Commit b4442cad authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'x86_tdx_for_6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 TDX updates from Dave Hansen:
 "This contains the initial support for host-side TDX support so that
  KVM can run TDX-protected guests. This does not include the actual
  KVM-side support which will come from the KVM folks. The TDX host
  interactions with kexec also needs to be ironed out before this is
  ready for prime time, so this code is currently Kconfig'd off when
  kexec is on.

  The majority of the code here is the kernel telling the TDX module
  which memory to protect and handing some additional memory over to it
  to use to store TDX module metadata. That sounds pretty simple, but
  the TDX architecture is rather flexible and it takes quite a bit of
  back-and-forth to say, "just protect all memory, please."

  There is also some code tacked on near the end of the series to handle
  a hardware erratum. The erratum can make software bugs such as a
  kernel write to TDX-protected memory cause a machine check and
  masquerade as a real hardware failure. The erratum handling watches
  out for these and tries to provide nicer user errors"

* tag 'x86_tdx_for_6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
  x86/virt/tdx: Make TDX host depend on X86_MCE
  x86/virt/tdx: Disable TDX host support when kexec is enabled
  Documentation/x86: Add documentation for TDX host support
  x86/mce: Differentiate real hardware #MCs from TDX erratum ones
  x86/cpu: Detect TDX partial write machine check erratum
  x86/virt/tdx: Handle TDX interaction with sleep and hibernation
  x86/virt/tdx: Initialize all TDMRs
  x86/virt/tdx: Configure global KeyID on all packages
  x86/virt/tdx: Configure TDX module with the TDMRs and global KeyID
  x86/virt/tdx: Designate reserved areas for all TDMRs
  x86/virt/tdx: Allocate and set up PAMTs for TDMRs
  x86/virt/tdx: Fill out TDMRs to cover all TDX memory regions
  x86/virt/tdx: Add placeholder to construct TDMRs to cover all TDX memory regions
  x86/virt/tdx: Get module global metadata for module initialization
  x86/virt/tdx: Use all system memory when initializing TDX module as TDX memory
  x86/virt/tdx: Add skeleton to enable TDX on demand
  x86/virt/tdx: Add SEAMCALL error printing for module initialization
  x86/virt/tdx: Handle SEAMCALL no entropy error in common code
  x86/virt/tdx: Make INTEL_TDX_HOST depend on X86_X2APIC
  x86/virt/tdx: Define TDX supported page sizes as macros
  ...
parents ba7dd857 83e1bdc9
......@@ -10,6 +10,191 @@ encrypting the guest memory. In TDX, a special module running in a special
mode sits between the host and the guest and manages the guest/host
separation.
TDX Host Kernel Support
=======================
TDX introduces a new CPU mode called Secure Arbitration Mode (SEAM) and
a new isolated range pointed by the SEAM Ranger Register (SEAMRR). A
CPU-attested software module called 'the TDX module' runs inside the new
isolated range to provide the functionalities to manage and run protected
VMs.
TDX also leverages Intel Multi-Key Total Memory Encryption (MKTME) to
provide crypto-protection to the VMs. TDX reserves part of MKTME KeyIDs
as TDX private KeyIDs, which are only accessible within the SEAM mode.
BIOS is responsible for partitioning legacy MKTME KeyIDs and TDX KeyIDs.
Before the TDX module can be used to create and run protected VMs, it
must be loaded into the isolated range and properly initialized. The TDX
architecture doesn't require the BIOS to load the TDX module, but the
kernel assumes it is loaded by the BIOS.
TDX boot-time detection
-----------------------
The kernel detects TDX by detecting TDX private KeyIDs during kernel
boot. Below dmesg shows when TDX is enabled by BIOS::
[..] virt/tdx: BIOS enabled: private KeyID range: [16, 64)
TDX module initialization
---------------------------------------
The kernel talks to the TDX module via the new SEAMCALL instruction. The
TDX module implements SEAMCALL leaf functions to allow the kernel to
initialize it.
If the TDX module isn't loaded, the SEAMCALL instruction fails with a
special error. In this case the kernel fails the module initialization
and reports the module isn't loaded::
[..] virt/tdx: module not loaded
Initializing the TDX module consumes roughly ~1/256th system RAM size to
use it as 'metadata' for the TDX memory. It also takes additional CPU
time to initialize those metadata along with the TDX module itself. Both
are not trivial. The kernel initializes the TDX module at runtime on
demand.
Besides initializing the TDX module, a per-cpu initialization SEAMCALL
must be done on one cpu before any other SEAMCALLs can be made on that
cpu.
The kernel provides two functions, tdx_enable() and tdx_cpu_enable() to
allow the user of TDX to enable the TDX module and enable TDX on local
cpu respectively.
Making SEAMCALL requires VMXON has been done on that CPU. Currently only
KVM implements VMXON. For now both tdx_enable() and tdx_cpu_enable()
don't do VMXON internally (not trivial), but depends on the caller to
guarantee that.
To enable TDX, the caller of TDX should: 1) temporarily disable CPU
hotplug; 2) do VMXON and tdx_enable_cpu() on all online cpus; 3) call
tdx_enable(). For example::
cpus_read_lock();
on_each_cpu(vmxon_and_tdx_cpu_enable());
ret = tdx_enable();
cpus_read_unlock();
if (ret)
goto no_tdx;
// TDX is ready to use
And the caller of TDX must guarantee the tdx_cpu_enable() has been
successfully done on any cpu before it wants to run any other SEAMCALL.
A typical usage is do both VMXON and tdx_cpu_enable() in CPU hotplug
online callback, and refuse to online if tdx_cpu_enable() fails.
User can consult dmesg to see whether the TDX module has been initialized.
If the TDX module is initialized successfully, dmesg shows something
like below::
[..] virt/tdx: 262668 KBs allocated for PAMT
[..] virt/tdx: module initialized
If the TDX module failed to initialize, dmesg also shows it failed to
initialize::
[..] virt/tdx: module initialization failed ...
TDX Interaction to Other Kernel Components
------------------------------------------
TDX Memory Policy
~~~~~~~~~~~~~~~~~
TDX reports a list of "Convertible Memory Region" (CMR) to tell the
kernel which memory is TDX compatible. The kernel needs to build a list
of memory regions (out of CMRs) as "TDX-usable" memory and pass those
regions to the TDX module. Once this is done, those "TDX-usable" memory
regions are fixed during module's lifetime.
To keep things simple, currently the kernel simply guarantees all pages
in the page allocator are TDX memory. Specifically, the kernel uses all
system memory in the core-mm "at the time of TDX module initialization"
as TDX memory, and in the meantime, refuses to online any non-TDX-memory
in the memory hotplug.
Physical Memory Hotplug
~~~~~~~~~~~~~~~~~~~~~~~
Note TDX assumes convertible memory is always physically present during
machine's runtime. A non-buggy BIOS should never support hot-removal of
any convertible memory. This implementation doesn't handle ACPI memory
removal but depends on the BIOS to behave correctly.
CPU Hotplug
~~~~~~~~~~~
TDX module requires the per-cpu initialization SEAMCALL must be done on
one cpu before any other SEAMCALLs can be made on that cpu. The kernel
provides tdx_cpu_enable() to let the user of TDX to do it when the user
wants to use a new cpu for TDX task.
TDX doesn't support physical (ACPI) CPU hotplug. During machine boot,
TDX verifies all boot-time present logical CPUs are TDX compatible before
enabling TDX. A non-buggy BIOS should never support hot-add/removal of
physical CPU. Currently the kernel doesn't handle physical CPU hotplug,
but depends on the BIOS to behave correctly.
Note TDX works with CPU logical online/offline, thus the kernel still
allows to offline logical CPU and online it again.
Kexec()
~~~~~~~
TDX host support currently lacks the ability to handle kexec. For
simplicity only one of them can be enabled in the Kconfig. This will be
fixed in the future.
Erratum
~~~~~~~
The first few generations of TDX hardware have an erratum. A partial
write to a TDX private memory cacheline will silently "poison" the
line. Subsequent reads will consume the poison and generate a machine
check.
A partial write is a memory write where a write transaction of less than
cacheline lands at the memory controller. The CPU does these via
non-temporal write instructions (like MOVNTI), or through UC/WC memory
mappings. Devices can also do partial writes via DMA.
Theoretically, a kernel bug could do partial write to TDX private memory
and trigger unexpected machine check. What's more, the machine check
code will present these as "Hardware error" when they were, in fact, a
software-triggered issue. But in the end, this issue is hard to trigger.
If the platform has such erratum, the kernel prints additional message in
machine check handler to tell user the machine check may be caused by
kernel bug on TDX private memory.
Interaction vs S3 and deeper states
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TDX cannot survive from S3 and deeper states. The hardware resets and
disables TDX completely when platform goes to S3 and deeper. Both TDX
guests and the TDX module get destroyed permanently.
The kernel uses S3 for suspend-to-ram, and use S4 and deeper states for
hibernation. Currently, for simplicity, the kernel chooses to make TDX
mutually exclusive with S3 and hibernation.
The kernel disables TDX during early boot when hibernation support is
available::
[..] virt/tdx: initialization failed: Hibernation support is enabled
Add 'nohibernate' kernel command line to disable hibernation in order to
use TDX.
ACPI S3 is disabled during kernel early boot if TDX is enabled. The user
needs to turn off TDX in the BIOS in order to use S3.
TDX Guest Support
=================
Since the host cannot directly access guest registers or memory, much
normal functionality of a hypervisor must be moved into the guest. This is
implemented using a Virtualization Exception (#VE) that is handled by the
......@@ -20,7 +205,7 @@ TDX includes new hypercall-like mechanisms for communicating from the
guest to the hypervisor or the TDX module.
New TDX Exceptions
==================
------------------
TDX guests behave differently from bare-metal and traditional VMX guests.
In TDX guests, otherwise normal instructions or memory accesses can cause
......@@ -30,7 +215,7 @@ Instructions marked with an '*' conditionally cause exceptions. The
details for these instructions are discussed below.
Instruction-based #VE
---------------------
~~~~~~~~~~~~~~~~~~~~~
- Port I/O (INS, OUTS, IN, OUT)
- HLT
......@@ -41,7 +226,7 @@ Instruction-based #VE
- CPUID*
Instruction-based #GP
---------------------
~~~~~~~~~~~~~~~~~~~~~
- All VMX instructions: INVEPT, INVVPID, VMCLEAR, VMFUNC, VMLAUNCH,
VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON
......@@ -52,7 +237,7 @@ Instruction-based #GP
- RDMSR*,WRMSR*
RDMSR/WRMSR Behavior
--------------------
~~~~~~~~~~~~~~~~~~~~
MSR access behavior falls into three categories:
......@@ -73,7 +258,7 @@ trapping and handling in the TDX module. Other than possibly being slow,
these MSRs appear to function just as they would on bare metal.
CPUID Behavior
--------------
~~~~~~~~~~~~~~
For some CPUID leaves and sub-leaves, the virtualized bit fields of CPUID
return values (in guest EAX/EBX/ECX/EDX) are configurable by the
......@@ -93,7 +278,7 @@ not know how to handle. The guest kernel may ask the hypervisor for the
value with a hypercall.
#VE on Memory Accesses
======================
----------------------
There are essentially two classes of TDX memory: private and shared.
Private memory receives full TDX protections. Its content is protected
......@@ -107,7 +292,7 @@ entries. This helps ensure that a guest does not place sensitive
information in shared memory, exposing it to the untrusted hypervisor.
#VE on Shared Memory
--------------------
~~~~~~~~~~~~~~~~~~~~
Access to shared mappings can cause a #VE. The hypervisor ultimately
controls whether a shared memory access causes a #VE, so the guest must be
......@@ -127,7 +312,7 @@ be careful not to access device MMIO regions unless it is also prepared to
handle a #VE.
#VE on Private Pages
--------------------
~~~~~~~~~~~~~~~~~~~~
An access to private mappings can also cause a #VE. Since all kernel
memory is also private memory, the kernel might theoretically need to
......@@ -145,7 +330,7 @@ The hypervisor is permitted to unilaterally move accepted pages to a
to handle the exception.
Linux #VE handler
=================
-----------------
Just like page faults or #GP's, #VE exceptions can be either handled or be
fatal. Typically, an unhandled userspace #VE results in a SIGSEGV.
......@@ -167,7 +352,7 @@ While the block is in place, any #VE is elevated to a double fault (#DF)
which is not recoverable.
MMIO handling
=============
-------------
In non-TDX VMs, MMIO is usually implemented by giving a guest access to a
mapping which will cause a VMEXIT on access, and then the hypervisor
......@@ -189,7 +374,7 @@ MMIO access via other means (like structure overlays) may result in an
oops.
Shared Memory Conversions
=========================
-------------------------
All TDX guest memory starts out as private at boot. This memory can not
be accessed by the hypervisor. However, some kernel users like device
......
......@@ -1969,6 +1969,11 @@ config INTEL_TDX_HOST
depends on CPU_SUP_INTEL
depends on X86_64
depends on KVM_INTEL
depends on X86_X2APIC
select ARCH_KEEP_MEMBLOCK
depends on CONTIG_ALLOC
depends on !KEXEC_CORE
depends on X86_MCE
help
Intel Trust Domain Extensions (TDX) protects guest VMs from malicious
host and certain physical attacks. This option enables necessary TDX
......
......@@ -22,13 +22,13 @@ static unsigned long try_accept_one(phys_addr_t start, unsigned long len,
*/
switch (pg_level) {
case PG_LEVEL_4K:
page_size = 0;
page_size = TDX_PS_4K;
break;
case PG_LEVEL_2M:
page_size = 1;
page_size = TDX_PS_2M;
break;
case PG_LEVEL_1G:
page_size = 2;
page_size = TDX_PS_1G;
break;
default:
return 0;
......
......@@ -198,6 +198,7 @@
#define X86_FEATURE_CAT_L3 ( 7*32+ 4) /* Cache Allocation Technology L3 */
#define X86_FEATURE_CAT_L2 ( 7*32+ 5) /* Cache Allocation Technology L2 */
#define X86_FEATURE_CDP_L3 ( 7*32+ 6) /* Code and Data Prioritization L3 */
#define X86_FEATURE_TDX_HOST_PLATFORM ( 7*32+ 7) /* Platform supports being a TDX host */
#define X86_FEATURE_HW_PSTATE ( 7*32+ 8) /* AMD HW-PState */
#define X86_FEATURE_PROC_FEEDBACK ( 7*32+ 9) /* AMD ProcFeedbackInterface */
#define X86_FEATURE_XCOMPACTED ( 7*32+10) /* "" Use compacted XSTATE (XSAVES or XSAVEC) */
......@@ -499,6 +500,7 @@
#define X86_BUG_EIBRS_PBRSB X86_BUG(28) /* EIBRS is vulnerable to Post Barrier RSB Predictions */
#define X86_BUG_SMT_RSB X86_BUG(29) /* CPU is vulnerable to Cross-Thread Return Address Predictions */
#define X86_BUG_GDS X86_BUG(30) /* CPU is affected by Gather Data Sampling */
#define X86_BUG_TDX_PW_MCE X86_BUG(31) /* CPU may incur #MC if non-TD software does partial write to TDX private memory */
/* BUG word 2 */
#define X86_BUG_SRSO X86_BUG(1*32 + 0) /* AMD SRSO bug */
......
......@@ -541,6 +541,9 @@
#define MSR_RELOAD_PMC0 0x000014c1
#define MSR_RELOAD_FIXED_CTR0 0x00001309
/* KeyID partitioning between MKTME and TDX */
#define MSR_IA32_MKTME_KEYID_PARTITIONING 0x00000087
/*
* AMD64 MSRs. Not complete. See the architecture manual for a more
* complete list.
......
......@@ -55,6 +55,12 @@
(TDX_RDX | TDX_RBX | TDX_RSI | TDX_RDI | TDX_R8 | TDX_R9 | \
TDX_R10 | TDX_R11 | TDX_R12 | TDX_R13 | TDX_R14 | TDX_R15)
/* TDX supported page sizes from the TDX module ABI. */
#define TDX_PS_4K 0
#define TDX_PS_2M 1
#define TDX_PS_1G 2
#define TDX_PS_NR (TDX_PS_1G + 1)
#ifndef __ASSEMBLY__
#include <linux/compiler_attributes.h>
......
......@@ -24,8 +24,16 @@
#define TDX_SEAMCALL_GP (TDX_SW_ERROR | X86_TRAP_GP)
#define TDX_SEAMCALL_UD (TDX_SW_ERROR | X86_TRAP_UD)
/*
* TDX module SEAMCALL leaf function error codes
*/
#define TDX_SUCCESS 0ULL
#define TDX_RND_NO_ENTROPY 0x8000020300000000ULL
#ifndef __ASSEMBLY__
#include <uapi/asm/mce.h>
/*
* Used by the #VE exception handler to gather the #VE exception
* info from the TDX module. This is a software only structure
......@@ -83,6 +91,36 @@ static inline long tdx_kvm_hypercall(unsigned int nr, unsigned long p1,
u64 __seamcall(u64 fn, struct tdx_module_args *args);
u64 __seamcall_ret(u64 fn, struct tdx_module_args *args);
u64 __seamcall_saved_ret(u64 fn, struct tdx_module_args *args);
void tdx_init(void);
#include <asm/archrandom.h>
typedef u64 (*sc_func_t)(u64 fn, struct tdx_module_args *args);
static inline u64 sc_retry(sc_func_t func, u64 fn,
struct tdx_module_args *args)
{
int retry = RDRAND_RETRY_LOOPS;
u64 ret;
do {
ret = func(fn, args);
} while (ret == TDX_RND_NO_ENTROPY && --retry);
return ret;
}
#define seamcall(_fn, _args) sc_retry(__seamcall, (_fn), (_args))
#define seamcall_ret(_fn, _args) sc_retry(__seamcall_ret, (_fn), (_args))
#define seamcall_saved_ret(_fn, _args) sc_retry(__seamcall_saved_ret, (_fn), (_args))
int tdx_cpu_enable(void);
int tdx_enable(void);
const char *tdx_dump_mce_info(struct mce *m);
#else
static inline void tdx_init(void) { }
static inline int tdx_cpu_enable(void) { return -ENODEV; }
static inline int tdx_enable(void) { return -ENODEV; }
static inline const char *tdx_dump_mce_info(struct mce *m) { return NULL; }
#endif /* CONFIG_INTEL_TDX_HOST */
#endif /* !__ASSEMBLY__ */
......
......@@ -66,6 +66,7 @@
#include <asm/set_memory.h>
#include <asm/traps.h>
#include <asm/sev.h>
#include <asm/tdx.h>
#include "cpu.h"
......@@ -1986,6 +1987,7 @@ static __init void identify_boot_cpu(void)
setup_cr_pinning();
tsx_init();
tdx_init();
lkgs_init();
}
......
......@@ -53,6 +53,7 @@
#include <asm/mce.h>
#include <asm/msr.h>
#include <asm/reboot.h>
#include <asm/tdx.h>
#include "internal.h"
......@@ -229,12 +230,20 @@ static void wait_for_panic(void)
panic("Panicing machine check CPU died");
}
static const char *mce_dump_aux_info(struct mce *m)
{
if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
return tdx_dump_mce_info(m);
return NULL;
}
static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
{
struct llist_node *pending;
struct mce_evt_llist *l;
int apei_err = 0;
struct page *p;
const char *memmsg;
/*
* Allow instrumentation around external facilities usage. Not that it
......@@ -285,6 +294,11 @@ static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
}
if (exp)
pr_emerg(HW_ERR "Machine check: %s\n", exp);
memmsg = mce_dump_aux_info(final);
if (memmsg)
pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
if (!fake_panic) {
if (panic_timeout == 0)
panic_timeout = mca_cfg.panic_timeout;
......@@ -297,6 +311,7 @@ static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
*/
if (kexec_crash_loaded()) {
if (final && (final->status & MCI_STATUS_ADDRV)) {
struct page *p;
p = pfn_to_online_page(final->addr >> PAGE_SHIFT);
if (p)
SetPageHWPoison(p);
......
......@@ -1031,6 +1031,8 @@ void __init setup_arch(char **cmdline_p)
*
* Moreover, on machines with SandyBridge graphics or in setups that use
* crashkernel the entire 1M is reserved anyway.
*
* Note the host kernel TDX also requires the first 1MB being reserved.
*/
x86_platform.realmode_reserve();
......
# SPDX-License-Identifier: GPL-2.0-only
obj-y += seamcall.o
obj-y += seamcall.o tdx.o
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(c) 2023 Intel Corporation.
*
* Intel Trusted Domain Extensions (TDX) support
*/
#define pr_fmt(fmt) "virt/tdx: " fmt
#include <linux/types.h>
#include <linux/cache.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/printk.h>
#include <linux/cpu.h>
#include <linux/spinlock.h>
#include <linux/percpu-defs.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/memblock.h>
#include <linux/memory.h>
#include <linux/minmax.h>
#include <linux/sizes.h>
#include <linux/pfn.h>
#include <linux/align.h>
#include <linux/sort.h>
#include <linux/log2.h>
#include <linux/acpi.h>
#include <linux/suspend.h>
#include <linux/acpi.h>
#include <asm/page.h>
#include <asm/special_insns.h>
#include <asm/msr-index.h>
#include <asm/msr.h>
#include <asm/cpufeature.h>
#include <asm/tdx.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/mce.h>
#include "tdx.h"
static u32 tdx_global_keyid __ro_after_init;
static u32 tdx_guest_keyid_start __ro_after_init;
static u32 tdx_nr_guest_keyids __ro_after_init;
static DEFINE_PER_CPU(bool, tdx_lp_initialized);
static struct tdmr_info_list tdx_tdmr_list;
static enum tdx_module_status_t tdx_module_status;
static DEFINE_MUTEX(tdx_module_lock);
/* All TDX-usable memory regions. Protected by mem_hotplug_lock. */
static LIST_HEAD(tdx_memlist);
typedef void (*sc_err_func_t)(u64 fn, u64 err, struct tdx_module_args *args);
static inline void seamcall_err(u64 fn, u64 err, struct tdx_module_args *args)
{
pr_err("SEAMCALL (0x%016llx) failed: 0x%016llx\n", fn, err);
}
static inline void seamcall_err_ret(u64 fn, u64 err,
struct tdx_module_args *args)
{
seamcall_err(fn, err, args);
pr_err("RCX 0x%016llx RDX 0x%016llx R08 0x%016llx\n",
args->rcx, args->rdx, args->r8);
pr_err("R09 0x%016llx R10 0x%016llx R11 0x%016llx\n",
args->r9, args->r10, args->r11);
}
static inline int sc_retry_prerr(sc_func_t func, sc_err_func_t err_func,
u64 fn, struct tdx_module_args *args)
{
u64 sret = sc_retry(func, fn, args);
if (sret == TDX_SUCCESS)
return 0;
if (sret == TDX_SEAMCALL_VMFAILINVALID)
return -ENODEV;
if (sret == TDX_SEAMCALL_GP)
return -EOPNOTSUPP;
if (sret == TDX_SEAMCALL_UD)
return -EACCES;
err_func(fn, sret, args);
return -EIO;
}
#define seamcall_prerr(__fn, __args) \
sc_retry_prerr(__seamcall, seamcall_err, (__fn), (__args))
#define seamcall_prerr_ret(__fn, __args) \
sc_retry_prerr(__seamcall_ret, seamcall_err_ret, (__fn), (__args))
/*
* Do the module global initialization once and return its result.
* It can be done on any cpu. It's always called with interrupts
* disabled.
*/
static int try_init_module_global(void)
{
struct tdx_module_args args = {};
static DEFINE_RAW_SPINLOCK(sysinit_lock);
static bool sysinit_done;
static int sysinit_ret;
lockdep_assert_irqs_disabled();
raw_spin_lock(&sysinit_lock);
if (sysinit_done)
goto out;
/* RCX is module attributes and all bits are reserved */
args.rcx = 0;
sysinit_ret = seamcall_prerr(TDH_SYS_INIT, &args);
/*
* The first SEAMCALL also detects the TDX module, thus
* it can fail due to the TDX module is not loaded.
* Dump message to let the user know.
*/
if (sysinit_ret == -ENODEV)
pr_err("module not loaded\n");
sysinit_done = true;
out:
raw_spin_unlock(&sysinit_lock);
return sysinit_ret;
}
/**
* tdx_cpu_enable - Enable TDX on local cpu
*
* Do one-time TDX module per-cpu initialization SEAMCALL (and TDX module
* global initialization SEAMCALL if not done) on local cpu to make this
* cpu be ready to run any other SEAMCALLs.
*
* Always call this function via IPI function calls.
*
* Return 0 on success, otherwise errors.
*/
int tdx_cpu_enable(void)
{
struct tdx_module_args args = {};
int ret;
if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM))
return -ENODEV;
lockdep_assert_irqs_disabled();
if (__this_cpu_read(tdx_lp_initialized))
return 0;
/*
* The TDX module global initialization is the very first step
* to enable TDX. Need to do it first (if hasn't been done)
* before the per-cpu initialization.
*/
ret = try_init_module_global();
if (ret)
return ret;
ret = seamcall_prerr(TDH_SYS_LP_INIT, &args);
if (ret)
return ret;
__this_cpu_write(tdx_lp_initialized, true);
return 0;
}
EXPORT_SYMBOL_GPL(tdx_cpu_enable);
/*
* Add a memory region as a TDX memory block. The caller must make sure
* all memory regions are added in address ascending order and don't
* overlap.
*/
static int add_tdx_memblock(struct list_head *tmb_list, unsigned long start_pfn,
unsigned long end_pfn, int nid)
{
struct tdx_memblock *tmb;
tmb = kmalloc(sizeof(*tmb), GFP_KERNEL);
if (!tmb)
return -ENOMEM;
INIT_LIST_HEAD(&tmb->list);
tmb->start_pfn = start_pfn;
tmb->end_pfn = end_pfn;
tmb->nid = nid;
/* @tmb_list is protected by mem_hotplug_lock */
list_add_tail(&tmb->list, tmb_list);
return 0;
}
static void free_tdx_memlist(struct list_head *tmb_list)
{
/* @tmb_list is protected by mem_hotplug_lock */
while (!list_empty(tmb_list)) {
struct tdx_memblock *tmb = list_first_entry(tmb_list,
struct tdx_memblock, list);
list_del(&tmb->list);
kfree(tmb);
}
}
/*
* Ensure that all memblock memory regions are convertible to TDX
* memory. Once this has been established, stash the memblock
* ranges off in a secondary structure because memblock is modified
* in memory hotplug while TDX memory regions are fixed.
*/
static int build_tdx_memlist(struct list_head *tmb_list)
{
unsigned long start_pfn, end_pfn;
int i, nid, ret;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
/*
* The first 1MB is not reported as TDX convertible memory.
* Although the first 1MB is always reserved and won't end up
* to the page allocator, it is still in memblock's memory
* regions. Skip them manually to exclude them as TDX memory.
*/
start_pfn = max(start_pfn, PHYS_PFN(SZ_1M));
if (start_pfn >= end_pfn)
continue;
/*
* Add the memory regions as TDX memory. The regions in
* memblock has already guaranteed they are in address
* ascending order and don't overlap.
*/
ret = add_tdx_memblock(tmb_list, start_pfn, end_pfn, nid);
if (ret)
goto err;
}
return 0;
err:
free_tdx_memlist(tmb_list);
return ret;
}
static int read_sys_metadata_field(u64 field_id, u64 *data)
{
struct tdx_module_args args = {};
int ret;
/*
* TDH.SYS.RD -- reads one global metadata field
* - RDX (in): the field to read
* - R8 (out): the field data
*/
args.rdx = field_id;
ret = seamcall_prerr_ret(TDH_SYS_RD, &args);
if (ret)
return ret;
*data = args.r8;
return 0;
}
static int read_sys_metadata_field16(u64 field_id,
int offset,
struct tdx_tdmr_sysinfo *ts)
{
u16 *ts_member = ((void *)ts) + offset;
u64 tmp;
int ret;
if (WARN_ON_ONCE(MD_FIELD_ID_ELE_SIZE_CODE(field_id) !=
MD_FIELD_ID_ELE_SIZE_16BIT))
return -EINVAL;
ret = read_sys_metadata_field(field_id, &tmp);
if (ret)
return ret;
*ts_member = tmp;
return 0;
}
struct field_mapping {
u64 field_id;
int offset;
};
#define TD_SYSINFO_MAP(_field_id, _offset) \
{ .field_id = MD_FIELD_ID_##_field_id, \
.offset = offsetof(struct tdx_tdmr_sysinfo, _offset) }
/* Map TD_SYSINFO fields into 'struct tdx_tdmr_sysinfo': */
static const struct field_mapping fields[] = {
TD_SYSINFO_MAP(MAX_TDMRS, max_tdmrs),
TD_SYSINFO_MAP(MAX_RESERVED_PER_TDMR, max_reserved_per_tdmr),
TD_SYSINFO_MAP(PAMT_4K_ENTRY_SIZE, pamt_entry_size[TDX_PS_4K]),
TD_SYSINFO_MAP(PAMT_2M_ENTRY_SIZE, pamt_entry_size[TDX_PS_2M]),
TD_SYSINFO_MAP(PAMT_1G_ENTRY_SIZE, pamt_entry_size[TDX_PS_1G]),
};
static int get_tdx_tdmr_sysinfo(struct tdx_tdmr_sysinfo *tdmr_sysinfo)
{
int ret;
int i;
/* Populate 'tdmr_sysinfo' fields using the mapping structure above: */
for (i = 0; i < ARRAY_SIZE(fields); i++) {
ret = read_sys_metadata_field16(fields[i].field_id,
fields[i].offset,
tdmr_sysinfo);
if (ret)
return ret;
}
return 0;
}
/* Calculate the actual TDMR size */
static int tdmr_size_single(u16 max_reserved_per_tdmr)
{
int tdmr_sz;
/*
* The actual size of TDMR depends on the maximum
* number of reserved areas.
*/
tdmr_sz = sizeof(struct tdmr_info);
tdmr_sz += sizeof(struct tdmr_reserved_area) * max_reserved_per_tdmr;
return ALIGN(tdmr_sz, TDMR_INFO_ALIGNMENT);
}
static int alloc_tdmr_list(struct tdmr_info_list *tdmr_list,
struct tdx_tdmr_sysinfo *tdmr_sysinfo)
{
size_t tdmr_sz, tdmr_array_sz;
void *tdmr_array;
tdmr_sz = tdmr_size_single(tdmr_sysinfo->max_reserved_per_tdmr);
tdmr_array_sz = tdmr_sz * tdmr_sysinfo->max_tdmrs;
/*
* To keep things simple, allocate all TDMRs together.
* The buffer needs to be physically contiguous to make
* sure each TDMR is physically contiguous.
*/
tdmr_array = alloc_pages_exact(tdmr_array_sz,
GFP_KERNEL | __GFP_ZERO);
if (!tdmr_array)
return -ENOMEM;
tdmr_list->tdmrs = tdmr_array;
/*
* Keep the size of TDMR to find the target TDMR
* at a given index in the TDMR list.
*/
tdmr_list->tdmr_sz = tdmr_sz;
tdmr_list->max_tdmrs = tdmr_sysinfo->max_tdmrs;
tdmr_list->nr_consumed_tdmrs = 0;
return 0;
}
static void free_tdmr_list(struct tdmr_info_list *tdmr_list)
{
free_pages_exact(tdmr_list->tdmrs,
tdmr_list->max_tdmrs * tdmr_list->tdmr_sz);
}
/* Get the TDMR from the list at the given index. */
static struct tdmr_info *tdmr_entry(struct tdmr_info_list *tdmr_list,
int idx)
{
int tdmr_info_offset = tdmr_list->tdmr_sz * idx;
return (void *)tdmr_list->tdmrs + tdmr_info_offset;
}
#define TDMR_ALIGNMENT SZ_1G
#define TDMR_ALIGN_DOWN(_addr) ALIGN_DOWN((_addr), TDMR_ALIGNMENT)
#define TDMR_ALIGN_UP(_addr) ALIGN((_addr), TDMR_ALIGNMENT)
static inline u64 tdmr_end(struct tdmr_info *tdmr)
{
return tdmr->base + tdmr->size;
}
/*
* Take the memory referenced in @tmb_list and populate the
* preallocated @tdmr_list, following all the special alignment
* and size rules for TDMR.
*/
static int fill_out_tdmrs(struct list_head *tmb_list,
struct tdmr_info_list *tdmr_list)
{
struct tdx_memblock *tmb;
int tdmr_idx = 0;
/*
* Loop over TDX memory regions and fill out TDMRs to cover them.
* To keep it simple, always try to use one TDMR to cover one
* memory region.
*
* In practice TDX supports at least 64 TDMRs. A 2-socket system
* typically only consumes less than 10 of those. This code is
* dumb and simple and may use more TMDRs than is strictly
* required.
*/
list_for_each_entry(tmb, tmb_list, list) {
struct tdmr_info *tdmr = tdmr_entry(tdmr_list, tdmr_idx);
u64 start, end;
start = TDMR_ALIGN_DOWN(PFN_PHYS(tmb->start_pfn));
end = TDMR_ALIGN_UP(PFN_PHYS(tmb->end_pfn));
/*
* A valid size indicates the current TDMR has already
* been filled out to cover the previous memory region(s).
*/
if (tdmr->size) {
/*
* Loop to the next if the current memory region
* has already been fully covered.
*/
if (end <= tdmr_end(tdmr))
continue;
/* Otherwise, skip the already covered part. */
if (start < tdmr_end(tdmr))
start = tdmr_end(tdmr);
/*
* Create a new TDMR to cover the current memory
* region, or the remaining part of it.
*/
tdmr_idx++;
if (tdmr_idx >= tdmr_list->max_tdmrs) {
pr_warn("initialization failed: TDMRs exhausted.\n");
return -ENOSPC;
}
tdmr = tdmr_entry(tdmr_list, tdmr_idx);
}
tdmr->base = start;
tdmr->size = end - start;
}
/* @tdmr_idx is always the index of the last valid TDMR. */
tdmr_list->nr_consumed_tdmrs = tdmr_idx + 1;
/*
* Warn early that kernel is about to run out of TDMRs.
*
* This is an indication that TDMR allocation has to be
* reworked to be smarter to not run into an issue.
*/
if (tdmr_list->max_tdmrs - tdmr_list->nr_consumed_tdmrs < TDMR_NR_WARN)
pr_warn("consumed TDMRs reaching limit: %d used out of %d\n",
tdmr_list->nr_consumed_tdmrs,
tdmr_list->max_tdmrs);
return 0;
}
/*
* Calculate PAMT size given a TDMR and a page size. The returned
* PAMT size is always aligned up to 4K page boundary.
*/
static unsigned long tdmr_get_pamt_sz(struct tdmr_info *tdmr, int pgsz,
u16 pamt_entry_size)
{
unsigned long pamt_sz, nr_pamt_entries;
switch (pgsz) {
case TDX_PS_4K:
nr_pamt_entries = tdmr->size >> PAGE_SHIFT;
break;
case TDX_PS_2M:
nr_pamt_entries = tdmr->size >> PMD_SHIFT;
break;
case TDX_PS_1G:
nr_pamt_entries = tdmr->size >> PUD_SHIFT;
break;
default:
WARN_ON_ONCE(1);
return 0;
}
pamt_sz = nr_pamt_entries * pamt_entry_size;
/* TDX requires PAMT size must be 4K aligned */
pamt_sz = ALIGN(pamt_sz, PAGE_SIZE);
return pamt_sz;
}
/*
* Locate a NUMA node which should hold the allocation of the @tdmr
* PAMT. This node will have some memory covered by the TDMR. The
* relative amount of memory covered is not considered.
*/
static int tdmr_get_nid(struct tdmr_info *tdmr, struct list_head *tmb_list)
{
struct tdx_memblock *tmb;
/*
* A TDMR must cover at least part of one TMB. That TMB will end
* after the TDMR begins. But, that TMB may have started before
* the TDMR. Find the next 'tmb' that _ends_ after this TDMR
* begins. Ignore 'tmb' start addresses. They are irrelevant.
*/
list_for_each_entry(tmb, tmb_list, list) {
if (tmb->end_pfn > PHYS_PFN(tdmr->base))
return tmb->nid;
}
/*
* Fall back to allocating the TDMR's metadata from node 0 when
* no TDX memory block can be found. This should never happen
* since TDMRs originate from TDX memory blocks.
*/
pr_warn("TDMR [0x%llx, 0x%llx): unable to find local NUMA node for PAMT allocation, fallback to use node 0.\n",
tdmr->base, tdmr_end(tdmr));
return 0;
}
/*
* Allocate PAMTs from the local NUMA node of some memory in @tmb_list
* within @tdmr, and set up PAMTs for @tdmr.
*/
static int tdmr_set_up_pamt(struct tdmr_info *tdmr,
struct list_head *tmb_list,
u16 pamt_entry_size[])
{
unsigned long pamt_base[TDX_PS_NR];
unsigned long pamt_size[TDX_PS_NR];
unsigned long tdmr_pamt_base;
unsigned long tdmr_pamt_size;
struct page *pamt;
int pgsz, nid;
nid = tdmr_get_nid(tdmr, tmb_list);
/*
* Calculate the PAMT size for each TDX supported page size
* and the total PAMT size.
*/
tdmr_pamt_size = 0;
for (pgsz = TDX_PS_4K; pgsz < TDX_PS_NR; pgsz++) {
pamt_size[pgsz] = tdmr_get_pamt_sz(tdmr, pgsz,
pamt_entry_size[pgsz]);
tdmr_pamt_size += pamt_size[pgsz];
}
/*
* Allocate one chunk of physically contiguous memory for all
* PAMTs. This helps minimize the PAMT's use of reserved areas
* in overlapped TDMRs.
*/
pamt = alloc_contig_pages(tdmr_pamt_size >> PAGE_SHIFT, GFP_KERNEL,
nid, &node_online_map);
if (!pamt)
return -ENOMEM;
/*
* Break the contiguous allocation back up into the
* individual PAMTs for each page size.
*/
tdmr_pamt_base = page_to_pfn(pamt) << PAGE_SHIFT;
for (pgsz = TDX_PS_4K; pgsz < TDX_PS_NR; pgsz++) {
pamt_base[pgsz] = tdmr_pamt_base;
tdmr_pamt_base += pamt_size[pgsz];
}
tdmr->pamt_4k_base = pamt_base[TDX_PS_4K];
tdmr->pamt_4k_size = pamt_size[TDX_PS_4K];
tdmr->pamt_2m_base = pamt_base[TDX_PS_2M];
tdmr->pamt_2m_size = pamt_size[TDX_PS_2M];
tdmr->pamt_1g_base = pamt_base[TDX_PS_1G];
tdmr->pamt_1g_size = pamt_size[TDX_PS_1G];
return 0;
}
static void tdmr_get_pamt(struct tdmr_info *tdmr, unsigned long *pamt_base,
unsigned long *pamt_size)
{
unsigned long pamt_bs, pamt_sz;
/*
* The PAMT was allocated in one contiguous unit. The 4K PAMT
* should always point to the beginning of that allocation.
*/
pamt_bs = tdmr->pamt_4k_base;
pamt_sz = tdmr->pamt_4k_size + tdmr->pamt_2m_size + tdmr->pamt_1g_size;
WARN_ON_ONCE((pamt_bs & ~PAGE_MASK) || (pamt_sz & ~PAGE_MASK));
*pamt_base = pamt_bs;
*pamt_size = pamt_sz;
}
static void tdmr_do_pamt_func(struct tdmr_info *tdmr,
void (*pamt_func)(unsigned long base, unsigned long size))
{
unsigned long pamt_base, pamt_size;
tdmr_get_pamt(tdmr, &pamt_base, &pamt_size);
/* Do nothing if PAMT hasn't been allocated for this TDMR */
if (!pamt_size)
return;
if (WARN_ON_ONCE(!pamt_base))
return;
pamt_func(pamt_base, pamt_size);
}
static void free_pamt(unsigned long pamt_base, unsigned long pamt_size)
{
free_contig_range(pamt_base >> PAGE_SHIFT, pamt_size >> PAGE_SHIFT);
}
static void tdmr_free_pamt(struct tdmr_info *tdmr)
{
tdmr_do_pamt_func(tdmr, free_pamt);
}
static void tdmrs_free_pamt_all(struct tdmr_info_list *tdmr_list)
{
int i;
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++)
tdmr_free_pamt(tdmr_entry(tdmr_list, i));
}
/* Allocate and set up PAMTs for all TDMRs */
static int tdmrs_set_up_pamt_all(struct tdmr_info_list *tdmr_list,
struct list_head *tmb_list,
u16 pamt_entry_size[])
{
int i, ret = 0;
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
ret = tdmr_set_up_pamt(tdmr_entry(tdmr_list, i), tmb_list,
pamt_entry_size);
if (ret)
goto err;
}
return 0;
err:
tdmrs_free_pamt_all(tdmr_list);
return ret;
}
/*
* Convert TDX private pages back to normal by using MOVDIR64B to
* clear these pages. Note this function doesn't flush cache of
* these TDX private pages. The caller should make sure of that.
*/
static void reset_tdx_pages(unsigned long base, unsigned long size)
{
const void *zero_page = (const void *)page_address(ZERO_PAGE(0));
unsigned long phys, end;
end = base + size;
for (phys = base; phys < end; phys += 64)
movdir64b(__va(phys), zero_page);
/*
* MOVDIR64B uses WC protocol. Use memory barrier to
* make sure any later user of these pages sees the
* updated data.
*/
mb();
}
static void tdmr_reset_pamt(struct tdmr_info *tdmr)
{
tdmr_do_pamt_func(tdmr, reset_tdx_pages);
}
static void tdmrs_reset_pamt_all(struct tdmr_info_list *tdmr_list)
{
int i;
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++)
tdmr_reset_pamt(tdmr_entry(tdmr_list, i));
}
static unsigned long tdmrs_count_pamt_kb(struct tdmr_info_list *tdmr_list)
{
unsigned long pamt_size = 0;
int i;
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
unsigned long base, size;
tdmr_get_pamt(tdmr_entry(tdmr_list, i), &base, &size);
pamt_size += size;
}
return pamt_size / 1024;
}
static int tdmr_add_rsvd_area(struct tdmr_info *tdmr, int *p_idx, u64 addr,
u64 size, u16 max_reserved_per_tdmr)
{
struct tdmr_reserved_area *rsvd_areas = tdmr->reserved_areas;
int idx = *p_idx;
/* Reserved area must be 4K aligned in offset and size */
if (WARN_ON(addr & ~PAGE_MASK || size & ~PAGE_MASK))
return -EINVAL;
if (idx >= max_reserved_per_tdmr) {
pr_warn("initialization failed: TDMR [0x%llx, 0x%llx): reserved areas exhausted.\n",
tdmr->base, tdmr_end(tdmr));
return -ENOSPC;
}
/*
* Consume one reserved area per call. Make no effort to
* optimize or reduce the number of reserved areas which are
* consumed by contiguous reserved areas, for instance.
*/
rsvd_areas[idx].offset = addr - tdmr->base;
rsvd_areas[idx].size = size;
*p_idx = idx + 1;
return 0;
}
/*
* Go through @tmb_list to find holes between memory areas. If any of
* those holes fall within @tdmr, set up a TDMR reserved area to cover
* the hole.
*/
static int tdmr_populate_rsvd_holes(struct list_head *tmb_list,
struct tdmr_info *tdmr,
int *rsvd_idx,
u16 max_reserved_per_tdmr)
{
struct tdx_memblock *tmb;
u64 prev_end;
int ret;
/*
* Start looking for reserved blocks at the
* beginning of the TDMR.
*/
prev_end = tdmr->base;
list_for_each_entry(tmb, tmb_list, list) {
u64 start, end;
start = PFN_PHYS(tmb->start_pfn);
end = PFN_PHYS(tmb->end_pfn);
/* Break if this region is after the TDMR */
if (start >= tdmr_end(tdmr))
break;
/* Exclude regions before this TDMR */
if (end < tdmr->base)
continue;
/*
* Skip over memory areas that
* have already been dealt with.
*/
if (start <= prev_end) {
prev_end = end;
continue;
}
/* Add the hole before this region */
ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, prev_end,
start - prev_end,
max_reserved_per_tdmr);
if (ret)
return ret;
prev_end = end;
}
/* Add the hole after the last region if it exists. */
if (prev_end < tdmr_end(tdmr)) {
ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, prev_end,
tdmr_end(tdmr) - prev_end,
max_reserved_per_tdmr);
if (ret)
return ret;
}
return 0;
}
/*
* Go through @tdmr_list to find all PAMTs. If any of those PAMTs
* overlaps with @tdmr, set up a TDMR reserved area to cover the
* overlapping part.
*/
static int tdmr_populate_rsvd_pamts(struct tdmr_info_list *tdmr_list,
struct tdmr_info *tdmr,
int *rsvd_idx,
u16 max_reserved_per_tdmr)
{
int i, ret;
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
struct tdmr_info *tmp = tdmr_entry(tdmr_list, i);
unsigned long pamt_base, pamt_size, pamt_end;
tdmr_get_pamt(tmp, &pamt_base, &pamt_size);
/* Each TDMR must already have PAMT allocated */
WARN_ON_ONCE(!pamt_size || !pamt_base);
pamt_end = pamt_base + pamt_size;
/* Skip PAMTs outside of the given TDMR */
if ((pamt_end <= tdmr->base) ||
(pamt_base >= tdmr_end(tdmr)))
continue;
/* Only mark the part within the TDMR as reserved */
if (pamt_base < tdmr->base)
pamt_base = tdmr->base;
if (pamt_end > tdmr_end(tdmr))
pamt_end = tdmr_end(tdmr);
ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, pamt_base,
pamt_end - pamt_base,
max_reserved_per_tdmr);
if (ret)
return ret;
}
return 0;
}
/* Compare function called by sort() for TDMR reserved areas */
static int rsvd_area_cmp_func(const void *a, const void *b)
{
struct tdmr_reserved_area *r1 = (struct tdmr_reserved_area *)a;
struct tdmr_reserved_area *r2 = (struct tdmr_reserved_area *)b;
if (r1->offset + r1->size <= r2->offset)
return -1;
if (r1->offset >= r2->offset + r2->size)
return 1;
/* Reserved areas cannot overlap. The caller must guarantee. */
WARN_ON_ONCE(1);
return -1;
}
/*
* Populate reserved areas for the given @tdmr, including memory holes
* (via @tmb_list) and PAMTs (via @tdmr_list).
*/
static int tdmr_populate_rsvd_areas(struct tdmr_info *tdmr,
struct list_head *tmb_list,
struct tdmr_info_list *tdmr_list,
u16 max_reserved_per_tdmr)
{
int ret, rsvd_idx = 0;
ret = tdmr_populate_rsvd_holes(tmb_list, tdmr, &rsvd_idx,
max_reserved_per_tdmr);
if (ret)
return ret;
ret = tdmr_populate_rsvd_pamts(tdmr_list, tdmr, &rsvd_idx,
max_reserved_per_tdmr);
if (ret)
return ret;
/* TDX requires reserved areas listed in address ascending order */
sort(tdmr->reserved_areas, rsvd_idx, sizeof(struct tdmr_reserved_area),
rsvd_area_cmp_func, NULL);
return 0;
}
/*
* Populate reserved areas for all TDMRs in @tdmr_list, including memory
* holes (via @tmb_list) and PAMTs.
*/
static int tdmrs_populate_rsvd_areas_all(struct tdmr_info_list *tdmr_list,
struct list_head *tmb_list,
u16 max_reserved_per_tdmr)
{
int i;
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
int ret;
ret = tdmr_populate_rsvd_areas(tdmr_entry(tdmr_list, i),
tmb_list, tdmr_list, max_reserved_per_tdmr);
if (ret)
return ret;
}
return 0;
}
/*
* Construct a list of TDMRs on the preallocated space in @tdmr_list
* to cover all TDX memory regions in @tmb_list based on the TDX module
* TDMR global information in @tdmr_sysinfo.
*/
static int construct_tdmrs(struct list_head *tmb_list,
struct tdmr_info_list *tdmr_list,
struct tdx_tdmr_sysinfo *tdmr_sysinfo)
{
int ret;
ret = fill_out_tdmrs(tmb_list, tdmr_list);
if (ret)
return ret;
ret = tdmrs_set_up_pamt_all(tdmr_list, tmb_list,
tdmr_sysinfo->pamt_entry_size);
if (ret)
return ret;
ret = tdmrs_populate_rsvd_areas_all(tdmr_list, tmb_list,
tdmr_sysinfo->max_reserved_per_tdmr);
if (ret)
tdmrs_free_pamt_all(tdmr_list);
/*
* The tdmr_info_list is read-only from here on out.
* Ensure that these writes are seen by other CPUs.
* Pairs with a smp_rmb() in is_pamt_page().
*/
smp_wmb();
return ret;
}
static int config_tdx_module(struct tdmr_info_list *tdmr_list, u64 global_keyid)
{
struct tdx_module_args args = {};
u64 *tdmr_pa_array;
size_t array_sz;
int i, ret;
/*
* TDMRs are passed to the TDX module via an array of physical
* addresses of each TDMR. The array itself also has certain
* alignment requirement.
*/
array_sz = tdmr_list->nr_consumed_tdmrs * sizeof(u64);
array_sz = roundup_pow_of_two(array_sz);
if (array_sz < TDMR_INFO_PA_ARRAY_ALIGNMENT)
array_sz = TDMR_INFO_PA_ARRAY_ALIGNMENT;
tdmr_pa_array = kzalloc(array_sz, GFP_KERNEL);
if (!tdmr_pa_array)
return -ENOMEM;
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++)
tdmr_pa_array[i] = __pa(tdmr_entry(tdmr_list, i));
args.rcx = __pa(tdmr_pa_array);
args.rdx = tdmr_list->nr_consumed_tdmrs;
args.r8 = global_keyid;
ret = seamcall_prerr(TDH_SYS_CONFIG, &args);
/* Free the array as it is not required anymore. */
kfree(tdmr_pa_array);
return ret;
}
static int do_global_key_config(void *unused)
{
struct tdx_module_args args = {};
return seamcall_prerr(TDH_SYS_KEY_CONFIG, &args);
}
/*
* Attempt to configure the global KeyID on all physical packages.
*
* This requires running code on at least one CPU in each package.
* TDMR initialization) will fail will fail if any package in the
* system has no online CPUs.
*
* This code takes no affirmative steps to online CPUs. Callers (aka.
* KVM) can ensure success by ensuring sufficient CPUs are online and
* can run SEAMCALLs.
*/
static int config_global_keyid(void)
{
cpumask_var_t packages;
int cpu, ret = -EINVAL;
if (!zalloc_cpumask_var(&packages, GFP_KERNEL))
return -ENOMEM;
/*
* Hardware doesn't guarantee cache coherency across different
* KeyIDs. The kernel needs to flush PAMT's dirty cachelines
* (associated with KeyID 0) before the TDX module can use the
* global KeyID to access the PAMT. Given PAMTs are potentially
* large (~1/256th of system RAM), just use WBINVD.
*/
wbinvd_on_all_cpus();
for_each_online_cpu(cpu) {
/*
* The key configuration only needs to be done once per
* package and will return an error if configured more
* than once. Avoid doing it multiple times per package.
*/
if (cpumask_test_and_set_cpu(topology_physical_package_id(cpu),
packages))
continue;
/*
* TDH.SYS.KEY.CONFIG cannot run concurrently on
* different cpus. Do it one by one.
*/
ret = smp_call_on_cpu(cpu, do_global_key_config, NULL, true);
if (ret)
break;
}
free_cpumask_var(packages);
return ret;
}
static int init_tdmr(struct tdmr_info *tdmr)
{
u64 next;
/*
* Initializing a TDMR can be time consuming. To avoid long
* SEAMCALLs, the TDX module may only initialize a part of the
* TDMR in each call.
*/
do {
struct tdx_module_args args = {
.rcx = tdmr->base,
};
int ret;
ret = seamcall_prerr_ret(TDH_SYS_TDMR_INIT, &args);
if (ret)
return ret;
/*
* RDX contains 'next-to-initialize' address if
* TDH.SYS.TDMR.INIT did not fully complete and
* should be retried.
*/
next = args.rdx;
cond_resched();
/* Keep making SEAMCALLs until the TDMR is done */
} while (next < tdmr->base + tdmr->size);
return 0;
}
static int init_tdmrs(struct tdmr_info_list *tdmr_list)
{
int i;
/*
* This operation is costly. It can be parallelized,
* but keep it simple for now.
*/
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
int ret;
ret = init_tdmr(tdmr_entry(tdmr_list, i));
if (ret)
return ret;
}
return 0;
}
static int init_tdx_module(void)
{
struct tdx_tdmr_sysinfo tdmr_sysinfo;
int ret;
/*
* To keep things simple, assume that all TDX-protected memory
* will come from the page allocator. Make sure all pages in the
* page allocator are TDX-usable memory.
*
* Build the list of "TDX-usable" memory regions which cover all
* pages in the page allocator to guarantee that. Do it while
* holding mem_hotplug_lock read-lock as the memory hotplug code
* path reads the @tdx_memlist to reject any new memory.
*/
get_online_mems();
ret = build_tdx_memlist(&tdx_memlist);
if (ret)
goto out_put_tdxmem;
ret = get_tdx_tdmr_sysinfo(&tdmr_sysinfo);
if (ret)
goto err_free_tdxmem;
/* Allocate enough space for constructing TDMRs */
ret = alloc_tdmr_list(&tdx_tdmr_list, &tdmr_sysinfo);
if (ret)
goto err_free_tdxmem;
/* Cover all TDX-usable memory regions in TDMRs */
ret = construct_tdmrs(&tdx_memlist, &tdx_tdmr_list, &tdmr_sysinfo);
if (ret)
goto err_free_tdmrs;
/* Pass the TDMRs and the global KeyID to the TDX module */
ret = config_tdx_module(&tdx_tdmr_list, tdx_global_keyid);
if (ret)
goto err_free_pamts;
/* Config the key of global KeyID on all packages */
ret = config_global_keyid();
if (ret)
goto err_reset_pamts;
/* Initialize TDMRs to complete the TDX module initialization */
ret = init_tdmrs(&tdx_tdmr_list);
if (ret)
goto err_reset_pamts;
pr_info("%lu KB allocated for PAMT\n", tdmrs_count_pamt_kb(&tdx_tdmr_list));
out_put_tdxmem:
/*
* @tdx_memlist is written here and read at memory hotplug time.
* Lock out memory hotplug code while building it.
*/
put_online_mems();
return ret;
err_reset_pamts:
/*
* Part of PAMTs may already have been initialized by the
* TDX module. Flush cache before returning PAMTs back
* to the kernel.
*/
wbinvd_on_all_cpus();
/*
* According to the TDX hardware spec, if the platform
* doesn't have the "partial write machine check"
* erratum, any kernel read/write will never cause #MC
* in kernel space, thus it's OK to not convert PAMTs
* back to normal. But do the conversion anyway here
* as suggested by the TDX spec.
*/
tdmrs_reset_pamt_all(&tdx_tdmr_list);
err_free_pamts:
tdmrs_free_pamt_all(&tdx_tdmr_list);
err_free_tdmrs:
free_tdmr_list(&tdx_tdmr_list);
err_free_tdxmem:
free_tdx_memlist(&tdx_memlist);
goto out_put_tdxmem;
}
static int __tdx_enable(void)
{
int ret;
ret = init_tdx_module();
if (ret) {
pr_err("module initialization failed (%d)\n", ret);
tdx_module_status = TDX_MODULE_ERROR;
return ret;
}
pr_info("module initialized\n");
tdx_module_status = TDX_MODULE_INITIALIZED;
return 0;
}
/**
* tdx_enable - Enable TDX module to make it ready to run TDX guests
*
* This function assumes the caller has: 1) held read lock of CPU hotplug
* lock to prevent any new cpu from becoming online; 2) done both VMXON
* and tdx_cpu_enable() on all online cpus.
*
* This function requires there's at least one online cpu for each CPU
* package to succeed.
*
* This function can be called in parallel by multiple callers.
*
* Return 0 if TDX is enabled successfully, otherwise error.
*/
int tdx_enable(void)
{
int ret;
if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM))
return -ENODEV;
lockdep_assert_cpus_held();
mutex_lock(&tdx_module_lock);
switch (tdx_module_status) {
case TDX_MODULE_UNINITIALIZED:
ret = __tdx_enable();
break;
case TDX_MODULE_INITIALIZED:
/* Already initialized, great, tell the caller. */
ret = 0;
break;
default:
/* Failed to initialize in the previous attempts */
ret = -EINVAL;
break;
}
mutex_unlock(&tdx_module_lock);
return ret;
}
EXPORT_SYMBOL_GPL(tdx_enable);
static bool is_pamt_page(unsigned long phys)
{
struct tdmr_info_list *tdmr_list = &tdx_tdmr_list;
int i;
/* Ensure that all remote 'tdmr_list' writes are visible: */
smp_rmb();
/*
* The TDX module is no longer returning TDX_SYS_NOT_READY and
* is initialized. The 'tdmr_list' was initialized long ago
* and is now read-only.
*/
for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) {
unsigned long base, size;
tdmr_get_pamt(tdmr_entry(tdmr_list, i), &base, &size);
if (phys >= base && phys < (base + size))
return true;
}
return false;
}
/*
* Return whether the memory page at the given physical address is TDX
* private memory or not.
*
* This can be imprecise for two known reasons:
* 1. PAMTs are private memory and exist before the TDX module is
* ready and TDH_PHYMEM_PAGE_RDMD works. This is a relatively
* short window that occurs once per boot.
* 2. TDH_PHYMEM_PAGE_RDMD reflects the TDX module's knowledge of the
* page. However, the page can still cause #MC until it has been
* fully converted to shared using 64-byte writes like MOVDIR64B.
* Buggy hosts might still leave #MC-causing memory in place which
* this function can not detect.
*/
static bool paddr_is_tdx_private(unsigned long phys)
{
struct tdx_module_args args = {
.rcx = phys & PAGE_MASK,
};
u64 sret;
if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM))
return false;
/* Get page type from the TDX module */
sret = __seamcall_ret(TDH_PHYMEM_PAGE_RDMD, &args);
/*
* The SEAMCALL will not return success unless there is a
* working, "ready" TDX module. Assume an absence of TDX
* private pages until SEAMCALL is working.
*/
if (sret)
return false;
/*
* SEAMCALL was successful -- read page type (via RCX):
*
* - PT_NDA: Page is not used by the TDX module
* - PT_RSVD: Reserved for Non-TDX use
* - Others: Page is used by the TDX module
*
* Note PAMT pages are marked as PT_RSVD but they are also TDX
* private memory.
*/
switch (args.rcx) {
case PT_NDA:
return false;
case PT_RSVD:
return is_pamt_page(phys);
default:
return true;
}
}
/*
* Some TDX-capable CPUs have an erratum. A write to TDX private
* memory poisons that memory, and a subsequent read of that memory
* triggers #MC.
*
* Help distinguish erratum-triggered #MCs from a normal hardware one.
* Just print additional message to show such #MC may be result of the
* erratum.
*/
const char *tdx_dump_mce_info(struct mce *m)
{
if (!m || !mce_is_memory_error(m) || !mce_usable_address(m))
return NULL;
if (!paddr_is_tdx_private(m->addr))
return NULL;
return "TDX private memory error. Possible kernel bug.";
}
static __init int record_keyid_partitioning(u32 *tdx_keyid_start,
u32 *nr_tdx_keyids)
{
u32 _nr_mktme_keyids, _tdx_keyid_start, _nr_tdx_keyids;
int ret;
/*
* IA32_MKTME_KEYID_PARTIONING:
* Bit [31:0]: Number of MKTME KeyIDs.
* Bit [63:32]: Number of TDX private KeyIDs.
*/
ret = rdmsr_safe(MSR_IA32_MKTME_KEYID_PARTITIONING, &_nr_mktme_keyids,
&_nr_tdx_keyids);
if (ret || !_nr_tdx_keyids)
return -EINVAL;
/* TDX KeyIDs start after the last MKTME KeyID. */
_tdx_keyid_start = _nr_mktme_keyids + 1;
*tdx_keyid_start = _tdx_keyid_start;
*nr_tdx_keyids = _nr_tdx_keyids;
return 0;
}
static bool is_tdx_memory(unsigned long start_pfn, unsigned long end_pfn)
{
struct tdx_memblock *tmb;
/*
* This check assumes that the start_pfn<->end_pfn range does not
* cross multiple @tdx_memlist entries. A single memory online
* event across multiple memblocks (from which @tdx_memlist
* entries are derived at the time of module initialization) is
* not possible. This is because memory offline/online is done
* on granularity of 'struct memory_block', and the hotpluggable
* memory region (one memblock) must be multiple of memory_block.
*/
list_for_each_entry(tmb, &tdx_memlist, list) {
if (start_pfn >= tmb->start_pfn && end_pfn <= tmb->end_pfn)
return true;
}
return false;
}
static int tdx_memory_notifier(struct notifier_block *nb, unsigned long action,
void *v)
{
struct memory_notify *mn = v;
if (action != MEM_GOING_ONLINE)
return NOTIFY_OK;
/*
* Empty list means TDX isn't enabled. Allow any memory
* to go online.
*/
if (list_empty(&tdx_memlist))
return NOTIFY_OK;
/*
* The TDX memory configuration is static and can not be
* changed. Reject onlining any memory which is outside of
* the static configuration whether it supports TDX or not.
*/
if (is_tdx_memory(mn->start_pfn, mn->start_pfn + mn->nr_pages))
return NOTIFY_OK;
return NOTIFY_BAD;
}
static struct notifier_block tdx_memory_nb = {
.notifier_call = tdx_memory_notifier,
};
static void __init check_tdx_erratum(void)
{
/*
* These CPUs have an erratum. A partial write from non-TD
* software (e.g. via MOVNTI variants or UC/WC mapping) to TDX
* private memory poisons that memory, and a subsequent read of
* that memory triggers #MC.
*/
switch (boot_cpu_data.x86_model) {
case INTEL_FAM6_SAPPHIRERAPIDS_X:
case INTEL_FAM6_EMERALDRAPIDS_X:
setup_force_cpu_bug(X86_BUG_TDX_PW_MCE);
}
}
void __init tdx_init(void)
{
u32 tdx_keyid_start, nr_tdx_keyids;
int err;
err = record_keyid_partitioning(&tdx_keyid_start, &nr_tdx_keyids);
if (err)
return;
pr_info("BIOS enabled: private KeyID range [%u, %u)\n",
tdx_keyid_start, tdx_keyid_start + nr_tdx_keyids);
/*
* The TDX module itself requires one 'global KeyID' to protect
* its metadata. If there's only one TDX KeyID, there won't be
* any left for TDX guests thus there's no point to enable TDX
* at all.
*/
if (nr_tdx_keyids < 2) {
pr_err("initialization failed: too few private KeyIDs available.\n");
return;
}
/*
* At this point, hibernation_available() indicates whether or
* not hibernation support has been permanently disabled.
*/
if (hibernation_available()) {
pr_err("initialization failed: Hibernation support is enabled\n");
return;
}
err = register_memory_notifier(&tdx_memory_nb);
if (err) {
pr_err("initialization failed: register_memory_notifier() failed (%d)\n",
err);
return;
}
#if defined(CONFIG_ACPI) && defined(CONFIG_SUSPEND)
pr_info("Disable ACPI S3. Turn off TDX in the BIOS to use ACPI S3.\n");
acpi_suspend_lowlevel = NULL;
#endif
/*
* Just use the first TDX KeyID as the 'global KeyID' and
* leave the rest for TDX guests.
*/
tdx_global_keyid = tdx_keyid_start;
tdx_guest_keyid_start = tdx_keyid_start + 1;
tdx_nr_guest_keyids = nr_tdx_keyids - 1;
setup_force_cpu_cap(X86_FEATURE_TDX_HOST_PLATFORM);
check_tdx_erratum();
}
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _X86_VIRT_TDX_H
#define _X86_VIRT_TDX_H
#include <linux/bits.h>
/*
* This file contains both macros and data structures defined by the TDX
* architecture and Linux defined software data structures and functions.
* The two should not be mixed together for better readability. The
* architectural definitions come first.
*/
/*
* TDX module SEAMCALL leaf functions
*/
#define TDH_PHYMEM_PAGE_RDMD 24
#define TDH_SYS_KEY_CONFIG 31
#define TDH_SYS_INIT 33
#define TDH_SYS_RD 34
#define TDH_SYS_LP_INIT 35
#define TDH_SYS_TDMR_INIT 36
#define TDH_SYS_CONFIG 45
/* TDX page types */
#define PT_NDA 0x0
#define PT_RSVD 0x1
/*
* Global scope metadata field ID.
*
* See Table "Global Scope Metadata", TDX module 1.5 ABI spec.
*/
#define MD_FIELD_ID_MAX_TDMRS 0x9100000100000008ULL
#define MD_FIELD_ID_MAX_RESERVED_PER_TDMR 0x9100000100000009ULL
#define MD_FIELD_ID_PAMT_4K_ENTRY_SIZE 0x9100000100000010ULL
#define MD_FIELD_ID_PAMT_2M_ENTRY_SIZE 0x9100000100000011ULL
#define MD_FIELD_ID_PAMT_1G_ENTRY_SIZE 0x9100000100000012ULL
/*
* Sub-field definition of metadata field ID.
*
* See Table "MD_FIELD_ID (Metadata Field Identifier / Sequence Header)
* Definition", TDX module 1.5 ABI spec.
*
* - Bit 33:32: ELEMENT_SIZE_CODE -- size of a single element of metadata
*
* 0: 8 bits
* 1: 16 bits
* 2: 32 bits
* 3: 64 bits
*/
#define MD_FIELD_ID_ELE_SIZE_CODE(_field_id) \
(((_field_id) & GENMASK_ULL(33, 32)) >> 32)
#define MD_FIELD_ID_ELE_SIZE_16BIT 1
struct tdmr_reserved_area {
u64 offset;
u64 size;
} __packed;
#define TDMR_INFO_ALIGNMENT 512
#define TDMR_INFO_PA_ARRAY_ALIGNMENT 512
struct tdmr_info {
u64 base;
u64 size;
u64 pamt_1g_base;
u64 pamt_1g_size;
u64 pamt_2m_base;
u64 pamt_2m_size;
u64 pamt_4k_base;
u64 pamt_4k_size;
/*
* The actual number of reserved areas depends on the value of
* field MD_FIELD_ID_MAX_RESERVED_PER_TDMR in the TDX module
* global metadata.
*/
DECLARE_FLEX_ARRAY(struct tdmr_reserved_area, reserved_areas);
} __packed __aligned(TDMR_INFO_ALIGNMENT);
/*
* Do not put any hardware-defined TDX structure representations below
* this comment!
*/
/* Kernel defined TDX module status during module initialization. */
enum tdx_module_status_t {
TDX_MODULE_UNINITIALIZED,
TDX_MODULE_INITIALIZED,
TDX_MODULE_ERROR
};
struct tdx_memblock {
struct list_head list;
unsigned long start_pfn;
unsigned long end_pfn;
int nid;
};
/* "TDMR info" part of "Global Scope Metadata" for constructing TDMRs */
struct tdx_tdmr_sysinfo {
u16 max_tdmrs;
u16 max_reserved_per_tdmr;
u16 pamt_entry_size[TDX_PS_NR];
};
/* Warn if kernel has less than TDMR_NR_WARN TDMRs after allocation */
#define TDMR_NR_WARN 4
struct tdmr_info_list {
void *tdmrs; /* Flexible array to hold 'tdmr_info's */
int nr_consumed_tdmrs; /* How many 'tdmr_info's are in use */
/* Metadata for finding target 'tdmr_info' and freeing @tdmrs */
int tdmr_sz; /* Size of one 'tdmr_info' */
int max_tdmrs; /* How many 'tdmr_info's are allocated */
};
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment