Commit b3e27d5d authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'ntb-4.5' of git://github.com/jonmason/ntb

Pull NTB updates from Jon Mason:
 "A new driver to support AMD NTB, a NTB performance test driver, NTB
  bugs fixes, and the ability to recover from running out of DMA
  descriptors"

* tag 'ntb-4.5' of git://github.com/jonmason/ntb:
  NTB: Fix macro parameter conflict with field name
  NTB: Add support for AMD PCI-Express Non-Transparent Bridge
  ntb: ntb perf tool
  NTB: Address out of DMA descriptor issue with NTB
  NTB: Clear property bits in BAR value
  NTB: ntb_process_tx error path bug
parents cc673757 03beaec8
......@@ -7702,6 +7702,12 @@ W: https://github.com/jonmason/ntb/wiki
T: git git://github.com/jonmason/ntb.git
F: drivers/ntb/hw/intel/
NTB AMD DRIVER
M: Xiangliang Yu <Xiangliang.Yu@amd.com>
L: linux-ntb@googlegroups.com
S: Supported
F: drivers/ntb/hw/amd/
NTFS FILESYSTEM
M: Anton Altaparmakov <anton@tuxera.com>
L: linux-ntfs-dev@lists.sourceforge.net
......
source "drivers/ntb/hw/amd/Kconfig"
source "drivers/ntb/hw/intel/Kconfig"
obj-$(CONFIG_NTB_AMD) += amd/
obj-$(CONFIG_NTB_INTEL) += intel/
config NTB_AMD
tristate "AMD Non-Transparent Bridge support"
depends on X86_64
help
This driver supports AMD NTB on capable Zeppelin hardware.
If unsure, say N.
obj-$(CONFIG_NTB_AMD) += ntb_hw_amd.o
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* BSD LICENSE
*
* Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copy
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of AMD Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* AMD PCIe NTB Linux driver
*
* Contact Information:
* Xiangliang Yu <Xiangliang.Yu@amd.com>
*/
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/acpi.h>
#include <linux/pci.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/ntb.h>
#include "ntb_hw_amd.h"
#define NTB_NAME "ntb_hw_amd"
#define NTB_DESC "AMD(R) PCI-E Non-Transparent Bridge Driver"
#define NTB_VER "1.0"
MODULE_DESCRIPTION(NTB_DESC);
MODULE_VERSION(NTB_VER);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("AMD Inc.");
static const struct file_operations amd_ntb_debugfs_info;
static struct dentry *debugfs_dir;
static int ndev_mw_to_bar(struct amd_ntb_dev *ndev, int idx)
{
if (idx < 0 || idx > ndev->mw_count)
return -EINVAL;
return 1 << idx;
}
static int amd_ntb_mw_count(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->mw_count;
}
static int amd_ntb_mw_get_range(struct ntb_dev *ntb, int idx,
phys_addr_t *base,
resource_size_t *size,
resource_size_t *align,
resource_size_t *align_size)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
int bar;
bar = ndev_mw_to_bar(ndev, idx);
if (bar < 0)
return bar;
if (base)
*base = pci_resource_start(ndev->ntb.pdev, bar);
if (size)
*size = pci_resource_len(ndev->ntb.pdev, bar);
if (align)
*align = SZ_4K;
if (align_size)
*align_size = 1;
return 0;
}
static int amd_ntb_mw_set_trans(struct ntb_dev *ntb, int idx,
dma_addr_t addr, resource_size_t size)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
unsigned long xlat_reg, limit_reg = 0;
resource_size_t mw_size;
void __iomem *mmio, *peer_mmio;
u64 base_addr, limit, reg_val;
int bar;
bar = ndev_mw_to_bar(ndev, idx);
if (bar < 0)
return bar;
mw_size = pci_resource_len(ndev->ntb.pdev, bar);
/* make sure the range fits in the usable mw size */
if (size > mw_size)
return -EINVAL;
mmio = ndev->self_mmio;
peer_mmio = ndev->peer_mmio;
base_addr = pci_resource_start(ndev->ntb.pdev, bar);
if (bar != 1) {
xlat_reg = AMD_BAR23XLAT_OFFSET + ((bar - 2) << 3);
limit_reg = AMD_BAR23LMT_OFFSET + ((bar - 2) << 3);
/* Set the limit if supported */
limit = base_addr + size;
/* set and verify setting the translation address */
write64(addr, peer_mmio + xlat_reg);
reg_val = read64(peer_mmio + xlat_reg);
if (reg_val != addr) {
write64(0, peer_mmio + xlat_reg);
return -EIO;
}
/* set and verify setting the limit */
write64(limit, mmio + limit_reg);
reg_val = read64(mmio + limit_reg);
if (reg_val != limit) {
write64(base_addr, mmio + limit_reg);
write64(0, peer_mmio + xlat_reg);
return -EIO;
}
} else {
xlat_reg = AMD_BAR1XLAT_OFFSET;
limit_reg = AMD_BAR1LMT_OFFSET;
/* split bar addr range must all be 32 bit */
if (addr & (~0ull << 32))
return -EINVAL;
if ((addr + size) & (~0ull << 32))
return -EINVAL;
/* Set the limit if supported */
limit = base_addr + size;
/* set and verify setting the translation address */
write64(addr, peer_mmio + xlat_reg);
reg_val = read64(peer_mmio + xlat_reg);
if (reg_val != addr) {
write64(0, peer_mmio + xlat_reg);
return -EIO;
}
/* set and verify setting the limit */
writel(limit, mmio + limit_reg);
reg_val = readl(mmio + limit_reg);
if (reg_val != limit) {
writel(base_addr, mmio + limit_reg);
writel(0, peer_mmio + xlat_reg);
return -EIO;
}
}
return 0;
}
static int amd_link_is_up(struct amd_ntb_dev *ndev)
{
if (!ndev->peer_sta)
return NTB_LNK_STA_ACTIVE(ndev->cntl_sta);
/* If peer_sta is reset or D0 event, the ISR has
* started a timer to check link status of hardware.
* So here just clear status bit. And if peer_sta is
* D3 or PME_TO, D0/reset event will be happened when
* system wakeup/poweron, so do nothing here.
*/
if (ndev->peer_sta & AMD_PEER_RESET_EVENT)
ndev->peer_sta &= ~AMD_PEER_RESET_EVENT;
else if (ndev->peer_sta & AMD_PEER_D0_EVENT)
ndev->peer_sta = 0;
return 0;
}
static int amd_ntb_link_is_up(struct ntb_dev *ntb,
enum ntb_speed *speed,
enum ntb_width *width)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
int ret = 0;
if (amd_link_is_up(ndev)) {
if (speed)
*speed = NTB_LNK_STA_SPEED(ndev->lnk_sta);
if (width)
*width = NTB_LNK_STA_WIDTH(ndev->lnk_sta);
dev_dbg(ndev_dev(ndev), "link is up.\n");
ret = 1;
} else {
if (speed)
*speed = NTB_SPEED_NONE;
if (width)
*width = NTB_WIDTH_NONE;
dev_dbg(ndev_dev(ndev), "link is down.\n");
}
return ret;
}
static int amd_ntb_link_enable(struct ntb_dev *ntb,
enum ntb_speed max_speed,
enum ntb_width max_width)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
u32 ntb_ctl;
/* Enable event interrupt */
ndev->int_mask &= ~AMD_EVENT_INTMASK;
writel(ndev->int_mask, mmio + AMD_INTMASK_OFFSET);
if (ndev->ntb.topo == NTB_TOPO_SEC)
return -EINVAL;
dev_dbg(ndev_dev(ndev), "Enabling Link.\n");
ntb_ctl = readl(mmio + AMD_CNTL_OFFSET);
ntb_ctl |= (PMM_REG_CTL | SMM_REG_CTL);
writel(ntb_ctl, mmio + AMD_CNTL_OFFSET);
return 0;
}
static int amd_ntb_link_disable(struct ntb_dev *ntb)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
u32 ntb_ctl;
/* Disable event interrupt */
ndev->int_mask |= AMD_EVENT_INTMASK;
writel(ndev->int_mask, mmio + AMD_INTMASK_OFFSET);
if (ndev->ntb.topo == NTB_TOPO_SEC)
return -EINVAL;
dev_dbg(ndev_dev(ndev), "Enabling Link.\n");
ntb_ctl = readl(mmio + AMD_CNTL_OFFSET);
ntb_ctl &= ~(PMM_REG_CTL | SMM_REG_CTL);
writel(ntb_ctl, mmio + AMD_CNTL_OFFSET);
return 0;
}
static u64 amd_ntb_db_valid_mask(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->db_valid_mask;
}
static int amd_ntb_db_vector_count(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->db_count;
}
static u64 amd_ntb_db_vector_mask(struct ntb_dev *ntb, int db_vector)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
if (db_vector < 0 || db_vector > ndev->db_count)
return 0;
return ntb_ndev(ntb)->db_valid_mask & (1 << db_vector);
}
static u64 amd_ntb_db_read(struct ntb_dev *ntb)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
return (u64)readw(mmio + AMD_DBSTAT_OFFSET);
}
static int amd_ntb_db_clear(struct ntb_dev *ntb, u64 db_bits)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
writew((u16)db_bits, mmio + AMD_DBSTAT_OFFSET);
return 0;
}
static int amd_ntb_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
unsigned long flags;
if (db_bits & ~ndev->db_valid_mask)
return -EINVAL;
spin_lock_irqsave(&ndev->db_mask_lock, flags);
ndev->db_mask |= db_bits;
writew((u16)ndev->db_mask, mmio + AMD_DBMASK_OFFSET);
spin_unlock_irqrestore(&ndev->db_mask_lock, flags);
return 0;
}
static int amd_ntb_db_clear_mask(struct ntb_dev *ntb, u64 db_bits)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
unsigned long flags;
if (db_bits & ~ndev->db_valid_mask)
return -EINVAL;
spin_lock_irqsave(&ndev->db_mask_lock, flags);
ndev->db_mask &= ~db_bits;
writew((u16)ndev->db_mask, mmio + AMD_DBMASK_OFFSET);
spin_unlock_irqrestore(&ndev->db_mask_lock, flags);
return 0;
}
static int amd_ntb_peer_db_addr(struct ntb_dev *ntb,
phys_addr_t *db_addr,
resource_size_t *db_size)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
if (db_addr)
*db_addr = (phys_addr_t)(ndev->peer_mmio + AMD_DBREQ_OFFSET);
if (db_size)
*db_size = sizeof(u32);
return 0;
}
static int amd_ntb_peer_db_set(struct ntb_dev *ntb, u64 db_bits)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
writew((u16)db_bits, mmio + AMD_DBREQ_OFFSET);
return 0;
}
static int amd_ntb_spad_count(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->spad_count;
}
static u32 amd_ntb_spad_read(struct ntb_dev *ntb, int idx)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
u32 offset;
if (idx < 0 || idx >= ndev->spad_count)
return 0;
offset = ndev->self_spad + (idx << 2);
return readl(mmio + AMD_SPAD_OFFSET + offset);
}
static int amd_ntb_spad_write(struct ntb_dev *ntb,
int idx, u32 val)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
u32 offset;
if (idx < 0 || idx >= ndev->spad_count)
return -EINVAL;
offset = ndev->self_spad + (idx << 2);
writel(val, mmio + AMD_SPAD_OFFSET + offset);
return 0;
}
static int amd_ntb_peer_spad_addr(struct ntb_dev *ntb, int idx,
phys_addr_t *spad_addr)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
if (idx < 0 || idx >= ndev->spad_count)
return -EINVAL;
if (spad_addr)
*spad_addr = (phys_addr_t)(ndev->self_mmio + AMD_SPAD_OFFSET +
ndev->peer_spad + (idx << 2));
return 0;
}
static u32 amd_ntb_peer_spad_read(struct ntb_dev *ntb, int idx)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
u32 offset;
if (idx < 0 || idx >= ndev->spad_count)
return -EINVAL;
offset = ndev->peer_spad + (idx << 2);
return readl(mmio + AMD_SPAD_OFFSET + offset);
}
static int amd_ntb_peer_spad_write(struct ntb_dev *ntb,
int idx, u32 val)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio;
u32 offset;
if (idx < 0 || idx >= ndev->spad_count)
return -EINVAL;
offset = ndev->peer_spad + (idx << 2);
writel(val, mmio + AMD_SPAD_OFFSET + offset);
return 0;
}
static const struct ntb_dev_ops amd_ntb_ops = {
.mw_count = amd_ntb_mw_count,
.mw_get_range = amd_ntb_mw_get_range,
.mw_set_trans = amd_ntb_mw_set_trans,
.link_is_up = amd_ntb_link_is_up,
.link_enable = amd_ntb_link_enable,
.link_disable = amd_ntb_link_disable,
.db_valid_mask = amd_ntb_db_valid_mask,
.db_vector_count = amd_ntb_db_vector_count,
.db_vector_mask = amd_ntb_db_vector_mask,
.db_read = amd_ntb_db_read,
.db_clear = amd_ntb_db_clear,
.db_set_mask = amd_ntb_db_set_mask,
.db_clear_mask = amd_ntb_db_clear_mask,
.peer_db_addr = amd_ntb_peer_db_addr,
.peer_db_set = amd_ntb_peer_db_set,
.spad_count = amd_ntb_spad_count,
.spad_read = amd_ntb_spad_read,
.spad_write = amd_ntb_spad_write,
.peer_spad_addr = amd_ntb_peer_spad_addr,
.peer_spad_read = amd_ntb_peer_spad_read,
.peer_spad_write = amd_ntb_peer_spad_write,
};
static void amd_ack_smu(struct amd_ntb_dev *ndev, u32 bit)
{
void __iomem *mmio = ndev->self_mmio;
int reg;
reg = readl(mmio + AMD_SMUACK_OFFSET);
reg |= bit;
writel(reg, mmio + AMD_SMUACK_OFFSET);
ndev->peer_sta |= bit;
}
static void amd_handle_event(struct amd_ntb_dev *ndev, int vec)
{
void __iomem *mmio = ndev->self_mmio;
u32 status;
status = readl(mmio + AMD_INTSTAT_OFFSET);
if (!(status & AMD_EVENT_INTMASK))
return;
dev_dbg(ndev_dev(ndev), "status = 0x%x and vec = %d\n", status, vec);
status &= AMD_EVENT_INTMASK;
switch (status) {
case AMD_PEER_FLUSH_EVENT:
dev_info(ndev_dev(ndev), "Flush is done.\n");
break;
case AMD_PEER_RESET_EVENT:
amd_ack_smu(ndev, AMD_PEER_RESET_EVENT);
/* link down first */
ntb_link_event(&ndev->ntb);
/* polling peer status */
schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT);
break;
case AMD_PEER_D3_EVENT:
case AMD_PEER_PMETO_EVENT:
amd_ack_smu(ndev, status);
/* link down */
ntb_link_event(&ndev->ntb);
break;
case AMD_PEER_D0_EVENT:
mmio = ndev->peer_mmio;
status = readl(mmio + AMD_PMESTAT_OFFSET);
/* check if this is WAKEUP event */
if (status & 0x1)
dev_info(ndev_dev(ndev), "Wakeup is done.\n");
amd_ack_smu(ndev, AMD_PEER_D0_EVENT);
/* start a timer to poll link status */
schedule_delayed_work(&ndev->hb_timer,
AMD_LINK_HB_TIMEOUT);
break;
default:
dev_info(ndev_dev(ndev), "event status = 0x%x.\n", status);
break;
}
}
static irqreturn_t ndev_interrupt(struct amd_ntb_dev *ndev, int vec)
{
dev_dbg(ndev_dev(ndev), "vec %d\n", vec);
if (vec > (AMD_DB_CNT - 1) || (ndev->msix_vec_count == 1))
amd_handle_event(ndev, vec);
if (vec < AMD_DB_CNT)
ntb_db_event(&ndev->ntb, vec);
return IRQ_HANDLED;
}
static irqreturn_t ndev_vec_isr(int irq, void *dev)
{
struct amd_ntb_vec *nvec = dev;
return ndev_interrupt(nvec->ndev, nvec->num);
}
static irqreturn_t ndev_irq_isr(int irq, void *dev)
{
struct amd_ntb_dev *ndev = dev;
return ndev_interrupt(ndev, irq - ndev_pdev(ndev)->irq);
}
static int ndev_init_isr(struct amd_ntb_dev *ndev,
int msix_min, int msix_max)
{
struct pci_dev *pdev;
int rc, i, msix_count, node;
pdev = ndev_pdev(ndev);
node = dev_to_node(&pdev->dev);
ndev->db_mask = ndev->db_valid_mask;
/* Try to set up msix irq */
ndev->vec = kzalloc_node(msix_max * sizeof(*ndev->vec),
GFP_KERNEL, node);
if (!ndev->vec)
goto err_msix_vec_alloc;
ndev->msix = kzalloc_node(msix_max * sizeof(*ndev->msix),
GFP_KERNEL, node);
if (!ndev->msix)
goto err_msix_alloc;
for (i = 0; i < msix_max; ++i)
ndev->msix[i].entry = i;
msix_count = pci_enable_msix_range(pdev, ndev->msix,
msix_min, msix_max);
if (msix_count < 0)
goto err_msix_enable;
/* NOTE: Disable MSIX if msix count is less than 16 because of
* hardware limitation.
*/
if (msix_count < msix_min) {
pci_disable_msix(pdev);
goto err_msix_enable;
}
for (i = 0; i < msix_count; ++i) {
ndev->vec[i].ndev = ndev;
ndev->vec[i].num = i;
rc = request_irq(ndev->msix[i].vector, ndev_vec_isr, 0,
"ndev_vec_isr", &ndev->vec[i]);
if (rc)
goto err_msix_request;
}
dev_dbg(ndev_dev(ndev), "Using msix interrupts\n");
ndev->db_count = msix_min;
ndev->msix_vec_count = msix_max;
return 0;
err_msix_request:
while (i-- > 0)
free_irq(ndev->msix[i].vector, ndev);
pci_disable_msix(pdev);
err_msix_enable:
kfree(ndev->msix);
err_msix_alloc:
kfree(ndev->vec);
err_msix_vec_alloc:
ndev->msix = NULL;
ndev->vec = NULL;
/* Try to set up msi irq */
rc = pci_enable_msi(pdev);
if (rc)
goto err_msi_enable;
rc = request_irq(pdev->irq, ndev_irq_isr, 0,
"ndev_irq_isr", ndev);
if (rc)
goto err_msi_request;
dev_dbg(ndev_dev(ndev), "Using msi interrupts\n");
ndev->db_count = 1;
ndev->msix_vec_count = 1;
return 0;
err_msi_request:
pci_disable_msi(pdev);
err_msi_enable:
/* Try to set up intx irq */
pci_intx(pdev, 1);
rc = request_irq(pdev->irq, ndev_irq_isr, IRQF_SHARED,
"ndev_irq_isr", ndev);
if (rc)
goto err_intx_request;
dev_dbg(ndev_dev(ndev), "Using intx interrupts\n");
ndev->db_count = 1;
ndev->msix_vec_count = 1;
return 0;
err_intx_request:
return rc;
}
static void ndev_deinit_isr(struct amd_ntb_dev *ndev)
{
struct pci_dev *pdev;
void __iomem *mmio = ndev->self_mmio;
int i;
pdev = ndev_pdev(ndev);
/* Mask all doorbell interrupts */
ndev->db_mask = ndev->db_valid_mask;
writel(ndev->db_mask, mmio + AMD_DBMASK_OFFSET);
if (ndev->msix) {
i = ndev->msix_vec_count;
while (i--)
free_irq(ndev->msix[i].vector, &ndev->vec[i]);
pci_disable_msix(pdev);
kfree(ndev->msix);
kfree(ndev->vec);
} else {
free_irq(pdev->irq, ndev);
if (pci_dev_msi_enabled(pdev))
pci_disable_msi(pdev);
else
pci_intx(pdev, 0);
}
}
static ssize_t ndev_debugfs_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp)
{
struct amd_ntb_dev *ndev;
void __iomem *mmio;
char *buf;
size_t buf_size;
ssize_t ret, off;
union { u64 v64; u32 v32; u16 v16; } u;
ndev = filp->private_data;
mmio = ndev->self_mmio;
buf_size = min(count, 0x800ul);
buf = kmalloc(buf_size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
off = 0;
off += scnprintf(buf + off, buf_size - off,
"NTB Device Information:\n");
off += scnprintf(buf + off, buf_size - off,
"Connection Topology -\t%s\n",
ntb_topo_string(ndev->ntb.topo));
off += scnprintf(buf + off, buf_size - off,
"LNK STA -\t\t%#06x\n", ndev->lnk_sta);
if (!amd_link_is_up(ndev)) {
off += scnprintf(buf + off, buf_size - off,
"Link Status -\t\tDown\n");
} else {
off += scnprintf(buf + off, buf_size - off,
"Link Status -\t\tUp\n");
off += scnprintf(buf + off, buf_size - off,
"Link Speed -\t\tPCI-E Gen %u\n",
NTB_LNK_STA_SPEED(ndev->lnk_sta));
off += scnprintf(buf + off, buf_size - off,
"Link Width -\t\tx%u\n",
NTB_LNK_STA_WIDTH(ndev->lnk_sta));
}
off += scnprintf(buf + off, buf_size - off,
"Memory Window Count -\t%u\n", ndev->mw_count);
off += scnprintf(buf + off, buf_size - off,
"Scratchpad Count -\t%u\n", ndev->spad_count);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Count -\t%u\n", ndev->db_count);
off += scnprintf(buf + off, buf_size - off,
"MSIX Vector Count -\t%u\n", ndev->msix_vec_count);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Valid Mask -\t%#llx\n", ndev->db_valid_mask);
u.v32 = readl(ndev->self_mmio + AMD_DBMASK_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Mask -\t\t\t%#06x\n", u.v32);
u.v32 = readl(mmio + AMD_DBSTAT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"Doorbell Bell -\t\t\t%#06x\n", u.v32);
off += scnprintf(buf + off, buf_size - off,
"\nNTB Incoming XLAT:\n");
u.v64 = read64(mmio + AMD_BAR1XLAT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"XLAT1 -\t\t%#018llx\n", u.v64);
u.v64 = read64(ndev->self_mmio + AMD_BAR23XLAT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"XLAT23 -\t\t%#018llx\n", u.v64);
u.v64 = read64(ndev->self_mmio + AMD_BAR45XLAT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"XLAT45 -\t\t%#018llx\n", u.v64);
u.v32 = readl(mmio + AMD_BAR1LMT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"LMT1 -\t\t\t%#06x\n", u.v32);
u.v64 = read64(ndev->self_mmio + AMD_BAR23LMT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"LMT23 -\t\t\t%#018llx\n", u.v64);
u.v64 = read64(ndev->self_mmio + AMD_BAR45LMT_OFFSET);
off += scnprintf(buf + off, buf_size - off,
"LMT45 -\t\t\t%#018llx\n", u.v64);
ret = simple_read_from_buffer(ubuf, count, offp, buf, off);
kfree(buf);
return ret;
}
static void ndev_init_debugfs(struct amd_ntb_dev *ndev)
{
if (!debugfs_dir) {
ndev->debugfs_dir = NULL;
ndev->debugfs_info = NULL;
} else {
ndev->debugfs_dir =
debugfs_create_dir(ndev_name(ndev), debugfs_dir);
if (!ndev->debugfs_dir)
ndev->debugfs_info = NULL;
else
ndev->debugfs_info =
debugfs_create_file("info", S_IRUSR,
ndev->debugfs_dir, ndev,
&amd_ntb_debugfs_info);
}
}
static void ndev_deinit_debugfs(struct amd_ntb_dev *ndev)
{
debugfs_remove_recursive(ndev->debugfs_dir);
}
static inline void ndev_init_struct(struct amd_ntb_dev *ndev,
struct pci_dev *pdev)
{
ndev->ntb.pdev = pdev;
ndev->ntb.topo = NTB_TOPO_NONE;
ndev->ntb.ops = &amd_ntb_ops;
ndev->int_mask = AMD_EVENT_INTMASK;
spin_lock_init(&ndev->db_mask_lock);
}
static int amd_poll_link(struct amd_ntb_dev *ndev)
{
void __iomem *mmio = ndev->peer_mmio;
u32 reg, stat;
int rc;
reg = readl(mmio + AMD_SIDEINFO_OFFSET);
reg &= NTB_LIN_STA_ACTIVE_BIT;
dev_dbg(ndev_dev(ndev), "%s: reg_val = 0x%x.\n", __func__, reg);
if (reg == ndev->cntl_sta)
return 0;
ndev->cntl_sta = reg;
rc = pci_read_config_dword(ndev->ntb.pdev,
AMD_LINK_STATUS_OFFSET, &stat);
if (rc)
return 0;
ndev->lnk_sta = stat;
return 1;
}
static void amd_link_hb(struct work_struct *work)
{
struct amd_ntb_dev *ndev = hb_ndev(work);
if (amd_poll_link(ndev))
ntb_link_event(&ndev->ntb);
if (!amd_link_is_up(ndev))
schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT);
}
static int amd_init_isr(struct amd_ntb_dev *ndev)
{
return ndev_init_isr(ndev, AMD_DB_CNT, AMD_MSIX_VECTOR_CNT);
}
static void amd_init_side_info(struct amd_ntb_dev *ndev)
{
void __iomem *mmio = ndev->self_mmio;
unsigned int reg;
reg = readl(mmio + AMD_SIDEINFO_OFFSET);
if (!(reg & AMD_SIDE_READY)) {
reg |= AMD_SIDE_READY;
writel(reg, mmio + AMD_SIDEINFO_OFFSET);
}
}
static void amd_deinit_side_info(struct amd_ntb_dev *ndev)
{
void __iomem *mmio = ndev->self_mmio;
unsigned int reg;
reg = readl(mmio + AMD_SIDEINFO_OFFSET);
if (reg & AMD_SIDE_READY) {
reg &= ~AMD_SIDE_READY;
writel(reg, mmio + AMD_SIDEINFO_OFFSET);
readl(mmio + AMD_SIDEINFO_OFFSET);
}
}
static int amd_init_ntb(struct amd_ntb_dev *ndev)
{
void __iomem *mmio = ndev->self_mmio;
ndev->mw_count = AMD_MW_CNT;
ndev->spad_count = AMD_SPADS_CNT;
ndev->db_count = AMD_DB_CNT;
switch (ndev->ntb.topo) {
case NTB_TOPO_PRI:
case NTB_TOPO_SEC:
ndev->spad_count >>= 1;
if (ndev->ntb.topo == NTB_TOPO_PRI) {
ndev->self_spad = 0;
ndev->peer_spad = 0x20;
} else {
ndev->self_spad = 0x20;
ndev->peer_spad = 0;
}
INIT_DELAYED_WORK(&ndev->hb_timer, amd_link_hb);
schedule_delayed_work(&ndev->hb_timer, AMD_LINK_HB_TIMEOUT);
break;
default:
dev_err(ndev_dev(ndev), "AMD NTB does not support B2B mode.\n");
return -EINVAL;
}
ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1;
/* Mask event interrupts */
writel(ndev->int_mask, mmio + AMD_INTMASK_OFFSET);
return 0;
}
static enum ntb_topo amd_get_topo(struct amd_ntb_dev *ndev)
{
void __iomem *mmio = ndev->self_mmio;
u32 info;
info = readl(mmio + AMD_SIDEINFO_OFFSET);
if (info & AMD_SIDE_MASK)
return NTB_TOPO_SEC;
else
return NTB_TOPO_PRI;
}
static int amd_init_dev(struct amd_ntb_dev *ndev)
{
struct pci_dev *pdev;
int rc = 0;
pdev = ndev_pdev(ndev);
ndev->ntb.topo = amd_get_topo(ndev);
dev_dbg(ndev_dev(ndev), "AMD NTB topo is %s\n",
ntb_topo_string(ndev->ntb.topo));
rc = amd_init_ntb(ndev);
if (rc)
return rc;
rc = amd_init_isr(ndev);
if (rc) {
dev_err(ndev_dev(ndev), "fail to init isr.\n");
return rc;
}
ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1;
return 0;
}
static void amd_deinit_dev(struct amd_ntb_dev *ndev)
{
cancel_delayed_work_sync(&ndev->hb_timer);
ndev_deinit_isr(ndev);
}
static int amd_ntb_init_pci(struct amd_ntb_dev *ndev,
struct pci_dev *pdev)
{
int rc;
pci_set_drvdata(pdev, ndev);
rc = pci_enable_device(pdev);
if (rc)
goto err_pci_enable;
rc = pci_request_regions(pdev, NTB_NAME);
if (rc)
goto err_pci_regions;
pci_set_master(pdev);
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (rc) {
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (rc)
goto err_dma_mask;
dev_warn(ndev_dev(ndev), "Cannot DMA highmem\n");
}
rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
if (rc) {
rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (rc)
goto err_dma_mask;
dev_warn(ndev_dev(ndev), "Cannot DMA consistent highmem\n");
}
ndev->self_mmio = pci_iomap(pdev, 0, 0);
if (!ndev->self_mmio) {
rc = -EIO;
goto err_dma_mask;
}
ndev->peer_mmio = ndev->self_mmio + AMD_PEER_OFFSET;
return 0;
err_dma_mask:
pci_clear_master(pdev);
err_pci_regions:
pci_disable_device(pdev);
err_pci_enable:
pci_set_drvdata(pdev, NULL);
return rc;
}
static void amd_ntb_deinit_pci(struct amd_ntb_dev *ndev)
{
struct pci_dev *pdev = ndev_pdev(ndev);
pci_iounmap(pdev, ndev->self_mmio);
pci_clear_master(pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static int amd_ntb_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct amd_ntb_dev *ndev;
int rc, node;
node = dev_to_node(&pdev->dev);
ndev = kzalloc_node(sizeof(*ndev), GFP_KERNEL, node);
if (!ndev) {
rc = -ENOMEM;
goto err_ndev;
}
ndev_init_struct(ndev, pdev);
rc = amd_ntb_init_pci(ndev, pdev);
if (rc)
goto err_init_pci;
rc = amd_init_dev(ndev);
if (rc)
goto err_init_dev;
/* write side info */
amd_init_side_info(ndev);
amd_poll_link(ndev);
ndev_init_debugfs(ndev);
rc = ntb_register_device(&ndev->ntb);
if (rc)
goto err_register;
dev_info(&pdev->dev, "NTB device registered.\n");
return 0;
err_register:
ndev_deinit_debugfs(ndev);
amd_deinit_dev(ndev);
err_init_dev:
amd_ntb_deinit_pci(ndev);
err_init_pci:
kfree(ndev);
err_ndev:
return rc;
}
static void amd_ntb_pci_remove(struct pci_dev *pdev)
{
struct amd_ntb_dev *ndev = pci_get_drvdata(pdev);
ntb_unregister_device(&ndev->ntb);
ndev_deinit_debugfs(ndev);
amd_deinit_side_info(ndev);
amd_deinit_dev(ndev);
amd_ntb_deinit_pci(ndev);
kfree(ndev);
}
static const struct file_operations amd_ntb_debugfs_info = {
.owner = THIS_MODULE,
.open = simple_open,
.read = ndev_debugfs_read,
};
static const struct pci_device_id amd_ntb_pci_tbl[] = {
{PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_NTB)},
{0}
};
MODULE_DEVICE_TABLE(pci, amd_ntb_pci_tbl);
static struct pci_driver amd_ntb_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = amd_ntb_pci_tbl,
.probe = amd_ntb_pci_probe,
.remove = amd_ntb_pci_remove,
};
static int __init amd_ntb_pci_driver_init(void)
{
pr_info("%s %s\n", NTB_DESC, NTB_VER);
if (debugfs_initialized())
debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
return pci_register_driver(&amd_ntb_pci_driver);
}
module_init(amd_ntb_pci_driver_init);
static void __exit amd_ntb_pci_driver_exit(void)
{
pci_unregister_driver(&amd_ntb_pci_driver);
debugfs_remove_recursive(debugfs_dir);
}
module_exit(amd_ntb_pci_driver_exit);
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* BSD LICENSE
*
* Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copy
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of AMD Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* AMD PCIe NTB Linux driver
*
* Contact Information:
* Xiangliang Yu <Xiangliang.Yu@amd.com>
*/
#ifndef NTB_HW_AMD_H
#define NTB_HW_AMD_H
#include <linux/ntb.h>
#include <linux/pci.h>
#define PCI_DEVICE_ID_AMD_NTB 0x145B
#define AMD_LINK_HB_TIMEOUT msecs_to_jiffies(1000)
#define AMD_LINK_STATUS_OFFSET 0x68
#define NTB_LIN_STA_ACTIVE_BIT 0x00000002
#define NTB_LNK_STA_SPEED_MASK 0x000F0000
#define NTB_LNK_STA_WIDTH_MASK 0x03F00000
#define NTB_LNK_STA_ACTIVE(x) (!!((x) & NTB_LIN_STA_ACTIVE_BIT))
#define NTB_LNK_STA_SPEED(x) (((x) & NTB_LNK_STA_SPEED_MASK) >> 16)
#define NTB_LNK_STA_WIDTH(x) (((x) & NTB_LNK_STA_WIDTH_MASK) >> 20)
#ifndef read64
#ifdef readq
#define read64 readq
#else
#define read64 _read64
static inline u64 _read64(void __iomem *mmio)
{
u64 low, high;
low = readl(mmio);
high = readl(mmio + sizeof(u32));
return low | (high << 32);
}
#endif
#endif
#ifndef write64
#ifdef writeq
#define write64 writeq
#else
#define write64 _write64
static inline void _write64(u64 val, void __iomem *mmio)
{
writel(val, mmio);
writel(val >> 32, mmio + sizeof(u32));
}
#endif
#endif
enum {
/* AMD NTB Capability */
AMD_MW_CNT = 3,
AMD_DB_CNT = 16,
AMD_MSIX_VECTOR_CNT = 24,
AMD_SPADS_CNT = 16,
/* AMD NTB register offset */
AMD_CNTL_OFFSET = 0x200,
/* NTB control register bits */
PMM_REG_CTL = BIT(21),
SMM_REG_CTL = BIT(20),
SMM_REG_ACC_PATH = BIT(18),
PMM_REG_ACC_PATH = BIT(17),
NTB_CLK_EN = BIT(16),
AMD_STA_OFFSET = 0x204,
AMD_PGSLV_OFFSET = 0x208,
AMD_SPAD_MUX_OFFSET = 0x20C,
AMD_SPAD_OFFSET = 0x210,
AMD_RSMU_HCID = 0x250,
AMD_RSMU_SIID = 0x254,
AMD_PSION_OFFSET = 0x300,
AMD_SSION_OFFSET = 0x330,
AMD_MMINDEX_OFFSET = 0x400,
AMD_MMDATA_OFFSET = 0x404,
AMD_SIDEINFO_OFFSET = 0x408,
AMD_SIDE_MASK = BIT(0),
AMD_SIDE_READY = BIT(1),
/* limit register */
AMD_ROMBARLMT_OFFSET = 0x410,
AMD_BAR1LMT_OFFSET = 0x414,
AMD_BAR23LMT_OFFSET = 0x418,
AMD_BAR45LMT_OFFSET = 0x420,
/* xlat address */
AMD_POMBARXLAT_OFFSET = 0x428,
AMD_BAR1XLAT_OFFSET = 0x430,
AMD_BAR23XLAT_OFFSET = 0x438,
AMD_BAR45XLAT_OFFSET = 0x440,
/* doorbell and interrupt */
AMD_DBFM_OFFSET = 0x450,
AMD_DBREQ_OFFSET = 0x454,
AMD_MIRRDBSTAT_OFFSET = 0x458,
AMD_DBMASK_OFFSET = 0x45C,
AMD_DBSTAT_OFFSET = 0x460,
AMD_INTMASK_OFFSET = 0x470,
AMD_INTSTAT_OFFSET = 0x474,
/* event type */
AMD_PEER_FLUSH_EVENT = BIT(0),
AMD_PEER_RESET_EVENT = BIT(1),
AMD_PEER_D3_EVENT = BIT(2),
AMD_PEER_PMETO_EVENT = BIT(3),
AMD_PEER_D0_EVENT = BIT(4),
AMD_EVENT_INTMASK = (AMD_PEER_FLUSH_EVENT |
AMD_PEER_RESET_EVENT | AMD_PEER_D3_EVENT |
AMD_PEER_PMETO_EVENT | AMD_PEER_D0_EVENT),
AMD_PMESTAT_OFFSET = 0x480,
AMD_PMSGTRIG_OFFSET = 0x490,
AMD_LTRLATENCY_OFFSET = 0x494,
AMD_FLUSHTRIG_OFFSET = 0x498,
/* SMU register*/
AMD_SMUACK_OFFSET = 0x4A0,
AMD_SINRST_OFFSET = 0x4A4,
AMD_RSPNUM_OFFSET = 0x4A8,
AMD_SMU_SPADMUTEX = 0x4B0,
AMD_SMU_SPADOFFSET = 0x4B4,
AMD_PEER_OFFSET = 0x400,
};
struct amd_ntb_dev;
struct amd_ntb_vec {
struct amd_ntb_dev *ndev;
int num;
};
struct amd_ntb_dev {
struct ntb_dev ntb;
u32 ntb_side;
u32 lnk_sta;
u32 cntl_sta;
u32 peer_sta;
unsigned char mw_count;
unsigned char spad_count;
unsigned char db_count;
unsigned char msix_vec_count;
u64 db_valid_mask;
u64 db_mask;
u32 int_mask;
struct msix_entry *msix;
struct amd_ntb_vec *vec;
/* synchronize rmw access of db_mask and hw reg */
spinlock_t db_mask_lock;
void __iomem *self_mmio;
void __iomem *peer_mmio;
unsigned int self_spad;
unsigned int peer_spad;
struct delayed_work hb_timer;
struct dentry *debugfs_dir;
struct dentry *debugfs_info;
};
#define ndev_pdev(ndev) ((ndev)->ntb.pdev)
#define ndev_name(ndev) pci_name(ndev_pdev(ndev))
#define ndev_dev(ndev) (&ndev_pdev(ndev)->dev)
#define ntb_ndev(__ntb) container_of(__ntb, struct amd_ntb_dev, ntb)
#define hb_ndev(__work) container_of(__work, struct amd_ntb_dev, hb_timer.work)
#endif
......@@ -875,7 +875,7 @@ static int intel_ntb_mw_set_trans(struct ntb_dev *ntb, int idx,
limit_reg = bar2_off(ndev->xlat_reg->bar2_limit, bar);
if (bar < 4 || !ndev->bar4_split) {
base = ioread64(mmio + base_reg);
base = ioread64(mmio + base_reg) & NTB_BAR_MASK_64;
/* Set the limit if supported, if size is not mw_size */
if (limit_reg && size != mw_size)
......@@ -906,7 +906,7 @@ static int intel_ntb_mw_set_trans(struct ntb_dev *ntb, int idx,
if ((addr + size) & (~0ull << 32))
return -EINVAL;
base = ioread32(mmio + base_reg);
base = ioread32(mmio + base_reg) & NTB_BAR_MASK_32;
/* Set the limit if supported, if size is not mw_size */
if (limit_reg && size != mw_size)
......
......@@ -245,6 +245,9 @@
#define NTB_UNSAFE_DB BIT_ULL(0)
#define NTB_UNSAFE_SPAD BIT_ULL(1)
#define NTB_BAR_MASK_64 ~(0xfull)
#define NTB_BAR_MASK_32 ~(0xfu)
struct intel_ntb_dev;
struct intel_ntb_reg {
......@@ -334,7 +337,8 @@ struct intel_ntb_dev {
#define ndev_pdev(ndev) ((ndev)->ntb.pdev)
#define ndev_name(ndev) pci_name(ndev_pdev(ndev))
#define ndev_dev(ndev) (&ndev_pdev(ndev)->dev)
#define ntb_ndev(ntb) container_of(ntb, struct intel_ntb_dev, ntb)
#define hb_ndev(work) container_of(work, struct intel_ntb_dev, hb_timer.work)
#define ntb_ndev(__ntb) container_of(__ntb, struct intel_ntb_dev, ntb)
#define hb_ndev(__work) container_of(__work, struct intel_ntb_dev, \
hb_timer.work)
#endif
......@@ -171,12 +171,14 @@ struct ntb_transport_qp {
u64 rx_err_ver;
u64 rx_memcpy;
u64 rx_async;
u64 dma_rx_prep_err;
u64 tx_bytes;
u64 tx_pkts;
u64 tx_ring_full;
u64 tx_err_no_buf;
u64 tx_memcpy;
u64 tx_async;
u64 dma_tx_prep_err;
};
struct ntb_transport_mw {
......@@ -249,6 +251,8 @@ enum {
#define QP_TO_MW(nt, qp) ((qp) % nt->mw_count)
#define NTB_QP_DEF_NUM_ENTRIES 100
#define NTB_LINK_DOWN_TIMEOUT 10
#define DMA_RETRIES 20
#define DMA_OUT_RESOURCE_TO 50
static void ntb_transport_rxc_db(unsigned long data);
static const struct ntb_ctx_ops ntb_transport_ops;
......@@ -501,6 +505,12 @@ static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"free tx - \t%u\n",
ntb_transport_tx_free_entry(qp));
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"DMA tx prep err - \t%llu\n",
qp->dma_tx_prep_err);
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"DMA rx prep err - \t%llu\n",
qp->dma_rx_prep_err);
out_offset += snprintf(buf + out_offset, out_count - out_offset,
"\n");
......@@ -726,6 +736,8 @@ static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
qp->tx_err_no_buf = 0;
qp->tx_memcpy = 0;
qp->tx_async = 0;
qp->dma_tx_prep_err = 0;
qp->dma_rx_prep_err = 0;
}
static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
......@@ -1228,6 +1240,7 @@ static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
struct dmaengine_unmap_data *unmap;
dma_cookie_t cookie;
void *buf = entry->buf;
int retries = 0;
len = entry->len;
......@@ -1263,11 +1276,21 @@ static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
unmap->from_cnt = 1;
txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
unmap->addr[0], len,
DMA_PREP_INTERRUPT);
if (!txd)
for (retries = 0; retries < DMA_RETRIES; retries++) {
txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
unmap->addr[0], len,
DMA_PREP_INTERRUPT);
if (txd)
break;
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(DMA_OUT_RESOURCE_TO);
}
if (!txd) {
qp->dma_rx_prep_err++;
goto err_get_unmap;
}
txd->callback = ntb_rx_copy_callback;
txd->callback_param = entry;
......@@ -1460,6 +1483,7 @@ static void ntb_async_tx(struct ntb_transport_qp *qp,
void __iomem *offset;
size_t len = entry->len;
void *buf = entry->buf;
int retries = 0;
offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index;
hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
......@@ -1494,10 +1518,20 @@ static void ntb_async_tx(struct ntb_transport_qp *qp,
unmap->to_cnt = 1;
txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
DMA_PREP_INTERRUPT);
if (!txd)
for (retries = 0; retries < DMA_RETRIES; retries++) {
txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0],
len, DMA_PREP_INTERRUPT);
if (txd)
break;
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(DMA_OUT_RESOURCE_TO);
}
if (!txd) {
qp->dma_tx_prep_err++;
goto err_get_unmap;
}
txd->callback = ntb_tx_copy_callback;
txd->callback_param = entry;
......@@ -1532,7 +1566,7 @@ static int ntb_process_tx(struct ntb_transport_qp *qp,
if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
if (qp->tx_handler)
qp->tx_handler(qp->cb_data, qp, NULL, -EIO);
qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
&qp->tx_free_q);
......
......@@ -17,3 +17,11 @@ config NTB_TOOL
functioning at a basic level.
If unsure, say N.
config NTB_PERF
tristate "NTB RAW Perf Measuring Tool"
help
This is a tool to measure raw NTB performance by transferring data
to and from the window without additional software interaction.
If unsure, say N.
obj-$(CONFIG_NTB_PINGPONG) += ntb_pingpong.o
obj-$(CONFIG_NTB_TOOL) += ntb_tool.o
obj-$(CONFIG_NTB_PERF) += ntb_perf.o
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2015 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* BSD LICENSE
*
* Copyright(c) 2015 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copy
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* PCIe NTB Perf Linux driver
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/debugfs.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/sizes.h>
#include <linux/ntb.h>
#define DRIVER_NAME "ntb_perf"
#define DRIVER_DESCRIPTION "PCIe NTB Performance Measurement Tool"
#define DRIVER_LICENSE "Dual BSD/GPL"
#define DRIVER_VERSION "1.0"
#define DRIVER_AUTHOR "Dave Jiang <dave.jiang@intel.com>"
#define PERF_LINK_DOWN_TIMEOUT 10
#define PERF_VERSION 0xffff0001
#define MAX_THREADS 32
#define MAX_TEST_SIZE SZ_1M
#define MAX_SRCS 32
#define DMA_OUT_RESOURCE_TO 50
#define DMA_RETRIES 20
#define SZ_4G (1ULL << 32)
#define MAX_SEG_ORDER 20 /* no larger than 1M for kmalloc buffer */
MODULE_LICENSE(DRIVER_LICENSE);
MODULE_VERSION(DRIVER_VERSION);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESCRIPTION);
static struct dentry *perf_debugfs_dir;
static unsigned int seg_order = 19; /* 512K */
module_param(seg_order, uint, 0644);
MODULE_PARM_DESC(seg_order, "size order [n^2] of buffer segment for testing");
static unsigned int run_order = 32; /* 4G */
module_param(run_order, uint, 0644);
MODULE_PARM_DESC(run_order, "size order [n^2] of total data to transfer");
static bool use_dma; /* default to 0 */
module_param(use_dma, bool, 0644);
MODULE_PARM_DESC(use_dma, "Using DMA engine to measure performance");
struct perf_mw {
phys_addr_t phys_addr;
resource_size_t phys_size;
resource_size_t xlat_align;
resource_size_t xlat_align_size;
void __iomem *vbase;
size_t xlat_size;
size_t buf_size;
void *virt_addr;
dma_addr_t dma_addr;
};
struct perf_ctx;
struct pthr_ctx {
struct task_struct *thread;
struct perf_ctx *perf;
atomic_t dma_sync;
struct dma_chan *dma_chan;
int dma_prep_err;
int src_idx;
void *srcs[MAX_SRCS];
};
struct perf_ctx {
struct ntb_dev *ntb;
spinlock_t db_lock;
struct perf_mw mw;
bool link_is_up;
struct work_struct link_cleanup;
struct delayed_work link_work;
struct dentry *debugfs_node_dir;
struct dentry *debugfs_run;
struct dentry *debugfs_threads;
u8 perf_threads;
bool run;
struct pthr_ctx pthr_ctx[MAX_THREADS];
atomic_t tsync;
};
enum {
VERSION = 0,
MW_SZ_HIGH,
MW_SZ_LOW,
SPAD_MSG,
SPAD_ACK,
MAX_SPAD
};
static void perf_link_event(void *ctx)
{
struct perf_ctx *perf = ctx;
if (ntb_link_is_up(perf->ntb, NULL, NULL) == 1)
schedule_delayed_work(&perf->link_work, 2*HZ);
else
schedule_work(&perf->link_cleanup);
}
static void perf_db_event(void *ctx, int vec)
{
struct perf_ctx *perf = ctx;
u64 db_bits, db_mask;
db_mask = ntb_db_vector_mask(perf->ntb, vec);
db_bits = ntb_db_read(perf->ntb);
dev_dbg(&perf->ntb->dev, "doorbell vec %d mask %#llx bits %#llx\n",
vec, db_mask, db_bits);
}
static const struct ntb_ctx_ops perf_ops = {
.link_event = perf_link_event,
.db_event = perf_db_event,
};
static void perf_copy_callback(void *data)
{
struct pthr_ctx *pctx = data;
atomic_dec(&pctx->dma_sync);
}
static ssize_t perf_copy(struct pthr_ctx *pctx, char *dst,
char *src, size_t size)
{
struct perf_ctx *perf = pctx->perf;
struct dma_async_tx_descriptor *txd;
struct dma_chan *chan = pctx->dma_chan;
struct dma_device *device;
struct dmaengine_unmap_data *unmap;
dma_cookie_t cookie;
size_t src_off, dst_off;
struct perf_mw *mw = &perf->mw;
u64 vbase, dst_vaddr;
dma_addr_t dst_phys;
int retries = 0;
if (!use_dma) {
memcpy_toio(dst, src, size);
return size;
}
if (!chan) {
dev_err(&perf->ntb->dev, "DMA engine does not exist\n");
return -EINVAL;
}
device = chan->device;
src_off = (size_t)src & ~PAGE_MASK;
dst_off = (size_t)dst & ~PAGE_MASK;
if (!is_dma_copy_aligned(device, src_off, dst_off, size))
return -ENODEV;
vbase = (u64)(u64 *)mw->vbase;
dst_vaddr = (u64)(u64 *)dst;
dst_phys = mw->phys_addr + (dst_vaddr - vbase);
unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
if (!unmap)
return -ENOMEM;
unmap->len = size;
unmap->addr[0] = dma_map_page(device->dev, virt_to_page(src),
src_off, size, DMA_TO_DEVICE);
if (dma_mapping_error(device->dev, unmap->addr[0]))
goto err_get_unmap;
unmap->to_cnt = 1;
do {
txd = device->device_prep_dma_memcpy(chan, dst_phys,
unmap->addr[0],
size, DMA_PREP_INTERRUPT);
if (!txd) {
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(DMA_OUT_RESOURCE_TO);
}
} while (!txd && (++retries < DMA_RETRIES));
if (!txd) {
pctx->dma_prep_err++;
goto err_get_unmap;
}
txd->callback = perf_copy_callback;
txd->callback_param = pctx;
dma_set_unmap(txd, unmap);
cookie = dmaengine_submit(txd);
if (dma_submit_error(cookie))
goto err_set_unmap;
atomic_inc(&pctx->dma_sync);
dma_async_issue_pending(chan);
return size;
err_set_unmap:
dmaengine_unmap_put(unmap);
err_get_unmap:
dmaengine_unmap_put(unmap);
return 0;
}
static int perf_move_data(struct pthr_ctx *pctx, char *dst, char *src,
u64 buf_size, u64 win_size, u64 total)
{
int chunks, total_chunks, i;
int copied_chunks = 0;
u64 copied = 0, result;
char *tmp = dst;
u64 perf, diff_us;
ktime_t kstart, kstop, kdiff;
chunks = div64_u64(win_size, buf_size);
total_chunks = div64_u64(total, buf_size);
kstart = ktime_get();
for (i = 0; i < total_chunks; i++) {
result = perf_copy(pctx, tmp, src, buf_size);
copied += result;
copied_chunks++;
if (copied_chunks == chunks) {
tmp = dst;
copied_chunks = 0;
} else
tmp += buf_size;
/* Probably should schedule every 4GB to prevent soft hang. */
if (((copied % SZ_4G) == 0) && !use_dma) {
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(1);
}
}
if (use_dma) {
pr_info("%s: All DMA descriptors submitted\n", current->comm);
while (atomic_read(&pctx->dma_sync) != 0)
msleep(20);
}
kstop = ktime_get();
kdiff = ktime_sub(kstop, kstart);
diff_us = ktime_to_us(kdiff);
pr_info("%s: copied %llu bytes\n", current->comm, copied);
pr_info("%s: lasted %llu usecs\n", current->comm, diff_us);
perf = div64_u64(copied, diff_us);
pr_info("%s: MBytes/s: %llu\n", current->comm, perf);
return 0;
}
static bool perf_dma_filter_fn(struct dma_chan *chan, void *node)
{
return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
}
static int ntb_perf_thread(void *data)
{
struct pthr_ctx *pctx = data;
struct perf_ctx *perf = pctx->perf;
struct pci_dev *pdev = perf->ntb->pdev;
struct perf_mw *mw = &perf->mw;
char *dst;
u64 win_size, buf_size, total;
void *src;
int rc, node, i;
struct dma_chan *dma_chan = NULL;
pr_info("kthread %s starting...\n", current->comm);
node = dev_to_node(&pdev->dev);
if (use_dma && !pctx->dma_chan) {
dma_cap_mask_t dma_mask;
dma_cap_zero(dma_mask);
dma_cap_set(DMA_MEMCPY, dma_mask);
dma_chan = dma_request_channel(dma_mask, perf_dma_filter_fn,
(void *)(unsigned long)node);
if (!dma_chan) {
pr_warn("%s: cannot acquire DMA channel, quitting\n",
current->comm);
return -ENODEV;
}
pctx->dma_chan = dma_chan;
}
for (i = 0; i < MAX_SRCS; i++) {
pctx->srcs[i] = kmalloc_node(MAX_TEST_SIZE, GFP_KERNEL, node);
if (!pctx->srcs[i]) {
rc = -ENOMEM;
goto err;
}
}
win_size = mw->phys_size;
buf_size = 1ULL << seg_order;
total = 1ULL << run_order;
if (buf_size > MAX_TEST_SIZE)
buf_size = MAX_TEST_SIZE;
dst = (char *)mw->vbase;
atomic_inc(&perf->tsync);
while (atomic_read(&perf->tsync) != perf->perf_threads)
schedule();
src = pctx->srcs[pctx->src_idx];
pctx->src_idx = (pctx->src_idx + 1) & (MAX_SRCS - 1);
rc = perf_move_data(pctx, dst, src, buf_size, win_size, total);
atomic_dec(&perf->tsync);
if (rc < 0) {
pr_err("%s: failed\n", current->comm);
rc = -ENXIO;
goto err;
}
for (i = 0; i < MAX_SRCS; i++) {
kfree(pctx->srcs[i]);
pctx->srcs[i] = NULL;
}
return 0;
err:
for (i = 0; i < MAX_SRCS; i++) {
kfree(pctx->srcs[i]);
pctx->srcs[i] = NULL;
}
if (dma_chan) {
dma_release_channel(dma_chan);
pctx->dma_chan = NULL;
}
return rc;
}
static void perf_free_mw(struct perf_ctx *perf)
{
struct perf_mw *mw = &perf->mw;
struct pci_dev *pdev = perf->ntb->pdev;
if (!mw->virt_addr)
return;
ntb_mw_clear_trans(perf->ntb, 0);
dma_free_coherent(&pdev->dev, mw->buf_size,
mw->virt_addr, mw->dma_addr);
mw->xlat_size = 0;
mw->buf_size = 0;
mw->virt_addr = NULL;
}
static int perf_set_mw(struct perf_ctx *perf, resource_size_t size)
{
struct perf_mw *mw = &perf->mw;
size_t xlat_size, buf_size;
if (!size)
return -EINVAL;
xlat_size = round_up(size, mw->xlat_align_size);
buf_size = round_up(size, mw->xlat_align);
if (mw->xlat_size == xlat_size)
return 0;
if (mw->buf_size)
perf_free_mw(perf);
mw->xlat_size = xlat_size;
mw->buf_size = buf_size;
mw->virt_addr = dma_alloc_coherent(&perf->ntb->pdev->dev, buf_size,
&mw->dma_addr, GFP_KERNEL);
if (!mw->virt_addr) {
mw->xlat_size = 0;
mw->buf_size = 0;
}
return 0;
}
static void perf_link_work(struct work_struct *work)
{
struct perf_ctx *perf =
container_of(work, struct perf_ctx, link_work.work);
struct ntb_dev *ndev = perf->ntb;
struct pci_dev *pdev = ndev->pdev;
u32 val;
u64 size;
int rc;
dev_dbg(&perf->ntb->pdev->dev, "%s called\n", __func__);
size = perf->mw.phys_size;
ntb_peer_spad_write(ndev, MW_SZ_HIGH, upper_32_bits(size));
ntb_peer_spad_write(ndev, MW_SZ_LOW, lower_32_bits(size));
ntb_peer_spad_write(ndev, VERSION, PERF_VERSION);
/* now read what peer wrote */
val = ntb_spad_read(ndev, VERSION);
if (val != PERF_VERSION) {
dev_dbg(&pdev->dev, "Remote version = %#x\n", val);
goto out;
}
val = ntb_spad_read(ndev, MW_SZ_HIGH);
size = (u64)val << 32;
val = ntb_spad_read(ndev, MW_SZ_LOW);
size |= val;
dev_dbg(&pdev->dev, "Remote MW size = %#llx\n", size);
rc = perf_set_mw(perf, size);
if (rc)
goto out1;
perf->link_is_up = true;
return;
out1:
perf_free_mw(perf);
out:
if (ntb_link_is_up(ndev, NULL, NULL) == 1)
schedule_delayed_work(&perf->link_work,
msecs_to_jiffies(PERF_LINK_DOWN_TIMEOUT));
}
static void perf_link_cleanup(struct work_struct *work)
{
struct perf_ctx *perf = container_of(work,
struct perf_ctx,
link_cleanup);
dev_dbg(&perf->ntb->pdev->dev, "%s called\n", __func__);
if (!perf->link_is_up)
cancel_delayed_work_sync(&perf->link_work);
}
static int perf_setup_mw(struct ntb_dev *ntb, struct perf_ctx *perf)
{
struct perf_mw *mw;
int rc;
mw = &perf->mw;
rc = ntb_mw_get_range(ntb, 0, &mw->phys_addr, &mw->phys_size,
&mw->xlat_align, &mw->xlat_align_size);
if (rc)
return rc;
perf->mw.vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
if (!mw->vbase)
return -ENOMEM;
return 0;
}
static ssize_t debugfs_run_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp)
{
struct perf_ctx *perf = filp->private_data;
char *buf;
ssize_t ret, out_offset;
if (!perf)
return 0;
buf = kmalloc(64, GFP_KERNEL);
out_offset = snprintf(buf, 64, "%d\n", perf->run);
ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
kfree(buf);
return ret;
}
static ssize_t debugfs_run_write(struct file *filp, const char __user *ubuf,
size_t count, loff_t *offp)
{
struct perf_ctx *perf = filp->private_data;
int node, i;
if (!perf->link_is_up)
return 0;
if (perf->perf_threads == 0)
return 0;
if (atomic_read(&perf->tsync) == 0)
perf->run = false;
if (perf->run) {
/* lets stop the threads */
perf->run = false;
for (i = 0; i < MAX_THREADS; i++) {
if (perf->pthr_ctx[i].thread) {
kthread_stop(perf->pthr_ctx[i].thread);
perf->pthr_ctx[i].thread = NULL;
} else
break;
}
} else {
perf->run = true;
if (perf->perf_threads > MAX_THREADS) {
perf->perf_threads = MAX_THREADS;
pr_info("Reset total threads to: %u\n", MAX_THREADS);
}
/* no greater than 1M */
if (seg_order > MAX_SEG_ORDER) {
seg_order = MAX_SEG_ORDER;
pr_info("Fix seg_order to %u\n", seg_order);
}
if (run_order < seg_order) {
run_order = seg_order;
pr_info("Fix run_order to %u\n", run_order);
}
node = dev_to_node(&perf->ntb->pdev->dev);
/* launch kernel thread */
for (i = 0; i < perf->perf_threads; i++) {
struct pthr_ctx *pctx;
pctx = &perf->pthr_ctx[i];
atomic_set(&pctx->dma_sync, 0);
pctx->perf = perf;
pctx->thread =
kthread_create_on_node(ntb_perf_thread,
(void *)pctx,
node, "ntb_perf %d", i);
if (pctx->thread)
wake_up_process(pctx->thread);
else {
perf->run = false;
for (i = 0; i < MAX_THREADS; i++) {
if (pctx->thread) {
kthread_stop(pctx->thread);
pctx->thread = NULL;
}
}
}
if (perf->run == false)
return -ENXIO;
}
}
return count;
}
static const struct file_operations ntb_perf_debugfs_run = {
.owner = THIS_MODULE,
.open = simple_open,
.read = debugfs_run_read,
.write = debugfs_run_write,
};
static int perf_debugfs_setup(struct perf_ctx *perf)
{
struct pci_dev *pdev = perf->ntb->pdev;
if (!debugfs_initialized())
return -ENODEV;
if (!perf_debugfs_dir) {
perf_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
if (!perf_debugfs_dir)
return -ENODEV;
}
perf->debugfs_node_dir = debugfs_create_dir(pci_name(pdev),
perf_debugfs_dir);
if (!perf->debugfs_node_dir)
return -ENODEV;
perf->debugfs_run = debugfs_create_file("run", S_IRUSR | S_IWUSR,
perf->debugfs_node_dir, perf,
&ntb_perf_debugfs_run);
if (!perf->debugfs_run)
return -ENODEV;
perf->debugfs_threads = debugfs_create_u8("threads", S_IRUSR | S_IWUSR,
perf->debugfs_node_dir,
&perf->perf_threads);
if (!perf->debugfs_threads)
return -ENODEV;
return 0;
}
static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb)
{
struct pci_dev *pdev = ntb->pdev;
struct perf_ctx *perf;
int node;
int rc = 0;
node = dev_to_node(&pdev->dev);
perf = kzalloc_node(sizeof(*perf), GFP_KERNEL, node);
if (!perf) {
rc = -ENOMEM;
goto err_perf;
}
perf->ntb = ntb;
perf->perf_threads = 1;
atomic_set(&perf->tsync, 0);
perf->run = false;
spin_lock_init(&perf->db_lock);
perf_setup_mw(ntb, perf);
INIT_DELAYED_WORK(&perf->link_work, perf_link_work);
INIT_WORK(&perf->link_cleanup, perf_link_cleanup);
rc = ntb_set_ctx(ntb, perf, &perf_ops);
if (rc)
goto err_ctx;
perf->link_is_up = false;
ntb_link_enable(ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
ntb_link_event(ntb);
rc = perf_debugfs_setup(perf);
if (rc)
goto err_ctx;
return 0;
err_ctx:
cancel_delayed_work_sync(&perf->link_work);
cancel_work_sync(&perf->link_cleanup);
kfree(perf);
err_perf:
return rc;
}
static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb)
{
struct perf_ctx *perf = ntb->ctx;
int i;
dev_dbg(&perf->ntb->dev, "%s called\n", __func__);
cancel_delayed_work_sync(&perf->link_work);
cancel_work_sync(&perf->link_cleanup);
ntb_clear_ctx(ntb);
ntb_link_disable(ntb);
debugfs_remove_recursive(perf_debugfs_dir);
perf_debugfs_dir = NULL;
if (use_dma) {
for (i = 0; i < MAX_THREADS; i++) {
struct pthr_ctx *pctx = &perf->pthr_ctx[i];
if (pctx->dma_chan)
dma_release_channel(pctx->dma_chan);
}
}
kfree(perf);
}
static struct ntb_client perf_client = {
.ops = {
.probe = perf_probe,
.remove = perf_remove,
},
};
module_ntb_client(perf_client);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment