Commit b199489d authored by Huang Shijie's avatar Huang Shijie Committed by Brian Norris

mtd: spi-nor: add the framework for SPI NOR

This patch cloned most of the m25p80.c. In theory, it adds a new spi-nor layer.

Before this patch, the layer is like:

                   MTD
         ------------------------
                  m25p80
         ------------------------
	       spi bus driver
         ------------------------
	        SPI NOR chip

After this patch, the layer is like:
                   MTD
         ------------------------
                  spi-nor
         ------------------------
                  m25p80
         ------------------------
	       spi bus driver
         ------------------------
	       SPI NOR chip

With the spi-nor controller driver(Freescale Quadspi), it looks like:
                   MTD
         ------------------------
                  spi-nor
         ------------------------
                fsl-quadspi
         ------------------------
	       SPI NOR chip

New APIs:
   spi_nor_scan: used to scan a spi-nor flash.
Signed-off-by: default avatarHuang Shijie <b32955@freescale.com>
Acked-by: default avatarMarek Vasut <marex@denx.de>
[Brian: rebased to include additional m25p_ids[] entry]
Signed-off-by: default avatarBrian Norris <computersforpeace@gmail.com>
parent 6e602ef7
...@@ -321,6 +321,8 @@ source "drivers/mtd/onenand/Kconfig" ...@@ -321,6 +321,8 @@ source "drivers/mtd/onenand/Kconfig"
source "drivers/mtd/lpddr/Kconfig" source "drivers/mtd/lpddr/Kconfig"
source "drivers/mtd/spi-nor/Kconfig"
source "drivers/mtd/ubi/Kconfig" source "drivers/mtd/ubi/Kconfig"
endif # MTD endif # MTD
...@@ -32,4 +32,5 @@ inftl-objs := inftlcore.o inftlmount.o ...@@ -32,4 +32,5 @@ inftl-objs := inftlcore.o inftlmount.o
obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/ obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/
obj-$(CONFIG_MTD_SPI_NOR_BASE) += spi-nor/
obj-$(CONFIG_MTD_UBI) += ubi/ obj-$(CONFIG_MTD_UBI) += ubi/
config MTD_SPI_NOR_BASE
bool "the framework for SPI-NOR support"
depends on MTD
help
This is the framework for the SPI NOR which can be used by the SPI
device drivers and the SPI-NOR device driver.
obj-$(CONFIG_MTD_SPI_NOR_BASE) += spi-nor.o
/*
* Cloned most of the code from the m25p80.c
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>
/* Define max times to check status register before we give up. */
#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
/*
* Read the status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_sr(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, OPCODE_RDSR, &val, 1);
if (ret < 0) {
pr_err("error %d reading SR\n", (int) ret);
return ret;
}
return val;
}
/*
* Read configuration register, returning its value in the
* location. Return the configuration register value.
* Returns negative if error occured.
*/
static int read_cr(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, OPCODE_RDCR, &val, 1);
if (ret < 0) {
dev_err(nor->dev, "error %d reading CR\n", ret);
return ret;
}
return val;
}
/*
* Dummy Cycle calculation for different type of read.
* It can be used to support more commands with
* different dummy cycle requirements.
*/
static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
{
switch (nor->flash_read) {
case SPI_NOR_FAST:
case SPI_NOR_DUAL:
case SPI_NOR_QUAD:
return 1;
case SPI_NOR_NORMAL:
return 0;
}
return 0;
}
/*
* Write status register 1 byte
* Returns negative if error occurred.
*/
static inline int write_sr(struct spi_nor *nor, u8 val)
{
nor->cmd_buf[0] = val;
return nor->write_reg(nor, OPCODE_WRSR, nor->cmd_buf, 1, 0);
}
/*
* Set write enable latch with Write Enable command.
* Returns negative if error occurred.
*/
static inline int write_enable(struct spi_nor *nor)
{
return nor->write_reg(nor, OPCODE_WREN, NULL, 0, 0);
}
/*
* Send write disble instruction to the chip.
*/
static inline int write_disable(struct spi_nor *nor)
{
return nor->write_reg(nor, OPCODE_WRDI, NULL, 0, 0);
}
static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
return mtd->priv;
}
/* Enable/disable 4-byte addressing mode. */
static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
{
int status;
bool need_wren = false;
u8 cmd;
switch (JEDEC_MFR(jedec_id)) {
case CFI_MFR_ST: /* Micron, actually */
/* Some Micron need WREN command; all will accept it */
need_wren = true;
case CFI_MFR_MACRONIX:
case 0xEF /* winbond */:
if (need_wren)
write_enable(nor);
cmd = enable ? OPCODE_EN4B : OPCODE_EX4B;
status = nor->write_reg(nor, cmd, NULL, 0, 0);
if (need_wren)
write_disable(nor);
return status;
default:
/* Spansion style */
nor->cmd_buf[0] = enable << 7;
return nor->write_reg(nor, OPCODE_BRWR, nor->cmd_buf, 1, 0);
}
}
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
unsigned long deadline;
int sr;
deadline = jiffies + MAX_READY_WAIT_JIFFIES;
do {
cond_resched();
sr = read_sr(nor);
if (sr < 0)
break;
else if (!(sr & SR_WIP))
return 0;
} while (!time_after_eq(jiffies, deadline));
return -ETIMEDOUT;
}
/*
* Service routine to read status register until ready, or timeout occurs.
* Returns non-zero if error.
*/
static int wait_till_ready(struct spi_nor *nor)
{
return nor->wait_till_ready(nor);
}
/*
* Erase the whole flash memory
*
* Returns 0 if successful, non-zero otherwise.
*/
static int erase_chip(struct spi_nor *nor)
{
int ret;
dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
/* Wait until finished previous write command. */
ret = wait_till_ready(nor);
if (ret)
return ret;
/* Send write enable, then erase commands. */
write_enable(nor);
return nor->write_reg(nor, OPCODE_CHIP_ERASE, NULL, 0, 0);
}
static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
int ret = 0;
mutex_lock(&nor->lock);
if (nor->prepare) {
ret = nor->prepare(nor, ops);
if (ret) {
dev_err(nor->dev, "failed in the preparation.\n");
mutex_unlock(&nor->lock);
return ret;
}
}
return ret;
}
static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
if (nor->unprepare)
nor->unprepare(nor, ops);
mutex_unlock(&nor->lock);
}
/*
* Erase an address range on the nor chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
u32 addr, len;
uint32_t rem;
int ret;
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
(long long)instr->len);
div_u64_rem(instr->len, mtd->erasesize, &rem);
if (rem)
return -EINVAL;
addr = instr->addr;
len = instr->len;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
if (ret)
return ret;
/* whole-chip erase? */
if (len == mtd->size) {
if (erase_chip(nor)) {
ret = -EIO;
goto erase_err;
}
/* REVISIT in some cases we could speed up erasing large regions
* by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
* to use "small sector erase", but that's not always optimal.
*/
/* "sector"-at-a-time erase */
} else {
while (len) {
if (nor->erase(nor, addr)) {
ret = -EIO;
goto erase_err;
}
addr += mtd->erasesize;
len -= mtd->erasesize;
}
}
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
return ret;
erase_err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
instr->state = MTD_ERASE_FAILED;
return ret;
}
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
uint32_t offset = ofs;
uint8_t status_old, status_new;
int ret = 0;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
if (ret)
return ret;
/* Wait until finished previous command */
ret = wait_till_ready(nor);
if (ret)
goto err;
status_old = read_sr(nor);
if (offset < mtd->size - (mtd->size / 2))
status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
else if (offset < mtd->size - (mtd->size / 4))
status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
else if (offset < mtd->size - (mtd->size / 8))
status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
else if (offset < mtd->size - (mtd->size / 16))
status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
else if (offset < mtd->size - (mtd->size / 32))
status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
else if (offset < mtd->size - (mtd->size / 64))
status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
else
status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
/* Only modify protection if it will not unlock other areas */
if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
write_enable(nor);
ret = write_sr(nor, status_new);
if (ret)
goto err;
}
err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
return ret;
}
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
uint32_t offset = ofs;
uint8_t status_old, status_new;
int ret = 0;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
if (ret)
return ret;
/* Wait until finished previous command */
ret = wait_till_ready(nor);
if (ret)
goto err;
status_old = read_sr(nor);
if (offset+len > mtd->size - (mtd->size / 64))
status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
else if (offset+len > mtd->size - (mtd->size / 32))
status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
else if (offset+len > mtd->size - (mtd->size / 16))
status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
else if (offset+len > mtd->size - (mtd->size / 8))
status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
else if (offset+len > mtd->size - (mtd->size / 4))
status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
else if (offset+len > mtd->size - (mtd->size / 2))
status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
else
status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
/* Only modify protection if it will not lock other areas */
if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
(status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
write_enable(nor);
ret = write_sr(nor, status_new);
if (ret)
goto err;
}
err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
return ret;
}
struct flash_info {
/* JEDEC id zero means "no ID" (most older chips); otherwise it has
* a high byte of zero plus three data bytes: the manufacturer id,
* then a two byte device id.
*/
u32 jedec_id;
u16 ext_id;
/* The size listed here is what works with OPCODE_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
unsigned sector_size;
u16 n_sectors;
u16 page_size;
u16 addr_width;
u16 flags;
#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
#define SST_WRITE 0x04 /* use SST byte programming */
#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
#define SECT_4K_PMC 0x10 /* OPCODE_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
};
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
((kernel_ulong_t)&(struct flash_info) { \
.jedec_id = (_jedec_id), \
.ext_id = (_ext_id), \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = 256, \
.flags = (_flags), \
})
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
((kernel_ulong_t)&(struct flash_info) { \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = (_page_size), \
.addr_width = (_addr_width), \
.flags = (_flags), \
})
/* NOTE: double check command sets and memory organization when you add
* more nor chips. This current list focusses on newer chips, which
* have been converging on command sets which including JEDEC ID.
*/
const struct spi_device_id spi_nor_ids[] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
{ "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
{ "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
{ "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
/* EON -- en25xxx */
{ "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
{ "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
/* ESMT */
{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
/* Everspin */
{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
/* GigaDevice */
{ "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
/* Intel/Numonyx -- xxxs33b */
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
{ "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
/* Macronix */
{ "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
{ "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
{ "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
{ "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
{ "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
{ "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
{ "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
{ "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
/* Micron */
{ "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
{ "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
{ "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
{ "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
/* PMC */
{ "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
{ "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
{ "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
/* Spansion -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, 0) },
{ "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
{ "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
{ "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
/* ST Microelectronics -- newer production may have feature updates */
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
{ "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
{ "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
{ "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
{ "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
{ "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
/* Catalyst / On Semiconductor -- non-JEDEC */
{ "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ },
};
static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
{
int tmp;
u8 id[5];
u32 jedec;
u16 ext_jedec;
struct flash_info *info;
tmp = nor->read_reg(nor, OPCODE_RDID, id, 5);
if (tmp < 0) {
dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
return ERR_PTR(tmp);
}
jedec = id[0];
jedec = jedec << 8;
jedec |= id[1];
jedec = jedec << 8;
jedec |= id[2];
ext_jedec = id[3] << 8 | id[4];
for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
info = (void *)spi_nor_ids[tmp].driver_data;
if (info->jedec_id == jedec) {
if (info->ext_id == 0 || info->ext_id == ext_jedec)
return &spi_nor_ids[tmp];
}
}
dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
return ERR_PTR(-ENODEV);
}
static const struct spi_device_id *jedec_probe(struct spi_nor *nor)
{
return nor->read_id(nor);
}
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
if (ret)
return ret;
ret = nor->read(nor, from, len, retlen, buf);
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
return ret;
}
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
size_t actual;
int ret;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
if (ret)
return ret;
/* Wait until finished previous write command. */
ret = wait_till_ready(nor);
if (ret)
goto time_out;
write_enable(nor);
nor->sst_write_second = false;
actual = to % 2;
/* Start write from odd address. */
if (actual) {
nor->program_opcode = OPCODE_BP;
/* write one byte. */
nor->write(nor, to, 1, retlen, buf);
ret = wait_till_ready(nor);
if (ret)
goto time_out;
}
to += actual;
/* Write out most of the data here. */
for (; actual < len - 1; actual += 2) {
nor->program_opcode = OPCODE_AAI_WP;
/* write two bytes. */
nor->write(nor, to, 2, retlen, buf + actual);
ret = wait_till_ready(nor);
if (ret)
goto time_out;
to += 2;
nor->sst_write_second = true;
}
nor->sst_write_second = false;
write_disable(nor);
ret = wait_till_ready(nor);
if (ret)
goto time_out;
/* Write out trailing byte if it exists. */
if (actual != len) {
write_enable(nor);
nor->program_opcode = OPCODE_BP;
nor->write(nor, to, 1, retlen, buf + actual);
ret = wait_till_ready(nor);
if (ret)
goto time_out;
write_disable(nor);
}
time_out:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
return ret;
}
/*
* Write an address range to the nor chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
u32 page_offset, page_size, i;
int ret;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
if (ret)
return ret;
/* Wait until finished previous write command. */
ret = wait_till_ready(nor);
if (ret)
goto write_err;
write_enable(nor);
page_offset = to & (nor->page_size - 1);
/* do all the bytes fit onto one page? */
if (page_offset + len <= nor->page_size) {
nor->write(nor, to, len, retlen, buf);
} else {
/* the size of data remaining on the first page */
page_size = nor->page_size - page_offset;
nor->write(nor, to, page_size, retlen, buf);
/* write everything in nor->page_size chunks */
for (i = page_size; i < len; i += page_size) {
page_size = len - i;
if (page_size > nor->page_size)
page_size = nor->page_size;
wait_till_ready(nor);
write_enable(nor);
nor->write(nor, to + i, page_size, retlen, buf + i);
}
}
write_err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
return 0;
}
static int macronix_quad_enable(struct spi_nor *nor)
{
int ret, val;
val = read_sr(nor);
write_enable(nor);
nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
nor->write_reg(nor, OPCODE_WRSR, nor->cmd_buf, 1, 0);
if (wait_till_ready(nor))
return 1;
ret = read_sr(nor);
if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
dev_err(nor->dev, "Macronix Quad bit not set\n");
return -EINVAL;
}
return 0;
}
/*
* Write status Register and configuration register with 2 bytes
* The first byte will be written to the status register, while the
* second byte will be written to the configuration register.
* Return negative if error occured.
*/
static int write_sr_cr(struct spi_nor *nor, u16 val)
{
nor->cmd_buf[0] = val & 0xff;
nor->cmd_buf[1] = (val >> 8);
return nor->write_reg(nor, OPCODE_WRSR, nor->cmd_buf, 2, 0);
}
static int spansion_quad_enable(struct spi_nor *nor)
{
int ret;
int quad_en = CR_QUAD_EN_SPAN << 8;
write_enable(nor);
ret = write_sr_cr(nor, quad_en);
if (ret < 0) {
dev_err(nor->dev,
"error while writing configuration register\n");
return -EINVAL;
}
/* read back and check it */
ret = read_cr(nor);
if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
dev_err(nor->dev, "Spansion Quad bit not set\n");
return -EINVAL;
}
return 0;
}
static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
{
int status;
switch (JEDEC_MFR(jedec_id)) {
case CFI_MFR_MACRONIX:
status = macronix_quad_enable(nor);
if (status) {
dev_err(nor->dev, "Macronix quad-read not enabled\n");
return -EINVAL;
}
return status;
default:
status = spansion_quad_enable(nor);
if (status) {
dev_err(nor->dev, "Spansion quad-read not enabled\n");
return -EINVAL;
}
return status;
}
}
static int spi_nor_check(struct spi_nor *nor)
{
if (!nor->dev || !nor->read || !nor->write ||
!nor->read_reg || !nor->write_reg || !nor->erase) {
pr_err("spi-nor: please fill all the necessary fields!\n");
return -EINVAL;
}
if (!nor->read_id)
nor->read_id = spi_nor_read_id;
if (!nor->wait_till_ready)
nor->wait_till_ready = spi_nor_wait_till_ready;
return 0;
}
int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
enum read_mode mode)
{
struct flash_info *info;
struct flash_platform_data *data;
struct device *dev = nor->dev;
struct mtd_info *mtd = nor->mtd;
struct device_node *np = dev->of_node;
int ret;
int i;
ret = spi_nor_check(nor);
if (ret)
return ret;
/* Platform data helps sort out which chip type we have, as
* well as how this board partitions it. If we don't have
* a chip ID, try the JEDEC id commands; they'll work for most
* newer chips, even if we don't recognize the particular chip.
*/
data = dev_get_platdata(dev);
if (data && data->type) {
const struct spi_device_id *plat_id;
for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
plat_id = &spi_nor_ids[i];
if (strcmp(data->type, plat_id->name))
continue;
break;
}
if (i < ARRAY_SIZE(spi_nor_ids) - 1)
id = plat_id;
else
dev_warn(dev, "unrecognized id %s\n", data->type);
}
info = (void *)id->driver_data;
if (info->jedec_id) {
const struct spi_device_id *jid;
jid = jedec_probe(nor);
if (IS_ERR(jid)) {
return PTR_ERR(jid);
} else if (jid != id) {
/*
* JEDEC knows better, so overwrite platform ID. We
* can't trust partitions any longer, but we'll let
* mtd apply them anyway, since some partitions may be
* marked read-only, and we don't want to lose that
* information, even if it's not 100% accurate.
*/
dev_warn(dev, "found %s, expected %s\n",
jid->name, id->name);
id = jid;
info = (void *)jid->driver_data;
}
}
mutex_init(&nor->lock);
/*
* Atmel, SST and Intel/Numonyx serial nor tend to power
* up with the software protection bits set
*/
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
write_enable(nor);
write_sr(nor, 0);
}
if (data && data->name)
mtd->name = data->name;
else
mtd->name = dev_name(dev);
mtd->type = MTD_NORFLASH;
mtd->writesize = 1;
mtd->flags = MTD_CAP_NORFLASH;
mtd->size = info->sector_size * info->n_sectors;
mtd->_erase = spi_nor_erase;
mtd->_read = spi_nor_read;
/* nor protection support for STmicro chips */
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
mtd->_lock = spi_nor_lock;
mtd->_unlock = spi_nor_unlock;
}
/* sst nor chips use AAI word program */
if (info->flags & SST_WRITE)
mtd->_write = sst_write;
else
mtd->_write = spi_nor_write;
/* prefer "small sector" erase if possible */
if (info->flags & SECT_4K) {
nor->erase_opcode = OPCODE_BE_4K;
mtd->erasesize = 4096;
} else if (info->flags & SECT_4K_PMC) {
nor->erase_opcode = OPCODE_BE_4K_PMC;
mtd->erasesize = 4096;
} else {
nor->erase_opcode = OPCODE_SE;
mtd->erasesize = info->sector_size;
}
if (info->flags & SPI_NOR_NO_ERASE)
mtd->flags |= MTD_NO_ERASE;
mtd->dev.parent = dev;
nor->page_size = info->page_size;
mtd->writebufsize = nor->page_size;
if (np) {
/* If we were instantiated by DT, use it */
if (of_property_read_bool(np, "m25p,fast-read"))
nor->flash_read = SPI_NOR_FAST;
else
nor->flash_read = SPI_NOR_NORMAL;
} else {
/* If we weren't instantiated by DT, default to fast-read */
nor->flash_read = SPI_NOR_FAST;
}
/* Some devices cannot do fast-read, no matter what DT tells us */
if (info->flags & SPI_NOR_NO_FR)
nor->flash_read = SPI_NOR_NORMAL;
/* Quad/Dual-read mode takes precedence over fast/normal */
if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
ret = set_quad_mode(nor, info->jedec_id);
if (ret) {
dev_err(dev, "quad mode not supported\n");
return ret;
}
nor->flash_read = SPI_NOR_QUAD;
} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
nor->flash_read = SPI_NOR_DUAL;
}
/* Default commands */
switch (nor->flash_read) {
case SPI_NOR_QUAD:
nor->read_opcode = OPCODE_QUAD_READ;
break;
case SPI_NOR_DUAL:
nor->read_opcode = OPCODE_DUAL_READ;
break;
case SPI_NOR_FAST:
nor->read_opcode = OPCODE_FAST_READ;
break;
case SPI_NOR_NORMAL:
nor->read_opcode = OPCODE_NORM_READ;
break;
default:
dev_err(dev, "No Read opcode defined\n");
return -EINVAL;
}
nor->program_opcode = OPCODE_PP;
if (info->addr_width)
nor->addr_width = info->addr_width;
else if (mtd->size > 0x1000000) {
/* enable 4-byte addressing if the device exceeds 16MiB */
nor->addr_width = 4;
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
/* Dedicated 4-byte command set */
switch (nor->flash_read) {
case SPI_NOR_QUAD:
nor->read_opcode = OPCODE_QUAD_READ_4B;
break;
case SPI_NOR_DUAL:
nor->read_opcode = OPCODE_DUAL_READ_4B;
break;
case SPI_NOR_FAST:
nor->read_opcode = OPCODE_FAST_READ_4B;
break;
case SPI_NOR_NORMAL:
nor->read_opcode = OPCODE_NORM_READ_4B;
break;
}
nor->program_opcode = OPCODE_PP_4B;
/* No small sector erase for 4-byte command set */
nor->erase_opcode = OPCODE_SE_4B;
mtd->erasesize = info->sector_size;
} else
set_4byte(nor, info->jedec_id, 1);
} else {
nor->addr_width = 3;
}
nor->read_dummy = spi_nor_read_dummy_cycles(nor);
dev_info(dev, "%s (%lld Kbytes)\n", id->name,
(long long)mtd->size >> 10);
dev_dbg(dev,
"mtd .name = %s, .size = 0x%llx (%lldMiB), "
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
if (mtd->numeraseregions)
for (i = 0; i < mtd->numeraseregions; i++)
dev_dbg(dev,
"mtd.eraseregions[%d] = { .offset = 0x%llx, "
".erasesize = 0x%.8x (%uKiB), "
".numblocks = %d }\n",
i, (long long)mtd->eraseregions[i].offset,
mtd->eraseregions[i].erasesize,
mtd->eraseregions[i].erasesize / 1024,
mtd->eraseregions[i].numblocks);
return 0;
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");
...@@ -162,4 +162,24 @@ struct spi_nor { ...@@ -162,4 +162,24 @@ struct spi_nor {
void *priv; void *priv;
}; };
/**
* spi_nor_scan() - scan the SPI NOR
* @nor: the spi_nor structure
* @id: the spi_device_id provided by the driver
* @mode: the read mode supported by the driver
*
* The drivers can use this fuction to scan the SPI NOR.
* In the scanning, it will try to get all the necessary information to
* fill the mtd_info{} and the spi_nor{}.
*
* The board may assigns a spi_device_id with @id which be used to compared with
* the spi_device_id detected by the scanning.
*
* Return: 0 for success, others for failure.
*/
int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
enum read_mode mode);
extern const struct spi_device_id spi_nor_ids[];
#endif #endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment