Commit a1b22a5f authored by Eric Biggers's avatar Eric Biggers Committed by Herbert Xu

crypto: arm/chacha20 - faster 8-bit rotations and other optimizations

Optimize ChaCha20 NEON performance by:

- Implementing the 8-bit rotations using the 'vtbl.8' instruction.
- Streamlining the part that adds the original state and XORs the data.
- Making some other small tweaks.

On ARM Cortex-A7, these optimizations improve ChaCha20 performance from
about 12.08 cycles per byte to about 11.37 -- a 5.9% improvement.

There is a tradeoff involved with the 'vtbl.8' rotation method since
there is at least one CPU (Cortex-A53) where it's not fastest.  But it
seems to be a better default; see the added comment.  Overall, this
patch reduces Cortex-A53 performance by less than 0.5%.
Signed-off-by: default avatarEric Biggers <ebiggers@google.com>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent 11dcb103
......@@ -18,6 +18,34 @@
* (at your option) any later version.
*/
/*
* NEON doesn't have a rotate instruction. The alternatives are, more or less:
*
* (a) vshl.u32 + vsri.u32 (needs temporary register)
* (b) vshl.u32 + vshr.u32 + vorr (needs temporary register)
* (c) vrev32.16 (16-bit rotations only)
* (d) vtbl.8 + vtbl.8 (multiple of 8 bits rotations only,
* needs index vector)
*
* ChaCha20 has 16, 12, 8, and 7-bit rotations. For the 12 and 7-bit
* rotations, the only choices are (a) and (b). We use (a) since it takes
* two-thirds the cycles of (b) on both Cortex-A7 and Cortex-A53.
*
* For the 16-bit rotation, we use vrev32.16 since it's consistently fastest
* and doesn't need a temporary register.
*
* For the 8-bit rotation, we use vtbl.8 + vtbl.8. On Cortex-A7, this sequence
* is twice as fast as (a), even when doing (a) on multiple registers
* simultaneously to eliminate the stall between vshl and vsri. Also, it
* parallelizes better when temporary registers are scarce.
*
* A disadvantage is that on Cortex-A53, the vtbl sequence is the same speed as
* (a), so the need to load the rotation table actually makes the vtbl method
* slightly slower overall on that CPU (~1.3% slower ChaCha20). Still, it
* seems to be a good compromise to get a more significant speed boost on some
* CPUs, e.g. ~4.8% faster ChaCha20 on Cortex-A7.
*/
#include <linux/linkage.h>
.text
......@@ -46,7 +74,9 @@ ENTRY(chacha20_block_xor_neon)
vmov q10, q2
vmov q11, q3
adr ip, .Lrol8_table
mov r3, #10
vld1.8 {d10}, [ip, :64]
.Ldoubleround:
// x0 += x1, x3 = rotl32(x3 ^ x0, 16)
......@@ -62,9 +92,9 @@ ENTRY(chacha20_block_xor_neon)
// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
vadd.i32 q0, q0, q1
veor q4, q3, q0
vshl.u32 q3, q4, #8
vsri.u32 q3, q4, #24
veor q3, q3, q0
vtbl.8 d6, {d6}, d10
vtbl.8 d7, {d7}, d10
// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
vadd.i32 q2, q2, q3
......@@ -92,9 +122,9 @@ ENTRY(chacha20_block_xor_neon)
// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
vadd.i32 q0, q0, q1
veor q4, q3, q0
vshl.u32 q3, q4, #8
vsri.u32 q3, q4, #24
veor q3, q3, q0
vtbl.8 d6, {d6}, d10
vtbl.8 d7, {d7}, d10
// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
vadd.i32 q2, q2, q3
......@@ -139,13 +169,17 @@ ENTRY(chacha20_block_xor_neon)
bx lr
ENDPROC(chacha20_block_xor_neon)
.align 4
.Lctrinc: .word 0, 1, 2, 3
.Lrol8_table: .byte 3, 0, 1, 2, 7, 4, 5, 6
.align 5
ENTRY(chacha20_4block_xor_neon)
push {r4-r6, lr}
mov ip, sp // preserve the stack pointer
sub r3, sp, #0x20 // allocate a 32 byte buffer
bic r3, r3, #0x1f // aligned to 32 bytes
mov sp, r3
push {r4-r5}
mov r4, sp // preserve the stack pointer
sub ip, sp, #0x20 // allocate a 32 byte buffer
bic ip, ip, #0x1f // aligned to 32 bytes
mov sp, ip
// r0: Input state matrix, s
// r1: 4 data blocks output, o
......@@ -155,25 +189,24 @@ ENTRY(chacha20_4block_xor_neon)
// This function encrypts four consecutive ChaCha20 blocks by loading
// the state matrix in NEON registers four times. The algorithm performs
// each operation on the corresponding word of each state matrix, hence
// requires no word shuffling. For final XORing step we transpose the
// matrix by interleaving 32- and then 64-bit words, which allows us to
// do XOR in NEON registers.
// requires no word shuffling. The words are re-interleaved before the
// final addition of the original state and the XORing step.
//
// x0..15[0-3] = s0..3[0..3]
add r3, r0, #0x20
// x0..15[0-3] = s0..15[0-3]
add ip, r0, #0x20
vld1.32 {q0-q1}, [r0]
vld1.32 {q2-q3}, [r3]
vld1.32 {q2-q3}, [ip]
adr r3, CTRINC
adr r5, .Lctrinc
vdup.32 q15, d7[1]
vdup.32 q14, d7[0]
vld1.32 {q11}, [r3, :128]
vld1.32 {q4}, [r5, :128]
vdup.32 q13, d6[1]
vdup.32 q12, d6[0]
vadd.i32 q12, q12, q11 // x12 += counter values 0-3
vdup.32 q11, d5[1]
vdup.32 q10, d5[0]
vadd.u32 q12, q12, q4 // x12 += counter values 0-3
vdup.32 q9, d4[1]
vdup.32 q8, d4[0]
vdup.32 q7, d3[1]
......@@ -185,9 +218,13 @@ ENTRY(chacha20_4block_xor_neon)
vdup.32 q1, d0[1]
vdup.32 q0, d0[0]
adr ip, .Lrol8_table
mov r3, #10
b 1f
.Ldoubleround4:
vld1.32 {q8-q9}, [sp, :256]
1:
// x0 += x4, x12 = rotl32(x12 ^ x0, 16)
// x1 += x5, x13 = rotl32(x13 ^ x1, 16)
// x2 += x6, x14 = rotl32(x14 ^ x2, 16)
......@@ -236,24 +273,25 @@ ENTRY(chacha20_4block_xor_neon)
// x1 += x5, x13 = rotl32(x13 ^ x1, 8)
// x2 += x6, x14 = rotl32(x14 ^ x2, 8)
// x3 += x7, x15 = rotl32(x15 ^ x3, 8)
vld1.8 {d16}, [ip, :64]
vadd.i32 q0, q0, q4
vadd.i32 q1, q1, q5
vadd.i32 q2, q2, q6
vadd.i32 q3, q3, q7
veor q8, q12, q0
veor q9, q13, q1
vshl.u32 q12, q8, #8
vshl.u32 q13, q9, #8
vsri.u32 q12, q8, #24
vsri.u32 q13, q9, #24
veor q12, q12, q0
veor q13, q13, q1
veor q14, q14, q2
veor q15, q15, q3
veor q8, q14, q2
veor q9, q15, q3
vshl.u32 q14, q8, #8
vshl.u32 q15, q9, #8
vsri.u32 q14, q8, #24
vsri.u32 q15, q9, #24
vtbl.8 d24, {d24}, d16
vtbl.8 d25, {d25}, d16
vtbl.8 d26, {d26}, d16
vtbl.8 d27, {d27}, d16
vtbl.8 d28, {d28}, d16
vtbl.8 d29, {d29}, d16
vtbl.8 d30, {d30}, d16
vtbl.8 d31, {d31}, d16
vld1.32 {q8-q9}, [sp, :256]
......@@ -332,24 +370,25 @@ ENTRY(chacha20_4block_xor_neon)
// x1 += x6, x12 = rotl32(x12 ^ x1, 8)
// x2 += x7, x13 = rotl32(x13 ^ x2, 8)
// x3 += x4, x14 = rotl32(x14 ^ x3, 8)
vld1.8 {d16}, [ip, :64]
vadd.i32 q0, q0, q5
vadd.i32 q1, q1, q6
vadd.i32 q2, q2, q7
vadd.i32 q3, q3, q4
veor q8, q15, q0
veor q9, q12, q1
vshl.u32 q15, q8, #8
vshl.u32 q12, q9, #8
vsri.u32 q15, q8, #24
vsri.u32 q12, q9, #24
veor q15, q15, q0
veor q12, q12, q1
veor q13, q13, q2
veor q14, q14, q3
veor q8, q13, q2
veor q9, q14, q3
vshl.u32 q13, q8, #8
vshl.u32 q14, q9, #8
vsri.u32 q13, q8, #24
vsri.u32 q14, q9, #24
vtbl.8 d30, {d30}, d16
vtbl.8 d31, {d31}, d16
vtbl.8 d24, {d24}, d16
vtbl.8 d25, {d25}, d16
vtbl.8 d26, {d26}, d16
vtbl.8 d27, {d27}, d16
vtbl.8 d28, {d28}, d16
vtbl.8 d29, {d29}, d16
vld1.32 {q8-q9}, [sp, :256]
......@@ -379,104 +418,76 @@ ENTRY(chacha20_4block_xor_neon)
vsri.u32 q6, q9, #25
subs r3, r3, #1
beq 0f
vld1.32 {q8-q9}, [sp, :256]
b .Ldoubleround4
// x0[0-3] += s0[0]
// x1[0-3] += s0[1]
// x2[0-3] += s0[2]
// x3[0-3] += s0[3]
0: ldmia r0!, {r3-r6}
vdup.32 q8, r3
vdup.32 q9, r4
vadd.i32 q0, q0, q8
vadd.i32 q1, q1, q9
vdup.32 q8, r5
vdup.32 q9, r6
vadd.i32 q2, q2, q8
vadd.i32 q3, q3, q9
// x4[0-3] += s1[0]
// x5[0-3] += s1[1]
// x6[0-3] += s1[2]
// x7[0-3] += s1[3]
ldmia r0!, {r3-r6}
vdup.32 q8, r3
vdup.32 q9, r4
vadd.i32 q4, q4, q8
vadd.i32 q5, q5, q9
vdup.32 q8, r5
vdup.32 q9, r6
vadd.i32 q6, q6, q8
vadd.i32 q7, q7, q9
// interleave 32-bit words in state n, n+1
vzip.32 q0, q1
vzip.32 q2, q3
vzip.32 q4, q5
vzip.32 q6, q7
// interleave 64-bit words in state n, n+2
bne .Ldoubleround4
// x0..7[0-3] are in q0-q7, x10..15[0-3] are in q10-q15.
// x8..9[0-3] are on the stack.
// Re-interleave the words in the first two rows of each block (x0..7).
// Also add the counter values 0-3 to x12[0-3].
vld1.32 {q8}, [r5, :128] // load counter values 0-3
vzip.32 q0, q1 // => (0 1 0 1) (0 1 0 1)
vzip.32 q2, q3 // => (2 3 2 3) (2 3 2 3)
vzip.32 q4, q5 // => (4 5 4 5) (4 5 4 5)
vzip.32 q6, q7 // => (6 7 6 7) (6 7 6 7)
vadd.u32 q12, q8 // x12 += counter values 0-3
vswp d1, d4
vswp d3, d6
vld1.32 {q8-q9}, [r0]! // load s0..7
vswp d9, d12
vswp d11, d14
// xor with corresponding input, write to output
// Swap q1 and q4 so that we'll free up consecutive registers (q0-q1)
// after XORing the first 32 bytes.
vswp q1, q4
// First two rows of each block are (q0 q1) (q2 q6) (q4 q5) (q3 q7)
// x0..3[0-3] += s0..3[0-3] (add orig state to 1st row of each block)
vadd.u32 q0, q0, q8
vadd.u32 q2, q2, q8
vadd.u32 q4, q4, q8
vadd.u32 q3, q3, q8
// x4..7[0-3] += s4..7[0-3] (add orig state to 2nd row of each block)
vadd.u32 q1, q1, q9
vadd.u32 q6, q6, q9
vadd.u32 q5, q5, q9
vadd.u32 q7, q7, q9
// XOR first 32 bytes using keystream from first two rows of first block
vld1.8 {q8-q9}, [r2]!
veor q8, q8, q0
veor q9, q9, q4
veor q9, q9, q1
vst1.8 {q8-q9}, [r1]!
// Re-interleave the words in the last two rows of each block (x8..15).
vld1.32 {q8-q9}, [sp, :256]
// x8[0-3] += s2[0]
// x9[0-3] += s2[1]
// x10[0-3] += s2[2]
// x11[0-3] += s2[3]
ldmia r0!, {r3-r6}
vdup.32 q0, r3
vdup.32 q4, r4
vadd.i32 q8, q8, q0
vadd.i32 q9, q9, q4
vdup.32 q0, r5
vdup.32 q4, r6
vadd.i32 q10, q10, q0
vadd.i32 q11, q11, q4
// x12[0-3] += s3[0]
// x13[0-3] += s3[1]
// x14[0-3] += s3[2]
// x15[0-3] += s3[3]
ldmia r0!, {r3-r6}
vdup.32 q0, r3
vdup.32 q4, r4
adr r3, CTRINC
vadd.i32 q12, q12, q0
vld1.32 {q0}, [r3, :128]
vadd.i32 q13, q13, q4
vadd.i32 q12, q12, q0 // x12 += counter values 0-3
vdup.32 q0, r5
vdup.32 q4, r6
vadd.i32 q14, q14, q0
vadd.i32 q15, q15, q4
// interleave 32-bit words in state n, n+1
vzip.32 q8, q9
vzip.32 q10, q11
vzip.32 q12, q13
vzip.32 q14, q15
// interleave 64-bit words in state n, n+2
vswp d17, d20
vswp d19, d22
vzip.32 q12, q13 // => (12 13 12 13) (12 13 12 13)
vzip.32 q14, q15 // => (14 15 14 15) (14 15 14 15)
vzip.32 q8, q9 // => (8 9 8 9) (8 9 8 9)
vzip.32 q10, q11 // => (10 11 10 11) (10 11 10 11)
vld1.32 {q0-q1}, [r0] // load s8..15
vswp d25, d28
vswp d27, d30
vswp d17, d20
vswp d19, d22
// Last two rows of each block are (q8 q12) (q10 q14) (q9 q13) (q11 q15)
// x8..11[0-3] += s8..11[0-3] (add orig state to 3rd row of each block)
vadd.u32 q8, q8, q0
vadd.u32 q10, q10, q0
vadd.u32 q9, q9, q0
vadd.u32 q11, q11, q0
vmov q4, q1
// x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each block)
vadd.u32 q12, q12, q1
vadd.u32 q14, q14, q1
vadd.u32 q13, q13, q1
vadd.u32 q15, q15, q1
// XOR the rest of the data with the keystream
vld1.8 {q0-q1}, [r2]!
veor q0, q0, q8
......@@ -509,13 +520,11 @@ ENTRY(chacha20_4block_xor_neon)
vst1.8 {q0-q1}, [r1]!
vld1.8 {q0-q1}, [r2]
mov sp, r4 // restore original stack pointer
veor q0, q0, q11
veor q1, q1, q15
vst1.8 {q0-q1}, [r1]
mov sp, ip
pop {r4-r6, pc}
pop {r4-r5}
bx lr
ENDPROC(chacha20_4block_xor_neon)
.align 4
CTRINC: .word 0, 1, 2, 3
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment