Commit a2f6d9c4 authored by Theodore Ts'o's avatar Theodore Ts'o

Merge branch 'dax-4.10-iomap-pmd' into origin

parents bc33b0ca 9484ab1b
......@@ -55,7 +55,6 @@ config FS_DAX_PMD
depends on FS_DAX
depends on ZONE_DEVICE
depends on TRANSPARENT_HUGEPAGE
depends on BROKEN
endif # BLOCK
......
......@@ -34,25 +34,11 @@
#include <linux/iomap.h>
#include "internal.h"
/*
* We use lowest available bit in exceptional entry for locking, other two
* bits to determine entry type. In total 3 special bits.
*/
#define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)
#define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
#define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
#define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD)
#define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK)
#define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
#define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \
RADIX_TREE_EXCEPTIONAL_ENTRY))
/* We choose 4096 entries - same as per-zone page wait tables */
#define DAX_WAIT_TABLE_BITS 12
#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
static int __init init_dax_wait_table(void)
{
......@@ -64,14 +50,6 @@ static int __init init_dax_wait_table(void)
}
fs_initcall(init_dax_wait_table);
static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
pgoff_t index)
{
unsigned long hash = hash_long((unsigned long)mapping ^ index,
DAX_WAIT_TABLE_BITS);
return wait_table + hash;
}
static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
{
struct request_queue *q = bdev->bd_queue;
......@@ -98,6 +76,26 @@ static void dax_unmap_atomic(struct block_device *bdev,
blk_queue_exit(bdev->bd_queue);
}
static int dax_is_pmd_entry(void *entry)
{
return (unsigned long)entry & RADIX_DAX_PMD;
}
static int dax_is_pte_entry(void *entry)
{
return !((unsigned long)entry & RADIX_DAX_PMD);
}
static int dax_is_zero_entry(void *entry)
{
return (unsigned long)entry & RADIX_DAX_HZP;
}
static int dax_is_empty_entry(void *entry)
{
return (unsigned long)entry & RADIX_DAX_EMPTY;
}
struct page *read_dax_sector(struct block_device *bdev, sector_t n)
{
struct page *page = alloc_pages(GFP_KERNEL, 0);
......@@ -123,19 +121,6 @@ static bool buffer_written(struct buffer_head *bh)
return buffer_mapped(bh) && !buffer_unwritten(bh);
}
/*
* When ext4 encounters a hole, it returns without modifying the buffer_head
* which means that we can't trust b_size. To cope with this, we set b_state
* to 0 before calling get_block and, if any bit is set, we know we can trust
* b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
* and would save us time calling get_block repeatedly.
*/
static bool buffer_size_valid(struct buffer_head *bh)
{
return bh->b_state != 0;
}
static sector_t to_sector(const struct buffer_head *bh,
const struct inode *inode)
{
......@@ -177,8 +162,6 @@ static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
rc = get_block(inode, block, bh, rw == WRITE);
if (rc)
break;
if (!buffer_size_valid(bh))
bh->b_size = 1 << blkbits;
bh_max = pos - first + bh->b_size;
bdev = bh->b_bdev;
/*
......@@ -300,7 +283,7 @@ EXPORT_SYMBOL_GPL(dax_do_io);
*/
struct exceptional_entry_key {
struct address_space *mapping;
unsigned long index;
pgoff_t entry_start;
};
struct wait_exceptional_entry_queue {
......@@ -308,6 +291,26 @@ struct wait_exceptional_entry_queue {
struct exceptional_entry_key key;
};
static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
pgoff_t index, void *entry, struct exceptional_entry_key *key)
{
unsigned long hash;
/*
* If 'entry' is a PMD, align the 'index' that we use for the wait
* queue to the start of that PMD. This ensures that all offsets in
* the range covered by the PMD map to the same bit lock.
*/
if (dax_is_pmd_entry(entry))
index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
key->mapping = mapping;
key->entry_start = index;
hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
return wait_table + hash;
}
static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
int sync, void *keyp)
{
......@@ -316,7 +319,7 @@ static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
container_of(wait, struct wait_exceptional_entry_queue, wait);
if (key->mapping != ewait->key.mapping ||
key->index != ewait->key.index)
key->entry_start != ewait->key.entry_start)
return 0;
return autoremove_wake_function(wait, mode, sync, NULL);
}
......@@ -372,24 +375,24 @@ static inline void *unlock_slot(struct address_space *mapping, void **slot)
static void *get_unlocked_mapping_entry(struct address_space *mapping,
pgoff_t index, void ***slotp)
{
void *ret, **slot;
void *entry, **slot;
struct wait_exceptional_entry_queue ewait;
wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
wait_queue_head_t *wq;
init_wait(&ewait.wait);
ewait.wait.func = wake_exceptional_entry_func;
ewait.key.mapping = mapping;
ewait.key.index = index;
for (;;) {
ret = __radix_tree_lookup(&mapping->page_tree, index, NULL,
entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
&slot);
if (!ret || !radix_tree_exceptional_entry(ret) ||
if (!entry || !radix_tree_exceptional_entry(entry) ||
!slot_locked(mapping, slot)) {
if (slotp)
*slotp = slot;
return ret;
return entry;
}
wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
prepare_to_wait_exclusive(wq, &ewait.wait,
TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&mapping->tree_lock);
......@@ -399,52 +402,157 @@ static void *get_unlocked_mapping_entry(struct address_space *mapping,
}
}
static void put_locked_mapping_entry(struct address_space *mapping,
pgoff_t index, void *entry)
{
if (!radix_tree_exceptional_entry(entry)) {
unlock_page(entry);
put_page(entry);
} else {
dax_unlock_mapping_entry(mapping, index);
}
}
/*
* Called when we are done with radix tree entry we looked up via
* get_unlocked_mapping_entry() and which we didn't lock in the end.
*/
static void put_unlocked_mapping_entry(struct address_space *mapping,
pgoff_t index, void *entry)
{
if (!radix_tree_exceptional_entry(entry))
return;
/* We have to wake up next waiter for the radix tree entry lock */
dax_wake_mapping_entry_waiter(mapping, index, entry, false);
}
/*
* Find radix tree entry at given index. If it points to a page, return with
* the page locked. If it points to the exceptional entry, return with the
* radix tree entry locked. If the radix tree doesn't contain given index,
* create empty exceptional entry for the index and return with it locked.
*
* When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
* either return that locked entry or will return an error. This error will
* happen if there are any 4k entries (either zero pages or DAX entries)
* within the 2MiB range that we are requesting.
*
* We always favor 4k entries over 2MiB entries. There isn't a flow where we
* evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
* insertion will fail if it finds any 4k entries already in the tree, and a
* 4k insertion will cause an existing 2MiB entry to be unmapped and
* downgraded to 4k entries. This happens for both 2MiB huge zero pages as
* well as 2MiB empty entries.
*
* The exception to this downgrade path is for 2MiB DAX PMD entries that have
* real storage backing them. We will leave these real 2MiB DAX entries in
* the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
*
* Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
* persistent memory the benefit is doubtful. We can add that later if we can
* show it helps.
*/
static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index)
static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
unsigned long size_flag)
{
void *ret, **slot;
bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
void *entry, **slot;
restart:
spin_lock_irq(&mapping->tree_lock);
ret = get_unlocked_mapping_entry(mapping, index, &slot);
entry = get_unlocked_mapping_entry(mapping, index, &slot);
if (entry) {
if (size_flag & RADIX_DAX_PMD) {
if (!radix_tree_exceptional_entry(entry) ||
dax_is_pte_entry(entry)) {
put_unlocked_mapping_entry(mapping, index,
entry);
entry = ERR_PTR(-EEXIST);
goto out_unlock;
}
} else { /* trying to grab a PTE entry */
if (radix_tree_exceptional_entry(entry) &&
dax_is_pmd_entry(entry) &&
(dax_is_zero_entry(entry) ||
dax_is_empty_entry(entry))) {
pmd_downgrade = true;
}
}
}
/* No entry for given index? Make sure radix tree is big enough. */
if (!ret) {
if (!entry || pmd_downgrade) {
int err;
if (pmd_downgrade) {
/*
* Make sure 'entry' remains valid while we drop
* mapping->tree_lock.
*/
entry = lock_slot(mapping, slot);
}
spin_unlock_irq(&mapping->tree_lock);
err = radix_tree_preload(
mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
if (err)
if (err) {
if (pmd_downgrade)
put_locked_mapping_entry(mapping, index, entry);
return ERR_PTR(err);
ret = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
RADIX_DAX_ENTRY_LOCK);
}
/*
* Besides huge zero pages the only other thing that gets
* downgraded are empty entries which don't need to be
* unmapped.
*/
if (pmd_downgrade && dax_is_zero_entry(entry))
unmap_mapping_range(mapping,
(index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
spin_lock_irq(&mapping->tree_lock);
err = radix_tree_insert(&mapping->page_tree, index, ret);
if (pmd_downgrade) {
radix_tree_delete(&mapping->page_tree, index);
mapping->nrexceptional--;
dax_wake_mapping_entry_waiter(mapping, index, entry,
true);
}
entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
err = __radix_tree_insert(&mapping->page_tree, index,
dax_radix_order(entry), entry);
radix_tree_preload_end();
if (err) {
spin_unlock_irq(&mapping->tree_lock);
/* Someone already created the entry? */
if (err == -EEXIST)
/*
* Someone already created the entry? This is a
* normal failure when inserting PMDs in a range
* that already contains PTEs. In that case we want
* to return -EEXIST immediately.
*/
if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
goto restart;
/*
* Our insertion of a DAX PMD entry failed, most
* likely because it collided with a PTE sized entry
* at a different index in the PMD range. We haven't
* inserted anything into the radix tree and have no
* waiters to wake.
*/
return ERR_PTR(err);
}
/* Good, we have inserted empty locked entry into the tree. */
mapping->nrexceptional++;
spin_unlock_irq(&mapping->tree_lock);
return ret;
return entry;
}
/* Normal page in radix tree? */
if (!radix_tree_exceptional_entry(ret)) {
struct page *page = ret;
if (!radix_tree_exceptional_entry(entry)) {
struct page *page = entry;
get_page(page);
spin_unlock_irq(&mapping->tree_lock);
......@@ -457,15 +565,26 @@ static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index)
}
return page;
}
ret = lock_slot(mapping, slot);
entry = lock_slot(mapping, slot);
out_unlock:
spin_unlock_irq(&mapping->tree_lock);
return ret;
return entry;
}
/*
* We do not necessarily hold the mapping->tree_lock when we call this
* function so it is possible that 'entry' is no longer a valid item in the
* radix tree. This is okay because all we really need to do is to find the
* correct waitqueue where tasks might be waiting for that old 'entry' and
* wake them.
*/
void dax_wake_mapping_entry_waiter(struct address_space *mapping,
pgoff_t index, bool wake_all)
pgoff_t index, void *entry, bool wake_all)
{
wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
struct exceptional_entry_key key;
wait_queue_head_t *wq;
wq = dax_entry_waitqueue(mapping, index, entry, &key);
/*
* Checking for locked entry and prepare_to_wait_exclusive() happens
......@@ -473,54 +592,24 @@ void dax_wake_mapping_entry_waiter(struct address_space *mapping,
* So at this point all tasks that could have seen our entry locked
* must be in the waitqueue and the following check will see them.
*/
if (waitqueue_active(wq)) {
struct exceptional_entry_key key;
key.mapping = mapping;
key.index = index;
if (waitqueue_active(wq))
__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
}
}
void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
{
void *ret, **slot;
void *entry, **slot;
spin_lock_irq(&mapping->tree_lock);
ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
if (WARN_ON_ONCE(!ret || !radix_tree_exceptional_entry(ret) ||
entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
!slot_locked(mapping, slot))) {
spin_unlock_irq(&mapping->tree_lock);
return;
}
unlock_slot(mapping, slot);
spin_unlock_irq(&mapping->tree_lock);
dax_wake_mapping_entry_waiter(mapping, index, false);
}
static void put_locked_mapping_entry(struct address_space *mapping,
pgoff_t index, void *entry)
{
if (!radix_tree_exceptional_entry(entry)) {
unlock_page(entry);
put_page(entry);
} else {
dax_unlock_mapping_entry(mapping, index);
}
}
/*
* Called when we are done with radix tree entry we looked up via
* get_unlocked_mapping_entry() and which we didn't lock in the end.
*/
static void put_unlocked_mapping_entry(struct address_space *mapping,
pgoff_t index, void *entry)
{
if (!radix_tree_exceptional_entry(entry))
return;
/* We have to wake up next waiter for the radix tree entry lock */
dax_wake_mapping_entry_waiter(mapping, index, false);
dax_wake_mapping_entry_waiter(mapping, index, entry, false);
}
/*
......@@ -547,7 +636,7 @@ int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
radix_tree_delete(&mapping->page_tree, index);
mapping->nrexceptional--;
spin_unlock_irq(&mapping->tree_lock);
dax_wake_mapping_entry_waiter(mapping, index, true);
dax_wake_mapping_entry_waiter(mapping, index, entry, true);
return 1;
}
......@@ -600,11 +689,17 @@ static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size
return 0;
}
#define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
/*
* By this point grab_mapping_entry() has ensured that we have a locked entry
* of the appropriate size so we don't have to worry about downgrading PMDs to
* PTEs. If we happen to be trying to insert a PTE and there is a PMD
* already in the tree, we will skip the insertion and just dirty the PMD as
* appropriate.
*/
static void *dax_insert_mapping_entry(struct address_space *mapping,
struct vm_fault *vmf,
void *entry, sector_t sector)
void *entry, sector_t sector,
unsigned long flags)
{
struct radix_tree_root *page_tree = &mapping->page_tree;
int error = 0;
......@@ -627,22 +722,35 @@ static void *dax_insert_mapping_entry(struct address_space *mapping,
error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
if (error)
return ERR_PTR(error);
} else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
/* replacing huge zero page with PMD block mapping */
unmap_mapping_range(mapping,
(vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
}
spin_lock_irq(&mapping->tree_lock);
new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) |
RADIX_DAX_ENTRY_LOCK);
new_entry = dax_radix_locked_entry(sector, flags);
if (hole_fill) {
__delete_from_page_cache(entry, NULL);
/* Drop pagecache reference */
put_page(entry);
error = radix_tree_insert(page_tree, index, new_entry);
error = __radix_tree_insert(page_tree, index,
dax_radix_order(new_entry), new_entry);
if (error) {
new_entry = ERR_PTR(error);
goto unlock;
}
mapping->nrexceptional++;
} else {
} else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
/*
* Only swap our new entry into the radix tree if the current
* entry is a zero page or an empty entry. If a normal PTE or
* PMD entry is already in the tree, we leave it alone. This
* means that if we are trying to insert a PTE and the
* existing entry is a PMD, we will just leave the PMD in the
* tree and dirty it if necessary.
*/
void **slot;
void *ret;
......@@ -672,7 +780,6 @@ static int dax_writeback_one(struct block_device *bdev,
struct address_space *mapping, pgoff_t index, void *entry)
{
struct radix_tree_root *page_tree = &mapping->page_tree;
int type = RADIX_DAX_TYPE(entry);
struct radix_tree_node *node;
struct blk_dax_ctl dax;
void **slot;
......@@ -693,13 +800,21 @@ static int dax_writeback_one(struct block_device *bdev,
if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
goto unlock;
if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
dax_is_zero_entry(entry))) {
ret = -EIO;
goto unlock;
}
dax.sector = RADIX_DAX_SECTOR(entry);
dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
/*
* Even if dax_writeback_mapping_range() was given a wbc->range_start
* in the middle of a PMD, the 'index' we are given will be aligned to
* the start index of the PMD, as will the sector we pull from
* 'entry'. This allows us to flush for PMD_SIZE and not have to
* worry about partial PMD writebacks.
*/
dax.sector = dax_radix_sector(entry);
dax.size = PAGE_SIZE << dax_radix_order(entry);
spin_unlock_irq(&mapping->tree_lock);
/*
......@@ -738,12 +853,11 @@ int dax_writeback_mapping_range(struct address_space *mapping,
struct block_device *bdev, struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
pgoff_t start_index, end_index, pmd_index;
pgoff_t start_index, end_index;
pgoff_t indices[PAGEVEC_SIZE];
struct pagevec pvec;
bool done = false;
int i, ret = 0;
void *entry;
if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
return -EIO;
......@@ -753,15 +867,6 @@ int dax_writeback_mapping_range(struct address_space *mapping,
start_index = wbc->range_start >> PAGE_SHIFT;
end_index = wbc->range_end >> PAGE_SHIFT;
pmd_index = DAX_PMD_INDEX(start_index);
rcu_read_lock();
entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
rcu_read_unlock();
/* see if the start of our range is covered by a PMD entry */
if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
start_index = pmd_index;
tag_pages_for_writeback(mapping, start_index, end_index);
......@@ -806,7 +911,7 @@ static int dax_insert_mapping(struct address_space *mapping,
return PTR_ERR(dax.addr);
dax_unmap_atomic(bdev, &dax);
ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector);
ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
if (IS_ERR(ret))
return PTR_ERR(ret);
*entryp = ret;
......@@ -853,7 +958,7 @@ int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
bh.b_bdev = inode->i_sb->s_bdev;
bh.b_size = PAGE_SIZE;
entry = grab_mapping_entry(mapping, vmf->pgoff);
entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
if (IS_ERR(entry)) {
error = PTR_ERR(entry);
goto out;
......@@ -913,224 +1018,6 @@ int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
}
EXPORT_SYMBOL_GPL(dax_fault);
#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
/*
* The 'colour' (ie low bits) within a PMD of a page offset. This comes up
* more often than one might expect in the below function.
*/
#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
static void __dax_dbg(struct buffer_head *bh, unsigned long address,
const char *reason, const char *fn)
{
if (bh) {
char bname[BDEVNAME_SIZE];
bdevname(bh->b_bdev, bname);
pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
"length %zd fallback: %s\n", fn, current->comm,
address, bname, bh->b_state, (u64)bh->b_blocknr,
bh->b_size, reason);
} else {
pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
current->comm, address, reason);
}
}
#define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
/**
* dax_pmd_fault - handle a PMD fault on a DAX file
* @vma: The virtual memory area where the fault occurred
* @vmf: The description of the fault
* @get_block: The filesystem method used to translate file offsets to blocks
*
* When a page fault occurs, filesystems may call this helper in their
* pmd_fault handler for DAX files.
*/
int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd, unsigned int flags, get_block_t get_block)
{
struct file *file = vma->vm_file;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct buffer_head bh;
unsigned blkbits = inode->i_blkbits;
unsigned long pmd_addr = address & PMD_MASK;
bool write = flags & FAULT_FLAG_WRITE;
struct block_device *bdev;
pgoff_t size, pgoff;
sector_t block;
int result = 0;
bool alloc = false;
/* dax pmd mappings require pfn_t_devmap() */
if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
return VM_FAULT_FALLBACK;
/* Fall back to PTEs if we're going to COW */
if (write && !(vma->vm_flags & VM_SHARED)) {
split_huge_pmd(vma, pmd, address);
dax_pmd_dbg(NULL, address, "cow write");
return VM_FAULT_FALLBACK;
}
/* If the PMD would extend outside the VMA */
if (pmd_addr < vma->vm_start) {
dax_pmd_dbg(NULL, address, "vma start unaligned");
return VM_FAULT_FALLBACK;
}
if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
dax_pmd_dbg(NULL, address, "vma end unaligned");
return VM_FAULT_FALLBACK;
}
pgoff = linear_page_index(vma, pmd_addr);
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (pgoff >= size)
return VM_FAULT_SIGBUS;
/* If the PMD would cover blocks out of the file */
if ((pgoff | PG_PMD_COLOUR) >= size) {
dax_pmd_dbg(NULL, address,
"offset + huge page size > file size");
return VM_FAULT_FALLBACK;
}
memset(&bh, 0, sizeof(bh));
bh.b_bdev = inode->i_sb->s_bdev;
block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
bh.b_size = PMD_SIZE;
if (get_block(inode, block, &bh, 0) != 0)
return VM_FAULT_SIGBUS;
if (!buffer_mapped(&bh) && write) {
if (get_block(inode, block, &bh, 1) != 0)
return VM_FAULT_SIGBUS;
alloc = true;
WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
}
bdev = bh.b_bdev;
/*
* If the filesystem isn't willing to tell us the length of a hole,
* just fall back to PTEs. Calling get_block 512 times in a loop
* would be silly.
*/
if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
dax_pmd_dbg(&bh, address, "allocated block too small");
return VM_FAULT_FALLBACK;
}
/*
* If we allocated new storage, make sure no process has any
* zero pages covering this hole
*/
if (alloc) {
loff_t lstart = pgoff << PAGE_SHIFT;
loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
truncate_pagecache_range(inode, lstart, lend);
}
if (!write && !buffer_mapped(&bh)) {
spinlock_t *ptl;
pmd_t entry;
struct page *zero_page = mm_get_huge_zero_page(vma->vm_mm);
if (unlikely(!zero_page)) {
dax_pmd_dbg(&bh, address, "no zero page");
goto fallback;
}
ptl = pmd_lock(vma->vm_mm, pmd);
if (!pmd_none(*pmd)) {
spin_unlock(ptl);
dax_pmd_dbg(&bh, address, "pmd already present");
goto fallback;
}
dev_dbg(part_to_dev(bdev->bd_part),
"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
__func__, current->comm, address,
(unsigned long long) to_sector(&bh, inode));
entry = mk_pmd(zero_page, vma->vm_page_prot);
entry = pmd_mkhuge(entry);
set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
result = VM_FAULT_NOPAGE;
spin_unlock(ptl);
} else {
struct blk_dax_ctl dax = {
.sector = to_sector(&bh, inode),
.size = PMD_SIZE,
};
long length = dax_map_atomic(bdev, &dax);
if (length < 0) {
dax_pmd_dbg(&bh, address, "dax-error fallback");
goto fallback;
}
if (length < PMD_SIZE) {
dax_pmd_dbg(&bh, address, "dax-length too small");
dax_unmap_atomic(bdev, &dax);
goto fallback;
}
if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
dax_pmd_dbg(&bh, address, "pfn unaligned");
dax_unmap_atomic(bdev, &dax);
goto fallback;
}
if (!pfn_t_devmap(dax.pfn)) {
dax_unmap_atomic(bdev, &dax);
dax_pmd_dbg(&bh, address, "pfn not in memmap");
goto fallback;
}
dax_unmap_atomic(bdev, &dax);
/*
* For PTE faults we insert a radix tree entry for reads, and
* leave it clean. Then on the first write we dirty the radix
* tree entry via the dax_pfn_mkwrite() path. This sequence
* allows the dax_pfn_mkwrite() call to be simpler and avoid a
* call into get_block() to translate the pgoff to a sector in
* order to be able to create a new radix tree entry.
*
* The PMD path doesn't have an equivalent to
* dax_pfn_mkwrite(), though, so for a read followed by a
* write we traverse all the way through dax_pmd_fault()
* twice. This means we can just skip inserting a radix tree
* entry completely on the initial read and just wait until
* the write to insert a dirty entry.
*/
if (write) {
/*
* We should insert radix-tree entry and dirty it here.
* For now this is broken...
*/
}
dev_dbg(part_to_dev(bdev->bd_part),
"%s: %s addr: %lx pfn: %lx sect: %llx\n",
__func__, current->comm, address,
pfn_t_to_pfn(dax.pfn),
(unsigned long long) dax.sector);
result |= vmf_insert_pfn_pmd(vma, address, pmd,
dax.pfn, write);
}
out:
return result;
fallback:
count_vm_event(THP_FAULT_FALLBACK);
result = VM_FAULT_FALLBACK;
goto out;
}
EXPORT_SYMBOL_GPL(dax_pmd_fault);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/**
* dax_pfn_mkwrite - handle first write to DAX page
* @vma: The virtual memory area where the fault occurred
......@@ -1214,7 +1101,8 @@ int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
/* Block boundary? Nothing to do */
if (!length)
return 0;
BUG_ON((offset + length) > PAGE_SIZE);
if (WARN_ON_ONCE((offset + length) > PAGE_SIZE))
return -EINVAL;
memset(&bh, 0, sizeof(bh));
bh.b_bdev = inode->i_sb->s_bdev;
......@@ -1245,8 +1133,13 @@ int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
EXPORT_SYMBOL_GPL(dax_truncate_page);
#ifdef CONFIG_FS_IOMAP
static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
{
return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
}
static loff_t
iomap_dax_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
struct iomap *iomap)
{
struct iov_iter *iter = data;
......@@ -1270,8 +1163,7 @@ iomap_dax_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
struct blk_dax_ctl dax = { 0 };
ssize_t map_len;
dax.sector = iomap->blkno +
(((pos & PAGE_MASK) - iomap->offset) >> 9);
dax.sector = dax_iomap_sector(iomap, pos);
dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
map_len = dax_map_atomic(iomap->bdev, &dax);
if (map_len < 0) {
......@@ -1303,7 +1195,7 @@ iomap_dax_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
}
/**
* iomap_dax_rw - Perform I/O to a DAX file
* dax_iomap_rw - Perform I/O to a DAX file
* @iocb: The control block for this I/O
* @iter: The addresses to do I/O from or to
* @ops: iomap ops passed from the file system
......@@ -1313,7 +1205,7 @@ iomap_dax_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
* and evicting any page cache pages in the region under I/O.
*/
ssize_t
iomap_dax_rw(struct kiocb *iocb, struct iov_iter *iter,
dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
struct iomap_ops *ops)
{
struct address_space *mapping = iocb->ki_filp->f_mapping;
......@@ -1343,7 +1235,7 @@ iomap_dax_rw(struct kiocb *iocb, struct iov_iter *iter,
while (iov_iter_count(iter)) {
ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
iter, iomap_dax_actor);
iter, dax_iomap_actor);
if (ret <= 0)
break;
pos += ret;
......@@ -1353,10 +1245,10 @@ iomap_dax_rw(struct kiocb *iocb, struct iov_iter *iter,
iocb->ki_pos += done;
return done ? done : ret;
}
EXPORT_SYMBOL_GPL(iomap_dax_rw);
EXPORT_SYMBOL_GPL(dax_iomap_rw);
/**
* iomap_dax_fault - handle a page fault on a DAX file
* dax_iomap_fault - handle a page fault on a DAX file
* @vma: The virtual memory area where the fault occurred
* @vmf: The description of the fault
* @ops: iomap ops passed from the file system
......@@ -1365,7 +1257,7 @@ EXPORT_SYMBOL_GPL(iomap_dax_rw);
* or mkwrite handler for DAX files. Assumes the caller has done all the
* necessary locking for the page fault to proceed successfully.
*/
int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
struct iomap_ops *ops)
{
struct address_space *mapping = vma->vm_file->f_mapping;
......@@ -1374,8 +1266,9 @@ int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
sector_t sector;
struct iomap iomap = { 0 };
unsigned flags = 0;
unsigned flags = IOMAP_FAULT;
int error, major = 0;
int locked_status = 0;
void *entry;
/*
......@@ -1386,7 +1279,7 @@ int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
if (pos >= i_size_read(inode))
return VM_FAULT_SIGBUS;
entry = grab_mapping_entry(mapping, vmf->pgoff);
entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
if (IS_ERR(entry)) {
error = PTR_ERR(entry);
goto out;
......@@ -1405,10 +1298,10 @@ int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
goto unlock_entry;
if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
error = -EIO; /* fs corruption? */
goto unlock_entry;
goto finish_iomap;
}
sector = iomap.blkno + (((pos & PAGE_MASK) - iomap.offset) >> 9);
sector = dax_iomap_sector(&iomap, pos);
if (vmf->cow_page) {
switch (iomap.type) {
......@@ -1427,13 +1320,15 @@ int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
}
if (error)
goto unlock_entry;
goto finish_iomap;
if (!radix_tree_exceptional_entry(entry)) {
vmf->page = entry;
return VM_FAULT_LOCKED;
locked_status = VM_FAULT_LOCKED;
} else {
vmf->entry = entry;
locked_status = VM_FAULT_DAX_LOCKED;
}
vmf->entry = entry;
return VM_FAULT_DAX_LOCKED;
goto finish_iomap;
}
switch (iomap.type) {
......@@ -1448,8 +1343,10 @@ int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
break;
case IOMAP_UNWRITTEN:
case IOMAP_HOLE:
if (!(vmf->flags & FAULT_FLAG_WRITE))
return dax_load_hole(mapping, entry, vmf);
if (!(vmf->flags & FAULT_FLAG_WRITE)) {
locked_status = dax_load_hole(mapping, entry, vmf);
break;
}
/*FALLTHRU*/
default:
WARN_ON_ONCE(1);
......@@ -1457,15 +1354,218 @@ int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
break;
}
finish_iomap:
if (ops->iomap_end) {
if (error) {
/* keep previous error */
ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags,
&iomap);
} else {
error = ops->iomap_end(inode, pos, PAGE_SIZE,
PAGE_SIZE, flags, &iomap);
}
}
unlock_entry:
put_locked_mapping_entry(mapping, vmf->pgoff, entry);
if (!locked_status || error)
put_locked_mapping_entry(mapping, vmf->pgoff, entry);
out:
if (error == -ENOMEM)
return VM_FAULT_OOM | major;
/* -EBUSY is fine, somebody else faulted on the same PTE */
if (error < 0 && error != -EBUSY)
return VM_FAULT_SIGBUS | major;
if (locked_status) {
WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */
return locked_status;
}
return VM_FAULT_NOPAGE | major;
}
EXPORT_SYMBOL_GPL(iomap_dax_fault);
EXPORT_SYMBOL_GPL(dax_iomap_fault);
#ifdef CONFIG_FS_DAX_PMD
/*
* The 'colour' (ie low bits) within a PMD of a page offset. This comes up
* more often than one might expect in the below functions.
*/
#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
struct vm_fault *vmf, unsigned long address,
struct iomap *iomap, loff_t pos, bool write, void **entryp)
{
struct address_space *mapping = vma->vm_file->f_mapping;
struct block_device *bdev = iomap->bdev;
struct blk_dax_ctl dax = {
.sector = dax_iomap_sector(iomap, pos),
.size = PMD_SIZE,
};
long length = dax_map_atomic(bdev, &dax);
void *ret;
if (length < 0) /* dax_map_atomic() failed */
return VM_FAULT_FALLBACK;
if (length < PMD_SIZE)
goto unmap_fallback;
if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
goto unmap_fallback;
if (!pfn_t_devmap(dax.pfn))
goto unmap_fallback;
dax_unmap_atomic(bdev, &dax);
ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
RADIX_DAX_PMD);
if (IS_ERR(ret))
return VM_FAULT_FALLBACK;
*entryp = ret;
return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
unmap_fallback:
dax_unmap_atomic(bdev, &dax);
return VM_FAULT_FALLBACK;
}
static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
struct vm_fault *vmf, unsigned long address,
struct iomap *iomap, void **entryp)
{
struct address_space *mapping = vma->vm_file->f_mapping;
unsigned long pmd_addr = address & PMD_MASK;
struct page *zero_page;
spinlock_t *ptl;
pmd_t pmd_entry;
void *ret;
zero_page = mm_get_huge_zero_page(vma->vm_mm);
if (unlikely(!zero_page))
return VM_FAULT_FALLBACK;
ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
RADIX_DAX_PMD | RADIX_DAX_HZP);
if (IS_ERR(ret))
return VM_FAULT_FALLBACK;
*entryp = ret;
ptl = pmd_lock(vma->vm_mm, pmd);
if (!pmd_none(*pmd)) {
spin_unlock(ptl);
return VM_FAULT_FALLBACK;
}
pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
pmd_entry = pmd_mkhuge(pmd_entry);
set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
spin_unlock(ptl);
return VM_FAULT_NOPAGE;
}
int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
{
struct address_space *mapping = vma->vm_file->f_mapping;
unsigned long pmd_addr = address & PMD_MASK;
bool write = flags & FAULT_FLAG_WRITE;
unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
struct inode *inode = mapping->host;
int result = VM_FAULT_FALLBACK;
struct iomap iomap = { 0 };
pgoff_t max_pgoff, pgoff;
struct vm_fault vmf;
void *entry;
loff_t pos;
int error;
/* Fall back to PTEs if we're going to COW */
if (write && !(vma->vm_flags & VM_SHARED))
goto fallback;
/* If the PMD would extend outside the VMA */
if (pmd_addr < vma->vm_start)
goto fallback;
if ((pmd_addr + PMD_SIZE) > vma->vm_end)
goto fallback;
/*
* Check whether offset isn't beyond end of file now. Caller is
* supposed to hold locks serializing us with truncate / punch hole so
* this is a reliable test.
*/
pgoff = linear_page_index(vma, pmd_addr);
max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
if (pgoff > max_pgoff)
return VM_FAULT_SIGBUS;
/* If the PMD would extend beyond the file size */
if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
goto fallback;
/*
* grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
* PMD or a HZP entry. If it can't (because a 4k page is already in
* the tree, for instance), it will return -EEXIST and we just fall
* back to 4k entries.
*/
entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
if (IS_ERR(entry))
goto fallback;
/*
* Note that we don't use iomap_apply here. We aren't doing I/O, only
* setting up a mapping, so really we're using iomap_begin() as a way
* to look up our filesystem block.
*/
pos = (loff_t)pgoff << PAGE_SHIFT;
error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
if (error)
goto unlock_entry;
if (iomap.offset + iomap.length < pos + PMD_SIZE)
goto finish_iomap;
vmf.pgoff = pgoff;
vmf.flags = flags;
vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
switch (iomap.type) {
case IOMAP_MAPPED:
result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
&iomap, pos, write, &entry);
break;
case IOMAP_UNWRITTEN:
case IOMAP_HOLE:
if (WARN_ON_ONCE(write))
goto finish_iomap;
result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
&entry);
break;
default:
WARN_ON_ONCE(1);
break;
}
finish_iomap:
if (ops->iomap_end) {
if (result == VM_FAULT_FALLBACK) {
ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags,
&iomap);
} else {
error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE,
iomap_flags, &iomap);
if (error)
result = VM_FAULT_FALLBACK;
}
}
unlock_entry:
put_locked_mapping_entry(mapping, pgoff, entry);
fallback:
if (result == VM_FAULT_FALLBACK) {
split_huge_pmd(vma, pmd, address);
count_vm_event(THP_FAULT_FALLBACK);
}
return result;
}
EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
#endif /* CONFIG_FS_DAX_PMD */
#endif /* CONFIG_FS_IOMAP */
......@@ -38,7 +38,7 @@ static ssize_t ext2_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
return 0; /* skip atime */
inode_lock_shared(inode);
ret = iomap_dax_rw(iocb, to, &ext2_iomap_ops);
ret = dax_iomap_rw(iocb, to, &ext2_iomap_ops);
inode_unlock_shared(inode);
file_accessed(iocb->ki_filp);
......@@ -62,7 +62,7 @@ static ssize_t ext2_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
if (ret)
goto out_unlock;
ret = iomap_dax_rw(iocb, from, &ext2_iomap_ops);
ret = dax_iomap_rw(iocb, from, &ext2_iomap_ops);
if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
i_size_write(inode, iocb->ki_pos);
mark_inode_dirty(inode);
......@@ -99,7 +99,7 @@ static int ext2_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
}
down_read(&ei->dax_sem);
ret = iomap_dax_fault(vma, vmf, &ext2_iomap_ops);
ret = dax_iomap_fault(vma, vmf, &ext2_iomap_ops);
up_read(&ei->dax_sem);
if (vmf->flags & FAULT_FLAG_WRITE)
......@@ -107,27 +107,6 @@ static int ext2_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
return ret;
}
static int ext2_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd, unsigned int flags)
{
struct inode *inode = file_inode(vma->vm_file);
struct ext2_inode_info *ei = EXT2_I(inode);
int ret;
if (flags & FAULT_FLAG_WRITE) {
sb_start_pagefault(inode->i_sb);
file_update_time(vma->vm_file);
}
down_read(&ei->dax_sem);
ret = dax_pmd_fault(vma, addr, pmd, flags, ext2_get_block);
up_read(&ei->dax_sem);
if (flags & FAULT_FLAG_WRITE)
sb_end_pagefault(inode->i_sb);
return ret;
}
static int ext2_dax_pfn_mkwrite(struct vm_area_struct *vma,
struct vm_fault *vmf)
{
......@@ -154,7 +133,11 @@ static int ext2_dax_pfn_mkwrite(struct vm_area_struct *vma,
static const struct vm_operations_struct ext2_dax_vm_ops = {
.fault = ext2_dax_fault,
.pmd_fault = ext2_dax_pmd_fault,
/*
* .pmd_fault is not supported for DAX because allocation in ext2
* cannot be reliably aligned to huge page sizes and so pmd faults
* will always fail and fail back to regular faults.
*/
.page_mkwrite = ext2_dax_fault,
.pfn_mkwrite = ext2_dax_pfn_mkwrite,
};
......@@ -166,7 +149,7 @@ static int ext2_file_mmap(struct file *file, struct vm_area_struct *vma)
file_accessed(file);
vma->vm_ops = &ext2_dax_vm_ops;
vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
vma->vm_flags |= VM_MIXEDMAP;
return 0;
}
#else
......
......@@ -767,6 +767,9 @@ static int _ext4_get_block(struct inode *inode, sector_t iblock,
ext4_update_bh_state(bh, map.m_flags);
bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ret = 0;
} else if (ret == 0) {
/* hole case, need to fill in bh->b_size */
bh->b_size = inode->i_sb->s_blocksize * map.m_len;
}
return ret;
}
......
......@@ -467,8 +467,9 @@ int iomap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
offset = page_offset(page);
while (length > 0) {
ret = iomap_apply(inode, offset, length, IOMAP_WRITE,
ops, page, iomap_page_mkwrite_actor);
ret = iomap_apply(inode, offset, length,
IOMAP_WRITE | IOMAP_FAULT, ops, page,
iomap_page_mkwrite_actor);
if (unlikely(ret <= 0))
goto out_unlock;
offset += ret;
......
......@@ -1298,8 +1298,7 @@ __xfs_get_blocks(
sector_t iblock,
struct buffer_head *bh_result,
int create,
bool direct,
bool dax_fault)
bool direct)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
......@@ -1420,13 +1419,8 @@ __xfs_get_blocks(
if (ISUNWRITTEN(&imap))
set_buffer_unwritten(bh_result);
/* direct IO needs special help */
if (create) {
if (dax_fault)
ASSERT(!ISUNWRITTEN(&imap));
else
xfs_map_direct(inode, bh_result, &imap, offset,
is_cow);
}
if (create)
xfs_map_direct(inode, bh_result, &imap, offset, is_cow);
}
/*
......@@ -1466,7 +1460,7 @@ xfs_get_blocks(
struct buffer_head *bh_result,
int create)
{
return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
return __xfs_get_blocks(inode, iblock, bh_result, create, false);
}
int
......@@ -1476,17 +1470,7 @@ xfs_get_blocks_direct(
struct buffer_head *bh_result,
int create)
{
return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
}
int
xfs_get_blocks_dax_fault(
struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
int create)
{
return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
return __xfs_get_blocks(inode, iblock, bh_result, create, true);
}
/*
......
......@@ -59,9 +59,6 @@ int xfs_get_blocks(struct inode *inode, sector_t offset,
struct buffer_head *map_bh, int create);
int xfs_get_blocks_direct(struct inode *inode, sector_t offset,
struct buffer_head *map_bh, int create);
int xfs_get_blocks_dax_fault(struct inode *inode, sector_t offset,
struct buffer_head *map_bh, int create);
int xfs_end_io_direct_write(struct kiocb *iocb, loff_t offset,
ssize_t size, void *private);
int xfs_setfilesize(struct xfs_inode *ip, xfs_off_t offset, size_t size);
......
......@@ -318,7 +318,7 @@ xfs_file_dax_read(
return 0; /* skip atime */
xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
file_accessed(iocb->ki_filp);
......@@ -653,7 +653,7 @@ xfs_file_dax_write(
trace_xfs_file_dax_write(ip, count, pos);
ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
i_size_write(inode, iocb->ki_pos);
error = xfs_setfilesize(ip, pos, ret);
......@@ -1474,7 +1474,7 @@ xfs_filemap_page_mkwrite(
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
if (IS_DAX(inode)) {
ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops);
} else {
ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
ret = block_page_mkwrite_return(ret);
......@@ -1508,7 +1508,7 @@ xfs_filemap_fault(
* changes to xfs_get_blocks_direct() to map unwritten extent
* ioend for conversion on read-only mappings.
*/
ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
ret = dax_iomap_fault(vma, vmf, &xfs_iomap_ops);
} else
ret = filemap_fault(vma, vmf);
xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
......@@ -1545,7 +1545,7 @@ xfs_filemap_pmd_fault(
}
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
ret = dax_iomap_pmd_fault(vma, addr, pmd, flags, &xfs_iomap_ops);
xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
if (flags & FAULT_FLAG_WRITE)
......
......@@ -8,21 +8,46 @@
struct iomap_ops;
/* We use lowest available exceptional entry bit for locking */
/*
* We use lowest available bit in exceptional entry for locking, one bit for
* the entry size (PMD) and two more to tell us if the entry is a huge zero
* page (HZP) or an empty entry that is just used for locking. In total four
* special bits.
*
* If the PMD bit isn't set the entry has size PAGE_SIZE, and if the HZP and
* EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
* block allocation.
*/
#define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
#define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
#define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
#define RADIX_DAX_HZP (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
#define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
ssize_t iomap_dax_rw(struct kiocb *iocb, struct iov_iter *iter,
static inline unsigned long dax_radix_sector(void *entry)
{
return (unsigned long)entry >> RADIX_DAX_SHIFT;
}
static inline void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
{
return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
((unsigned long)sector << RADIX_DAX_SHIFT) |
RADIX_DAX_ENTRY_LOCK);
}
ssize_t dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
struct iomap_ops *ops);
ssize_t dax_do_io(struct kiocb *, struct inode *, struct iov_iter *,
get_block_t, dio_iodone_t, int flags);
int dax_zero_page_range(struct inode *, loff_t from, unsigned len, get_block_t);
int dax_truncate_page(struct inode *, loff_t from, get_block_t);
int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
struct iomap_ops *ops);
int dax_fault(struct vm_area_struct *, struct vm_fault *, get_block_t);
int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index);
void dax_wake_mapping_entry_waiter(struct address_space *mapping,
pgoff_t index, bool wake_all);
pgoff_t index, void *entry, bool wake_all);
#ifdef CONFIG_FS_DAX
struct page *read_dax_sector(struct block_device *bdev, sector_t n);
......@@ -48,15 +73,32 @@ static inline int __dax_zero_page_range(struct block_device *bdev,
}
#endif
#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
int dax_pmd_fault(struct vm_area_struct *, unsigned long addr, pmd_t *,
unsigned int flags, get_block_t);
#else
static inline int dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd, unsigned int flags, get_block_t gb)
{
return VM_FAULT_FALLBACK;
}
#ifdef CONFIG_FS_DAX_PMD
static inline unsigned int dax_radix_order(void *entry)
{
if ((unsigned long)entry & RADIX_DAX_PMD)
return PMD_SHIFT - PAGE_SHIFT;
return 0;
}
int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd, unsigned int flags, struct iomap_ops *ops);
#else
static inline unsigned int dax_radix_order(void *entry)
{
return 0;
}
static inline int dax_iomap_pmd_fault(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd, unsigned int flags,
struct iomap_ops *ops)
{
return VM_FAULT_FALLBACK;
}
#endif
int dax_pfn_mkwrite(struct vm_area_struct *, struct vm_fault *);
#define dax_mkwrite(vma, vmf, gb) dax_fault(vma, vmf, gb)
......
......@@ -49,6 +49,7 @@ struct iomap {
#define IOMAP_WRITE (1 << 0) /* writing, must allocate blocks */
#define IOMAP_ZERO (1 << 1) /* zeroing operation, may skip holes */
#define IOMAP_REPORT (1 << 2) /* report extent status, e.g. FIEMAP */
#define IOMAP_FAULT (1 << 3) /* mapping for page fault */
struct iomap_ops {
/*
......
......@@ -137,13 +137,12 @@ static int page_cache_tree_insert(struct address_space *mapping,
} else {
/* DAX can replace empty locked entry with a hole */
WARN_ON_ONCE(p !=
(void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
RADIX_DAX_ENTRY_LOCK));
dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
/* DAX accounts exceptional entries as normal pages */
if (node)
workingset_node_pages_dec(node);
/* Wakeup waiters for exceptional entry lock */
dax_wake_mapping_entry_waiter(mapping, page->index,
dax_wake_mapping_entry_waiter(mapping, page->index, p,
false);
}
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment