Commit a7f75d3b authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'sched-fixes-for-linus' of...

Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  sched: re-tune NUMA topologies
  sched: stop wake_affine from causing serious imbalance
  sched: fix sched_clock_cpu()
  revert ("sched: fair-group: SMP-nice for group scheduling")
  sched: cleanup
  show_schedstat(): fix memleak
  sched: unite unlikely pairs in rt_policy() and schedule_debug()
  revert ("sched: fair: weight calculations")
parents 3897b82c 67159306
...@@ -766,7 +766,6 @@ struct sched_domain { ...@@ -766,7 +766,6 @@ struct sched_domain {
struct sched_domain *child; /* bottom domain must be null terminated */ struct sched_domain *child; /* bottom domain must be null terminated */
struct sched_group *groups; /* the balancing groups of the domain */ struct sched_group *groups; /* the balancing groups of the domain */
cpumask_t span; /* span of all CPUs in this domain */ cpumask_t span; /* span of all CPUs in this domain */
int first_cpu; /* cache of the first cpu in this domain */
unsigned long min_interval; /* Minimum balance interval ms */ unsigned long min_interval; /* Minimum balance interval ms */
unsigned long max_interval; /* Maximum balance interval ms */ unsigned long max_interval; /* Maximum balance interval ms */
unsigned int busy_factor; /* less balancing by factor if busy */ unsigned int busy_factor; /* less balancing by factor if busy */
......
...@@ -166,7 +166,9 @@ void arch_update_cpu_topology(void); ...@@ -166,7 +166,9 @@ void arch_update_cpu_topology(void);
.busy_idx = 3, \ .busy_idx = 3, \
.idle_idx = 3, \ .idle_idx = 3, \
.flags = SD_LOAD_BALANCE \ .flags = SD_LOAD_BALANCE \
| SD_SERIALIZE, \ | SD_BALANCE_NEWIDLE \
| SD_WAKE_AFFINE \
| SD_SERIALIZE, \
.last_balance = jiffies, \ .last_balance = jiffies, \
.balance_interval = 64, \ .balance_interval = 64, \
} }
......
...@@ -136,7 +136,7 @@ static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) ...@@ -136,7 +136,7 @@ static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
static inline int rt_policy(int policy) static inline int rt_policy(int policy)
{ {
if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR)) if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
return 1; return 1;
return 0; return 0;
} }
...@@ -398,43 +398,6 @@ struct cfs_rq { ...@@ -398,43 +398,6 @@ struct cfs_rq {
*/ */
struct list_head leaf_cfs_rq_list; struct list_head leaf_cfs_rq_list;
struct task_group *tg; /* group that "owns" this runqueue */ struct task_group *tg; /* group that "owns" this runqueue */
#ifdef CONFIG_SMP
unsigned long task_weight;
unsigned long shares;
/*
* We need space to build a sched_domain wide view of the full task
* group tree, in order to avoid depending on dynamic memory allocation
* during the load balancing we place this in the per cpu task group
* hierarchy. This limits the load balancing to one instance per cpu,
* but more should not be needed anyway.
*/
struct aggregate_struct {
/*
* load = weight(cpus) * f(tg)
*
* Where f(tg) is the recursive weight fraction assigned to
* this group.
*/
unsigned long load;
/*
* part of the group weight distributed to this span.
*/
unsigned long shares;
/*
* The sum of all runqueue weights within this span.
*/
unsigned long rq_weight;
/*
* Weight contributed by tasks; this is the part we can
* influence by moving tasks around.
*/
unsigned long task_weight;
} aggregate;
#endif
#endif #endif
}; };
...@@ -1368,9 +1331,6 @@ static void __resched_task(struct task_struct *p, int tif_bit) ...@@ -1368,9 +1331,6 @@ static void __resched_task(struct task_struct *p, int tif_bit)
*/ */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
/*
* delta *= weight / lw
*/
static unsigned long static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight, calc_delta_mine(unsigned long delta_exec, unsigned long weight,
struct load_weight *lw) struct load_weight *lw)
...@@ -1393,6 +1353,12 @@ calc_delta_mine(unsigned long delta_exec, unsigned long weight, ...@@ -1393,6 +1353,12 @@ calc_delta_mine(unsigned long delta_exec, unsigned long weight,
return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
} }
static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}
static inline void update_load_add(struct load_weight *lw, unsigned long inc) static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{ {
lw->weight += inc; lw->weight += inc;
...@@ -1505,326 +1471,6 @@ static unsigned long source_load(int cpu, int type); ...@@ -1505,326 +1471,6 @@ static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type); static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu); static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* Group load balancing.
*
* We calculate a few balance domain wide aggregate numbers; load and weight.
* Given the pictures below, and assuming each item has equal weight:
*
* root 1 - thread
* / | \ A - group
* A 1 B
* /|\ / \
* C 2 D 3 4
* | |
* 5 6
*
* load:
* A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
* which equals 1/9-th of the total load.
*
* shares:
* The weight of this group on the selected cpus.
*
* rq_weight:
* Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
* B would get 2.
*
* task_weight:
* Part of the rq_weight contributed by tasks; all groups except B would
* get 1, B gets 2.
*/
static inline struct aggregate_struct *
aggregate(struct task_group *tg, struct sched_domain *sd)
{
return &tg->cfs_rq[sd->first_cpu]->aggregate;
}
typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
/*
* Iterate the full tree, calling @down when first entering a node and @up when
* leaving it for the final time.
*/
static
void aggregate_walk_tree(aggregate_func down, aggregate_func up,
struct sched_domain *sd)
{
struct task_group *parent, *child;
rcu_read_lock();
parent = &root_task_group;
down:
(*down)(parent, sd);
list_for_each_entry_rcu(child, &parent->children, siblings) {
parent = child;
goto down;
up:
continue;
}
(*up)(parent, sd);
child = parent;
parent = parent->parent;
if (parent)
goto up;
rcu_read_unlock();
}
/*
* Calculate the aggregate runqueue weight.
*/
static
void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
{
unsigned long rq_weight = 0;
unsigned long task_weight = 0;
int i;
for_each_cpu_mask(i, sd->span) {
rq_weight += tg->cfs_rq[i]->load.weight;
task_weight += tg->cfs_rq[i]->task_weight;
}
aggregate(tg, sd)->rq_weight = rq_weight;
aggregate(tg, sd)->task_weight = task_weight;
}
/*
* Compute the weight of this group on the given cpus.
*/
static
void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
{
unsigned long shares = 0;
int i;
for_each_cpu_mask(i, sd->span)
shares += tg->cfs_rq[i]->shares;
if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
shares = tg->shares;
aggregate(tg, sd)->shares = shares;
}
/*
* Compute the load fraction assigned to this group, relies on the aggregate
* weight and this group's parent's load, i.e. top-down.
*/
static
void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
{
unsigned long load;
if (!tg->parent) {
int i;
load = 0;
for_each_cpu_mask(i, sd->span)
load += cpu_rq(i)->load.weight;
} else {
load = aggregate(tg->parent, sd)->load;
/*
* shares is our weight in the parent's rq so
* shares/parent->rq_weight gives our fraction of the load
*/
load *= aggregate(tg, sd)->shares;
load /= aggregate(tg->parent, sd)->rq_weight + 1;
}
aggregate(tg, sd)->load = load;
}
static void __set_se_shares(struct sched_entity *se, unsigned long shares);
/*
* Calculate and set the cpu's group shares.
*/
static void
__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
int tcpu)
{
int boost = 0;
unsigned long shares;
unsigned long rq_weight;
if (!tg->se[tcpu])
return;
rq_weight = tg->cfs_rq[tcpu]->load.weight;
/*
* If there are currently no tasks on the cpu pretend there is one of
* average load so that when a new task gets to run here it will not
* get delayed by group starvation.
*/
if (!rq_weight) {
boost = 1;
rq_weight = NICE_0_LOAD;
}
/*
* \Sum shares * rq_weight
* shares = -----------------------
* \Sum rq_weight
*
*/
shares = aggregate(tg, sd)->shares * rq_weight;
shares /= aggregate(tg, sd)->rq_weight + 1;
/*
* record the actual number of shares, not the boosted amount.
*/
tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
if (shares < MIN_SHARES)
shares = MIN_SHARES;
else if (shares > MAX_SHARES)
shares = MAX_SHARES;
__set_se_shares(tg->se[tcpu], shares);
}
/*
* Re-adjust the weights on the cpu the task came from and on the cpu the
* task went to.
*/
static void
__move_group_shares(struct task_group *tg, struct sched_domain *sd,
int scpu, int dcpu)
{
unsigned long shares;
shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
__update_group_shares_cpu(tg, sd, scpu);
__update_group_shares_cpu(tg, sd, dcpu);
/*
* ensure we never loose shares due to rounding errors in the
* above redistribution.
*/
shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
if (shares)
tg->cfs_rq[dcpu]->shares += shares;
}
/*
* Because changing a group's shares changes the weight of the super-group
* we need to walk up the tree and change all shares until we hit the root.
*/
static void
move_group_shares(struct task_group *tg, struct sched_domain *sd,
int scpu, int dcpu)
{
while (tg) {
__move_group_shares(tg, sd, scpu, dcpu);
tg = tg->parent;
}
}
static
void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
{
unsigned long shares = aggregate(tg, sd)->shares;
int i;
for_each_cpu_mask(i, sd->span) {
struct rq *rq = cpu_rq(i);
unsigned long flags;
spin_lock_irqsave(&rq->lock, flags);
__update_group_shares_cpu(tg, sd, i);
spin_unlock_irqrestore(&rq->lock, flags);
}
aggregate_group_shares(tg, sd);
/*
* ensure we never loose shares due to rounding errors in the
* above redistribution.
*/
shares -= aggregate(tg, sd)->shares;
if (shares) {
tg->cfs_rq[sd->first_cpu]->shares += shares;
aggregate(tg, sd)->shares += shares;
}
}
/*
* Calculate the accumulative weight and recursive load of each task group
* while walking down the tree.
*/
static
void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
{
aggregate_group_weight(tg, sd);
aggregate_group_shares(tg, sd);
aggregate_group_load(tg, sd);
}
/*
* Rebalance the cpu shares while walking back up the tree.
*/
static
void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
{
aggregate_group_set_shares(tg, sd);
}
static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
static void __init init_aggregate(void)
{
int i;
for_each_possible_cpu(i)
spin_lock_init(&per_cpu(aggregate_lock, i));
}
static int get_aggregate(struct sched_domain *sd)
{
if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
return 0;
aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
return 1;
}
static void put_aggregate(struct sched_domain *sd)
{
spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
}
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
cfs_rq->shares = shares;
}
#else
static inline void init_aggregate(void)
{
}
static inline int get_aggregate(struct sched_domain *sd)
{
return 0;
}
static inline void put_aggregate(struct sched_domain *sd)
{
}
#endif
#else /* CONFIG_SMP */ #else /* CONFIG_SMP */
#ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_FAIR_GROUP_SCHED
...@@ -1845,14 +1491,26 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) ...@@ -1845,14 +1491,26 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
#define sched_class_highest (&rt_sched_class) #define sched_class_highest (&rt_sched_class)
static void inc_nr_running(struct rq *rq) static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
update_load_add(&rq->load, p->se.load.weight);
}
static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
update_load_sub(&rq->load, p->se.load.weight);
}
static void inc_nr_running(struct task_struct *p, struct rq *rq)
{ {
rq->nr_running++; rq->nr_running++;
inc_load(rq, p);
} }
static void dec_nr_running(struct rq *rq) static void dec_nr_running(struct task_struct *p, struct rq *rq)
{ {
rq->nr_running--; rq->nr_running--;
dec_load(rq, p);
} }
static void set_load_weight(struct task_struct *p) static void set_load_weight(struct task_struct *p)
...@@ -1944,7 +1602,7 @@ static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) ...@@ -1944,7 +1602,7 @@ static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
rq->nr_uninterruptible--; rq->nr_uninterruptible--;
enqueue_task(rq, p, wakeup); enqueue_task(rq, p, wakeup);
inc_nr_running(rq); inc_nr_running(p, rq);
} }
/* /*
...@@ -1956,7 +1614,7 @@ static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) ...@@ -1956,7 +1614,7 @@ static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
rq->nr_uninterruptible++; rq->nr_uninterruptible++;
dequeue_task(rq, p, sleep); dequeue_task(rq, p, sleep);
dec_nr_running(rq); dec_nr_running(p, rq);
} }
/** /**
...@@ -2609,7 +2267,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) ...@@ -2609,7 +2267,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
* management (if any): * management (if any):
*/ */
p->sched_class->task_new(rq, p); p->sched_class->task_new(rq, p);
inc_nr_running(rq); inc_nr_running(p, rq);
} }
check_preempt_curr(rq, p); check_preempt_curr(rq, p);
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
...@@ -3600,12 +3258,9 @@ static int load_balance(int this_cpu, struct rq *this_rq, ...@@ -3600,12 +3258,9 @@ static int load_balance(int this_cpu, struct rq *this_rq,
unsigned long imbalance; unsigned long imbalance;
struct rq *busiest; struct rq *busiest;
unsigned long flags; unsigned long flags;
int unlock_aggregate;
cpus_setall(*cpus); cpus_setall(*cpus);
unlock_aggregate = get_aggregate(sd);
/* /*
* When power savings policy is enabled for the parent domain, idle * When power savings policy is enabled for the parent domain, idle
* sibling can pick up load irrespective of busy siblings. In this case, * sibling can pick up load irrespective of busy siblings. In this case,
...@@ -3721,9 +3376,8 @@ static int load_balance(int this_cpu, struct rq *this_rq, ...@@ -3721,9 +3376,8 @@ static int load_balance(int this_cpu, struct rq *this_rq,
if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
ld_moved = -1; return -1;
return ld_moved;
goto out;
out_balanced: out_balanced:
schedstat_inc(sd, lb_balanced[idle]); schedstat_inc(sd, lb_balanced[idle]);
...@@ -3738,13 +3392,8 @@ static int load_balance(int this_cpu, struct rq *this_rq, ...@@ -3738,13 +3392,8 @@ static int load_balance(int this_cpu, struct rq *this_rq,
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
ld_moved = -1; return -1;
else return 0;
ld_moved = 0;
out:
if (unlock_aggregate)
put_aggregate(sd);
return ld_moved;
} }
/* /*
...@@ -4430,7 +4079,7 @@ static inline void schedule_debug(struct task_struct *prev) ...@@ -4430,7 +4079,7 @@ static inline void schedule_debug(struct task_struct *prev)
* schedule() atomically, we ignore that path for now. * schedule() atomically, we ignore that path for now.
* Otherwise, whine if we are scheduling when we should not be. * Otherwise, whine if we are scheduling when we should not be.
*/ */
if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state)) if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
__schedule_bug(prev); __schedule_bug(prev);
profile_hit(SCHED_PROFILING, __builtin_return_address(0)); profile_hit(SCHED_PROFILING, __builtin_return_address(0));
...@@ -4931,8 +4580,10 @@ void set_user_nice(struct task_struct *p, long nice) ...@@ -4931,8 +4580,10 @@ void set_user_nice(struct task_struct *p, long nice)
goto out_unlock; goto out_unlock;
} }
on_rq = p->se.on_rq; on_rq = p->se.on_rq;
if (on_rq) if (on_rq) {
dequeue_task(rq, p, 0); dequeue_task(rq, p, 0);
dec_load(rq, p);
}
p->static_prio = NICE_TO_PRIO(nice); p->static_prio = NICE_TO_PRIO(nice);
set_load_weight(p); set_load_weight(p);
...@@ -4942,6 +4593,7 @@ void set_user_nice(struct task_struct *p, long nice) ...@@ -4942,6 +4593,7 @@ void set_user_nice(struct task_struct *p, long nice)
if (on_rq) { if (on_rq) {
enqueue_task(rq, p, 0); enqueue_task(rq, p, 0);
inc_load(rq, p);
/* /*
* If the task increased its priority or is running and * If the task increased its priority or is running and
* lowered its priority, then reschedule its CPU: * lowered its priority, then reschedule its CPU:
...@@ -7316,7 +6968,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, ...@@ -7316,7 +6968,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
SD_INIT(sd, ALLNODES); SD_INIT(sd, ALLNODES);
set_domain_attribute(sd, attr); set_domain_attribute(sd, attr);
sd->span = *cpu_map; sd->span = *cpu_map;
sd->first_cpu = first_cpu(sd->span);
cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
p = sd; p = sd;
sd_allnodes = 1; sd_allnodes = 1;
...@@ -7327,7 +6978,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, ...@@ -7327,7 +6978,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
SD_INIT(sd, NODE); SD_INIT(sd, NODE);
set_domain_attribute(sd, attr); set_domain_attribute(sd, attr);
sched_domain_node_span(cpu_to_node(i), &sd->span); sched_domain_node_span(cpu_to_node(i), &sd->span);
sd->first_cpu = first_cpu(sd->span);
sd->parent = p; sd->parent = p;
if (p) if (p)
p->child = sd; p->child = sd;
...@@ -7339,7 +6989,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, ...@@ -7339,7 +6989,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
SD_INIT(sd, CPU); SD_INIT(sd, CPU);
set_domain_attribute(sd, attr); set_domain_attribute(sd, attr);
sd->span = *nodemask; sd->span = *nodemask;
sd->first_cpu = first_cpu(sd->span);
sd->parent = p; sd->parent = p;
if (p) if (p)
p->child = sd; p->child = sd;
...@@ -7351,7 +7000,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, ...@@ -7351,7 +7000,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
SD_INIT(sd, MC); SD_INIT(sd, MC);
set_domain_attribute(sd, attr); set_domain_attribute(sd, attr);
sd->span = cpu_coregroup_map(i); sd->span = cpu_coregroup_map(i);
sd->first_cpu = first_cpu(sd->span);
cpus_and(sd->span, sd->span, *cpu_map); cpus_and(sd->span, sd->span, *cpu_map);
sd->parent = p; sd->parent = p;
p->child = sd; p->child = sd;
...@@ -7364,7 +7012,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map, ...@@ -7364,7 +7012,6 @@ static int __build_sched_domains(const cpumask_t *cpu_map,
SD_INIT(sd, SIBLING); SD_INIT(sd, SIBLING);
set_domain_attribute(sd, attr); set_domain_attribute(sd, attr);
sd->span = per_cpu(cpu_sibling_map, i); sd->span = per_cpu(cpu_sibling_map, i);
sd->first_cpu = first_cpu(sd->span);
cpus_and(sd->span, sd->span, *cpu_map); cpus_and(sd->span, sd->span, *cpu_map);
sd->parent = p; sd->parent = p;
p->child = sd; p->child = sd;
...@@ -7568,8 +7215,8 @@ static int build_sched_domains(const cpumask_t *cpu_map) ...@@ -7568,8 +7215,8 @@ static int build_sched_domains(const cpumask_t *cpu_map)
static cpumask_t *doms_cur; /* current sched domains */ static cpumask_t *doms_cur; /* current sched domains */
static int ndoms_cur; /* number of sched domains in 'doms_cur' */ static int ndoms_cur; /* number of sched domains in 'doms_cur' */
static struct sched_domain_attr *dattr_cur; /* attribues of custom domains static struct sched_domain_attr *dattr_cur;
in 'doms_cur' */ /* attribues of custom domains in 'doms_cur' */
/* /*
* Special case: If a kmalloc of a doms_cur partition (array of * Special case: If a kmalloc of a doms_cur partition (array of
...@@ -8034,7 +7681,6 @@ void __init sched_init(void) ...@@ -8034,7 +7681,6 @@ void __init sched_init(void)
} }
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
init_aggregate();
init_defrootdomain(); init_defrootdomain();
#endif #endif
...@@ -8599,11 +8245,14 @@ void sched_move_task(struct task_struct *tsk) ...@@ -8599,11 +8245,14 @@ void sched_move_task(struct task_struct *tsk)
#endif #endif
#ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_FAIR_GROUP_SCHED
static void __set_se_shares(struct sched_entity *se, unsigned long shares) static void set_se_shares(struct sched_entity *se, unsigned long shares)
{ {
struct cfs_rq *cfs_rq = se->cfs_rq; struct cfs_rq *cfs_rq = se->cfs_rq;
struct rq *rq = cfs_rq->rq;
int on_rq; int on_rq;
spin_lock_irq(&rq->lock);
on_rq = se->on_rq; on_rq = se->on_rq;
if (on_rq) if (on_rq)
dequeue_entity(cfs_rq, se, 0); dequeue_entity(cfs_rq, se, 0);
...@@ -8613,17 +8262,8 @@ static void __set_se_shares(struct sched_entity *se, unsigned long shares) ...@@ -8613,17 +8262,8 @@ static void __set_se_shares(struct sched_entity *se, unsigned long shares)
if (on_rq) if (on_rq)
enqueue_entity(cfs_rq, se, 0); enqueue_entity(cfs_rq, se, 0);
}
static void set_se_shares(struct sched_entity *se, unsigned long shares) spin_unlock_irq(&rq->lock);
{
struct cfs_rq *cfs_rq = se->cfs_rq;
struct rq *rq = cfs_rq->rq;
unsigned long flags;
spin_lock_irqsave(&rq->lock, flags);
__set_se_shares(se, shares);
spin_unlock_irqrestore(&rq->lock, flags);
} }
static DEFINE_MUTEX(shares_mutex); static DEFINE_MUTEX(shares_mutex);
...@@ -8662,13 +8302,8 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares) ...@@ -8662,13 +8302,8 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares)
* w/o tripping rebalance_share or load_balance_fair. * w/o tripping rebalance_share or load_balance_fair.
*/ */
tg->shares = shares; tg->shares = shares;
for_each_possible_cpu(i) { for_each_possible_cpu(i)
/*
* force a rebalance
*/
cfs_rq_set_shares(tg->cfs_rq[i], 0);
set_se_shares(tg->se[i], shares); set_se_shares(tg->se[i], shares);
}
/* /*
* Enable load balance activity on this group, by inserting it back on * Enable load balance activity on this group, by inserting it back on
......
...@@ -59,22 +59,26 @@ static inline struct sched_clock_data *cpu_sdc(int cpu) ...@@ -59,22 +59,26 @@ static inline struct sched_clock_data *cpu_sdc(int cpu)
return &per_cpu(sched_clock_data, cpu); return &per_cpu(sched_clock_data, cpu);
} }
static __read_mostly int sched_clock_running;
void sched_clock_init(void) void sched_clock_init(void)
{ {
u64 ktime_now = ktime_to_ns(ktime_get()); u64 ktime_now = ktime_to_ns(ktime_get());
u64 now = 0; unsigned long now_jiffies = jiffies;
int cpu; int cpu;
for_each_possible_cpu(cpu) { for_each_possible_cpu(cpu) {
struct sched_clock_data *scd = cpu_sdc(cpu); struct sched_clock_data *scd = cpu_sdc(cpu);
scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
scd->prev_jiffies = jiffies; scd->prev_jiffies = now_jiffies;
scd->prev_raw = now; scd->prev_raw = 0;
scd->tick_raw = now; scd->tick_raw = 0;
scd->tick_gtod = ktime_now; scd->tick_gtod = ktime_now;
scd->clock = ktime_now; scd->clock = ktime_now;
} }
sched_clock_running = 1;
} }
/* /*
...@@ -136,6 +140,9 @@ u64 sched_clock_cpu(int cpu) ...@@ -136,6 +140,9 @@ u64 sched_clock_cpu(int cpu)
struct sched_clock_data *scd = cpu_sdc(cpu); struct sched_clock_data *scd = cpu_sdc(cpu);
u64 now, clock; u64 now, clock;
if (unlikely(!sched_clock_running))
return 0ull;
WARN_ON_ONCE(!irqs_disabled()); WARN_ON_ONCE(!irqs_disabled());
now = sched_clock(); now = sched_clock();
...@@ -174,6 +181,9 @@ void sched_clock_tick(void) ...@@ -174,6 +181,9 @@ void sched_clock_tick(void)
struct sched_clock_data *scd = this_scd(); struct sched_clock_data *scd = this_scd();
u64 now, now_gtod; u64 now, now_gtod;
if (unlikely(!sched_clock_running))
return;
WARN_ON_ONCE(!irqs_disabled()); WARN_ON_ONCE(!irqs_disabled());
now = sched_clock(); now = sched_clock();
......
...@@ -167,11 +167,6 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) ...@@ -167,11 +167,6 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
#endif #endif
SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over", SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over",
cfs_rq->nr_spread_over); cfs_rq->nr_spread_over);
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_SMP
SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares);
#endif
#endif
} }
static void print_cpu(struct seq_file *m, int cpu) static void print_cpu(struct seq_file *m, int cpu)
......
...@@ -333,34 +333,6 @@ int sched_nr_latency_handler(struct ctl_table *table, int write, ...@@ -333,34 +333,6 @@ int sched_nr_latency_handler(struct ctl_table *table, int write,
} }
#endif #endif
/*
* delta *= w / rw
*/
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
for_each_sched_entity(se) {
delta = calc_delta_mine(delta,
se->load.weight, &cfs_rq_of(se)->load);
}
return delta;
}
/*
* delta *= rw / w
*/
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
for_each_sched_entity(se) {
delta = calc_delta_mine(delta,
cfs_rq_of(se)->load.weight, &se->load);
}
return delta;
}
/* /*
* The idea is to set a period in which each task runs once. * The idea is to set a period in which each task runs once.
* *
...@@ -390,54 +362,47 @@ static u64 __sched_period(unsigned long nr_running) ...@@ -390,54 +362,47 @@ static u64 __sched_period(unsigned long nr_running)
*/ */
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
{ {
return calc_delta_weight(__sched_period(cfs_rq->nr_running), se); u64 slice = __sched_period(cfs_rq->nr_running);
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
slice *= se->load.weight;
do_div(slice, cfs_rq->load.weight);
}
return slice;
} }
/* /*
* We calculate the vruntime slice of a to be inserted task * We calculate the vruntime slice of a to be inserted task
* *
* vs = s*rw/w = p * vs = s/w = p/rw
*/ */
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se) static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{ {
unsigned long nr_running = cfs_rq->nr_running; unsigned long nr_running = cfs_rq->nr_running;
unsigned long weight;
u64 vslice;
if (!se->on_rq) if (!se->on_rq)
nr_running++; nr_running++;
return __sched_period(nr_running); vslice = __sched_period(nr_running);
}
/*
* The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
* that it favours >=0 over <0.
*
* -20 |
* |
* 0 --------+-------
* .'
* 19 .'
*
*/
static unsigned long
calc_delta_asym(unsigned long delta, struct sched_entity *se)
{
struct load_weight lw = {
.weight = NICE_0_LOAD,
.inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
};
for_each_sched_entity(se) { for_each_sched_entity(se) {
struct load_weight *se_lw = &se->load; cfs_rq = cfs_rq_of(se);
if (se->load.weight < NICE_0_LOAD) weight = cfs_rq->load.weight;
se_lw = &lw; if (!se->on_rq)
weight += se->load.weight;
delta = calc_delta_mine(delta, vslice *= NICE_0_LOAD;
cfs_rq_of(se)->load.weight, se_lw); do_div(vslice, weight);
} }
return delta; return vslice;
} }
/* /*
...@@ -454,7 +419,11 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, ...@@ -454,7 +419,11 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
curr->sum_exec_runtime += delta_exec; curr->sum_exec_runtime += delta_exec;
schedstat_add(cfs_rq, exec_clock, delta_exec); schedstat_add(cfs_rq, exec_clock, delta_exec);
delta_exec_weighted = calc_delta_fair(delta_exec, curr); delta_exec_weighted = delta_exec;
if (unlikely(curr->load.weight != NICE_0_LOAD)) {
delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
&curr->load);
}
curr->vruntime += delta_exec_weighted; curr->vruntime += delta_exec_weighted;
} }
...@@ -541,27 +510,10 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) ...@@ -541,27 +510,10 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
* Scheduling class queueing methods: * Scheduling class queueing methods:
*/ */
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif
static void static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{ {
update_load_add(&cfs_rq->load, se->load.weight); update_load_add(&cfs_rq->load, se->load.weight);
if (!parent_entity(se))
inc_cpu_load(rq_of(cfs_rq), se->load.weight);
if (entity_is_task(se))
add_cfs_task_weight(cfs_rq, se->load.weight);
cfs_rq->nr_running++; cfs_rq->nr_running++;
se->on_rq = 1; se->on_rq = 1;
list_add(&se->group_node, &cfs_rq->tasks); list_add(&se->group_node, &cfs_rq->tasks);
...@@ -571,10 +523,6 @@ static void ...@@ -571,10 +523,6 @@ static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{ {
update_load_sub(&cfs_rq->load, se->load.weight); update_load_sub(&cfs_rq->load, se->load.weight);
if (!parent_entity(se))
dec_cpu_load(rq_of(cfs_rq), se->load.weight);
if (entity_is_task(se))
add_cfs_task_weight(cfs_rq, -se->load.weight);
cfs_rq->nr_running--; cfs_rq->nr_running--;
se->on_rq = 0; se->on_rq = 0;
list_del_init(&se->group_node); list_del_init(&se->group_node);
...@@ -661,17 +609,8 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) ...@@ -661,17 +609,8 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
if (!initial) { if (!initial) {
/* sleeps upto a single latency don't count. */ /* sleeps upto a single latency don't count. */
if (sched_feat(NEW_FAIR_SLEEPERS)) { if (sched_feat(NEW_FAIR_SLEEPERS))
unsigned long thresh = sysctl_sched_latency; vruntime -= sysctl_sched_latency;
/*
* convert the sleeper threshold into virtual time
*/
if (sched_feat(NORMALIZED_SLEEPER))
thresh = calc_delta_fair(thresh, se);
vruntime -= thresh;
}
/* ensure we never gain time by being placed backwards. */ /* ensure we never gain time by being placed backwards. */
vruntime = max_vruntime(se->vruntime, vruntime); vruntime = max_vruntime(se->vruntime, vruntime);
...@@ -1057,16 +996,27 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq, ...@@ -1057,16 +996,27 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
struct task_struct *curr = this_rq->curr; struct task_struct *curr = this_rq->curr;
unsigned long tl = this_load; unsigned long tl = this_load;
unsigned long tl_per_task; unsigned long tl_per_task;
int balanced;
if (!(this_sd->flags & SD_WAKE_AFFINE)) if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
return 0; return 0;
/*
* If sync wakeup then subtract the (maximum possible)
* effect of the currently running task from the load
* of the current CPU:
*/
if (sync)
tl -= current->se.load.weight;
balanced = 100*(tl + p->se.load.weight) <= imbalance*load;
/* /*
* If the currently running task will sleep within * If the currently running task will sleep within
* a reasonable amount of time then attract this newly * a reasonable amount of time then attract this newly
* woken task: * woken task:
*/ */
if (sync && curr->sched_class == &fair_sched_class) { if (sync && balanced && curr->sched_class == &fair_sched_class) {
if (curr->se.avg_overlap < sysctl_sched_migration_cost && if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
p->se.avg_overlap < sysctl_sched_migration_cost) p->se.avg_overlap < sysctl_sched_migration_cost)
return 1; return 1;
...@@ -1075,16 +1025,8 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq, ...@@ -1075,16 +1025,8 @@ wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
schedstat_inc(p, se.nr_wakeups_affine_attempts); schedstat_inc(p, se.nr_wakeups_affine_attempts);
tl_per_task = cpu_avg_load_per_task(this_cpu); tl_per_task = cpu_avg_load_per_task(this_cpu);
/*
* If sync wakeup then subtract the (maximum possible)
* effect of the currently running task from the load
* of the current CPU:
*/
if (sync)
tl -= current->se.load.weight;
if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) || if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
100*(tl + p->se.load.weight) <= imbalance*load) { balanced) {
/* /*
* This domain has SD_WAKE_AFFINE and * This domain has SD_WAKE_AFFINE and
* p is cache cold in this domain, and * p is cache cold in this domain, and
...@@ -1169,10 +1111,11 @@ static unsigned long wakeup_gran(struct sched_entity *se) ...@@ -1169,10 +1111,11 @@ static unsigned long wakeup_gran(struct sched_entity *se)
unsigned long gran = sysctl_sched_wakeup_granularity; unsigned long gran = sysctl_sched_wakeup_granularity;
/* /*
* More easily preempt - nice tasks, while not making it harder for * More easily preempt - nice tasks, while not making
* + nice tasks. * it harder for + nice tasks.
*/ */
gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se); if (unlikely(se->load.weight > NICE_0_LOAD))
gran = calc_delta_fair(gran, &se->load);
return gran; return gran;
} }
...@@ -1366,90 +1309,75 @@ static struct task_struct *load_balance_next_fair(void *arg) ...@@ -1366,90 +1309,75 @@ static struct task_struct *load_balance_next_fair(void *arg)
return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
} }
static unsigned long #ifdef CONFIG_FAIR_GROUP_SCHED
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
unsigned long max_load_move, struct sched_domain *sd,
enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
struct cfs_rq *cfs_rq)
{ {
struct rq_iterator cfs_rq_iterator; struct sched_entity *curr;
struct task_struct *p;
cfs_rq_iterator.start = load_balance_start_fair; if (!cfs_rq->nr_running || !first_fair(cfs_rq))
cfs_rq_iterator.next = load_balance_next_fair; return MAX_PRIO;
cfs_rq_iterator.arg = cfs_rq;
curr = cfs_rq->curr;
if (!curr)
curr = __pick_next_entity(cfs_rq);
p = task_of(curr);
return balance_tasks(this_rq, this_cpu, busiest, return p->prio;
max_load_move, sd, idle, all_pinned,
this_best_prio, &cfs_rq_iterator);
} }
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
static unsigned long static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move, unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle, struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, int *this_best_prio) int *all_pinned, int *this_best_prio)
{ {
struct cfs_rq *busy_cfs_rq;
long rem_load_move = max_load_move; long rem_load_move = max_load_move;
int busiest_cpu = cpu_of(busiest); struct rq_iterator cfs_rq_iterator;
struct task_group *tg;
rcu_read_lock();
list_for_each_entry(tg, &task_groups, list) {
long imbalance;
unsigned long this_weight, busiest_weight;
long rem_load, max_load, moved_load;
/*
* empty group
*/
if (!aggregate(tg, sd)->task_weight)
continue;
rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
rem_load /= aggregate(tg, sd)->load + 1;
this_weight = tg->cfs_rq[this_cpu]->task_weight;
busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;
imbalance = (busiest_weight - this_weight) / 2; cfs_rq_iterator.start = load_balance_start_fair;
cfs_rq_iterator.next = load_balance_next_fair;
if (imbalance < 0) for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
imbalance = busiest_weight; #ifdef CONFIG_FAIR_GROUP_SCHED
struct cfs_rq *this_cfs_rq;
long imbalance;
unsigned long maxload;
max_load = max(rem_load, imbalance); this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
max_load, sd, idle, all_pinned, this_best_prio,
tg->cfs_rq[busiest_cpu]);
if (!moved_load) imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
if (imbalance <= 0)
continue; continue;
move_group_shares(tg, sd, busiest_cpu, this_cpu); /* Don't pull more than imbalance/2 */
imbalance /= 2;
maxload = min(rem_load_move, imbalance);
moved_load *= aggregate(tg, sd)->load; *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
moved_load /= aggregate(tg, sd)->rq_weight + 1; #else
# define maxload rem_load_move
#endif
/*
* pass busy_cfs_rq argument into
* load_balance_[start|next]_fair iterators
*/
cfs_rq_iterator.arg = busy_cfs_rq;
rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
maxload, sd, idle, all_pinned,
this_best_prio,
&cfs_rq_iterator);
rem_load_move -= moved_load; if (rem_load_move <= 0)
if (rem_load_move < 0)
break; break;
} }
rcu_read_unlock();
return max_load_move - rem_load_move; return max_load_move - rem_load_move;
} }
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, int *this_best_prio)
{
return __load_balance_fair(this_rq, this_cpu, busiest,
max_load_move, sd, idle, all_pinned,
this_best_prio, &busiest->cfs);
}
#endif
static int static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
......
...@@ -513,8 +513,6 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) ...@@ -513,8 +513,6 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
*/ */
for_each_sched_rt_entity(rt_se) for_each_sched_rt_entity(rt_se)
enqueue_rt_entity(rt_se); enqueue_rt_entity(rt_se);
inc_cpu_load(rq, p->se.load.weight);
} }
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
...@@ -534,8 +532,6 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) ...@@ -534,8 +532,6 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
if (rt_rq && rt_rq->rt_nr_running) if (rt_rq && rt_rq->rt_nr_running)
enqueue_rt_entity(rt_se); enqueue_rt_entity(rt_se);
} }
dec_cpu_load(rq, p->se.load.weight);
} }
/* /*
......
...@@ -67,6 +67,7 @@ static int show_schedstat(struct seq_file *seq, void *v) ...@@ -67,6 +67,7 @@ static int show_schedstat(struct seq_file *seq, void *v)
preempt_enable(); preempt_enable();
#endif #endif
} }
kfree(mask_str);
return 0; return 0;
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment