Commit a91eb52a authored by Yuval Mintz's avatar Yuval Mintz Committed by David S. Miller

qed: Revisit chain implementation

RoCE driver is going to need a 32-bit chain [current chain implementation
for qed* currently supports only 16-bit producer/consumer chains].

This patch adds said support, as well as doing other slight tweaks and
modifications to qed's chain API.
Signed-off-by: default avatarYuval Mintz <Yuval.Mintz@qlogic.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 330348d9
......@@ -17,6 +17,7 @@
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/vmalloc.h>
#include <linux/etherdevice.h>
#include <linux/qed/qed_chain.h>
#include <linux/qed/qed_if.h>
......@@ -1779,92 +1780,285 @@ void qed_hw_remove(struct qed_dev *cdev)
qed_iov_free_hw_info(cdev);
}
int qed_chain_alloc(struct qed_dev *cdev,
enum qed_chain_use_mode intended_use,
enum qed_chain_mode mode,
u16 num_elems,
size_t elem_size,
struct qed_chain *p_chain)
static void qed_chain_free_next_ptr(struct qed_dev *cdev,
struct qed_chain *p_chain)
{
void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
struct qed_chain_next *p_next;
u32 size, i;
if (!p_virt)
return;
size = p_chain->elem_size * p_chain->usable_per_page;
for (i = 0; i < p_chain->page_cnt; i++) {
if (!p_virt)
break;
p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
p_virt_next = p_next->next_virt;
p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
dma_free_coherent(&cdev->pdev->dev,
QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
p_virt = p_virt_next;
p_phys = p_phys_next;
}
}
static void qed_chain_free_single(struct qed_dev *cdev,
struct qed_chain *p_chain)
{
if (!p_chain->p_virt_addr)
return;
dma_free_coherent(&cdev->pdev->dev,
QED_CHAIN_PAGE_SIZE,
p_chain->p_virt_addr, p_chain->p_phys_addr);
}
static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
{
void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
u32 page_cnt = p_chain->page_cnt, i, pbl_size;
u8 *p_pbl_virt = p_chain->pbl.p_virt_table;
if (!pp_virt_addr_tbl)
return;
if (!p_chain->pbl.p_virt_table)
goto out;
for (i = 0; i < page_cnt; i++) {
if (!pp_virt_addr_tbl[i])
break;
dma_free_coherent(&cdev->pdev->dev,
QED_CHAIN_PAGE_SIZE,
pp_virt_addr_tbl[i],
*(dma_addr_t *)p_pbl_virt);
p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
}
pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
dma_free_coherent(&cdev->pdev->dev,
pbl_size,
p_chain->pbl.p_virt_table, p_chain->pbl.p_phys_table);
out:
vfree(p_chain->pbl.pp_virt_addr_tbl);
}
void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
{
switch (p_chain->mode) {
case QED_CHAIN_MODE_NEXT_PTR:
qed_chain_free_next_ptr(cdev, p_chain);
break;
case QED_CHAIN_MODE_SINGLE:
qed_chain_free_single(cdev, p_chain);
break;
case QED_CHAIN_MODE_PBL:
qed_chain_free_pbl(cdev, p_chain);
break;
}
}
static int
qed_chain_alloc_sanity_check(struct qed_dev *cdev,
enum qed_chain_cnt_type cnt_type,
size_t elem_size, u32 page_cnt)
{
u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
/* The actual chain size can be larger than the maximal possible value
* after rounding up the requested elements number to pages, and after
* taking into acount the unusuable elements (next-ptr elements).
* The size of a "u16" chain can be (U16_MAX + 1) since the chain
* size/capacity fields are of a u32 type.
*/
if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
chain_size > 0x10000) ||
(cnt_type == QED_CHAIN_CNT_TYPE_U32 &&
chain_size > 0x100000000ULL)) {
DP_NOTICE(cdev,
"The actual chain size (0x%llx) is larger than the maximal possible value\n",
chain_size);
return -EINVAL;
}
return 0;
}
static int
qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
{
dma_addr_t p_pbl_phys = 0;
void *p_pbl_virt = NULL;
void *p_virt = NULL, *p_virt_prev = NULL;
dma_addr_t p_phys = 0;
void *p_virt = NULL;
u16 page_cnt = 0;
size_t size;
u32 i;
if (mode == QED_CHAIN_MODE_SINGLE)
page_cnt = 1;
else
page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
for (i = 0; i < p_chain->page_cnt; i++) {
p_virt = dma_alloc_coherent(&cdev->pdev->dev,
QED_CHAIN_PAGE_SIZE,
&p_phys, GFP_KERNEL);
if (!p_virt) {
DP_NOTICE(cdev, "Failed to allocate chain memory\n");
return -ENOMEM;
}
if (i == 0) {
qed_chain_init_mem(p_chain, p_virt, p_phys);
qed_chain_reset(p_chain);
} else {
qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
p_virt, p_phys);
}
p_virt_prev = p_virt;
}
/* Last page's next element should point to the beginning of the
* chain.
*/
qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
p_chain->p_virt_addr,
p_chain->p_phys_addr);
return 0;
}
static int
qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
{
dma_addr_t p_phys = 0;
void *p_virt = NULL;
size = page_cnt * QED_CHAIN_PAGE_SIZE;
p_virt = dma_alloc_coherent(&cdev->pdev->dev,
size, &p_phys, GFP_KERNEL);
QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
if (!p_virt) {
DP_NOTICE(cdev, "Failed to allocate chain mem\n");
goto nomem;
DP_NOTICE(cdev, "Failed to allocate chain memory\n");
return -ENOMEM;
}
if (mode == QED_CHAIN_MODE_PBL) {
size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
size, &p_pbl_phys,
GFP_KERNEL);
if (!p_pbl_virt) {
DP_NOTICE(cdev, "Failed to allocate chain pbl mem\n");
goto nomem;
}
qed_chain_init_mem(p_chain, p_virt, p_phys);
qed_chain_reset(p_chain);
qed_chain_pbl_init(p_chain, p_virt, p_phys, page_cnt,
(u8)elem_size, intended_use,
p_pbl_phys, p_pbl_virt);
} else {
qed_chain_init(p_chain, p_virt, p_phys, page_cnt,
(u8)elem_size, intended_use, mode);
return 0;
}
static int qed_chain_alloc_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
{
u32 page_cnt = p_chain->page_cnt, size, i;
dma_addr_t p_phys = 0, p_pbl_phys = 0;
void **pp_virt_addr_tbl = NULL;
u8 *p_pbl_virt = NULL;
void *p_virt = NULL;
size = page_cnt * sizeof(*pp_virt_addr_tbl);
pp_virt_addr_tbl = vmalloc(size);
if (!pp_virt_addr_tbl) {
DP_NOTICE(cdev,
"Failed to allocate memory for the chain virtual addresses table\n");
return -ENOMEM;
}
memset(pp_virt_addr_tbl, 0, size);
return 0;
/* The allocation of the PBL table is done with its full size, since it
* is expected to be successive.
* qed_chain_init_pbl_mem() is called even in a case of an allocation
* failure, since pp_virt_addr_tbl was previously allocated, and it
* should be saved to allow its freeing during the error flow.
*/
size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
size, &p_pbl_phys, GFP_KERNEL);
qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
pp_virt_addr_tbl);
if (!p_pbl_virt) {
DP_NOTICE(cdev, "Failed to allocate chain pbl memory\n");
return -ENOMEM;
}
nomem:
dma_free_coherent(&cdev->pdev->dev,
page_cnt * QED_CHAIN_PAGE_SIZE,
p_virt, p_phys);
dma_free_coherent(&cdev->pdev->dev,
page_cnt * QED_CHAIN_PBL_ENTRY_SIZE,
p_pbl_virt, p_pbl_phys);
for (i = 0; i < page_cnt; i++) {
p_virt = dma_alloc_coherent(&cdev->pdev->dev,
QED_CHAIN_PAGE_SIZE,
&p_phys, GFP_KERNEL);
if (!p_virt) {
DP_NOTICE(cdev, "Failed to allocate chain memory\n");
return -ENOMEM;
}
return -ENOMEM;
if (i == 0) {
qed_chain_init_mem(p_chain, p_virt, p_phys);
qed_chain_reset(p_chain);
}
/* Fill the PBL table with the physical address of the page */
*(dma_addr_t *)p_pbl_virt = p_phys;
/* Keep the virtual address of the page */
p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
}
return 0;
}
void qed_chain_free(struct qed_dev *cdev,
struct qed_chain *p_chain)
int qed_chain_alloc(struct qed_dev *cdev,
enum qed_chain_use_mode intended_use,
enum qed_chain_mode mode,
enum qed_chain_cnt_type cnt_type,
u32 num_elems, size_t elem_size, struct qed_chain *p_chain)
{
size_t size;
u32 page_cnt;
int rc = 0;
if (!p_chain->p_virt_addr)
return;
if (mode == QED_CHAIN_MODE_SINGLE)
page_cnt = 1;
else
page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
if (p_chain->mode == QED_CHAIN_MODE_PBL) {
size = p_chain->page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
dma_free_coherent(&cdev->pdev->dev, size,
p_chain->pbl.p_virt_table,
p_chain->pbl.p_phys_table);
rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
if (rc) {
DP_NOTICE(cdev,
"Cannot allocate a chain with the given arguments:\n"
"[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
intended_use, mode, cnt_type, num_elems, elem_size);
return rc;
}
size = p_chain->page_cnt * QED_CHAIN_PAGE_SIZE;
dma_free_coherent(&cdev->pdev->dev, size,
p_chain->p_virt_addr,
p_chain->p_phys_addr);
qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
mode, cnt_type);
switch (mode) {
case QED_CHAIN_MODE_NEXT_PTR:
rc = qed_chain_alloc_next_ptr(cdev, p_chain);
break;
case QED_CHAIN_MODE_SINGLE:
rc = qed_chain_alloc_single(cdev, p_chain);
break;
case QED_CHAIN_MODE_PBL:
rc = qed_chain_alloc_pbl(cdev, p_chain);
break;
}
if (rc)
goto nomem;
return 0;
nomem:
qed_chain_free(cdev, p_chain);
return rc;
}
int qed_fw_l2_queue(struct qed_hwfn *p_hwfn,
u16 src_id, u16 *dst_id)
int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
{
if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
u16 min, max;
min = (u16)RESC_START(p_hwfn, QED_L2_QUEUE);
min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
DP_NOTICE(p_hwfn,
"l2_queue id [%d] is not valid, available indices [%d - %d]\n",
......
......@@ -245,9 +245,8 @@ int
qed_chain_alloc(struct qed_dev *cdev,
enum qed_chain_use_mode intended_use,
enum qed_chain_mode mode,
u16 num_elems,
size_t elem_size,
struct qed_chain *p_chain);
enum qed_chain_cnt_type cnt_type,
u32 num_elems, size_t elem_size, struct qed_chain *p_chain);
/**
* @brief qed_chain_free - Free chain DMA memory
......@@ -255,8 +254,7 @@ qed_chain_alloc(struct qed_dev *cdev,
* @param p_hwfn
* @param p_chain
*/
void qed_chain_free(struct qed_dev *cdev,
struct qed_chain *p_chain);
void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain);
/**
* @@brief qed_fw_l2_queue - Get absolute L2 queue ID
......
......@@ -308,6 +308,7 @@ int qed_sp_pf_start(struct qed_hwfn *p_hwfn,
struct qed_spq_entry *p_ent = NULL;
struct qed_sp_init_data init_data;
int rc = -EINVAL;
u8 page_cnt;
/* update initial eq producer */
qed_eq_prod_update(p_hwfn,
......@@ -350,8 +351,8 @@ int qed_sp_pf_start(struct qed_hwfn *p_hwfn,
/* Place EQ address in RAMROD */
DMA_REGPAIR_LE(p_ramrod->event_ring_pbl_addr,
p_hwfn->p_eq->chain.pbl.p_phys_table);
p_ramrod->event_ring_num_pages = (u8)p_hwfn->p_eq->chain.page_cnt;
page_cnt = (u8)qed_chain_get_page_cnt(&p_hwfn->p_eq->chain);
p_ramrod->event_ring_num_pages = page_cnt;
DMA_REGPAIR_LE(p_ramrod->consolid_q_pbl_addr,
p_hwfn->p_consq->chain.pbl.p_phys_table);
......
......@@ -343,6 +343,7 @@ struct qed_eq *qed_eq_alloc(struct qed_hwfn *p_hwfn,
if (qed_chain_alloc(p_hwfn->cdev,
QED_CHAIN_USE_TO_PRODUCE,
QED_CHAIN_MODE_PBL,
QED_CHAIN_CNT_TYPE_U16,
num_elem,
sizeof(union event_ring_element),
&p_eq->chain)) {
......@@ -416,10 +417,10 @@ int qed_eth_cqe_completion(struct qed_hwfn *p_hwfn,
***************************************************************************/
void qed_spq_setup(struct qed_hwfn *p_hwfn)
{
struct qed_spq *p_spq = p_hwfn->p_spq;
struct qed_spq_entry *p_virt = NULL;
dma_addr_t p_phys = 0;
unsigned int i = 0;
struct qed_spq *p_spq = p_hwfn->p_spq;
struct qed_spq_entry *p_virt = NULL;
dma_addr_t p_phys = 0;
u32 i, capacity;
INIT_LIST_HEAD(&p_spq->pending);
INIT_LIST_HEAD(&p_spq->completion_pending);
......@@ -431,7 +432,8 @@ void qed_spq_setup(struct qed_hwfn *p_hwfn)
p_phys = p_spq->p_phys + offsetof(struct qed_spq_entry, ramrod);
p_virt = p_spq->p_virt;
for (i = 0; i < p_spq->chain.capacity; i++) {
capacity = qed_chain_get_capacity(&p_spq->chain);
for (i = 0; i < capacity; i++) {
DMA_REGPAIR_LE(p_virt->elem.data_ptr, p_phys);
list_add_tail(&p_virt->list, &p_spq->free_pool);
......@@ -459,9 +461,10 @@ void qed_spq_setup(struct qed_hwfn *p_hwfn)
int qed_spq_alloc(struct qed_hwfn *p_hwfn)
{
struct qed_spq *p_spq = NULL;
dma_addr_t p_phys = 0;
struct qed_spq_entry *p_virt = NULL;
struct qed_spq_entry *p_virt = NULL;
struct qed_spq *p_spq = NULL;
dma_addr_t p_phys = 0;
u32 capacity;
/* SPQ struct */
p_spq =
......@@ -475,6 +478,7 @@ int qed_spq_alloc(struct qed_hwfn *p_hwfn)
if (qed_chain_alloc(p_hwfn->cdev,
QED_CHAIN_USE_TO_PRODUCE,
QED_CHAIN_MODE_SINGLE,
QED_CHAIN_CNT_TYPE_U16,
0, /* N/A when the mode is SINGLE */
sizeof(struct slow_path_element),
&p_spq->chain)) {
......@@ -483,11 +487,11 @@ int qed_spq_alloc(struct qed_hwfn *p_hwfn)
}
/* allocate and fill the SPQ elements (incl. ramrod data list) */
capacity = qed_chain_get_capacity(&p_spq->chain);
p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
p_spq->chain.capacity *
capacity *
sizeof(struct qed_spq_entry),
&p_phys,
GFP_KERNEL);
&p_phys, GFP_KERNEL);
if (!p_virt)
goto spq_allocate_fail;
......@@ -507,16 +511,18 @@ int qed_spq_alloc(struct qed_hwfn *p_hwfn)
void qed_spq_free(struct qed_hwfn *p_hwfn)
{
struct qed_spq *p_spq = p_hwfn->p_spq;
u32 capacity;
if (!p_spq)
return;
if (p_spq->p_virt)
if (p_spq->p_virt) {
capacity = qed_chain_get_capacity(&p_spq->chain);
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
p_spq->chain.capacity *
capacity *
sizeof(struct qed_spq_entry),
p_spq->p_virt,
p_spq->p_phys);
p_spq->p_virt, p_spq->p_phys);
}
qed_chain_free(p_hwfn->cdev, &p_spq->chain);
;
......@@ -871,9 +877,9 @@ struct qed_consq *qed_consq_alloc(struct qed_hwfn *p_hwfn)
if (qed_chain_alloc(p_hwfn->cdev,
QED_CHAIN_USE_TO_PRODUCE,
QED_CHAIN_MODE_PBL,
QED_CHAIN_CNT_TYPE_U16,
QED_CHAIN_PAGE_SIZE / 0x80,
0x80,
&p_consq->chain)) {
0x80, &p_consq->chain)) {
DP_NOTICE(p_hwfn, "Failed to allocate consq chain");
goto consq_allocate_fail;
}
......
......@@ -2817,6 +2817,7 @@ static int qede_alloc_mem_rxq(struct qede_dev *edev,
rc = edev->ops->common->chain_alloc(edev->cdev,
QED_CHAIN_USE_TO_CONSUME_PRODUCE,
QED_CHAIN_MODE_NEXT_PTR,
QED_CHAIN_CNT_TYPE_U16,
RX_RING_SIZE,
sizeof(struct eth_rx_bd),
&rxq->rx_bd_ring);
......@@ -2828,6 +2829,7 @@ static int qede_alloc_mem_rxq(struct qede_dev *edev,
rc = edev->ops->common->chain_alloc(edev->cdev,
QED_CHAIN_USE_TO_CONSUME,
QED_CHAIN_MODE_PBL,
QED_CHAIN_CNT_TYPE_U16,
RX_RING_SIZE,
sizeof(union eth_rx_cqe),
&rxq->rx_comp_ring);
......@@ -2879,9 +2881,9 @@ static int qede_alloc_mem_txq(struct qede_dev *edev,
rc = edev->ops->common->chain_alloc(edev->cdev,
QED_CHAIN_USE_TO_CONSUME_PRODUCE,
QED_CHAIN_MODE_PBL,
QED_CHAIN_CNT_TYPE_U16,
NUM_TX_BDS_MAX,
sizeof(*p_virt),
&txq->tx_pbl);
sizeof(*p_virt), &txq->tx_pbl);
if (rc)
goto err;
......
......@@ -47,16 +47,56 @@ enum qed_chain_use_mode {
QED_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */
};
enum qed_chain_cnt_type {
/* The chain's size/prod/cons are kept in 16-bit variables */
QED_CHAIN_CNT_TYPE_U16,
/* The chain's size/prod/cons are kept in 32-bit variables */
QED_CHAIN_CNT_TYPE_U32,
};
struct qed_chain_next {
struct regpair next_phys;
void *next_virt;
};
struct qed_chain_pbl_u16 {
u16 prod_page_idx;
u16 cons_page_idx;
};
struct qed_chain_pbl_u32 {
u32 prod_page_idx;
u32 cons_page_idx;
};
struct qed_chain_pbl {
/* Base address of a pre-allocated buffer for pbl */
dma_addr_t p_phys_table;
void *p_virt_table;
u16 prod_page_idx;
u16 cons_page_idx;
/* Table for keeping the virtual addresses of the chain pages,
* respectively to the physical addresses in the pbl table.
*/
void **pp_virt_addr_tbl;
/* Index to current used page by producer/consumer */
union {
struct qed_chain_pbl_u16 pbl16;
struct qed_chain_pbl_u32 pbl32;
} u;
};
struct qed_chain_u16 {
/* Cyclic index of next element to produce/consme */
u16 prod_idx;
u16 cons_idx;
};
struct qed_chain_u32 {
/* Cyclic index of next element to produce/consme */
u32 prod_idx;
u32 cons_idx;
};
struct qed_chain {
......@@ -64,13 +104,25 @@ struct qed_chain {
dma_addr_t p_phys_addr;
void *p_prod_elem;
void *p_cons_elem;
u16 page_cnt;
enum qed_chain_mode mode;
enum qed_chain_use_mode intended_use; /* used to produce/consume */
u16 capacity; /*< number of _usable_ elements */
u16 size; /* number of elements */
u16 prod_idx;
u16 cons_idx;
enum qed_chain_cnt_type cnt_type;
union {
struct qed_chain_u16 chain16;
struct qed_chain_u32 chain32;
} u;
u32 page_cnt;
/* Number of elements - capacity is for usable elements only,
* while size will contain total number of elements [for entire chain].
*/
u32 capacity;
u32 size;
/* Elements information for fast calculations */
u16 elem_per_page;
u16 elem_per_page_mask;
u16 elem_unusable;
......@@ -96,66 +148,69 @@ struct qed_chain {
#define QED_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \
DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode))
#define is_chain_u16(p) ((p)->cnt_type == QED_CHAIN_CNT_TYPE_U16)
#define is_chain_u32(p) ((p)->cnt_type == QED_CHAIN_CNT_TYPE_U32)
/* Accessors */
static inline u16 qed_chain_get_prod_idx(struct qed_chain *p_chain)
{
return p_chain->prod_idx;
return p_chain->u.chain16.prod_idx;
}
static inline u16 qed_chain_get_cons_idx(struct qed_chain *p_chain)
{
return p_chain->cons_idx;
return p_chain->u.chain16.cons_idx;
}
static inline u32 qed_chain_get_cons_idx_u32(struct qed_chain *p_chain)
{
return p_chain->u.chain32.cons_idx;
}
static inline u16 qed_chain_get_elem_left(struct qed_chain *p_chain)
{
u16 used;
/* we don't need to trancate upon assignmet, as we assign u32->u16 */
used = ((u32)0x10000u + (u32)(p_chain->prod_idx)) -
(u32)p_chain->cons_idx;
used = (u16) (((u32)0x10000 +
(u32)p_chain->u.chain16.prod_idx) -
(u32)p_chain->u.chain16.cons_idx);
if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR)
used -= p_chain->prod_idx / p_chain->elem_per_page -
p_chain->cons_idx / p_chain->elem_per_page;
used -= p_chain->u.chain16.prod_idx / p_chain->elem_per_page -
p_chain->u.chain16.cons_idx / p_chain->elem_per_page;
return p_chain->capacity - used;
return (u16)(p_chain->capacity - used);
}
static inline u8 qed_chain_is_full(struct qed_chain *p_chain)
static inline u32 qed_chain_get_elem_left_u32(struct qed_chain *p_chain)
{
return qed_chain_get_elem_left(p_chain) == p_chain->capacity;
}
u32 used;
static inline u8 qed_chain_is_empty(struct qed_chain *p_chain)
{
return qed_chain_get_elem_left(p_chain) == 0;
}
used = (u32) (((u64)0x100000000ULL +
(u64)p_chain->u.chain32.prod_idx) -
(u64)p_chain->u.chain32.cons_idx);
if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR)
used -= p_chain->u.chain32.prod_idx / p_chain->elem_per_page -
p_chain->u.chain32.cons_idx / p_chain->elem_per_page;
static inline u16 qed_chain_get_elem_per_page(
struct qed_chain *p_chain)
{
return p_chain->elem_per_page;
return p_chain->capacity - used;
}
static inline u16 qed_chain_get_usable_per_page(
struct qed_chain *p_chain)
static inline u16 qed_chain_get_usable_per_page(struct qed_chain *p_chain)
{
return p_chain->usable_per_page;
}
static inline u16 qed_chain_get_unusable_per_page(
struct qed_chain *p_chain)
static inline u16 qed_chain_get_unusable_per_page(struct qed_chain *p_chain)
{
return p_chain->elem_unusable;
}
static inline u16 qed_chain_get_size(struct qed_chain *p_chain)
static inline u32 qed_chain_get_page_cnt(struct qed_chain *p_chain)
{
return p_chain->size;
return p_chain->page_cnt;
}
static inline dma_addr_t
qed_chain_get_pbl_phys(struct qed_chain *p_chain)
static inline dma_addr_t qed_chain_get_pbl_phys(struct qed_chain *p_chain)
{
return p_chain->pbl.p_phys_table;
}
......@@ -172,64 +227,62 @@ qed_chain_get_pbl_phys(struct qed_chain *p_chain)
*/
static inline void
qed_chain_advance_page(struct qed_chain *p_chain,
void **p_next_elem,
u16 *idx_to_inc,
u16 *page_to_inc)
void **p_next_elem, void *idx_to_inc, void *page_to_inc)
{
struct qed_chain_next *p_next = NULL;
u32 page_index = 0;
switch (p_chain->mode) {
case QED_CHAIN_MODE_NEXT_PTR:
{
struct qed_chain_next *p_next = *p_next_elem;
p_next = *p_next_elem;
*p_next_elem = p_next->next_virt;
*idx_to_inc += p_chain->elem_unusable;
if (is_chain_u16(p_chain))
*(u16 *)idx_to_inc += p_chain->elem_unusable;
else
*(u32 *)idx_to_inc += p_chain->elem_unusable;
break;
}
case QED_CHAIN_MODE_SINGLE:
*p_next_elem = p_chain->p_virt_addr;
break;
case QED_CHAIN_MODE_PBL:
/* It is assumed pages are sequential, next element needs
* to change only when passing going back to first from last.
*/
if (++(*page_to_inc) == p_chain->page_cnt) {
*page_to_inc = 0;
*p_next_elem = p_chain->p_virt_addr;
if (is_chain_u16(p_chain)) {
if (++(*(u16 *)page_to_inc) == p_chain->page_cnt)
*(u16 *)page_to_inc = 0;
page_index = *(u16 *)page_to_inc;
} else {
if (++(*(u32 *)page_to_inc) == p_chain->page_cnt)
*(u32 *)page_to_inc = 0;
page_index = *(u32 *)page_to_inc;
}
*p_next_elem = p_chain->pbl.pp_virt_addr_tbl[page_index];
}
}
#define is_unusable_idx(p, idx) \
(((p)->idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
(((p)->u.chain16.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
#define is_unusable_idx_u32(p, idx) \
(((p)->u.chain32.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
#define is_unusable_next_idx(p, idx) \
((((p)->u.chain16.idx + 1) & (p)->elem_per_page_mask) == \
(p)->usable_per_page)
#define is_unusable_next_idx(p, idx) \
((((p)->idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page)
#define is_unusable_next_idx_u32(p, idx) \
((((p)->u.chain32.idx + 1) & (p)->elem_per_page_mask) == \
(p)->usable_per_page)
#define test_ans_skip(p, idx) \
#define test_and_skip(p, idx) \
do { \
if (is_unusable_idx(p, idx)) { \
(p)->idx += (p)->elem_unusable; \
if (is_chain_u16(p)) { \
if (is_unusable_idx(p, idx)) \
(p)->u.chain16.idx += (p)->elem_unusable; \
} else { \
if (is_unusable_idx_u32(p, idx)) \
(p)->u.chain32.idx += (p)->elem_unusable; \
} \
} while (0)
/**
* @brief qed_chain_return_multi_produced -
*
* A chain in which the driver "Produces" elements should use this API
* to indicate previous produced elements are now consumed.
*
* @param p_chain
* @param num
*/
static inline void
qed_chain_return_multi_produced(struct qed_chain *p_chain,
u16 num)
{
p_chain->cons_idx += num;
test_ans_skip(p_chain, cons_idx);
}
/**
* @brief qed_chain_return_produced -
*
......@@ -240,8 +293,11 @@ qed_chain_return_multi_produced(struct qed_chain *p_chain,
*/
static inline void qed_chain_return_produced(struct qed_chain *p_chain)
{
p_chain->cons_idx++;
test_ans_skip(p_chain, cons_idx);
if (is_chain_u16(p_chain))
p_chain->u.chain16.cons_idx++;
else
p_chain->u.chain32.cons_idx++;
test_and_skip(p_chain, cons_idx);
}
/**
......@@ -257,21 +313,33 @@ static inline void qed_chain_return_produced(struct qed_chain *p_chain)
*/
static inline void *qed_chain_produce(struct qed_chain *p_chain)
{
void *ret = NULL;
if ((p_chain->prod_idx & p_chain->elem_per_page_mask) ==
p_chain->next_page_mask) {
qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
&p_chain->prod_idx,
&p_chain->pbl.prod_page_idx);
void *p_ret = NULL, *p_prod_idx, *p_prod_page_idx;
if (is_chain_u16(p_chain)) {
if ((p_chain->u.chain16.prod_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_prod_idx = &p_chain->u.chain16.prod_idx;
p_prod_page_idx = &p_chain->pbl.u.pbl16.prod_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
p_prod_idx, p_prod_page_idx);
}
p_chain->u.chain16.prod_idx++;
} else {
if ((p_chain->u.chain32.prod_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_prod_idx = &p_chain->u.chain32.prod_idx;
p_prod_page_idx = &p_chain->pbl.u.pbl32.prod_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
p_prod_idx, p_prod_page_idx);
}
p_chain->u.chain32.prod_idx++;
}
ret = p_chain->p_prod_elem;
p_chain->prod_idx++;
p_ret = p_chain->p_prod_elem;
p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) +
p_chain->elem_size);
return ret;
return p_ret;
}
/**
......@@ -282,9 +350,9 @@ static inline void *qed_chain_produce(struct qed_chain *p_chain)
* @param p_chain
* @param num
*
* @return u16, number of unusable BDs
* @return number of unusable BDs
*/
static inline u16 qed_chain_get_capacity(struct qed_chain *p_chain)
static inline u32 qed_chain_get_capacity(struct qed_chain *p_chain)
{
return p_chain->capacity;
}
......@@ -297,11 +365,13 @@ static inline u16 qed_chain_get_capacity(struct qed_chain *p_chain)
*
* @param p_chain
*/
static inline void
qed_chain_recycle_consumed(struct qed_chain *p_chain)
static inline void qed_chain_recycle_consumed(struct qed_chain *p_chain)
{
test_ans_skip(p_chain, prod_idx);
p_chain->prod_idx++;
test_and_skip(p_chain, prod_idx);
if (is_chain_u16(p_chain))
p_chain->u.chain16.prod_idx++;
else
p_chain->u.chain32.prod_idx++;
}
/**
......@@ -316,21 +386,33 @@ qed_chain_recycle_consumed(struct qed_chain *p_chain)
*/
static inline void *qed_chain_consume(struct qed_chain *p_chain)
{
void *ret = NULL;
if ((p_chain->cons_idx & p_chain->elem_per_page_mask) ==
p_chain->next_page_mask) {
void *p_ret = NULL, *p_cons_idx, *p_cons_page_idx;
if (is_chain_u16(p_chain)) {
if ((p_chain->u.chain16.cons_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_cons_idx = &p_chain->u.chain16.cons_idx;
p_cons_page_idx = &p_chain->pbl.u.pbl16.cons_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
p_cons_idx, p_cons_page_idx);
}
p_chain->u.chain16.cons_idx++;
} else {
if ((p_chain->u.chain32.cons_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_cons_idx = &p_chain->u.chain32.cons_idx;
p_cons_page_idx = &p_chain->pbl.u.pbl32.cons_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
&p_chain->cons_idx,
&p_chain->pbl.cons_page_idx);
p_cons_idx, p_cons_page_idx);
}
p_chain->u.chain32.cons_idx++;
}
ret = p_chain->p_cons_elem;
p_chain->cons_idx++;
p_ret = p_chain->p_cons_elem;
p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) +
p_chain->elem_size);
return ret;
return p_ret;
}
/**
......@@ -340,16 +422,33 @@ static inline void *qed_chain_consume(struct qed_chain *p_chain)
*/
static inline void qed_chain_reset(struct qed_chain *p_chain)
{
int i;
p_chain->prod_idx = 0;
p_chain->cons_idx = 0;
p_chain->p_cons_elem = p_chain->p_virt_addr;
p_chain->p_prod_elem = p_chain->p_virt_addr;
u32 i;
if (is_chain_u16(p_chain)) {
p_chain->u.chain16.prod_idx = 0;
p_chain->u.chain16.cons_idx = 0;
} else {
p_chain->u.chain32.prod_idx = 0;
p_chain->u.chain32.cons_idx = 0;
}
p_chain->p_cons_elem = p_chain->p_virt_addr;
p_chain->p_prod_elem = p_chain->p_virt_addr;
if (p_chain->mode == QED_CHAIN_MODE_PBL) {
p_chain->pbl.prod_page_idx = p_chain->page_cnt - 1;
p_chain->pbl.cons_page_idx = p_chain->page_cnt - 1;
/* Use (page_cnt - 1) as a reset value for the prod/cons page's
* indices, to avoid unnecessary page advancing on the first
* call to qed_chain_produce/consume. Instead, the indices
* will be advanced to page_cnt and then will be wrapped to 0.
*/
u32 reset_val = p_chain->page_cnt - 1;
if (is_chain_u16(p_chain)) {
p_chain->pbl.u.pbl16.prod_page_idx = (u16)reset_val;
p_chain->pbl.u.pbl16.cons_page_idx = (u16)reset_val;
} else {
p_chain->pbl.u.pbl32.prod_page_idx = reset_val;
p_chain->pbl.u.pbl32.cons_page_idx = reset_val;
}
}
switch (p_chain->intended_use) {
......@@ -377,168 +476,184 @@ static inline void qed_chain_reset(struct qed_chain *p_chain)
* @param intended_use
* @param mode
*/
static inline void qed_chain_init(struct qed_chain *p_chain,
void *p_virt_addr,
dma_addr_t p_phys_addr,
u16 page_cnt,
u8 elem_size,
enum qed_chain_use_mode intended_use,
enum qed_chain_mode mode)
static inline void qed_chain_init_params(struct qed_chain *p_chain,
u32 page_cnt,
u8 elem_size,
enum qed_chain_use_mode intended_use,
enum qed_chain_mode mode,
enum qed_chain_cnt_type cnt_type)
{
/* chain fixed parameters */
p_chain->p_virt_addr = p_virt_addr;
p_chain->p_phys_addr = p_phys_addr;
p_chain->p_virt_addr = NULL;
p_chain->p_phys_addr = 0;
p_chain->elem_size = elem_size;
p_chain->page_cnt = page_cnt;
p_chain->intended_use = intended_use;
p_chain->mode = mode;
p_chain->cnt_type = cnt_type;
p_chain->intended_use = intended_use;
p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size);
p_chain->usable_per_page =
USABLE_ELEMS_PER_PAGE(elem_size, mode);
p_chain->capacity = p_chain->usable_per_page * page_cnt;
p_chain->size = p_chain->elem_per_page * page_cnt;
p_chain->usable_per_page = USABLE_ELEMS_PER_PAGE(elem_size, mode);
p_chain->elem_per_page_mask = p_chain->elem_per_page - 1;
p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode);
p_chain->next_page_mask = (p_chain->usable_per_page &
p_chain->elem_per_page_mask);
if (mode == QED_CHAIN_MODE_NEXT_PTR) {
struct qed_chain_next *p_next;
u16 i;
for (i = 0; i < page_cnt - 1; i++) {
/* Increment mem_phy to the next page. */
p_phys_addr += QED_CHAIN_PAGE_SIZE;
/* Initialize the physical address of the next page. */
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
elem_size *
p_chain->
usable_per_page);
p_next->next_phys.lo = DMA_LO_LE(p_phys_addr);
p_next->next_phys.hi = DMA_HI_LE(p_phys_addr);
/* Initialize the virtual address of the next page. */
p_next->next_virt = (void *)((u8 *)p_virt_addr +
QED_CHAIN_PAGE_SIZE);
/* Move to the next page. */
p_virt_addr = p_next->next_virt;
}
/* Last page's next should point to beginning of the chain */
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
elem_size *
p_chain->usable_per_page);
p_chain->page_cnt = page_cnt;
p_chain->capacity = p_chain->usable_per_page * page_cnt;
p_chain->size = p_chain->elem_per_page * page_cnt;
p_next->next_phys.lo = DMA_LO_LE(p_chain->p_phys_addr);
p_next->next_phys.hi = DMA_HI_LE(p_chain->p_phys_addr);
p_next->next_virt = p_chain->p_virt_addr;
}
qed_chain_reset(p_chain);
p_chain->pbl.p_phys_table = 0;
p_chain->pbl.p_virt_table = NULL;
p_chain->pbl.pp_virt_addr_tbl = NULL;
}
/**
* @brief qed_chain_pbl_init - Initalizes a basic pbl chain
* struct
* @brief qed_chain_init_mem -
*
* Initalizes a basic chain struct with its chain buffers
*
* @param p_chain
* @param p_virt_addr virtual address of allocated buffer's beginning
* @param p_phys_addr physical address of allocated buffer's beginning
* @param page_cnt number of pages in the allocated buffer
* @param elem_size size of each element in the chain
* @param use_mode
* @param p_phys_pbl pointer to a pre-allocated side table
* which will hold physical page addresses.
* @param p_virt_pbl pointer to a pre allocated side table
* which will hold virtual page addresses.
*
*/
static inline void
qed_chain_pbl_init(struct qed_chain *p_chain,
void *p_virt_addr,
dma_addr_t p_phys_addr,
u16 page_cnt,
u8 elem_size,
enum qed_chain_use_mode use_mode,
dma_addr_t p_phys_pbl,
dma_addr_t *p_virt_pbl)
static inline void qed_chain_init_mem(struct qed_chain *p_chain,
void *p_virt_addr, dma_addr_t p_phys_addr)
{
dma_addr_t *p_pbl_dma = p_virt_pbl;
int i;
qed_chain_init(p_chain, p_virt_addr, p_phys_addr, page_cnt,
elem_size, use_mode, QED_CHAIN_MODE_PBL);
p_chain->p_virt_addr = p_virt_addr;
p_chain->p_phys_addr = p_phys_addr;
}
/**
* @brief qed_chain_init_pbl_mem -
*
* Initalizes a basic chain struct with its pbl buffers
*
* @param p_chain
* @param p_virt_pbl pointer to a pre allocated side table which will hold
* virtual page addresses.
* @param p_phys_pbl pointer to a pre-allocated side table which will hold
* physical page addresses.
* @param pp_virt_addr_tbl
* pointer to a pre-allocated side table which will hold
* the virtual addresses of the chain pages.
*
*/
static inline void qed_chain_init_pbl_mem(struct qed_chain *p_chain,
void *p_virt_pbl,
dma_addr_t p_phys_pbl,
void **pp_virt_addr_tbl)
{
p_chain->pbl.p_phys_table = p_phys_pbl;
p_chain->pbl.p_virt_table = p_virt_pbl;
/* Fill the PBL with physical addresses*/
for (i = 0; i < page_cnt; i++) {
*p_pbl_dma = p_phys_addr;
p_phys_addr += QED_CHAIN_PAGE_SIZE;
p_pbl_dma++;
}
p_chain->pbl.pp_virt_addr_tbl = pp_virt_addr_tbl;
}
/**
* @brief qed_chain_set_prod - sets the prod to the given
* value
* @brief qed_chain_init_next_ptr_elem -
*
* Initalizes a next pointer element
*
* @param p_chain
* @param p_virt_curr virtual address of a chain page of which the next
* pointer element is initialized
* @param p_virt_next virtual address of the next chain page
* @param p_phys_next physical address of the next chain page
*
* @param prod_idx
* @param p_prod_elem
*/
static inline void qed_chain_set_prod(struct qed_chain *p_chain,
u16 prod_idx,
void *p_prod_elem)
static inline void
qed_chain_init_next_ptr_elem(struct qed_chain *p_chain,
void *p_virt_curr,
void *p_virt_next, dma_addr_t p_phys_next)
{
p_chain->prod_idx = prod_idx;
p_chain->p_prod_elem = p_prod_elem;
struct qed_chain_next *p_next;
u32 size;
size = p_chain->elem_size * p_chain->usable_per_page;
p_next = (struct qed_chain_next *)((u8 *)p_virt_curr + size);
DMA_REGPAIR_LE(p_next->next_phys, p_phys_next);
p_next->next_virt = p_virt_next;
}
/**
* @brief qed_chain_get_elem -
* @brief qed_chain_get_last_elem -
*
* get a pointer to an element represented by absolute idx
* Returns a pointer to the last element of the chain
*
* @param p_chain
* @assumption p_chain->size is a power of 2
*
* @return void*, a pointer to next element
* @return void*
*/
static inline void *qed_chain_sge_get_elem(struct qed_chain *p_chain,
u16 idx)
static inline void *qed_chain_get_last_elem(struct qed_chain *p_chain)
{
void *ret = NULL;
if (idx >= p_chain->size)
return NULL;
struct qed_chain_next *p_next = NULL;
void *p_virt_addr = NULL;
u32 size, last_page_idx;
ret = (u8 *)p_chain->p_virt_addr + p_chain->elem_size * idx;
if (!p_chain->p_virt_addr)
goto out;
return ret;
switch (p_chain->mode) {
case QED_CHAIN_MODE_NEXT_PTR:
size = p_chain->elem_size * p_chain->usable_per_page;
p_virt_addr = p_chain->p_virt_addr;
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr + size);
while (p_next->next_virt != p_chain->p_virt_addr) {
p_virt_addr = p_next->next_virt;
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
size);
}
break;
case QED_CHAIN_MODE_SINGLE:
p_virt_addr = p_chain->p_virt_addr;
break;
case QED_CHAIN_MODE_PBL:
last_page_idx = p_chain->page_cnt - 1;
p_virt_addr = p_chain->pbl.pp_virt_addr_tbl[last_page_idx];
break;
}
/* p_virt_addr points at this stage to the last page of the chain */
size = p_chain->elem_size * (p_chain->usable_per_page - 1);
p_virt_addr = (u8 *)p_virt_addr + size;
out:
return p_virt_addr;
}
/**
* @brief qed_chain_sge_inc_cons_prod
* @brief qed_chain_set_prod - sets the prod to the given value
*
* for sge chains, producer isn't increased serially, the ring
* is expected to be full at all times. Once elements are
* consumed, they are immediately produced.
* @param prod_idx
* @param p_prod_elem
*/
static inline void qed_chain_set_prod(struct qed_chain *p_chain,
u32 prod_idx, void *p_prod_elem)
{
if (is_chain_u16(p_chain))
p_chain->u.chain16.prod_idx = (u16) prod_idx;
else
p_chain->u.chain32.prod_idx = prod_idx;
p_chain->p_prod_elem = p_prod_elem;
}
/**
* @brief qed_chain_pbl_zero_mem - set chain memory to 0
*
* @param p_chain
* @param cnt
*
* @return inline void
*/
static inline void
qed_chain_sge_inc_cons_prod(struct qed_chain *p_chain,
u16 cnt)
static inline void qed_chain_pbl_zero_mem(struct qed_chain *p_chain)
{
p_chain->prod_idx += cnt;
p_chain->cons_idx += cnt;
u32 i, page_cnt;
if (p_chain->mode != QED_CHAIN_MODE_PBL)
return;
page_cnt = qed_chain_get_page_cnt(p_chain);
for (i = 0; i < page_cnt; i++)
memset(p_chain->pbl.pp_virt_addr_tbl[i], 0,
QED_CHAIN_PAGE_SIZE);
}
#endif
......@@ -325,7 +325,8 @@ struct qed_common_ops {
int (*chain_alloc)(struct qed_dev *cdev,
enum qed_chain_use_mode intended_use,
enum qed_chain_mode mode,
u16 num_elems,
enum qed_chain_cnt_type cnt_type,
u32 num_elems,
size_t elem_size,
struct qed_chain *p_chain);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment