret < 0)
goto unregister_v4l2;
/*
* Both vi and csi channels are available now.
* Register v4l2 nodes and create media links for TPG.
*/
ret = tegra_v4l2_nodes_setup_tpg(vid);
if (ret < 0) {
dev_err(&dev->dev,
"failed to setup tpg graph: %d\n", ret);
goto device_exit;
}
return 0;
device_exit:
host1x_device_exit(dev);
/* vi exit ops does not clean channels, so clean them here */
tegra_channels_cleanup(vid->vi);
unregister_v4l2:
v4l2_device_unregister(&vid->v4l2_dev);
unregister_media:
media_device_unregister(&vid->media_dev);
cleanup:
media_device_cleanup(&vid->media_dev);
kfree(vid);
return ret;
}
static int host1x_video_remove(struct host1x_device *dev)
{
struct tegra_video_device *vid = dev_get_drvdata(&dev->dev);
tegra_v4l2_nodes_cleanup_tpg(vid);
host1x_device_exit(dev);
/* This calls v4l2_dev release callback on last reference */
v4l2_device_put(&vid->v4l2_dev);
return 0;
}
static const struct of_device_id host1x_video_subdevs[] = {
#if defined(CONFIG_ARCH_TEGRA_210_SOC)
{ .compatible = "nvidia,tegra210-csi", },
{ .compatible = "nvidia,tegra210-vi", },
#endif
{ }
};
static struct host1x_driver host1x_video_driver = {
.driver = {
.name = "tegra-video",
},
.probe = host1x_video_probe,
.remove = host1x_video_remove,
.subdevs = host1x_video_subdevs,
};
static struct platform_driver * const drivers[] = {
&tegra_csi_driver,
&tegra_vi_driver,
};
static int __init host1x_video_init(void)
{
int err;
err = host1x_driver_register(&host1x_video_driver);
if (err < 0)
return err;
err = platform_register_drivers(drivers, ARRAY_SIZE(drivers));
if (err < 0)
goto unregister_host1x;
return 0;
unregister_host1x:
host1x_driver_unregister(&host1x_video_driver);
return err;
}
module_init(host1x_video_init);
static void __exit host1x_video_exit(void)
{
platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
host1x_driver_unregister(&host1x_video_driver);
}
module_exit(host1x_video_exit);
MODULE_AUTHOR("Sowjanya Komatineni <skomatineni@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra Host1x Video driver");
MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2020 NVIDIA CORPORATION. All rights reserved.
*/
#ifndef __TEGRA_VIDEO_H__
#define __TEGRA_VIDEO_H__
#include <linux/host1x.h>
#include <media/media-device.h>
#include <media/v4l2-device.h>
#include "vi.h"
#include "csi.h"
struct tegra_video_device {
struct v4l2_device v4l2_dev;
struct media_device media_dev;
struct tegra_vi *vi;
struct tegra_csi *csi;
};
int tegra_v4l2_nodes_setup_tpg(struct tegra_video_device *vid);
void tegra_v4l2_nodes_cleanup_tpg(struct tegra_video_device *vid);
extern struct platform_driver tegra_vi_driver;
extern struct platform_driver tegra_csi_driver;
#endif
......@@ -272,10 +272,10 @@
#define TEGRA114_CLK_AUDIO3 242
#define TEGRA114_CLK_AUDIO4 243
#define TEGRA114_CLK_SPDIF 244
#define TEGRA114_CLK_CLK_OUT_1 245
#define TEGRA114_CLK_CLK_OUT_2 246
#define TEGRA114_CLK_CLK_OUT_3 247
#define TEGRA114_CLK_BLINK 248
/* 245 */
/* 246 */
/* 247 */
/* 248 */
#define TEGRA114_CLK_OSC 249
/* 250 */
/* 251 */
......@@ -335,9 +335,9 @@
#define TEGRA114_CLK_AUDIO3_MUX 303
#define TEGRA114_CLK_AUDIO4_MUX 304
#define TEGRA114_CLK_SPDIF_MUX 305
#define TEGRA114_CLK_CLK_OUT_1_MUX 306
#define TEGRA114_CLK_CLK_OUT_2_MUX 307
#define TEGRA114_CLK_CLK_OUT_3_MUX 308
/* 306 */
/* 307 */
/* 308 */
#define TEGRA114_CLK_DSIA_MUX 309
#define TEGRA114_CLK_DSIB_MUX 310
#define TEGRA114_CLK_XUSB_SS_DIV2 311
......
......@@ -271,10 +271,10 @@
#define TEGRA124_CLK_AUDIO3 242
#define TEGRA124_CLK_AUDIO4 243
#define TEGRA124_CLK_SPDIF 244
#define TEGRA124_CLK_CLK_OUT_1 245
#define TEGRA124_CLK_CLK_OUT_2 246
#define TEGRA124_CLK_CLK_OUT_3 247
#define TEGRA124_CLK_BLINK 248
/* 245 */
/* 246 */
/* 247 */
/* 248 */
#define TEGRA124_CLK_OSC 249
/* 250 */
/* 251 */
......@@ -334,9 +334,9 @@
#define TEGRA124_CLK_AUDIO3_MUX 303
#define TEGRA124_CLK_AUDIO4_MUX 304
#define TEGRA124_CLK_SPDIF_MUX 305
#define TEGRA124_CLK_CLK_OUT_1_MUX 306
#define TEGRA124_CLK_CLK_OUT_2_MUX 307
#define TEGRA124_CLK_CLK_OUT_3_MUX 308
/* 306 */
/* 307 */
/* 308 */
/* 309 */
/* 310 */
#define TEGRA124_CLK_SOR0_LVDS 311 /* deprecated */
......
......@@ -131,7 +131,7 @@
#define TEGRA20_CLK_CCLK 108
#define TEGRA20_CLK_HCLK 109
#define TEGRA20_CLK_PCLK 110
#define TEGRA20_CLK_BLINK 111
/* 111 */
#define TEGRA20_CLK_PLL_A 112
#define TEGRA20_CLK_PLL_A_OUT0 113
#define TEGRA20_CLK_PLL_C 114
......
......@@ -306,10 +306,10 @@
#define TEGRA210_CLK_AUDIO3 274
#define TEGRA210_CLK_AUDIO4 275
#define TEGRA210_CLK_SPDIF 276
#define TEGRA210_CLK_CLK_OUT_1 277
#define TEGRA210_CLK_CLK_OUT_2 278
#define TEGRA210_CLK_CLK_OUT_3 279
#define TEGRA210_CLK_BLINK 280
/* 277 */
/* 278 */
/* 279 */
/* 280 */
#define TEGRA210_CLK_SOR0_LVDS 281 /* deprecated */
#define TEGRA210_CLK_SOR0_OUT 281
#define TEGRA210_CLK_SOR1_OUT 282
......@@ -358,7 +358,7 @@
#define TEGRA210_CLK_PLL_A_OUT0_OUT_ADSP 324
/* 325 */
#define TEGRA210_CLK_OSC 326
/* 327 */
#define TEGRA210_CLK_CSI_TPG 327
/* 328 */
/* 329 */
/* 330 */
......@@ -388,9 +388,9 @@
#define TEGRA210_CLK_AUDIO3_MUX 353
#define TEGRA210_CLK_AUDIO4_MUX 354
#define TEGRA210_CLK_SPDIF_MUX 355
#define TEGRA210_CLK_CLK_OUT_1_MUX 356
#define TEGRA210_CLK_CLK_OUT_2_MUX 357
#define TEGRA210_CLK_CLK_OUT_3_MUX 358
/* 356 */
/* 357 */
/* 358 */
#define TEGRA210_CLK_DSIA_MUX 359
#define TEGRA210_CLK_DSIB_MUX 360
/* 361 */
......
......@@ -232,11 +232,11 @@
#define TEGRA30_CLK_AUDIO3 204
#define TEGRA30_CLK_AUDIO4 205
#define TEGRA30_CLK_SPDIF 206
#define TEGRA30_CLK_CLK_OUT_1 207 /* (extern1) */
#define TEGRA30_CLK_CLK_OUT_2 208 /* (extern2) */
#define TEGRA30_CLK_CLK_OUT_3 209 /* (extern3) */
/* 207 */
/* 208 */
/* 209 */
#define TEGRA30_CLK_SCLK 210
#define TEGRA30_CLK_BLINK 211
/* 211 */
#define TEGRA30_CLK_CCLK_G 212
#define TEGRA30_CLK_CCLK_LP 213
#define TEGRA30_CLK_TWD 214
......@@ -262,9 +262,9 @@
/* 297 */
/* 298 */
/* 299 */
#define TEGRA30_CLK_CLK_OUT_1_MUX 300
#define TEGRA30_CLK_CLK_OUT_2_MUX 301
#define TEGRA30_CLK_CLK_OUT_3_MUX 302
/* 300 */
/* 301 */
/* 302 */
#define TEGRA30_CLK_AUDIO0_MUX 303
#define TEGRA30_CLK_AUDIO1_MUX 304
#define TEGRA30_CLK_AUDIO2_MUX 305
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment