Commit b6884a17 authored by Patrick Boettcher's avatar Patrick Boettcher Committed by Mauro Carvalho Chehab

V4L/DVB (5954): Sync with DiBcom Driver Release 2.1.3 + some improvements

This changesets syncs the OpenSource driver for DiBcom demodulators
with version 2.1.3 of DiBcom reference driver. There were some
improvements since the last release for linux-dvb, e.g.:

- stepped AGC startup
- less space for initialization
- diversity synchronization

Furthermore this changeset contains the following things:

- latest AGC settings for MT2266-based devices (namely Nova-TD and other) will improve the sensitivity
- support for STK7700D reference design in dib0700-devices
- remove some line-breaks when debugging is enabled
- getting rid of layer between frontend_parameters and ofdm_channel used in dib*-drivers
Signed-off-by: default avatarPatrick Boettcher <pboettcher@dibcom.fr>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@infradead.org>
parent b2a65760
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
* under the terms of the GNU General Public License as published by the Free * under the terms of the GNU General Public License as published by the Free
* Software Foundation, version 2. * Software Foundation, version 2.
* *
* Copyright (C) 2005-6 DiBcom, SA * Copyright (C) 2005-7 DiBcom, SA
*/ */
#include "dib0700.h" #include "dib0700.h"
...@@ -99,9 +99,54 @@ static int bristol_tuner_attach(struct dvb_usb_adapter *adap) ...@@ -99,9 +99,54 @@ static int bristol_tuner_attach(struct dvb_usb_adapter *adap)
/* STK7700D: Pinnacle Dual DVB-T Diversity */ /* STK7700D: Pinnacle Dual DVB-T Diversity */
static struct dibx000_agc_config stk7700d_7000p_mt2266_agc_config = { /* MT226x */
BAND_UHF/* | BAND_VHF*/, static struct dibx000_agc_config stk7700d_7000p_mt2266_agc_config[2] = {
0xE64, // setup {
BAND_UHF, // band_caps
/* P_agc_use_sd_mod1=0, P_agc_use_sd_mod2=0, P_agc_freq_pwm_div=1, P_agc_inv_pwm1=1, P_agc_inv_pwm2=1,
* P_agc_inh_dc_rv_est=0, P_agc_time_est=3, P_agc_freeze=0, P_agc_nb_est=2, P_agc_write=0 */
(0 << 15) | (0 << 14) | (1 << 11) | (1 << 10) | (1 << 9) | (0 << 8) | (3 << 5) | (0 << 4) | (5 << 1) | (0 << 0), // setup
1130, // inv_gain
21, // time_stabiliz
0, // alpha_level
118, // thlock
0, // wbd_inv
3530, // wbd_ref
1, // wbd_sel
0, // wbd_alpha
65535, // agc1_max
33770, // agc1_min
65535, // agc2_max
23592, // agc2_min
0, // agc1_pt1
62, // agc1_pt2
255, // agc1_pt3
64, // agc1_slope1
64, // agc1_slope2
132, // agc2_pt1
192, // agc2_pt2
80, // agc2_slope1
80, // agc2_slope2
17, // alpha_mant
27, // alpha_exp
23, // beta_mant
51, // beta_exp
1, // perform_agc_softsplit
}, {
BAND_VHF | BAND_LBAND, // band_caps
/* P_agc_use_sd_mod1=0, P_agc_use_sd_mod2=0, P_agc_freq_pwm_div=1, P_agc_inv_pwm1=1, P_agc_inv_pwm2=1,
* P_agc_inh_dc_rv_est=0, P_agc_time_est=3, P_agc_freeze=0, P_agc_nb_est=2, P_agc_write=0 */
(0 << 15) | (0 << 14) | (1 << 11) | (1 << 10) | (1 << 9) | (0 << 8) | (3 << 5) | (0 << 4) | (2 << 1) | (0 << 0), // setup
2372, // inv_gain 2372, // inv_gain
21, // time_stabiliz 21, // time_stabiliz
...@@ -109,14 +154,15 @@ static struct dibx000_agc_config stk7700d_7000p_mt2266_agc_config = { ...@@ -109,14 +154,15 @@ static struct dibx000_agc_config stk7700d_7000p_mt2266_agc_config = {
118, // thlock 118, // thlock
0, // wbd_inv 0, // wbd_inv
0, // wbd_ref 3530, // wbd_ref
0, // wbd_sel 1, // wbd_sel
0, // wbd_alpha 0, // wbd_alpha
65535, // agc1_max 65535, // agc1_max
0, // agc1_min 0, // agc1_min
65535, // agc2_max 65535, // agc2_max
23592, // agc2_min 23592, // agc2_min
0, // agc1_pt1 0, // agc1_pt1
128, // agc1_pt2 128, // agc1_pt2
128, // agc1_pt3 128, // agc1_pt3
...@@ -129,11 +175,11 @@ static struct dibx000_agc_config stk7700d_7000p_mt2266_agc_config = { ...@@ -129,11 +175,11 @@ static struct dibx000_agc_config stk7700d_7000p_mt2266_agc_config = {
17, // alpha_mant 17, // alpha_mant
27, // alpha_exp 27, // alpha_exp
23, // beta_mant 23, // beta_mant
51, // beta_exp 51, // beta_exp
0, // perform_agc_softsplit : 1 en vrai! 1, // perform_agc_softsplit
}
}; };
static struct dibx000_bandwidth_config stk7700d_mt2266_pll_config = { static struct dibx000_bandwidth_config stk7700d_mt2266_pll_config = {
...@@ -150,23 +196,25 @@ static struct dib7000p_config stk7700d_dib7000p_mt2266_config[] = { ...@@ -150,23 +196,25 @@ static struct dib7000p_config stk7700d_dib7000p_mt2266_config[] = {
.hostbus_diversity = 1, .hostbus_diversity = 1,
.tuner_is_baseband = 1, .tuner_is_baseband = 1,
.agc = &stk7700d_7000p_mt2266_agc_config, .agc_config_count = 2,
.agc = stk7700d_7000p_mt2266_agc_config,
.bw = &stk7700d_mt2266_pll_config, .bw = &stk7700d_mt2266_pll_config,
.gpio_dir = DIB7000M_GPIO_DEFAULT_DIRECTIONS, .gpio_dir = DIB7000P_GPIO_DEFAULT_DIRECTIONS,
.gpio_val = DIB7000M_GPIO_DEFAULT_VALUES, .gpio_val = DIB7000P_GPIO_DEFAULT_VALUES,
.gpio_pwm_pos = DIB7000M_GPIO_DEFAULT_PWM_POS, .gpio_pwm_pos = DIB7000P_GPIO_DEFAULT_PWM_POS,
}, },
{ .output_mpeg2_in_188_bytes = 1, { .output_mpeg2_in_188_bytes = 1,
.hostbus_diversity = 1, .hostbus_diversity = 1,
.tuner_is_baseband = 1, .tuner_is_baseband = 1,
.agc = &stk7700d_7000p_mt2266_agc_config, .agc_config_count = 2,
.agc = stk7700d_7000p_mt2266_agc_config,
.bw = &stk7700d_mt2266_pll_config, .bw = &stk7700d_mt2266_pll_config,
.gpio_dir = DIB7000M_GPIO_DEFAULT_DIRECTIONS, .gpio_dir = DIB7000P_GPIO_DEFAULT_DIRECTIONS,
.gpio_val = DIB7000M_GPIO_DEFAULT_VALUES, .gpio_val = DIB7000P_GPIO_DEFAULT_VALUES,
.gpio_pwm_pos = DIB7000M_GPIO_DEFAULT_PWM_POS, .gpio_pwm_pos = DIB7000P_GPIO_DEFAULT_PWM_POS,
} }
}; };
...@@ -211,7 +259,7 @@ static int stk7700d_tuner_attach(struct dvb_usb_adapter *adap) ...@@ -211,7 +259,7 @@ static int stk7700d_tuner_attach(struct dvb_usb_adapter *adap)
static u8 rc_request[] = { REQUEST_POLL_RC, 0 }; static u8 rc_request[] = { REQUEST_POLL_RC, 0 };
int stk7700d_rc_query(struct dvb_usb_device *d, u32 *event, int *state) static int stk7700d_rc_query(struct dvb_usb_device *d, u32 *event, int *state)
{ {
u8 key[4]; u8 key[4];
int i; int i;
...@@ -241,7 +289,7 @@ int stk7700d_rc_query(struct dvb_usb_device *d, u32 *event, int *state) ...@@ -241,7 +289,7 @@ int stk7700d_rc_query(struct dvb_usb_device *d, u32 *event, int *state)
#define KEY_MAP_SIZE (25+48) #define KEY_MAP_SIZE (25+48)
struct dvb_usb_rc_key stk7700d_rc_keys[] = { static struct dvb_usb_rc_key stk7700d_rc_keys[] = {
/* Key codes for the tiny Pinnacle remote*/ /* Key codes for the tiny Pinnacle remote*/
{ 0x07, 0x00, KEY_MUTE }, { 0x07, 0x00, KEY_MUTE },
{ 0x07, 0x01, KEY_MENU }, // Pinnacle logo { 0x07, 0x01, KEY_MENU }, // Pinnacle logo
...@@ -436,6 +484,7 @@ static struct dib7000m_config stk7700p_dib7000m_config = { ...@@ -436,6 +484,7 @@ static struct dib7000m_config stk7700p_dib7000m_config = {
static struct dib7000p_config stk7700p_dib7000p_config = { static struct dib7000p_config stk7700p_dib7000p_config = {
.output_mpeg2_in_188_bytes = 1, .output_mpeg2_in_188_bytes = 1,
.agc_config_count = 1,
.agc = &stk7700p_7000p_mt2060_agc_config, .agc = &stk7700p_7000p_mt2060_agc_config,
.bw = &stk7700p_pll_config, .bw = &stk7700p_pll_config,
...@@ -506,6 +555,7 @@ struct usb_device_id dib0700_usb_id_table[] = { ...@@ -506,6 +555,7 @@ struct usb_device_id dib0700_usb_id_table[] = {
{ USB_DEVICE(USB_VID_PINNACLE, USB_PID_PINNACLE_PCTV2000E) }, { USB_DEVICE(USB_VID_PINNACLE, USB_PID_PINNACLE_PCTV2000E) },
{ USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_DT_XS_DIVERSITY) }, { USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_DT_XS_DIVERSITY) },
{ USB_DEVICE(USB_VID_HAUPPAUGE, USB_PID_HAUPPAUGE_NOVA_TD_STICK) }, { USB_DEVICE(USB_VID_HAUPPAUGE, USB_PID_HAUPPAUGE_NOVA_TD_STICK) },
{ USB_DEVICE(USB_VID_DIBCOM, USB_PID_DIBCOM_STK7700D) },
{ } /* Terminating entry */ { } /* Terminating entry */
}; };
MODULE_DEVICE_TABLE(usb, dib0700_usb_id_table); MODULE_DEVICE_TABLE(usb, dib0700_usb_id_table);
...@@ -615,7 +665,7 @@ struct dvb_usb_device_properties dib0700_devices[] = { ...@@ -615,7 +665,7 @@ struct dvb_usb_device_properties dib0700_devices[] = {
} }
}, },
.num_device_descs = 3, .num_device_descs = 4,
.devices = { .devices = {
{ "Pinnacle PCTV 2000e", { "Pinnacle PCTV 2000e",
{ &dib0700_usb_id_table[11], NULL }, { &dib0700_usb_id_table[11], NULL },
...@@ -629,6 +679,10 @@ struct dvb_usb_device_properties dib0700_devices[] = { ...@@ -629,6 +679,10 @@ struct dvb_usb_device_properties dib0700_devices[] = {
{ &dib0700_usb_id_table[13], NULL }, { &dib0700_usb_id_table[13], NULL },
{ NULL }, { NULL },
}, },
{ "DiBcom STK7700D",
{ &dib0700_usb_id_table[14], NULL },
{ NULL },
},
}, },
.rc_interval = DEFAULT_RC_INTERVAL, .rc_interval = DEFAULT_RC_INTERVAL,
.rc_key_map = stk7700d_rc_keys, .rc_key_map = stk7700d_rc_keys,
......
...@@ -67,6 +67,7 @@ ...@@ -67,6 +67,7 @@
#define USB_PID_DIBCOM_MOD3001_WARM 0x0bc7 #define USB_PID_DIBCOM_MOD3001_WARM 0x0bc7
#define USB_PID_DIBCOM_STK7700P 0x1e14 #define USB_PID_DIBCOM_STK7700P 0x1e14
#define USB_PID_DIBCOM_STK7700P_PC 0x1e78 #define USB_PID_DIBCOM_STK7700P_PC 0x1e78
#define USB_PID_DIBCOM_STK7700D 0x1ef0
#define USB_PID_DIBCOM_ANCHOR_2135_COLD 0x2131 #define USB_PID_DIBCOM_ANCHOR_2135_COLD 0x2131
#define USB_PID_DPOSH_M9206_COLD 0x9206 #define USB_PID_DPOSH_M9206_COLD 0x9206
#define USB_PID_DPOSH_M9206_WARM 0xa090 #define USB_PID_DPOSH_M9206_WARM 0xa090
......
/* /*
* Driver for DiBcom DiB3000MC/P-demodulator. * Driver for DiBcom DiB3000MC/P-demodulator.
* *
* Copyright (C) 2004-6 DiBcom (http://www.dibcom.fr/) * Copyright (C) 2004-7 DiBcom (http://www.dibcom.fr/)
* Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de) * Copyright (C) 2004-5 Patrick Boettcher (patrick.boettcher@desy.de)
* *
* This code is partially based on the previous dib3000mc.c . * This code is partially based on the previous dib3000mc.c .
...@@ -26,7 +26,7 @@ static int debug; ...@@ -26,7 +26,7 @@ static int debug;
module_param(debug, int, 0644); module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB3000MC/P:"); printk(args); } } while (0) #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB3000MC/P:"); printk(args); printk("\n"); } } while (0)
struct dib3000mc_state { struct dib3000mc_state {
struct dvb_frontend demod; struct dvb_frontend demod;
...@@ -71,7 +71,6 @@ static int dib3000mc_write_word(struct dib3000mc_state *state, u16 reg, u16 val) ...@@ -71,7 +71,6 @@ static int dib3000mc_write_word(struct dib3000mc_state *state, u16 reg, u16 val)
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
} }
static int dib3000mc_identify(struct dib3000mc_state *state) static int dib3000mc_identify(struct dib3000mc_state *state)
{ {
u16 value; u16 value;
...@@ -92,7 +91,7 @@ static int dib3000mc_identify(struct dib3000mc_state *state) ...@@ -92,7 +91,7 @@ static int dib3000mc_identify(struct dib3000mc_state *state)
return 0; return 0;
} }
static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u8 bw, u8 update_offset) static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u32 bw, u8 update_offset)
{ {
u32 timf; u32 timf;
...@@ -103,7 +102,7 @@ static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u8 bw, ...@@ -103,7 +102,7 @@ static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u8 bw,
} else } else
timf = state->timf; timf = state->timf;
timf *= (BW_INDEX_TO_KHZ(bw) / 1000); timf *= (bw / 1000);
if (update_offset) { if (update_offset) {
s16 tim_offs = dib3000mc_read_word(state, 416); s16 tim_offs = dib3000mc_read_word(state, 416);
...@@ -111,17 +110,17 @@ static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u8 bw, ...@@ -111,17 +110,17 @@ static int dib3000mc_set_timing(struct dib3000mc_state *state, s16 nfft, u8 bw,
if (tim_offs & 0x2000) if (tim_offs & 0x2000)
tim_offs -= 0x4000; tim_offs -= 0x4000;
if (nfft == 0) if (nfft == TRANSMISSION_MODE_2K)
tim_offs *= 4; tim_offs *= 4;
timf += tim_offs; timf += tim_offs;
state->timf = timf / (BW_INDEX_TO_KHZ(bw) / 1000); state->timf = timf / (bw / 1000);
} }
dprintk("timf: %d\n", timf); dprintk("timf: %d\n", timf);
dib3000mc_write_word(state, 23, timf >> 16); dib3000mc_write_word(state, 23, (u16) (timf >> 16));
dib3000mc_write_word(state, 24, timf & 0xffff); dib3000mc_write_word(state, 24, (u16) (timf ) & 0xffff);
return 0; return 0;
} }
...@@ -209,31 +208,30 @@ static int dib3000mc_set_output_mode(struct dib3000mc_state *state, int mode) ...@@ -209,31 +208,30 @@ static int dib3000mc_set_output_mode(struct dib3000mc_state *state, int mode)
return ret; return ret;
} }
static int dib3000mc_set_bandwidth(struct dvb_frontend *demod, u8 bw) static int dib3000mc_set_bandwidth(struct dib3000mc_state *state, u32 bw)
{ {
struct dib3000mc_state *state = demod->demodulator_priv;
u16 bw_cfg[6] = { 0 }; u16 bw_cfg[6] = { 0 };
u16 imp_bw_cfg[3] = { 0 }; u16 imp_bw_cfg[3] = { 0 };
u16 reg; u16 reg;
/* settings here are for 27.7MHz */ /* settings here are for 27.7MHz */
switch (bw) { switch (bw) {
case BANDWIDTH_8_MHZ: case 8000:
bw_cfg[0] = 0x0019; bw_cfg[1] = 0x5c30; bw_cfg[2] = 0x0054; bw_cfg[3] = 0x88a0; bw_cfg[4] = 0x01a6; bw_cfg[5] = 0xab20; bw_cfg[0] = 0x0019; bw_cfg[1] = 0x5c30; bw_cfg[2] = 0x0054; bw_cfg[3] = 0x88a0; bw_cfg[4] = 0x01a6; bw_cfg[5] = 0xab20;
imp_bw_cfg[0] = 0x04db; imp_bw_cfg[1] = 0x00db; imp_bw_cfg[2] = 0x00b7; imp_bw_cfg[0] = 0x04db; imp_bw_cfg[1] = 0x00db; imp_bw_cfg[2] = 0x00b7;
break; break;
case BANDWIDTH_7_MHZ: case 7000:
bw_cfg[0] = 0x001c; bw_cfg[1] = 0xfba5; bw_cfg[2] = 0x0060; bw_cfg[3] = 0x9c25; bw_cfg[4] = 0x01e3; bw_cfg[5] = 0x0cb7; bw_cfg[0] = 0x001c; bw_cfg[1] = 0xfba5; bw_cfg[2] = 0x0060; bw_cfg[3] = 0x9c25; bw_cfg[4] = 0x01e3; bw_cfg[5] = 0x0cb7;
imp_bw_cfg[0] = 0x04c0; imp_bw_cfg[1] = 0x00c0; imp_bw_cfg[2] = 0x00a0; imp_bw_cfg[0] = 0x04c0; imp_bw_cfg[1] = 0x00c0; imp_bw_cfg[2] = 0x00a0;
break; break;
case BANDWIDTH_6_MHZ: case 6000:
bw_cfg[0] = 0x0021; bw_cfg[1] = 0xd040; bw_cfg[2] = 0x0070; bw_cfg[3] = 0xb62b; bw_cfg[4] = 0x0233; bw_cfg[5] = 0x8ed5; bw_cfg[0] = 0x0021; bw_cfg[1] = 0xd040; bw_cfg[2] = 0x0070; bw_cfg[3] = 0xb62b; bw_cfg[4] = 0x0233; bw_cfg[5] = 0x8ed5;
imp_bw_cfg[0] = 0x04a5; imp_bw_cfg[1] = 0x00a5; imp_bw_cfg[2] = 0x0089; imp_bw_cfg[0] = 0x04a5; imp_bw_cfg[1] = 0x00a5; imp_bw_cfg[2] = 0x0089;
break; break;
case 255 /* BANDWIDTH_5_MHZ */: case 5000:
bw_cfg[0] = 0x0028; bw_cfg[1] = 0x9380; bw_cfg[2] = 0x0087; bw_cfg[3] = 0x4100; bw_cfg[4] = 0x02a4; bw_cfg[5] = 0x4500; bw_cfg[0] = 0x0028; bw_cfg[1] = 0x9380; bw_cfg[2] = 0x0087; bw_cfg[3] = 0x4100; bw_cfg[4] = 0x02a4; bw_cfg[5] = 0x4500;
imp_bw_cfg[0] = 0x0489; imp_bw_cfg[1] = 0x0089; imp_bw_cfg[2] = 0x0072; imp_bw_cfg[0] = 0x0489; imp_bw_cfg[1] = 0x0089; imp_bw_cfg[2] = 0x0072;
break; break;
...@@ -257,7 +255,7 @@ static int dib3000mc_set_bandwidth(struct dvb_frontend *demod, u8 bw) ...@@ -257,7 +255,7 @@ static int dib3000mc_set_bandwidth(struct dvb_frontend *demod, u8 bw)
dib3000mc_write_word(state, reg, imp_bw_cfg[reg - 55]); dib3000mc_write_word(state, reg, imp_bw_cfg[reg - 55]);
// Timing configuration // Timing configuration
dib3000mc_set_timing(state, 0, bw, 0); dib3000mc_set_timing(state, TRANSMISSION_MODE_2K, bw, 0);
return 0; return 0;
} }
...@@ -276,7 +274,7 @@ static void dib3000mc_set_impulse_noise(struct dib3000mc_state *state, u8 mode, ...@@ -276,7 +274,7 @@ static void dib3000mc_set_impulse_noise(struct dib3000mc_state *state, u8 mode,
for (i = 58; i < 87; i++) for (i = 58; i < 87; i++)
dib3000mc_write_word(state, i, impulse_noise_val[i-58]); dib3000mc_write_word(state, i, impulse_noise_val[i-58]);
if (nfft == 1) { if (nfft == TRANSMISSION_MODE_8K) {
dib3000mc_write_word(state, 58, 0x3b); dib3000mc_write_word(state, 58, 0x3b);
dib3000mc_write_word(state, 84, 0x00); dib3000mc_write_word(state, 84, 0x00);
dib3000mc_write_word(state, 85, 0x8200); dib3000mc_write_word(state, 85, 0x8200);
...@@ -376,7 +374,7 @@ static int dib3000mc_init(struct dvb_frontend *demod) ...@@ -376,7 +374,7 @@ static int dib3000mc_init(struct dvb_frontend *demod)
// P_search_maxtrial=1 // P_search_maxtrial=1
dib3000mc_write_word(state, 5, 1); dib3000mc_write_word(state, 5, 1);
dib3000mc_set_bandwidth(&state->demod, BANDWIDTH_8_MHZ); dib3000mc_set_bandwidth(state, 8000);
// div_lock_mask // div_lock_mask
dib3000mc_write_word(state, 4, 0x814); dib3000mc_write_word(state, 4, 0x814);
...@@ -397,7 +395,7 @@ static int dib3000mc_init(struct dvb_frontend *demod) ...@@ -397,7 +395,7 @@ static int dib3000mc_init(struct dvb_frontend *demod)
dib3000mc_write_word(state, 180, 0x2FF0); dib3000mc_write_word(state, 180, 0x2FF0);
// Impulse noise configuration // Impulse noise configuration
dib3000mc_set_impulse_noise(state, 0, 1); dib3000mc_set_impulse_noise(state, 0, TRANSMISSION_MODE_8K);
// output mode set-up // output mode set-up
dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z); dib3000mc_set_output_mode(state, OUTMODE_HIGH_Z);
...@@ -423,13 +421,13 @@ static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam) ...@@ -423,13 +421,13 @@ static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam)
{ {
u16 cfg[4] = { 0 },reg; u16 cfg[4] = { 0 },reg;
switch (qam) { switch (qam) {
case 0: case QPSK:
cfg[0] = 0x099a; cfg[1] = 0x7fae; cfg[2] = 0x0333; cfg[3] = 0x7ff0; cfg[0] = 0x099a; cfg[1] = 0x7fae; cfg[2] = 0x0333; cfg[3] = 0x7ff0;
break; break;
case 1: case QAM_16:
cfg[0] = 0x023d; cfg[1] = 0x7fdf; cfg[2] = 0x00a4; cfg[3] = 0x7ff0; cfg[0] = 0x023d; cfg[1] = 0x7fdf; cfg[2] = 0x00a4; cfg[3] = 0x7ff0;
break; break;
case 2: case QAM_64:
cfg[0] = 0x0148; cfg[1] = 0x7ff0; cfg[2] = 0x00a4; cfg[3] = 0x7ff8; cfg[0] = 0x0148; cfg[1] = 0x7ff0; cfg[2] = 0x00a4; cfg[3] = 0x7ff8;
break; break;
} }
...@@ -437,11 +435,11 @@ static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam) ...@@ -437,11 +435,11 @@ static void dib3000mc_set_adp_cfg(struct dib3000mc_state *state, s16 qam)
dib3000mc_write_word(state, reg, cfg[reg - 129]); dib3000mc_write_word(state, reg, cfg[reg - 129]);
} }
static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state, struct dibx000_ofdm_channel *chan, u16 seq) static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state, struct dvb_frontend_parameters *ch, u16 seq)
{ {
u16 tmp; u16 value;
dib3000mc_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
dib3000mc_set_timing(state, chan->nfft, chan->Bw, 0); dib3000mc_set_timing(state, ch->u.ofdm.transmission_mode, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth), 0);
// if (boost) // if (boost)
// dib3000mc_write_word(state, 100, (11 << 6) + 6); // dib3000mc_write_word(state, 100, (11 << 6) + 6);
...@@ -455,7 +453,7 @@ static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state, struct dibx ...@@ -455,7 +453,7 @@ static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state, struct dibx
dib3000mc_write_word(state, 26, 0x6680); dib3000mc_write_word(state, 26, 0x6680);
dib3000mc_write_word(state, 29, 0x1273); dib3000mc_write_word(state, 29, 0x1273);
dib3000mc_write_word(state, 33, 5); dib3000mc_write_word(state, 33, 5);
dib3000mc_set_adp_cfg(state, 1); dib3000mc_set_adp_cfg(state, QAM_16);
dib3000mc_write_word(state, 133, 15564); dib3000mc_write_word(state, 133, 15564);
dib3000mc_write_word(state, 12 , 0x0); dib3000mc_write_word(state, 12 , 0x0);
...@@ -470,52 +468,98 @@ static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state, struct dibx ...@@ -470,52 +468,98 @@ static void dib3000mc_set_channel_cfg(struct dib3000mc_state *state, struct dibx
dib3000mc_write_word(state, 97,0); dib3000mc_write_word(state, 97,0);
dib3000mc_write_word(state, 98,0); dib3000mc_write_word(state, 98,0);
dib3000mc_set_impulse_noise(state, 0, chan->nfft); dib3000mc_set_impulse_noise(state, 0, ch->u.ofdm.transmission_mode);
tmp = ((chan->nfft & 0x1) << 7) | (chan->guard << 5) | (chan->nqam << 3) | chan->vit_alpha;
dib3000mc_write_word(state, 0, tmp);
value = 0;
switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
default:
case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
}
switch (ch->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
case GUARD_INTERVAL_1_4: value |= (3 << 5); break;
default:
case GUARD_INTERVAL_1_8: value |= (2 << 5); break;
}
switch (ch->u.ofdm.constellation) {
case QPSK: value |= (0 << 3); break;
case QAM_16: value |= (1 << 3); break;
default:
case QAM_64: value |= (2 << 3); break;
}
switch (HIERARCHY_1) {
case HIERARCHY_2: value |= 2; break;
case HIERARCHY_4: value |= 4; break;
default:
case HIERARCHY_1: value |= 1; break;
}
dib3000mc_write_word(state, 0, value);
dib3000mc_write_word(state, 5, (1 << 8) | ((seq & 0xf) << 4)); dib3000mc_write_word(state, 5, (1 << 8) | ((seq & 0xf) << 4));
tmp = (chan->vit_hrch << 4) | (chan->vit_select_hp); value = 0;
if (!chan->vit_hrch || (chan->vit_hrch && chan->vit_select_hp)) if (ch->u.ofdm.hierarchy_information == 1)
tmp |= chan->vit_code_rate_hp << 1; value |= (1 << 4);
else if (1 == 1)
tmp |= chan->vit_code_rate_lp << 1; value |= 1;
dib3000mc_write_word(state, 181, tmp); switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
case FEC_2_3: value |= (2 << 1); break;
case FEC_3_4: value |= (3 << 1); break;
case FEC_5_6: value |= (5 << 1); break;
case FEC_7_8: value |= (7 << 1); break;
default:
case FEC_1_2: value |= (1 << 1); break;
}
dib3000mc_write_word(state, 181, value);
// diversity synchro delay // diversity synchro delay add 50% SFN margin
tmp = dib3000mc_read_word(state, 180) & 0x000f; switch (ch->u.ofdm.transmission_mode) {
tmp |= ((chan->nfft == 0) ? 64 : 256) * ((1 << (chan->guard)) * 3 / 2) << 4; // add 50% SFN margin case TRANSMISSION_MODE_8K: value = 256; break;
dib3000mc_write_word(state, 180, tmp); case TRANSMISSION_MODE_2K:
default: value = 64; break;
}
switch (ch->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_16: value *= 2; break;
case GUARD_INTERVAL_1_8: value *= 4; break;
case GUARD_INTERVAL_1_4: value *= 8; break;
default:
case GUARD_INTERVAL_1_32: value *= 1; break;
}
value <<= 4;
value |= dib3000mc_read_word(state, 180) & 0x000f;
dib3000mc_write_word(state, 180, value);
// restart demod // restart demod
tmp = dib3000mc_read_word(state, 0); value = dib3000mc_read_word(state, 0);
dib3000mc_write_word(state, 0, tmp | (1 << 9)); dib3000mc_write_word(state, 0, value | (1 << 9));
dib3000mc_write_word(state, 0, tmp); dib3000mc_write_word(state, 0, value);
msleep(30); msleep(30);
dib3000mc_set_impulse_noise(state, state->cfg->impulse_noise_mode, chan->nfft); dib3000mc_set_impulse_noise(state, state->cfg->impulse_noise_mode, ch->u.ofdm.transmission_mode);
} }
static int dib3000mc_autosearch_start(struct dvb_frontend *demod, struct dibx000_ofdm_channel *chan) static int dib3000mc_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *chan)
{ {
struct dib3000mc_state *state = demod->demodulator_priv; struct dib3000mc_state *state = demod->demodulator_priv;
u16 reg; u16 reg;
// u32 val; // u32 val;
struct dibx000_ofdm_channel fchan; struct dvb_frontend_parameters schan;
INIT_OFDM_CHANNEL(&fchan); schan = *chan;
fchan = *chan;
/* TODO what is that ? */
/* a channel for autosearch */ /* a channel for autosearch */
fchan.nfft = 1; fchan.guard = 0; fchan.nqam = 2; schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
fchan.vit_alpha = 1; fchan.vit_code_rate_hp = 2; fchan.vit_code_rate_lp = 2; schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
fchan.vit_hrch = 0; fchan.vit_select_hp = 1; schan.u.ofdm.constellation = QAM_64;
schan.u.ofdm.code_rate_HP = FEC_2_3;
schan.u.ofdm.code_rate_LP = FEC_2_3;
schan.u.ofdm.hierarchy_information = 0;
dib3000mc_set_channel_cfg(state, &fchan, 11); dib3000mc_set_channel_cfg(state, &schan, 11);
reg = dib3000mc_read_word(state, 0); reg = dib3000mc_read_word(state, 0);
dib3000mc_write_word(state, 0, reg | (1 << 8)); dib3000mc_write_word(state, 0, reg | (1 << 8));
...@@ -539,7 +583,7 @@ static int dib3000mc_autosearch_is_irq(struct dvb_frontend *demod) ...@@ -539,7 +583,7 @@ static int dib3000mc_autosearch_is_irq(struct dvb_frontend *demod)
return 0; // still pending return 0; // still pending
} }
static int dib3000mc_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch) static int dib3000mc_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{ {
struct dib3000mc_state *state = demod->demodulator_priv; struct dib3000mc_state *state = demod->demodulator_priv;
...@@ -549,9 +593,8 @@ static int dib3000mc_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channe ...@@ -549,9 +593,8 @@ static int dib3000mc_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channe
// activates isi // activates isi
dib3000mc_write_word(state, 29, 0x1073); dib3000mc_write_word(state, 29, 0x1073);
dib3000mc_set_adp_cfg(state, (u8)ch->nqam); dib3000mc_set_adp_cfg(state, (uint8_t)ch->u.ofdm.constellation);
if (ch->u.ofdm.transmission_mode == TRANSMISSION_MODE_8K) {
if (ch->nfft == 1) {
dib3000mc_write_word(state, 26, 38528); dib3000mc_write_word(state, 26, 38528);
dib3000mc_write_word(state, 33, 8); dib3000mc_write_word(state, 33, 8);
} else { } else {
...@@ -560,7 +603,7 @@ static int dib3000mc_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channe ...@@ -560,7 +603,7 @@ static int dib3000mc_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channe
} }
if (dib3000mc_read_word(state, 509) & 0x80) if (dib3000mc_read_word(state, 509) & 0x80)
dib3000mc_set_timing(state, ch->nfft, ch->Bw, 1); dib3000mc_set_timing(state, ch->u.ofdm.transmission_mode, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth), 1);
return 0; return 0;
} }
...@@ -632,13 +675,9 @@ static int dib3000mc_set_frontend(struct dvb_frontend* fe, ...@@ -632,13 +675,9 @@ static int dib3000mc_set_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep) struct dvb_frontend_parameters *fep)
{ {
struct dib3000mc_state *state = fe->demodulator_priv; struct dib3000mc_state *state = fe->demodulator_priv;
struct dibx000_ofdm_channel ch;
INIT_OFDM_CHANNEL(&ch);
FEP2DIB(fep,&ch);
state->current_bandwidth = fep->u.ofdm.bandwidth; state->current_bandwidth = fep->u.ofdm.bandwidth;
dib3000mc_set_bandwidth(fe, fep->u.ofdm.bandwidth); dib3000mc_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth));
if (fe->ops.tuner_ops.set_params) { if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe, fep); fe->ops.tuner_ops.set_params(fe, fep);
...@@ -651,7 +690,7 @@ static int dib3000mc_set_frontend(struct dvb_frontend* fe, ...@@ -651,7 +690,7 @@ static int dib3000mc_set_frontend(struct dvb_frontend* fe,
fep->u.ofdm.code_rate_HP == FEC_AUTO) { fep->u.ofdm.code_rate_HP == FEC_AUTO) {
int i = 100, found; int i = 100, found;
dib3000mc_autosearch_start(fe, &ch); dib3000mc_autosearch_start(fe, fep);
do { do {
msleep(1); msleep(1);
found = dib3000mc_autosearch_is_irq(fe); found = dib3000mc_autosearch_is_irq(fe);
...@@ -662,13 +701,12 @@ static int dib3000mc_set_frontend(struct dvb_frontend* fe, ...@@ -662,13 +701,12 @@ static int dib3000mc_set_frontend(struct dvb_frontend* fe,
return 0; // no channel found return 0; // no channel found
dib3000mc_get_frontend(fe, fep); dib3000mc_get_frontend(fe, fep);
FEP2DIB(fep,&ch);
} }
/* make this a config parameter */ /* make this a config parameter */
dib3000mc_set_output_mode(state, OUTMODE_MPEG2_FIFO); dib3000mc_set_output_mode(state, OUTMODE_MPEG2_FIFO);
return dib3000mc_tune(fe, &ch); return dib3000mc_tune(fe, fep);
} }
static int dib3000mc_read_status(struct dvb_frontend *fe, fe_status_t *stat) static int dib3000mc_read_status(struct dvb_frontend *fe, fe_status_t *stat)
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
* Linux-DVB Driver for DiBcom's DiB7000M and * Linux-DVB Driver for DiBcom's DiB7000M and
* first generation DiB7000P-demodulator-family. * first generation DiB7000P-demodulator-family.
* *
* Copyright (C) 2005-6 DiBcom (http://www.dibcom.fr/) * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
* *
* This program is free software; you can redistribute it and/or * This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as * modify it under the terms of the GNU General Public License as
...@@ -19,7 +19,7 @@ static int debug; ...@@ -19,7 +19,7 @@ static int debug;
module_param(debug, int, 0644); module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000M:"); printk(args); } } while (0) #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000M: "); printk(args); printk("\n"); } } while (0)
struct dib7000m_state { struct dib7000m_state {
struct dvb_frontend demod; struct dvb_frontend demod;
...@@ -39,8 +39,16 @@ struct dib7000m_state { ...@@ -39,8 +39,16 @@ struct dib7000m_state {
fe_bandwidth_t current_bandwidth; fe_bandwidth_t current_bandwidth;
struct dibx000_agc_config *current_agc; struct dibx000_agc_config *current_agc;
u32 timf; u32 timf;
u32 timf_default;
u32 internal_clk;
uint8_t div_force_off : 1;
uint8_t div_state : 1;
uint16_t div_sync_wait;
u16 revision; u16 revision;
u8 agc_state;
}; };
enum dib7000m_power_mode { enum dib7000m_power_mode {
...@@ -63,7 +71,7 @@ static u16 dib7000m_read_word(struct dib7000m_state *state, u16 reg) ...@@ -63,7 +71,7 @@ static u16 dib7000m_read_word(struct dib7000m_state *state, u16 reg)
}; };
if (i2c_transfer(state->i2c_adap, msg, 2) != 2) if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
dprintk("i2c read error on %d\n",reg); dprintk("i2c read error on %d",reg);
return (rb[0] << 8) | rb[1]; return (rb[0] << 8) | rb[1];
} }
...@@ -79,6 +87,25 @@ static int dib7000m_write_word(struct dib7000m_state *state, u16 reg, u16 val) ...@@ -79,6 +87,25 @@ static int dib7000m_write_word(struct dib7000m_state *state, u16 reg, u16 val)
}; };
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
} }
static void dib7000m_write_tab(struct dib7000m_state *state, u16 *buf)
{
u16 l = 0, r, *n;
n = buf;
l = *n++;
while (l) {
r = *n++;
if (state->reg_offs && (r >= 112 && r <= 331)) // compensate for 7000MC
r++;
do {
dib7000m_write_word(state, r, *n++);
r++;
} while (--l);
l = *n++;
}
}
static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode) static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode)
{ {
int ret = 0; int ret = 0;
...@@ -89,8 +116,7 @@ static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode) ...@@ -89,8 +116,7 @@ static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode)
fifo_threshold = 1792; fifo_threshold = 1792;
smo_mode = (dib7000m_read_word(state, 294 + state->reg_offs) & 0x0010) | (1 << 1); smo_mode = (dib7000m_read_word(state, 294 + state->reg_offs) & 0x0010) | (1 << 1);
dprintk("-I- Setting output mode for demod %p to %d\n", dprintk( "setting output mode for demod %p to %d", &state->demod, mode);
&state->demod, mode);
switch (mode) { switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
...@@ -117,7 +143,7 @@ static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode) ...@@ -117,7 +143,7 @@ static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode)
outreg = 0; outreg = 0;
break; break;
default: default:
dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod); dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod);
break; break;
} }
...@@ -129,13 +155,20 @@ static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode) ...@@ -129,13 +155,20 @@ static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode)
ret |= dib7000m_write_word(state, 1795, outreg); ret |= dib7000m_write_word(state, 1795, outreg);
ret |= dib7000m_write_word(state, 1805, sram); ret |= dib7000m_write_word(state, 1805, sram);
if (state->revision == 0x4003) {
u16 clk_cfg1 = dib7000m_read_word(state, 909) & 0xfffd;
if (mode == OUTMODE_DIVERSITY)
clk_cfg1 |= (1 << 1); // P_O_CLK_en
dib7000m_write_word(state, 909, clk_cfg1);
}
return ret; return ret;
} }
static int dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_power_mode mode) static void dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_power_mode mode)
{ {
/* by default everything is going to be powered off */ /* by default everything is going to be powered off */
u16 reg_903 = 0xffff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906 = 0x3fff; u16 reg_903 = 0xffff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906 = 0x3fff;
u8 offset = 0;
/* now, depending on the requested mode, we power on */ /* now, depending on the requested mode, we power on */
switch (mode) { switch (mode) {
...@@ -170,16 +203,17 @@ static int dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_p ...@@ -170,16 +203,17 @@ static int dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_p
if (!state->cfg.mobile_mode) if (!state->cfg.mobile_mode)
reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1); reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1);
/* P_sdio_select_clk = 0 on MC */ /* P_sdio_select_clk = 0 on MC and after*/
if (state->revision != 0x4000) if (state->revision != 0x4000)
reg_906 <<= 1; reg_906 <<= 1;
dib7000m_write_word(state, 903, reg_903); if (state->revision == 0x4003)
dib7000m_write_word(state, 904, reg_904); offset = 1;
dib7000m_write_word(state, 905, reg_905);
dib7000m_write_word(state, 906, reg_906);
return 0; dib7000m_write_word(state, 903 + offset, reg_903);
dib7000m_write_word(state, 904 + offset, reg_904);
dib7000m_write_word(state, 905 + offset, reg_905);
dib7000m_write_word(state, 906 + offset, reg_906);
} }
static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc_states no) static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc_states no)
...@@ -230,34 +264,55 @@ static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc ...@@ -230,34 +264,55 @@ static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc
break; break;
} }
// dprintk("-D- 913: %x, 914: %x\n", reg_913, reg_914); // dprintk( "913: %x, 914: %x", reg_913, reg_914);
ret |= dib7000m_write_word(state, 913, reg_913); ret |= dib7000m_write_word(state, 913, reg_913);
ret |= dib7000m_write_word(state, 914, reg_914); ret |= dib7000m_write_word(state, 914, reg_914);
return ret; return ret;
} }
static int dib7000m_set_bandwidth(struct dvb_frontend *demod, u8 bw_idx) static int dib7000m_set_bandwidth(struct dib7000m_state *state, u32 bw)
{ {
struct dib7000m_state *state = demod->demodulator_priv;
u32 timf; u32 timf;
// store the current bandwidth for later use // store the current bandwidth for later use
state->current_bandwidth = bw_idx; state->current_bandwidth = bw;
if (state->timf == 0) { if (state->timf == 0) {
dprintk("-D- Using default timf\n"); dprintk( "using default timf");
timf = state->cfg.bw->timf; timf = state->timf_default;
} else { } else {
dprintk("-D- Using updated timf\n"); dprintk( "using updated timf");
timf = state->timf; timf = state->timf;
} }
timf = timf * (BW_INDEX_TO_KHZ(bw_idx) / 100) / 80; timf = timf * (bw / 50) / 160;
dib7000m_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
dib7000m_write_word(state, 24, (u16) ((timf ) & 0xffff));
return 0;
}
dib7000m_write_word(state, 23, (timf >> 16) & 0xffff); static int dib7000m_set_diversity_in(struct dvb_frontend *demod, int onoff)
dib7000m_write_word(state, 24, (timf ) & 0xffff); {
struct dib7000m_state *state = demod->demodulator_priv;
if (state->div_force_off) {
dprintk( "diversity combination deactivated - forced by COFDM parameters");
onoff = 0;
}
state->div_state = (uint8_t)onoff;
if (onoff) {
dib7000m_write_word(state, 263 + state->reg_offs, 6);
dib7000m_write_word(state, 264 + state->reg_offs, 6);
dib7000m_write_word(state, 266 + state->reg_offs, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
} else {
dib7000m_write_word(state, 263 + state->reg_offs, 1);
dib7000m_write_word(state, 264 + state->reg_offs, 0);
dib7000m_write_word(state, 266 + state->reg_offs, 0);
}
return 0; return 0;
} }
...@@ -266,7 +321,7 @@ static int dib7000m_sad_calib(struct dib7000m_state *state) ...@@ -266,7 +321,7 @@ static int dib7000m_sad_calib(struct dib7000m_state *state)
{ {
/* internal */ /* internal */
// dib7000m_write_word(state, 928, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is written in set_bandwidth // dib7000m_write_word(state, 928, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth
dib7000m_write_word(state, 929, (0 << 1) | (0 << 0)); dib7000m_write_word(state, 929, (0 << 1) | (0 << 0));
dib7000m_write_word(state, 930, 776); // 0.625*3.3 / 4096 dib7000m_write_word(state, 930, 776); // 0.625*3.3 / 4096
...@@ -281,10 +336,10 @@ static int dib7000m_sad_calib(struct dib7000m_state *state) ...@@ -281,10 +336,10 @@ static int dib7000m_sad_calib(struct dib7000m_state *state)
static void dib7000m_reset_pll_common(struct dib7000m_state *state, const struct dibx000_bandwidth_config *bw) static void dib7000m_reset_pll_common(struct dib7000m_state *state, const struct dibx000_bandwidth_config *bw)
{ {
dib7000m_write_word(state, 18, ((bw->internal*1000) >> 16) & 0xffff); dib7000m_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff));
dib7000m_write_word(state, 19, (bw->internal*1000) & 0xffff); dib7000m_write_word(state, 19, (u16) ( (bw->internal*1000) & 0xffff));
dib7000m_write_word(state, 21, (bw->ifreq >> 16) & 0xffff); dib7000m_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff));
dib7000m_write_word(state, 22, bw->ifreq & 0xffff); dib7000m_write_word(state, 22, (u16) ( bw->ifreq & 0xffff));
dib7000m_write_word(state, 928, bw->sad_cfg); dib7000m_write_word(state, 928, bw->sad_cfg);
} }
...@@ -325,15 +380,19 @@ static void dib7000m_reset_pll(struct dib7000m_state *state) ...@@ -325,15 +380,19 @@ static void dib7000m_reset_pll(struct dib7000m_state *state)
static void dib7000mc_reset_pll(struct dib7000m_state *state) static void dib7000mc_reset_pll(struct dib7000m_state *state)
{ {
const struct dibx000_bandwidth_config *bw = state->cfg.bw; const struct dibx000_bandwidth_config *bw = state->cfg.bw;
u16 clk_cfg1;
// clk_cfg0 // clk_cfg0
dib7000m_write_word(state, 907, (bw->pll_prediv << 8) | (bw->pll_ratio << 0)); dib7000m_write_word(state, 907, (bw->pll_prediv << 8) | (bw->pll_ratio << 0));
// clk_cfg1 // clk_cfg1
//dib7000m_write_word(state, 908, (1 << 14) | (3 << 12) |(0 << 11) | //dib7000m_write_word(state, 908, (1 << 14) | (3 << 12) |(0 << 11) |
dib7000m_write_word(state, 908, (0 << 14) | (3 << 12) |(0 << 11) | clk_cfg1 = (0 << 14) | (3 << 12) |(0 << 11) |
(bw->IO_CLK_en_core << 10) | (bw->bypclk_div << 5) | (bw->enable_refdiv << 4) | (bw->IO_CLK_en_core << 10) | (bw->bypclk_div << 5) | (bw->enable_refdiv << 4) |
(bw->pll_bypass << 3) | (bw->pll_range << 1) | (bw->pll_reset << 0)); (1 << 3) | (bw->pll_range << 1) | (bw->pll_reset << 0);
dib7000m_write_word(state, 908, clk_cfg1);
clk_cfg1 = (clk_cfg1 & 0xfff7) | (bw->pll_bypass << 3);
dib7000m_write_word(state, 908, clk_cfg1);
// smpl_cfg // smpl_cfg
dib7000m_write_word(state, 910, (1 << 12) | (2 << 10) | (bw->modulo << 8) | (bw->ADClkSrc << 7)); dib7000m_write_word(state, 910, (1 << 12) | (2 << 10) | (bw->modulo << 8) | (bw->ADClkSrc << 7));
...@@ -344,9 +403,6 @@ static void dib7000mc_reset_pll(struct dib7000m_state *state) ...@@ -344,9 +403,6 @@ static void dib7000mc_reset_pll(struct dib7000m_state *state)
static int dib7000m_reset_gpio(struct dib7000m_state *st) static int dib7000m_reset_gpio(struct dib7000m_state *st)
{ {
/* reset the GPIOs */ /* reset the GPIOs */
dprintk("-D- gpio dir: %x: gpio val: %x, gpio pwm pos: %x\n",
st->cfg.gpio_dir, st->cfg.gpio_val,st->cfg.gpio_pwm_pos);
dib7000m_write_word(st, 773, st->cfg.gpio_dir); dib7000m_write_word(st, 773, st->cfg.gpio_dir);
dib7000m_write_word(st, 774, st->cfg.gpio_val); dib7000m_write_word(st, 774, st->cfg.gpio_val);
...@@ -358,6 +414,107 @@ static int dib7000m_reset_gpio(struct dib7000m_state *st) ...@@ -358,6 +414,107 @@ static int dib7000m_reset_gpio(struct dib7000m_state *st)
return 0; return 0;
} }
static u16 dib7000m_defaults_common[] =
{
// auto search configuration
3, 2,
0x0004,
0x1000,
0x0814,
12, 6,
0x001b,
0x7740,
0x005b,
0x8d80,
0x01c9,
0xc380,
0x0000,
0x0080,
0x0000,
0x0090,
0x0001,
0xd4c0,
1, 26,
0x6680, // P_corm_thres Lock algorithms configuration
1, 170,
0x0410, // P_palf_alpha_regul, P_palf_filter_freeze, P_palf_filter_on
8, 173,
0,
0,
0,
0,
0,
0,
0,
0,
1, 182,
8192, // P_fft_nb_to_cut
2, 195,
0x0ccd, // P_pha3_thres
0, // P_cti_use_cpe, P_cti_use_prog
1, 205,
0x200f, // P_cspu_regul, P_cspu_win_cut
5, 214,
0x023d, // P_adp_regul_cnt
0x00a4, // P_adp_noise_cnt
0x00a4, // P_adp_regul_ext
0x7ff0, // P_adp_noise_ext
0x3ccc, // P_adp_fil
1, 226,
0, // P_2d_byp_ti_num
1, 255,
0x800, // P_equal_thres_wgn
1, 263,
0x0001,
1, 281,
0x0010, // P_fec_*
1, 294,
0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
0
};
static u16 dib7000m_defaults[] =
{
/* set ADC level to -16 */
11, 76,
(1 << 13) - 825 - 117,
(1 << 13) - 837 - 117,
(1 << 13) - 811 - 117,
(1 << 13) - 766 - 117,
(1 << 13) - 737 - 117,
(1 << 13) - 693 - 117,
(1 << 13) - 648 - 117,
(1 << 13) - 619 - 117,
(1 << 13) - 575 - 117,
(1 << 13) - 531 - 117,
(1 << 13) - 501 - 117,
// Tuner IO bank: max drive (14mA)
1, 912,
0x2c8a,
1, 1817,
1,
0,
};
static int dib7000m_demod_reset(struct dib7000m_state *state) static int dib7000m_demod_reset(struct dib7000m_state *state)
{ {
dib7000m_set_power_mode(state, DIB7000M_POWER_ALL); dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
...@@ -382,22 +539,47 @@ static int dib7000m_demod_reset(struct dib7000m_state *state) ...@@ -382,22 +539,47 @@ static int dib7000m_demod_reset(struct dib7000m_state *state)
dib7000mc_reset_pll(state); dib7000mc_reset_pll(state);
if (dib7000m_reset_gpio(state) != 0) if (dib7000m_reset_gpio(state) != 0)
dprintk("-E- GPIO reset was not successful.\n"); dprintk( "GPIO reset was not successful.");
if (dib7000m_set_output_mode(state, OUTMODE_HIGH_Z) != 0) if (dib7000m_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
dprintk("-E- OUTPUT_MODE could not be resetted.\n"); dprintk( "OUTPUT_MODE could not be reset.");
/* unforce divstr regardless whether i2c enumeration was done or not */ /* unforce divstr regardless whether i2c enumeration was done or not */
dib7000m_write_word(state, 1794, dib7000m_read_word(state, 1794) & ~(1 << 1) ); dib7000m_write_word(state, 1794, dib7000m_read_word(state, 1794) & ~(1 << 1) );
dib7000m_set_bandwidth(&state->demod, BANDWIDTH_8_MHZ); dib7000m_set_bandwidth(state, 8000);
dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON); dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON);
dib7000m_sad_calib(state); dib7000m_sad_calib(state);
dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_OFF); dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
if (state->cfg.dvbt_mode)
dib7000m_write_word(state, 1796, 0x0); // select DVB-T output
if (state->cfg.mobile_mode)
dib7000m_write_word(state, 261 + state->reg_offs, 2);
else
dib7000m_write_word(state, 224 + state->reg_offs, 1);
// P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
if(state->cfg.tuner_is_baseband)
dib7000m_write_word(state, 36, 0x0755);
else
dib7000m_write_word(state, 36, 0x1f55);
// P_divclksel=3 P_divbitsel=1
if (state->revision == 0x4000)
dib7000m_write_word(state, 909, (3 << 10) | (1 << 6));
else
dib7000m_write_word(state, 909, (3 << 4) | 1);
dib7000m_write_tab(state, dib7000m_defaults_common);
dib7000m_write_tab(state, dib7000m_defaults);
dib7000m_set_power_mode(state, DIB7000M_POWER_INTERFACE_ONLY); dib7000m_set_power_mode(state, DIB7000M_POWER_INTERFACE_ONLY);
state->internal_clk = state->cfg.bw->internal;
return 0; return 0;
} }
...@@ -427,7 +609,7 @@ static int dib7000m_agc_soft_split(struct dib7000m_state *state) ...@@ -427,7 +609,7 @@ static int dib7000m_agc_soft_split(struct dib7000m_state *state)
(agc - state->current_agc->split.min_thres) / (agc - state->current_agc->split.min_thres) /
(state->current_agc->split.max_thres - state->current_agc->split.min_thres); (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
dprintk("AGC split_offset: %d\n",split_offset); dprintk( "AGC split_offset: %d",split_offset);
// P_agc_force_split and P_agc_split_offset // P_agc_force_split and P_agc_split_offset
return dib7000m_write_word(state, 103, (dib7000m_read_word(state, 103) & 0xff00) | split_offset); return dib7000m_write_word(state, 103, (dib7000m_read_word(state, 103) & 0xff00) | split_offset);
...@@ -435,35 +617,26 @@ static int dib7000m_agc_soft_split(struct dib7000m_state *state) ...@@ -435,35 +617,26 @@ static int dib7000m_agc_soft_split(struct dib7000m_state *state)
static int dib7000m_update_lna(struct dib7000m_state *state) static int dib7000m_update_lna(struct dib7000m_state *state)
{ {
int i;
u16 dyn_gain; u16 dyn_gain;
// when there is no LNA to program return immediatly if (state->cfg.update_lna) {
if (state->cfg.update_lna == NULL)
return 0;
msleep(60);
for (i = 0; i < 20; i++) {
// read dyn_gain here (because it is demod-dependent and not tuner) // read dyn_gain here (because it is demod-dependent and not tuner)
dyn_gain = dib7000m_read_word(state, 390); dyn_gain = dib7000m_read_word(state, 390);
dprintk("agc global: %d\n", dyn_gain);
if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed
dib7000m_restart_agc(state); dib7000m_restart_agc(state);
msleep(60); return 1;
} else }
break;
} }
return 0; return 0;
} }
static void dib7000m_set_agc_config(struct dib7000m_state *state, u8 band) static int dib7000m_set_agc_config(struct dib7000m_state *state, u8 band)
{ {
struct dibx000_agc_config *agc = NULL; struct dibx000_agc_config *agc = NULL;
int i; int i;
if (state->current_band == band) if (state->current_band == band && state->current_agc != NULL)
return; return 0;
state->current_band = band; state->current_band = band;
for (i = 0; i < state->cfg.agc_config_count; i++) for (i = 0; i < state->cfg.agc_config_count; i++)
...@@ -473,8 +646,8 @@ static void dib7000m_set_agc_config(struct dib7000m_state *state, u8 band) ...@@ -473,8 +646,8 @@ static void dib7000m_set_agc_config(struct dib7000m_state *state, u8 band)
} }
if (agc == NULL) { if (agc == NULL) {
dprintk("-E- No valid AGC configuration found for band 0x%02x\n",band); dprintk( "no valid AGC configuration found for band 0x%02x",band);
return; return -EINVAL;
} }
state->current_agc = agc; state->current_agc = agc;
...@@ -489,7 +662,7 @@ static void dib7000m_set_agc_config(struct dib7000m_state *state, u8 band) ...@@ -489,7 +662,7 @@ static void dib7000m_set_agc_config(struct dib7000m_state *state, u8 band)
dib7000m_write_word(state, 98, (agc->alpha_mant << 5) | agc->alpha_exp); dib7000m_write_word(state, 98, (agc->alpha_mant << 5) | agc->alpha_exp);
dib7000m_write_word(state, 99, (agc->beta_mant << 6) | agc->beta_exp); dib7000m_write_word(state, 99, (agc->beta_mant << 6) | agc->beta_exp);
dprintk("-D- WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d",
state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
/* AGC continued */ /* AGC continued */
...@@ -510,7 +683,7 @@ static void dib7000m_set_agc_config(struct dib7000m_state *state, u8 band) ...@@ -510,7 +683,7 @@ static void dib7000m_set_agc_config(struct dib7000m_state *state, u8 band)
if (state->revision > 0x4000) { // settings for the MC if (state->revision > 0x4000) { // settings for the MC
dib7000m_write_word(state, 71, agc->agc1_pt3); dib7000m_write_word(state, 71, agc->agc1_pt3);
// dprintk("-D- 929: %x %d %d\n", // dprintk( "929: %x %d %d",
// (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2), agc->wbd_inv, agc->wbd_sel); // (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2), agc->wbd_inv, agc->wbd_sel);
dib7000m_write_word(state, 929, (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); dib7000m_write_word(state, 929, (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2));
} else { } else {
...@@ -519,33 +692,160 @@ static void dib7000m_set_agc_config(struct dib7000m_state *state, u8 band) ...@@ -519,33 +692,160 @@ static void dib7000m_set_agc_config(struct dib7000m_state *state, u8 band)
for (i = 0; i < 9; i++) for (i = 0; i < 9; i++)
dib7000m_write_word(state, 88 + i, b[i]); dib7000m_write_word(state, 88 + i, b[i]);
} }
return 0;
} }
static void dib7000m_update_timf_freq(struct dib7000m_state *state) static void dib7000m_update_timf(struct dib7000m_state *state)
{ {
u32 timf = (dib7000m_read_word(state, 436) << 16) | dib7000m_read_word(state, 437); u32 timf = (dib7000m_read_word(state, 436) << 16) | dib7000m_read_word(state, 437);
state->timf = timf * 80 / (BW_INDEX_TO_KHZ(state->current_bandwidth) / 100); state->timf = timf * 160 / (state->current_bandwidth / 50);
dib7000m_write_word(state, 23, (u16) (timf >> 16)); dib7000m_write_word(state, 23, (u16) (timf >> 16));
dib7000m_write_word(state, 24, (u16) (timf & 0xffff)); dib7000m_write_word(state, 24, (u16) (timf & 0xffff));
dprintk("-D- Updated timf_frequency: %d (default: %d)\n",state->timf, state->cfg.bw->timf); dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->timf_default);
}
static int dib7000m_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{
struct dib7000m_state *state = demod->demodulator_priv;
u16 cfg_72 = dib7000m_read_word(state, 72);
int ret = -1;
u8 *agc_state = &state->agc_state;
u8 agc_split;
switch (state->agc_state) {
case 0:
// set power-up level: interf+analog+AGC
dib7000m_set_power_mode(state, DIB7000M_POWER_INTERF_ANALOG_AGC);
dib7000m_set_adc_state(state, DIBX000_ADC_ON);
if (dib7000m_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0)
return -1;
ret = 7; /* ADC power up */
(*agc_state)++;
break;
case 1:
/* AGC initialization */
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 1);
dib7000m_write_word(state, 75, 32768);
if (!state->current_agc->perform_agc_softsplit) {
/* we are using the wbd - so slow AGC startup */
dib7000m_write_word(state, 103, 1 << 8); /* force 0 split on WBD and restart AGC */
(*agc_state)++;
ret = 5;
} else {
/* default AGC startup */
(*agc_state) = 4;
/* wait AGC rough lock time */
ret = 7;
}
dib7000m_restart_agc(state);
break;
case 2: /* fast split search path after 5sec */
dib7000m_write_word(state, 72, cfg_72 | (1 << 4)); /* freeze AGC loop */
dib7000m_write_word(state, 103, 2 << 9); /* fast split search 0.25kHz */
(*agc_state)++;
ret = 14;
break;
case 3: /* split search ended */
agc_split = (uint8_t)dib7000m_read_word(state, 392); /* store the split value for the next time */
dib7000m_write_word(state, 75, dib7000m_read_word(state, 390)); /* set AGC gain start value */
dib7000m_write_word(state, 72, cfg_72 & ~(1 << 4)); /* std AGC loop */
dib7000m_write_word(state, 103, (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */
dib7000m_restart_agc(state);
dprintk( "SPLIT %p: %hd", demod, agc_split);
(*agc_state)++;
ret = 5;
break;
case 4: /* LNA startup */
/* wait AGC accurate lock time */
ret = 7;
if (dib7000m_update_lna(state))
// wait only AGC rough lock time
ret = 5;
else
(*agc_state)++;
break;
case 5:
dib7000m_agc_soft_split(state);
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 0);
(*agc_state)++;
break;
default:
break;
}
return ret;
} }
static void dib7000m_set_channel(struct dib7000m_state *state, struct dibx000_ofdm_channel *ch, u8 seq) static void dib7000m_set_channel(struct dib7000m_state *state, struct dvb_frontend_parameters *ch, u8 seq)
{ {
u16 value, est[4]; u16 value, est[4];
dib7000m_set_agc_config(state, BAND_OF_FREQUENCY(ch->RF_kHz)); dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
/* nfft, guard, qam, alpha */ /* nfft, guard, qam, alpha */
dib7000m_write_word(state, 0, (ch->nfft << 7) | (ch->guard << 5) | (ch->nqam << 3) | (ch->vit_alpha)); value = 0;
switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
case /* 4K MODE */ 255: value |= (2 << 7); break;
default:
case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
}
switch (ch->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
case GUARD_INTERVAL_1_4: value |= (3 << 5); break;
default:
case GUARD_INTERVAL_1_8: value |= (2 << 5); break;
}
switch (ch->u.ofdm.constellation) {
case QPSK: value |= (0 << 3); break;
case QAM_16: value |= (1 << 3); break;
default:
case QAM_64: value |= (2 << 3); break;
}
switch (HIERARCHY_1) {
case HIERARCHY_2: value |= 2; break;
case HIERARCHY_4: value |= 4; break;
default:
case HIERARCHY_1: value |= 1; break;
}
dib7000m_write_word(state, 0, value);
dib7000m_write_word(state, 5, (seq << 4)); dib7000m_write_word(state, 5, (seq << 4));
/* P_dintl_native, P_dintlv_inv, P_vit_hrch, P_vit_code_rate, P_vit_select_hp */ /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
value = (ch->intlv_native << 6) | (ch->vit_hrch << 4) | (ch->vit_select_hp & 0x1); value = 0;
if (ch->vit_hrch == 0 || ch->vit_select_hp == 1) if (1 != 0)
value |= (ch->vit_code_rate_hp << 1); value |= (1 << 6);
else if (ch->u.ofdm.hierarchy_information == 1)
value |= (ch->vit_code_rate_lp << 1); value |= (1 << 4);
if (1 == 1)
value |= 1;
switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
case FEC_2_3: value |= (2 << 1); break;
case FEC_3_4: value |= (3 << 1); break;
case FEC_5_6: value |= (5 << 1); break;
case FEC_7_8: value |= (7 << 1); break;
default:
case FEC_1_2: value |= (1 << 1); break;
}
dib7000m_write_word(state, 267 + state->reg_offs, value); dib7000m_write_word(state, 267 + state->reg_offs, value);
/* offset loop parameters */ /* offset loop parameters */
...@@ -563,32 +863,38 @@ static void dib7000m_set_channel(struct dib7000m_state *state, struct dibx000_of ...@@ -563,32 +863,38 @@ static void dib7000m_set_channel(struct dib7000m_state *state, struct dibx000_of
dib7000m_write_word(state, 33, (0 << 4) | 0x5); dib7000m_write_word(state, 33, (0 << 4) | 0x5);
/* P_dvsy_sync_wait */ /* P_dvsy_sync_wait */
switch (ch->nfft) { switch (ch->u.ofdm.transmission_mode) {
case 1: value = 256; break; case TRANSMISSION_MODE_8K: value = 256; break;
case 2: value = 128; break; case /* 4K MODE */ 255: value = 128; break;
case 0: case TRANSMISSION_MODE_2K:
default: value = 64; break; default: value = 64; break;
} }
value *= ((1 << (ch->guard)) * 3 / 2); // add 50% SFN margin switch (ch->u.ofdm.guard_interval) {
value <<= 4; case GUARD_INTERVAL_1_16: value *= 2; break;
case GUARD_INTERVAL_1_8: value *= 4; break;
case GUARD_INTERVAL_1_4: value *= 8; break;
default:
case GUARD_INTERVAL_1_32: value *= 1; break;
}
state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO
/* deactive the possibility of diversity reception if extended interleave - not for 7000MC */ /* deactive the possibility of diversity reception if extended interleave - not for 7000MC */
/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
if (ch->intlv_native || state->revision > 0x4000) if (1 == 1 || state->revision > 0x4000)
value |= (1 << 2) | (2 << 0); state->div_force_off = 0;
else else
value |= 0; state->div_force_off = 1;
dib7000m_write_word(state, 266 + state->reg_offs, value); dib7000m_set_diversity_in(&state->demod, state->div_state);
/* channel estimation fine configuration */ /* channel estimation fine configuration */
switch (ch->nqam) { switch (ch->u.ofdm.constellation) {
case 2: case QAM_64:
est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
break; break;
case 1: case QAM_16:
est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
...@@ -604,70 +910,48 @@ static void dib7000m_set_channel(struct dib7000m_state *state, struct dibx000_of ...@@ -604,70 +910,48 @@ static void dib7000m_set_channel(struct dib7000m_state *state, struct dibx000_of
for (value = 0; value < 4; value++) for (value = 0; value < 4; value++)
dib7000m_write_word(state, 214 + value + state->reg_offs, est[value]); dib7000m_write_word(state, 214 + value + state->reg_offs, est[value]);
// set power-up level: interf+analog+AGC
dib7000m_set_power_mode(state, DIB7000M_POWER_INTERF_ANALOG_AGC);
dib7000m_set_adc_state(state, DIBX000_ADC_ON);
msleep(7);
//AGC initialization
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 1);
dib7000m_restart_agc(state);
// wait AGC rough lock time
msleep(5);
dib7000m_update_lna(state);
dib7000m_agc_soft_split(state);
// wait AGC accurate lock time
msleep(7);
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 0);
// set power-up level: autosearch // set power-up level: autosearch
dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD); dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD);
} }
static int dib7000m_autosearch_start(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch) static int dib7000m_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{ {
struct dib7000m_state *state = demod->demodulator_priv; struct dib7000m_state *state = demod->demodulator_priv;
struct dibx000_ofdm_channel auto_ch; struct dvb_frontend_parameters schan;
int ret = 0; int ret = 0;
u32 value; u32 value, factor;
INIT_OFDM_CHANNEL(&auto_ch); schan = *ch;
auto_ch.RF_kHz = ch->RF_kHz;
auto_ch.Bw = ch->Bw; schan.u.ofdm.constellation = QAM_64;
auto_ch.nqam = 2; schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
auto_ch.guard = 0; schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
auto_ch.nfft = 1; schan.u.ofdm.code_rate_HP = FEC_2_3;
auto_ch.vit_alpha = 1; schan.u.ofdm.code_rate_LP = FEC_3_4;
auto_ch.vit_select_hp = 1; schan.u.ofdm.hierarchy_information = 0;
auto_ch.vit_code_rate_hp = 2;
auto_ch.vit_code_rate_lp = 3; dib7000m_set_channel(state, &schan, 7);
auto_ch.vit_hrch = 0;
auto_ch.intlv_native = 1; factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth);
if (factor >= 5000)
dib7000m_set_channel(state, &auto_ch, 7); factor = 1;
else
factor = 6;
// always use the setting for 8MHz here lock_time for 7,6 MHz are longer // always use the setting for 8MHz here lock_time for 7,6 MHz are longer
value = 30 * state->cfg.bw->internal; value = 30 * state->internal_clk * factor;
ret |= dib7000m_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time ret |= dib7000m_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
ret |= dib7000m_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time ret |= dib7000m_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time
value = 100 * state->cfg.bw->internal; value = 100 * state->internal_clk * factor;
ret |= dib7000m_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time ret |= dib7000m_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
ret |= dib7000m_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time ret |= dib7000m_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time
value = 500 * state->cfg.bw->internal; value = 500 * state->internal_clk * factor;
ret |= dib7000m_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time ret |= dib7000m_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
ret |= dib7000m_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time ret |= dib7000m_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time
// start search // start search
value = dib7000m_read_word(state, 0); value = dib7000m_read_word(state, 0);
ret |= dib7000m_write_word(state, 0, value | (1 << 9)); ret |= dib7000m_write_word(state, 0, (u16) (value | (1 << 9)));
/* clear n_irq_pending */ /* clear n_irq_pending */
if (state->revision == 0x4000) if (state->revision == 0x4000)
...@@ -685,12 +969,12 @@ static int dib7000m_autosearch_irq(struct dib7000m_state *state, u16 reg) ...@@ -685,12 +969,12 @@ static int dib7000m_autosearch_irq(struct dib7000m_state *state, u16 reg)
u16 irq_pending = dib7000m_read_word(state, reg); u16 irq_pending = dib7000m_read_word(state, reg);
if (irq_pending & 0x1) { // failed if (irq_pending & 0x1) { // failed
dprintk("#\n"); dprintk( "autosearch failed");
return 1; return 1;
} }
if (irq_pending & 0x2) { // succeeded if (irq_pending & 0x2) { // succeeded
dprintk("!\n"); dprintk( "autosearch succeeded");
return 2; return 2;
} }
return 0; // still pending return 0; // still pending
...@@ -705,7 +989,7 @@ static int dib7000m_autosearch_is_irq(struct dvb_frontend *demod) ...@@ -705,7 +989,7 @@ static int dib7000m_autosearch_is_irq(struct dvb_frontend *demod)
return dib7000m_autosearch_irq(state, 537); return dib7000m_autosearch_irq(state, 537);
} }
static int dib7000m_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch) static int dib7000m_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{ {
struct dib7000m_state *state = demod->demodulator_priv; struct dib7000m_state *state = demod->demodulator_priv;
int ret = 0; int ret = 0;
...@@ -722,182 +1006,103 @@ static int dib7000m_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel ...@@ -722,182 +1006,103 @@ static int dib7000m_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel
ret |= dib7000m_write_word(state, 898, 0x0000); ret |= dib7000m_write_word(state, 898, 0x0000);
msleep(45); msleep(45);
ret |= dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD); dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD);
/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
ret |= dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3)); ret |= dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3));
// never achieved a lock with that bandwidth so far - wait for timfreq to update // never achieved a lock before - wait for timfreq to update
if (state->timf == 0) if (state->timf == 0)
msleep(200); msleep(200);
//dump_reg(state); //dump_reg(state);
/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
value = (6 << 8) | 0x80; value = (6 << 8) | 0x80;
switch (ch->nfft) { switch (ch->u.ofdm.transmission_mode) {
case 0: value |= (7 << 12); break; case TRANSMISSION_MODE_2K: value |= (7 << 12); break;
case 1: value |= (9 << 12); break; case /* 4K MODE */ 255: value |= (8 << 12); break;
case 2: value |= (8 << 12); break; default:
case TRANSMISSION_MODE_8K: value |= (9 << 12); break;
} }
ret |= dib7000m_write_word(state, 26, value); ret |= dib7000m_write_word(state, 26, value);
/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
value = (0 << 4); value = (0 << 4);
switch (ch->nfft) { switch (ch->u.ofdm.transmission_mode) {
case 0: value |= 0x6; break; case TRANSMISSION_MODE_2K: value |= 0x6; break;
case 1: value |= 0x8; break; case /* 4K MODE */ 255: value |= 0x7; break;
case 2: value |= 0x7; break; default:
case TRANSMISSION_MODE_8K: value |= 0x8; break;
} }
ret |= dib7000m_write_word(state, 32, value); ret |= dib7000m_write_word(state, 32, value);
/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
value = (0 << 4); value = (0 << 4);
switch (ch->nfft) { switch (ch->u.ofdm.transmission_mode) {
case 0: value |= 0x6; break; case TRANSMISSION_MODE_2K: value |= 0x6; break;
case 1: value |= 0x8; break; case /* 4K MODE */ 255: value |= 0x7; break;
case 2: value |= 0x7; break; default:
case TRANSMISSION_MODE_8K: value |= 0x8; break;
} }
ret |= dib7000m_write_word(state, 33, value); ret |= dib7000m_write_word(state, 33, value);
// we achieved a lock - it's time to update the osc freq // we achieved a lock - it's time to update the timf freq
if ((dib7000m_read_word(state, 535) >> 6) & 0x1) if ((dib7000m_read_word(state, 535) >> 6) & 0x1)
dib7000m_update_timf_freq(state); dib7000m_update_timf(state);
dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
return ret; return ret;
} }
static int dib7000m_init(struct dvb_frontend *demod) static int dib7000m_wakeup(struct dvb_frontend *demod)
{ {
struct dib7000m_state *state = demod->demodulator_priv; struct dib7000m_state *state = demod->demodulator_priv;
int ret = 0;
u8 o = state->reg_offs;
dib7000m_set_power_mode(state, DIB7000M_POWER_ALL); dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
if (dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0) if (dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
dprintk("-E- could not start Slow ADC\n"); dprintk( "could not start Slow ADC");
if (state->cfg.dvbt_mode) return 0;
dib7000m_write_word(state, 1796, 0x0); // select DVB-T output
if (state->cfg.mobile_mode)
ret |= dib7000m_write_word(state, 261 + o, 2);
else
ret |= dib7000m_write_word(state, 224 + o, 1);
ret |= dib7000m_write_word(state, 173 + o, 0);
ret |= dib7000m_write_word(state, 174 + o, 0);
ret |= dib7000m_write_word(state, 175 + o, 0);
ret |= dib7000m_write_word(state, 176 + o, 0);
ret |= dib7000m_write_word(state, 177 + o, 0);
ret |= dib7000m_write_word(state, 178 + o, 0);
ret |= dib7000m_write_word(state, 179 + o, 0);
ret |= dib7000m_write_word(state, 180 + o, 0);
// P_corm_thres Lock algorithms configuration
ret |= dib7000m_write_word(state, 26, 0x6680);
// P_palf_alpha_regul, P_palf_filter_freeze, P_palf_filter_on
ret |= dib7000m_write_word(state, 170 + o, 0x0410);
// P_fft_nb_to_cut
ret |= dib7000m_write_word(state, 182 + o, 8192);
// P_pha3_thres
ret |= dib7000m_write_word(state, 195 + o, 0x0ccd);
// P_cti_use_cpe, P_cti_use_prog
ret |= dib7000m_write_word(state, 196 + o, 0);
// P_cspu_regul, P_cspu_win_cut
ret |= dib7000m_write_word(state, 205 + o, 0x200f);
// P_adp_regul_cnt
ret |= dib7000m_write_word(state, 214 + o, 0x023d);
// P_adp_noise_cnt
ret |= dib7000m_write_word(state, 215 + o, 0x00a4);
// P_adp_regul_ext
ret |= dib7000m_write_word(state, 216 + o, 0x00a4);
// P_adp_noise_ext
ret |= dib7000m_write_word(state, 217 + o, 0x7ff0);
// P_adp_fil
ret |= dib7000m_write_word(state, 218 + o, 0x3ccc);
// P_2d_byp_ti_num
ret |= dib7000m_write_word(state, 226 + o, 0);
// P_fec_*
ret |= dib7000m_write_word(state, 281 + o, 0x0010);
// P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
ret |= dib7000m_write_word(state, 294 + o,0x0062);
// P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
if(state->cfg.tuner_is_baseband)
ret |= dib7000m_write_word(state, 36, 0x0755);
else
ret |= dib7000m_write_word(state, 36, 0x1f55);
// auto search configuration
ret |= dib7000m_write_word(state, 2, 0x0004);
ret |= dib7000m_write_word(state, 3, 0x1000);
ret |= dib7000m_write_word(state, 4, 0x0814);
ret |= dib7000m_write_word(state, 6, 0x001b);
ret |= dib7000m_write_word(state, 7, 0x7740);
ret |= dib7000m_write_word(state, 8, 0x005b);
ret |= dib7000m_write_word(state, 9, 0x8d80);
ret |= dib7000m_write_word(state, 10, 0x01c9);
ret |= dib7000m_write_word(state, 11, 0xc380);
ret |= dib7000m_write_word(state, 12, 0x0000);
ret |= dib7000m_write_word(state, 13, 0x0080);
ret |= dib7000m_write_word(state, 14, 0x0000);
ret |= dib7000m_write_word(state, 15, 0x0090);
ret |= dib7000m_write_word(state, 16, 0x0001);
ret |= dib7000m_write_word(state, 17, 0xd4c0);
ret |= dib7000m_write_word(state, 263 + o,0x0001);
// P_divclksel=3 P_divbitsel=1
if (state->revision == 0x4000)
dib7000m_write_word(state, 909, (3 << 10) | (1 << 6));
else
dib7000m_write_word(state, 909, (3 << 4) | 1);
// Tuner IO bank: max drive (14mA)
ret |= dib7000m_write_word(state, 912 ,0x2c8a);
ret |= dib7000m_write_word(state, 1817, 1);
return ret;
} }
static int dib7000m_sleep(struct dvb_frontend *demod) static int dib7000m_sleep(struct dvb_frontend *demod)
{ {
struct dib7000m_state *st = demod->demodulator_priv; struct dib7000m_state *st = demod->demodulator_priv;
dib7000m_set_output_mode(st, OUTMODE_HIGH_Z); dib7000m_set_output_mode(st, OUTMODE_HIGH_Z);
return dib7000m_set_power_mode(st, DIB7000M_POWER_INTERFACE_ONLY) | dib7000m_set_power_mode(st, DIB7000M_POWER_INTERFACE_ONLY);
dib7000m_set_adc_state(st, DIBX000_SLOW_ADC_OFF) | return dib7000m_set_adc_state(st, DIBX000_SLOW_ADC_OFF) |
dib7000m_set_adc_state(st, DIBX000_ADC_OFF); dib7000m_set_adc_state(st, DIBX000_ADC_OFF);
} }
static int dib7000m_identify(struct dib7000m_state *state) static int dib7000m_identify(struct dib7000m_state *state)
{ {
u16 value; u16 value;
if ((value = dib7000m_read_word(state, 896)) != 0x01b3) { if ((value = dib7000m_read_word(state, 896)) != 0x01b3) {
dprintk("-E- DiB7000M: wrong Vendor ID (read=0x%x)\n",value); dprintk( "wrong Vendor ID (0x%x)",value);
return -EREMOTEIO; return -EREMOTEIO;
} }
state->revision = dib7000m_read_word(state, 897); state->revision = dib7000m_read_word(state, 897);
if (state->revision != 0x4000 && if (state->revision != 0x4000 &&
state->revision != 0x4001 && state->revision != 0x4001 &&
state->revision != 0x4002) { state->revision != 0x4002 &&
dprintk("-E- DiB7000M: wrong Device ID (%x)\n",value); state->revision != 0x4003) {
dprintk( "wrong Device ID (0x%x)",value);
return -EREMOTEIO; return -EREMOTEIO;
} }
/* protect this driver to be used with 7000PC */ /* protect this driver to be used with 7000PC */
if (state->revision == 0x4000 && dib7000m_read_word(state, 769) == 0x4000) { if (state->revision == 0x4000 && dib7000m_read_word(state, 769) == 0x4000) {
dprintk("-E- DiB7000M: this driver does not work with DiB7000PC\n"); dprintk( "this driver does not work with DiB7000PC");
return -EREMOTEIO; return -EREMOTEIO;
} }
switch (state->revision) { switch (state->revision) {
case 0x4000: dprintk("-I- found DiB7000MA/PA/MB/PB\n"); break; case 0x4000: dprintk( "found DiB7000MA/PA/MB/PB"); break;
case 0x4001: state->reg_offs = 1; dprintk("-I- found DiB7000HC\n"); break; case 0x4001: state->reg_offs = 1; dprintk( "found DiB7000HC"); break;
case 0x4002: state->reg_offs = 1; dprintk("-I- found DiB7000MC\n"); break; case 0x4002: state->reg_offs = 1; dprintk( "found DiB7000MC"); break;
case 0x4003: state->reg_offs = 1; dprintk( "found DiB9000"); break;
} }
return 0; return 0;
...@@ -966,41 +1171,45 @@ static int dib7000m_set_frontend(struct dvb_frontend* fe, ...@@ -966,41 +1171,45 @@ static int dib7000m_set_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep) struct dvb_frontend_parameters *fep)
{ {
struct dib7000m_state *state = fe->demodulator_priv; struct dib7000m_state *state = fe->demodulator_priv;
struct dibx000_ofdm_channel ch; int time;
INIT_OFDM_CHANNEL(&ch);
FEP2DIB(fep,&ch);
state->current_bandwidth = fep->u.ofdm.bandwidth; state->current_bandwidth = fep->u.ofdm.bandwidth;
dib7000m_set_bandwidth(fe, fep->u.ofdm.bandwidth); dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth));
if (fe->ops.tuner_ops.set_params) if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe, fep); fe->ops.tuner_ops.set_params(fe, fep);
/* start up the AGC */
state->agc_state = 0;
do {
time = dib7000m_agc_startup(fe, fep);
if (time != -1)
msleep(time);
} while (time != -1);
if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ||
fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.constellation == QAM_AUTO ||
fep->u.ofdm.code_rate_HP == FEC_AUTO) { fep->u.ofdm.code_rate_HP == FEC_AUTO) {
int i = 800, found; int i = 800, found;
dib7000m_autosearch_start(fe, &ch); dib7000m_autosearch_start(fe, fep);
do { do {
msleep(1); msleep(1);
found = dib7000m_autosearch_is_irq(fe); found = dib7000m_autosearch_is_irq(fe);
} while (found == 0 && i--); } while (found == 0 && i--);
dprintk("autosearch returns: %d\n",found); dprintk("autosearch returns: %d",found);
if (found == 0 || found == 1) if (found == 0 || found == 1)
return 0; // no channel found return 0; // no channel found
dib7000m_get_frontend(fe, fep); dib7000m_get_frontend(fe, fep);
FEP2DIB(fep, &ch);
} }
/* make this a config parameter */ /* make this a config parameter */
dib7000m_set_output_mode(state, OUTMODE_MPEG2_FIFO); dib7000m_set_output_mode(state, OUTMODE_MPEG2_FIFO);
return dib7000m_tune(fe, &ch); return dib7000m_tune(fe, fep);
} }
static int dib7000m_read_status(struct dvb_frontend *fe, fe_status_t *stat) static int dib7000m_read_status(struct dvb_frontend *fe, fe_status_t *stat)
...@@ -1087,7 +1296,7 @@ int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau ...@@ -1087,7 +1296,7 @@ int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau
if (dib7000m_identify(&st) != 0) { if (dib7000m_identify(&st) != 0) {
st.i2c_addr = default_addr; st.i2c_addr = default_addr;
if (dib7000m_identify(&st) != 0) { if (dib7000m_identify(&st) != 0) {
dprintk("DiB7000M #%d: not identified\n", k); dprintk("DiB7000M #%d: not identified", k);
return -EIO; return -EIO;
} }
} }
...@@ -1100,7 +1309,7 @@ int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau ...@@ -1100,7 +1309,7 @@ int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau
/* set new i2c address and force divstart */ /* set new i2c address and force divstart */
dib7000m_write_word(&st, 1794, (new_addr << 2) | 0x2); dib7000m_write_word(&st, 1794, (new_addr << 2) | 0x2);
dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
} }
for (k = 0; k < no_of_demods; k++) { for (k = 0; k < no_of_demods; k++) {
...@@ -1172,7 +1381,7 @@ static struct dvb_frontend_ops dib7000m_ops = { ...@@ -1172,7 +1381,7 @@ static struct dvb_frontend_ops dib7000m_ops = {
.release = dib7000m_release, .release = dib7000m_release,
.init = dib7000m_init, .init = dib7000m_wakeup,
.sleep = dib7000m_sleep, .sleep = dib7000m_sleep,
.set_frontend = dib7000m_set_frontend, .set_frontend = dib7000m_set_frontend,
......
/* /*
* Linux-DVB Driver for DiBcom's second generation DiB7000P (PC). * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC).
* *
* Copyright (C) 2005-6 DiBcom (http://www.dibcom.fr/) * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
* *
* This program is free software; you can redistribute it and/or * This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as * modify it under the terms of the GNU General Public License as
...@@ -18,7 +18,7 @@ static int debug; ...@@ -18,7 +18,7 @@ static int debug;
module_param(debug, int, 0644); module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P:"); printk(args); } } while (0) #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0)
struct dib7000p_state { struct dib7000p_state {
struct dvb_frontend demod; struct dvb_frontend demod;
...@@ -36,12 +36,19 @@ struct dib7000p_state { ...@@ -36,12 +36,19 @@ struct dib7000p_state {
struct dibx000_agc_config *current_agc; struct dibx000_agc_config *current_agc;
u32 timf; u32 timf;
uint8_t div_force_off : 1;
uint8_t div_state : 1;
uint16_t div_sync_wait;
u8 agc_state;
u16 gpio_dir; u16 gpio_dir;
u16 gpio_val; u16 gpio_val;
}; };
enum dib7000p_power_mode { enum dib7000p_power_mode {
DIB7000P_POWER_ALL = 0, DIB7000P_POWER_ALL = 0,
DIB7000P_POWER_ANALOG_ADC,
DIB7000P_POWER_INTERFACE_ONLY, DIB7000P_POWER_INTERFACE_ONLY,
}; };
...@@ -55,7 +62,7 @@ static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) ...@@ -55,7 +62,7 @@ static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
}; };
if (i2c_transfer(state->i2c_adap, msg, 2) != 2) if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
dprintk("i2c read error on %d\n",reg); dprintk("i2c read error on %d",reg);
return (rb[0] << 8) | rb[1]; return (rb[0] << 8) | rb[1];
} }
...@@ -71,6 +78,22 @@ static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) ...@@ -71,6 +78,22 @@ static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
}; };
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
} }
static void dib7000p_write_tab(struct dib7000p_state *state, u16 *buf)
{
u16 l = 0, r, *n;
n = buf;
l = *n++;
while (l) {
r = *n++;
do {
dib7000p_write_word(state, r, *n++);
r++;
} while (--l);
l = *n++;
}
}
static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
{ {
int ret = 0; int ret = 0;
...@@ -80,7 +103,7 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) ...@@ -80,7 +103,7 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
fifo_threshold = 1792; fifo_threshold = 1792;
smo_mode = (dib7000p_read_word(state, 235) & 0x0010) | (1 << 1); smo_mode = (dib7000p_read_word(state, 235) & 0x0010) | (1 << 1);
dprintk("-I- Setting output mode for demod %p to %d\n", dprintk( "setting output mode for demod %p to %d",
&state->demod, mode); &state->demod, mode);
switch (mode) { switch (mode) {
...@@ -104,19 +127,17 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) ...@@ -104,19 +127,17 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
fifo_threshold = 512; fifo_threshold = 512;
outreg = (1 << 10) | (5 << 6); outreg = (1 << 10) | (5 << 6);
break; break;
case OUTMODE_ANALOG_ADC:
outreg = (1 << 10) | (3 << 6);
break;
case OUTMODE_HIGH_Z: // disable case OUTMODE_HIGH_Z: // disable
outreg = 0; outreg = 0;
break; break;
default: default:
dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod); dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod);
break; break;
} }
if (state->cfg.hostbus_diversity) {
ret |= dib7000p_write_word(state, 204, 1); // Diversity ?
ret |= dib7000p_write_word(state, 205, 0); // Diversity ?
}
if (state->cfg.output_mpeg2_in_188_bytes) if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5) ; smo_mode |= (1 << 5) ;
...@@ -127,6 +148,30 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) ...@@ -127,6 +148,30 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
return ret; return ret;
} }
static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
{
struct dib7000p_state *state = demod->demodulator_priv;
if (state->div_force_off) {
dprintk( "diversity combination deactivated - forced by COFDM parameters");
onoff = 0;
}
state->div_state = (uint8_t)onoff;
if (onoff) {
dib7000p_write_word(state, 204, 6);
dib7000p_write_word(state, 205, 16);
/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
} else {
dib7000p_write_word(state, 204, 1);
dib7000p_write_word(state, 205, 0);
dib7000p_write_word(state, 207, 0);
}
return 0;
}
static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
{ {
/* by default everything is powered off */ /* by default everything is powered off */
...@@ -139,10 +184,21 @@ static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_p ...@@ -139,10 +184,21 @@ static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_p
case DIB7000P_POWER_ALL: case DIB7000P_POWER_ALL:
reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; reg_1280 &= 0x01ff; reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; reg_1280 &= 0x01ff;
break; break;
case DIB7000P_POWER_ANALOG_ADC:
/* dem, cfg, iqc, sad, agc */
reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9));
/* nud */
reg_776 &= ~((1 << 0));
/* Dout */
reg_1280 &= ~((1 << 11));
/* fall through wanted to enable the interfaces */
/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */ case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */
reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
break; break;
/* TODO following stuff is just converted from the dib7000-driver - check when is used what */ /* TODO following stuff is just converted from the dib7000-driver - check when is used what */
} }
...@@ -193,34 +249,31 @@ static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_ad ...@@ -193,34 +249,31 @@ static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_ad
break; break;
} }
// dprintk("908: %x, 909: %x\n", reg_908, reg_909); // dprintk( "908: %x, 909: %x\n", reg_908, reg_909);
dib7000p_write_word(state, 908, reg_908); dib7000p_write_word(state, 908, reg_908);
dib7000p_write_word(state, 909, reg_909); dib7000p_write_word(state, 909, reg_909);
} }
static int dib7000p_set_bandwidth(struct dvb_frontend *demod, u8 BW_Idx) static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
{ {
struct dib7000p_state *state = demod->demodulator_priv;
u32 timf; u32 timf;
// store the current bandwidth for later use // store the current bandwidth for later use
state->current_bandwidth = BW_Idx; state->current_bandwidth = bw;
if (state->timf == 0) { if (state->timf == 0) {
dprintk("-D- Using default timf\n"); dprintk( "using default timf");
timf = state->cfg.bw->timf; timf = state->cfg.bw->timf;
} else { } else {
dprintk("-D- Using updated timf\n"); dprintk( "using updated timf");
timf = state->timf; timf = state->timf;
} }
timf = timf * (BW_INDEX_TO_KHZ(BW_Idx) / 100) / 80; timf = timf * (bw / 50) / 160;
dprintk("timf: %d\n",timf); dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
dib7000p_write_word(state, 24, (u16) ((timf ) & 0xffff));
dib7000p_write_word(state, 23, (timf >> 16) & 0xffff);
dib7000p_write_word(state, 24, (timf ) & 0xffff);
return 0; return 0;
} }
...@@ -228,7 +281,7 @@ static int dib7000p_set_bandwidth(struct dvb_frontend *demod, u8 BW_Idx) ...@@ -228,7 +281,7 @@ static int dib7000p_set_bandwidth(struct dvb_frontend *demod, u8 BW_Idx)
static int dib7000p_sad_calib(struct dib7000p_state *state) static int dib7000p_sad_calib(struct dib7000p_state *state)
{ {
/* internal */ /* internal */
// dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is written in set_bandwidth // dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth
dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
dib7000p_write_word(state, 74, 776); // 0.625*3.3 / 4096 dib7000p_write_word(state, 74, 776); // 0.625*3.3 / 4096
...@@ -244,15 +297,24 @@ static int dib7000p_sad_calib(struct dib7000p_state *state) ...@@ -244,15 +297,24 @@ static int dib7000p_sad_calib(struct dib7000p_state *state)
static void dib7000p_reset_pll(struct dib7000p_state *state) static void dib7000p_reset_pll(struct dib7000p_state *state)
{ {
struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
u16 clk_cfg0;
/* force PLL bypass */
clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) |
(bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
dib7000p_write_word(state, 900, clk_cfg0);
/* P_pll_cfg */
dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset); dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
dib7000p_write_word(state, 900, ((bw->pll_ratio & 0x3f) << 9) | (bw->pll_bypass << 15) | (bw->modulo << 7) | (bw->ADClkSrc << 6) | clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
(bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0)); dib7000p_write_word(state, 900, clk_cfg0);
dib7000p_write_word(state, 18, ((bw->internal*1000) >> 16) & 0xffff); dib7000p_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff));
dib7000p_write_word(state, 19, (bw->internal*1000 ) & 0xffff); dib7000p_write_word(state, 19, (u16) ( (bw->internal*1000 ) & 0xffff));
dib7000p_write_word(state, 21, (bw->ifreq >> 16) & 0xffff); dib7000p_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff));
dib7000p_write_word(state, 22, (bw->ifreq ) & 0xffff); dib7000p_write_word(state, 22, (u16) ( (bw->ifreq ) & 0xffff));
dib7000p_write_word(state, 72, bw->sad_cfg); dib7000p_write_word(state, 72, bw->sad_cfg);
} }
...@@ -260,7 +322,7 @@ static void dib7000p_reset_pll(struct dib7000p_state *state) ...@@ -260,7 +322,7 @@ static void dib7000p_reset_pll(struct dib7000p_state *state)
static int dib7000p_reset_gpio(struct dib7000p_state *st) static int dib7000p_reset_gpio(struct dib7000p_state *st)
{ {
/* reset the GPIOs */ /* reset the GPIOs */
dprintk("-D- gpio dir: %x: gpio val: %x, gpio pwm pos: %x\n",st->gpio_dir, st->gpio_val,st->cfg.gpio_pwm_pos); dprintk( "gpio dir: %x: val: %x, pwm_pos: %x",st->gpio_dir, st->gpio_val,st->cfg.gpio_pwm_pos);
dib7000p_write_word(st, 1029, st->gpio_dir); dib7000p_write_word(st, 1029, st->gpio_dir);
dib7000p_write_word(st, 1030, st->gpio_val); dib7000p_write_word(st, 1030, st->gpio_val);
...@@ -273,6 +335,98 @@ static int dib7000p_reset_gpio(struct dib7000p_state *st) ...@@ -273,6 +335,98 @@ static int dib7000p_reset_gpio(struct dib7000p_state *st)
return 0; return 0;
} }
static u16 dib7000p_defaults[] =
{
// auto search configuration
3, 2,
0x0004,
0x1000,
0x0814, /* Equal Lock */
12, 6,
0x001b,
0x7740,
0x005b,
0x8d80,
0x01c9,
0xc380,
0x0000,
0x0080,
0x0000,
0x0090,
0x0001,
0xd4c0,
1, 26,
0x6680, // P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26
/* set ADC level to -16 */
11, 79,
(1 << 13) - 825 - 117,
(1 << 13) - 837 - 117,
(1 << 13) - 811 - 117,
(1 << 13) - 766 - 117,
(1 << 13) - 737 - 117,
(1 << 13) - 693 - 117,
(1 << 13) - 648 - 117,
(1 << 13) - 619 - 117,
(1 << 13) - 575 - 117,
(1 << 13) - 531 - 117,
(1 << 13) - 501 - 117,
1, 142,
0x0410, // P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16
/* disable power smoothing */
8, 145,
0,
0,
0,
0,
0,
0,
0,
0,
1, 154,
1 << 13, // P_fft_freq_dir=1, P_fft_nb_to_cut=0
1, 168,
0x0ccd, // P_pha3_thres, default 0x3000
// 1, 169,
// 0x0010, // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010
1, 183,
0x200f, // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005
5, 187,
0x023d, // P_adp_regul_cnt=573, default: 410
0x00a4, // P_adp_noise_cnt=
0x00a4, // P_adp_regul_ext
0x7ff0, // P_adp_noise_ext
0x3ccc, // P_adp_fil
1, 198,
0x800, // P_equal_thres_wgn
1, 222,
0x0010, // P_fec_ber_rs_len=2
1, 235,
0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
2, 901,
0x0006, // P_clk_cfg1
(3 << 10) | (1 << 6), // P_divclksel=3 P_divbitsel=1
1, 905,
0x2c8e, // Tuner IO bank: max drive (14mA) + divout pads max drive
0,
};
static int dib7000p_demod_reset(struct dib7000p_state *state) static int dib7000p_demod_reset(struct dib7000p_state *state)
{ {
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
...@@ -297,111 +451,307 @@ static int dib7000p_demod_reset(struct dib7000p_state *state) ...@@ -297,111 +451,307 @@ static int dib7000p_demod_reset(struct dib7000p_state *state)
dib7000p_reset_pll(state); dib7000p_reset_pll(state);
if (dib7000p_reset_gpio(state) != 0) if (dib7000p_reset_gpio(state) != 0)
dprintk("-E- GPIO reset was not successful.\n"); dprintk( "GPIO reset was not successful.");
if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0) if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
dprintk("-E- OUTPUT_MODE could not be resetted.\n"); dprintk( "OUTPUT_MODE could not be reset.");
/* unforce divstr regardless whether i2c enumeration was done or not */ /* unforce divstr regardless whether i2c enumeration was done or not */
dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1) ); dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1) );
dib7000p_set_bandwidth(state, 8000);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
dib7000p_sad_calib(state);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
// P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ...
if(state->cfg.tuner_is_baseband)
dib7000p_write_word(state, 36,0x0755);
else
dib7000p_write_word(state, 36,0x1f55);
dib7000p_write_tab(state, dib7000p_defaults);
dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
return 0; return 0;
} }
static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
{
u16 tmp = 0;
tmp = dib7000p_read_word(state, 903);
dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll
tmp = dib7000p_read_word(state, 900);
dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock
}
static void dib7000p_restart_agc(struct dib7000p_state *state) static void dib7000p_restart_agc(struct dib7000p_state *state)
{ {
// P_restart_iqc & P_restart_agc // P_restart_iqc & P_restart_agc
dib7000p_write_word(state, 770, 0x0c00); dib7000p_write_word(state, 770, (1 << 11) | (1 << 9));
dib7000p_write_word(state, 770, 0x0000); dib7000p_write_word(state, 770, 0x0000);
} }
static void dib7000p_update_lna(struct dib7000p_state *state) static int dib7000p_update_lna(struct dib7000p_state *state)
{ {
int i;
u16 dyn_gain; u16 dyn_gain;
// when there is no LNA to program return immediatly // when there is no LNA to program return immediatly
if (state->cfg.update_lna == NULL) if (state->cfg.update_lna) {
return;
for (i = 0; i < 5; i++) {
// read dyn_gain here (because it is demod-dependent and not tuner) // read dyn_gain here (because it is demod-dependent and not tuner)
dyn_gain = dib7000p_read_word(state, 394); dyn_gain = dib7000p_read_word(state, 394);
if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed
dib7000p_restart_agc(state); dib7000p_restart_agc(state);
msleep(5); return 1;
} else }
}
return 0;
}
static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
{
struct dibx000_agc_config *agc = NULL;
int i;
if (state->current_band == band && state->current_agc != NULL)
return 0;
state->current_band = band;
for (i = 0; i < state->cfg.agc_config_count; i++)
if (state->cfg.agc[i].band_caps & band) {
agc = &state->cfg.agc[i];
break; break;
} }
if (agc == NULL) {
dprintk( "no valid AGC configuration found for band 0x%02x",band);
return -EINVAL;
}
state->current_agc = agc;
/* AGC */
dib7000p_write_word(state, 75 , agc->setup );
dib7000p_write_word(state, 76 , agc->inv_gain );
dib7000p_write_word(state, 77 , agc->time_stabiliz );
dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);
// Demod AGC loop configuration
dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
/* AGC continued */
dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d",
state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
if (state->wbd_ref != 0)
dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
else
dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);
dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
dib7000p_write_word(state, 107, agc->agc1_max);
dib7000p_write_word(state, 108, agc->agc1_min);
dib7000p_write_word(state, 109, agc->agc2_max);
dib7000p_write_word(state, 110, agc->agc2_min);
dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
dib7000p_write_word(state, 112, agc->agc1_pt3);
dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
return 0;
} }
static void dib7000p_pll_clk_cfg(struct dib7000p_state *state) static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{ {
u16 tmp = 0; struct dib7000p_state *state = demod->demodulator_priv;
tmp = dib7000p_read_word(state, 903); int ret = -1;
dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll u8 *agc_state = &state->agc_state;
tmp = dib7000p_read_word(state, 900); u8 agc_split;
dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock
switch (state->agc_state) {
case 0:
// set power-up level: interf+analog+AGC
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_ADC_ON);
dib7000p_pll_clk_cfg(state);
if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0)
return -1;
ret = 7;
(*agc_state)++;
break;
case 1:
// AGC initialization
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 1);
dib7000p_write_word(state, 78, 32768);
if (!state->current_agc->perform_agc_softsplit) {
/* we are using the wbd - so slow AGC startup */
/* force 0 split on WBD and restart AGC */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
(*agc_state)++;
ret = 5;
} else {
/* default AGC startup */
(*agc_state) = 4;
/* wait AGC rough lock time */
ret = 7;
}
dib7000p_restart_agc(state);
break;
case 2: /* fast split search path after 5sec */
dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */
(*agc_state)++;
ret = 14;
break;
case 3: /* split search ended */
agc_split = (uint8_t)dib7000p_read_word(state, 396); /* store the split value for the next time */
dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */
dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */
dib7000p_restart_agc(state);
dprintk( "SPLIT %p: %hd", demod, agc_split);
(*agc_state)++;
ret = 5;
break;
case 4: /* LNA startup */
// wait AGC accurate lock time
ret = 7;
if (dib7000p_update_lna(state))
// wait only AGC rough lock time
ret = 5;
else // nothing was done, go to the next state
(*agc_state)++;
break;
case 5:
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 0);
(*agc_state)++;
break;
default:
break;
}
return ret;
} }
static void dib7000p_update_timf_freq(struct dib7000p_state *state) static void dib7000p_update_timf(struct dib7000p_state *state)
{ {
u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428); u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428);
state->timf = timf * 80 / (BW_INDEX_TO_KHZ(state->current_bandwidth) / 100); state->timf = timf * 160 / (state->current_bandwidth / 50);
dib7000p_write_word(state, 23, (u16) (timf >> 16)); dib7000p_write_word(state, 23, (u16) (timf >> 16));
dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
dprintk("-D- Updated timf_frequency: %d (default: %d)\n",state->timf, state->cfg.bw->timf); dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->cfg.bw->timf);
} }
static void dib7000p_set_channel(struct dib7000p_state *state, struct dibx000_ofdm_channel *ch, u8 seq) static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_frontend_parameters *ch, u8 seq)
{ {
u16 tmp, est[4]; // reg_26, reg_32, reg_33, reg_187, reg_188, reg_189, reg_190, reg_207, reg_208; u16 value, est[4];
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
/* nfft, guard, qam, alpha */ /* nfft, guard, qam, alpha */
dib7000p_write_word(state, 0, (ch->nfft << 7) | (ch->guard << 5) | (ch->nqam << 3) | (ch->vit_alpha)); value = 0;
switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
case /* 4K MODE */ 255: value |= (2 << 7); break;
default:
case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
}
switch (ch->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
case GUARD_INTERVAL_1_4: value |= (3 << 5); break;
default:
case GUARD_INTERVAL_1_8: value |= (2 << 5); break;
}
switch (ch->u.ofdm.constellation) {
case QPSK: value |= (0 << 3); break;
case QAM_16: value |= (1 << 3); break;
default:
case QAM_64: value |= (2 << 3); break;
}
switch (HIERARCHY_1) {
case HIERARCHY_2: value |= 2; break;
case HIERARCHY_4: value |= 4; break;
default:
case HIERARCHY_1: value |= 1; break;
}
dib7000p_write_word(state, 0, value);
dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */ dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */
/* P_dintl_native, P_dintlv_inv, P_vit_hrch, P_vit_code_rate, P_vit_select_hp */ /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
tmp = (ch->intlv_native << 6) | (ch->vit_hrch << 4) | (ch->vit_select_hp & 0x1); value = 0;
if (ch->vit_hrch == 0 || ch->vit_select_hp == 1) if (1 != 0)
tmp |= (ch->vit_code_rate_hp << 1); value |= (1 << 6);
else if (ch->u.ofdm.hierarchy_information == 1)
tmp |= (ch->vit_code_rate_lp << 1); value |= (1 << 4);
dib7000p_write_word(state, 208, tmp); if (1 == 1)
value |= 1;
/* P_dvsy_sync_wait */ switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
switch (ch->nfft) { case FEC_2_3: value |= (2 << 1); break;
case 1: tmp = 256; break; case FEC_3_4: value |= (3 << 1); break;
case 2: tmp = 128; break; case FEC_5_6: value |= (5 << 1); break;
case 0: case FEC_7_8: value |= (7 << 1); break;
default: tmp = 64; break; default:
case FEC_1_2: value |= (1 << 1); break;
} }
tmp *= ((1 << (ch->guard)) * 3 / 2); // add 50% SFN margin dib7000p_write_word(state, 208, value);
tmp <<= 4;
/* deactive the possibility of diversity reception if extended interleave */
/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
if (ch->intlv_native || ch->nfft == 1)
tmp |= (1 << 2) | (2 << 0);
dib7000p_write_word(state, 207, tmp);
/* offset loop parameters */
dib7000p_write_word(state, 26, 0x6680); // timf(6xxx) dib7000p_write_word(state, 26, 0x6680); // timf(6xxx)
dib7000p_write_word(state, 29, 0x1273); // isi inh1273 on1073 dib7000p_write_word(state, 29, 0x1273); // isi inh1273 on1073
dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3) dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3)
dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5) dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5)
/* P_dvsy_sync_wait */
switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_8K: value = 256; break;
case /* 4K MODE */ 255: value = 128; break;
case TRANSMISSION_MODE_2K:
default: value = 64; break;
}
switch (ch->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_16: value *= 2; break;
case GUARD_INTERVAL_1_8: value *= 4; break;
case GUARD_INTERVAL_1_4: value *= 8; break;
default:
case GUARD_INTERVAL_1_32: value *= 1; break;
}
state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO
/* deactive the possibility of diversity reception if extended interleaver */
state->div_force_off = !1 && ch->u.ofdm.transmission_mode != TRANSMISSION_MODE_8K;
dib7000p_set_diversity_in(&state->demod, state->div_state);
/* channel estimation fine configuration */ /* channel estimation fine configuration */
switch (ch->nqam) { switch (ch->u.ofdm.constellation) {
case 2: case QAM_64:
est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
break; break;
case 1: case QAM_16:
est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
...@@ -414,66 +764,45 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dibx000_of ...@@ -414,66 +764,45 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dibx000_of
est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
break; break;
} }
for (tmp = 0; tmp < 4; tmp++) for (value = 0; value < 4; value++)
dib7000p_write_word(state, 187 + tmp, est[tmp]); dib7000p_write_word(state, 187 + value, est[value]);
// set power-up level: interf+analog+AGC
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_ADC_ON);
dib7000p_pll_clk_cfg(state);
msleep(7);
// AGC initialization
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 1);
dib7000p_restart_agc(state);
// wait AGC rough lock time
msleep(5);
dib7000p_update_lna(state);
// wait AGC accurate lock time
msleep(7);
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 0);
} }
static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch) static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{ {
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
struct dibx000_ofdm_channel auto_ch; struct dvb_frontend_parameters schan;
u32 value; u32 value, factor;
INIT_OFDM_CHANNEL(&auto_ch); schan = *ch;
auto_ch.RF_kHz = ch->RF_kHz; schan.u.ofdm.constellation = QAM_64;
auto_ch.Bw = ch->Bw; schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
auto_ch.nqam = 2; schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
auto_ch.guard = 0; schan.u.ofdm.code_rate_HP = FEC_2_3;
auto_ch.nfft = 1; schan.u.ofdm.code_rate_LP = FEC_3_4;
auto_ch.vit_alpha = 1; schan.u.ofdm.hierarchy_information = 0;
auto_ch.vit_select_hp = 1;
auto_ch.vit_code_rate_hp = 2; dib7000p_set_channel(state, &schan, 7);
auto_ch.vit_code_rate_lp = 3;
auto_ch.vit_hrch = 0; factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth);
auto_ch.intlv_native = 1; if (factor >= 5000)
factor = 1;
dib7000p_set_channel(state, &auto_ch, 7); else
factor = 6;
// always use the setting for 8MHz here lock_time for 7,6 MHz are longer // always use the setting for 8MHz here lock_time for 7,6 MHz are longer
value = 30 * state->cfg.bw->internal; value = 30 * state->cfg.bw->internal * factor;
dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time
value = 100 * state->cfg.bw->internal; value = 100 * state->cfg.bw->internal * factor;
dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time
value = 500 * state->cfg.bw->internal; value = 500 * state->cfg.bw->internal * factor;
dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time
value = dib7000p_read_word(state, 0); value = dib7000p_read_word(state, 0);
dib7000p_write_word(state, 0, (1 << 9) | value); dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
dib7000p_read_word(state, 1284); dib7000p_read_word(state, 1284);
dib7000p_write_word(state, 0, (u16) value); dib7000p_write_word(state, 0, (u16) value);
...@@ -494,7 +823,95 @@ static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) ...@@ -494,7 +823,95 @@ static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
return 0; // still pending return 0; // still pending
} }
static int dib7000p_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch) static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
{
static s16 notch[]={16143, 14402, 12238, 9713, 6902, 3888, 759, -2392};
static u8 sine [] ={0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126,
128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146,
147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165,
166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182,
183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212,
213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235,
235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243,
244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255};
u32 xtal = state->cfg.bw->xtal_hz / 1000;
int f_rel = ( (rf_khz + xtal/2) / xtal) * xtal - rf_khz;
int k;
int coef_re[8],coef_im[8];
int bw_khz = bw;
u32 pha;
dprintk( "relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal);
if (f_rel < -bw_khz/2 || f_rel > bw_khz/2)
return;
bw_khz /= 100;
dib7000p_write_word(state, 142 ,0x0610);
for (k = 0; k < 8; k++) {
pha = ((f_rel * (k+1) * 112 * 80/bw_khz) /1000) & 0x3ff;
if (pha==0) {
coef_re[k] = 256;
coef_im[k] = 0;
} else if(pha < 256) {
coef_re[k] = sine[256-(pha&0xff)];
coef_im[k] = sine[pha&0xff];
} else if (pha == 256) {
coef_re[k] = 0;
coef_im[k] = 256;
} else if (pha < 512) {
coef_re[k] = -sine[pha&0xff];
coef_im[k] = sine[256 - (pha&0xff)];
} else if (pha == 512) {
coef_re[k] = -256;
coef_im[k] = 0;
} else if (pha < 768) {
coef_re[k] = -sine[256-(pha&0xff)];
coef_im[k] = -sine[pha&0xff];
} else if (pha == 768) {
coef_re[k] = 0;
coef_im[k] = -256;
} else {
coef_re[k] = sine[pha&0xff];
coef_im[k] = -sine[256 - (pha&0xff)];
}
coef_re[k] *= notch[k];
coef_re[k] += (1<<14);
if (coef_re[k] >= (1<<24))
coef_re[k] = (1<<24) - 1;
coef_re[k] /= (1<<15);
coef_im[k] *= notch[k];
coef_im[k] += (1<<14);
if (coef_im[k] >= (1<<24))
coef_im[k] = (1<<24)-1;
coef_im[k] /= (1<<15);
dprintk( "PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]);
dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
}
dib7000p_write_word(state,143 ,0);
}
static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{ {
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
u16 tmp = 0; u16 tmp = 0;
...@@ -520,28 +937,31 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel ...@@ -520,28 +937,31 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel
/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
tmp = (6 << 8) | 0x80; tmp = (6 << 8) | 0x80;
switch (ch->nfft) { switch (ch->u.ofdm.transmission_mode) {
case 0: tmp |= (7 << 12); break; case TRANSMISSION_MODE_2K: tmp |= (7 << 12); break;
case 1: tmp |= (9 << 12); break; case /* 4K MODE */ 255: tmp |= (8 << 12); break;
case 2: tmp |= (8 << 12); break; default:
case TRANSMISSION_MODE_8K: tmp |= (9 << 12); break;
} }
dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */ dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */
/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
tmp = (0 << 4); tmp = (0 << 4);
switch (ch->nfft) { switch (ch->u.ofdm.transmission_mode) {
case 0: tmp |= 0x6; break; case TRANSMISSION_MODE_2K: tmp |= 0x6; break;
case 1: tmp |= 0x8; break; case /* 4K MODE */ 255: tmp |= 0x7; break;
case 2: tmp |= 0x7; break; default:
case TRANSMISSION_MODE_8K: tmp |= 0x8; break;
} }
dib7000p_write_word(state, 32, tmp); dib7000p_write_word(state, 32, tmp);
/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
tmp = (0 << 4); tmp = (0 << 4);
switch (ch->nfft) { switch (ch->u.ofdm.transmission_mode) {
case 0: tmp |= 0x6; break; case TRANSMISSION_MODE_2K: tmp |= 0x6; break;
case 1: tmp |= 0x8; break; case /* 4K MODE */ 255: tmp |= 0x7; break;
case 2: tmp |= 0x7; break; default:
case TRANSMISSION_MODE_8K: tmp |= 0x8; break;
} }
dib7000p_write_word(state, 33, tmp); dib7000p_write_word(state, 33, tmp);
...@@ -557,131 +977,21 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel ...@@ -557,131 +977,21 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel
// we achieved a lock - it's time to update the osc freq // we achieved a lock - it's time to update the osc freq
if ((tmp >> 6) & 0x1) if ((tmp >> 6) & 0x1)
dib7000p_update_timf_freq(state); dib7000p_update_timf(state);
if (state->cfg.spur_protect)
dib7000p_spur_protect(state, ch->frequency/1000, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
return 0; return 0;
} }
static int dib7000p_init(struct dvb_frontend *demod) static int dib7000p_wakeup(struct dvb_frontend *demod)
{ {
struct dibx000_agc_config *agc;
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
int ret = 0;
// Demodulator default configuration
agc = state->cfg.agc;
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
return 0;
/* AGC */
ret |= dib7000p_write_word(state, 75 , agc->setup );
ret |= dib7000p_write_word(state, 76 , agc->inv_gain );
ret |= dib7000p_write_word(state, 77 , agc->time_stabiliz );
ret |= dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);
// Demod AGC loop configuration
ret |= dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
ret |= dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
/* AGC continued */
dprintk("-D- WBD: ref: %d, sel: %d, active: %d, alpha: %d\n",
state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
if (state->wbd_ref != 0)
ret |= dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
else
ret |= dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);
ret |= dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) );
ret |= dib7000p_write_word(state, 107, agc->agc1_max);
ret |= dib7000p_write_word(state, 108, agc->agc1_min);
ret |= dib7000p_write_word(state, 109, agc->agc2_max);
ret |= dib7000p_write_word(state, 110, agc->agc2_min);
ret |= dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2 );
ret |= dib7000p_write_word(state, 112, agc->agc1_pt3);
ret |= dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
ret |= dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
ret |= dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
/* disable power smoothing */
ret |= dib7000p_write_word(state, 145, 0);
ret |= dib7000p_write_word(state, 146, 0);
ret |= dib7000p_write_word(state, 147, 0);
ret |= dib7000p_write_word(state, 148, 0);
ret |= dib7000p_write_word(state, 149, 0);
ret |= dib7000p_write_word(state, 150, 0);
ret |= dib7000p_write_word(state, 151, 0);
ret |= dib7000p_write_word(state, 152, 0);
// P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26
ret |= dib7000p_write_word(state, 26 ,0x6680);
// P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16
ret |= dib7000p_write_word(state, 142,0x0410);
// P_fft_freq_dir=1, P_fft_nb_to_cut=0
ret |= dib7000p_write_word(state, 154,1 << 13);
// P_pha3_thres, default 0x3000
ret |= dib7000p_write_word(state, 168,0x0ccd);
// P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010
//ret |= dib7000p_write_word(state, 169,0x0010);
// P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005
ret |= dib7000p_write_word(state, 183,0x200f);
// P_adp_regul_cnt=573, default: 410
ret |= dib7000p_write_word(state, 187,0x023d);
// P_adp_noise_cnt=
ret |= dib7000p_write_word(state, 188,0x00a4);
// P_adp_regul_ext
ret |= dib7000p_write_word(state, 189,0x00a4);
// P_adp_noise_ext
ret |= dib7000p_write_word(state, 190,0x7ff0);
// P_adp_fil
ret |= dib7000p_write_word(state, 191,0x3ccc);
ret |= dib7000p_write_word(state, 222,0x0010);
// P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
ret |= dib7000p_write_word(state, 235,0x0062);
// P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ...
if(state->cfg.tuner_is_baseband)
ret |= dib7000p_write_word(state, 36,0x0755);
else
ret |= dib7000p_write_word(state, 36,0x1f55);
// auto search configuration
ret |= dib7000p_write_word(state, 2 ,0x0004);
ret |= dib7000p_write_word(state, 3 ,0x1000);
/* Equal Lock */
ret |= dib7000p_write_word(state, 4 ,0x0814);
ret |= dib7000p_write_word(state, 6 ,0x001b);
ret |= dib7000p_write_word(state, 7 ,0x7740);
ret |= dib7000p_write_word(state, 8 ,0x005b);
ret |= dib7000p_write_word(state, 9 ,0x8d80);
ret |= dib7000p_write_word(state, 10 ,0x01c9);
ret |= dib7000p_write_word(state, 11 ,0xc380);
ret |= dib7000p_write_word(state, 12 ,0x0000);
ret |= dib7000p_write_word(state, 13 ,0x0080);
ret |= dib7000p_write_word(state, 14 ,0x0000);
ret |= dib7000p_write_word(state, 15 ,0x0090);
ret |= dib7000p_write_word(state, 16 ,0x0001);
ret |= dib7000p_write_word(state, 17 ,0xd4c0);
// P_clk_cfg1
ret |= dib7000p_write_word(state, 901, 0x0006);
// P_divclksel=3 P_divbitsel=1
ret |= dib7000p_write_word(state, 902, (3 << 10) | (1 << 6));
// Tuner IO bank: max drive (14mA) + divout pads max drive
ret |= dib7000p_write_word(state, 905, 0x2c8e);
ret |= dib7000p_set_bandwidth(&state->demod, BANDWIDTH_8_MHZ);
dib7000p_sad_calib(state);
return ret;
} }
static int dib7000p_sleep(struct dvb_frontend *demod) static int dib7000p_sleep(struct dvb_frontend *demod)
...@@ -693,16 +1003,16 @@ static int dib7000p_sleep(struct dvb_frontend *demod) ...@@ -693,16 +1003,16 @@ static int dib7000p_sleep(struct dvb_frontend *demod)
static int dib7000p_identify(struct dib7000p_state *st) static int dib7000p_identify(struct dib7000p_state *st)
{ {
u16 value; u16 value;
dprintk("-I- DiB7000PC: checking demod on I2C address: %d (%x)\n", dprintk( "checking demod on I2C address: %d (%x)",
st->i2c_addr, st->i2c_addr); st->i2c_addr, st->i2c_addr);
if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
dprintk("-E- DiB7000PC: wrong Vendor ID (read=0x%x)\n",value); dprintk( "wrong Vendor ID (read=0x%x)",value);
return -EREMOTEIO; return -EREMOTEIO;
} }
if ((value = dib7000p_read_word(st, 769)) != 0x4000) { if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
dprintk("-E- DiB7000PC: wrong Device ID (%x)\n",value); dprintk( "wrong Device ID (%x)",value);
return -EREMOTEIO; return -EREMOTEIO;
} }
...@@ -772,41 +1082,45 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe, ...@@ -772,41 +1082,45 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep) struct dvb_frontend_parameters *fep)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
struct dibx000_ofdm_channel ch; int time;
INIT_OFDM_CHANNEL(&ch);
FEP2DIB(fep,&ch);
state->current_bandwidth = fep->u.ofdm.bandwidth; state->current_bandwidth = fep->u.ofdm.bandwidth;
dib7000p_set_bandwidth(fe, fep->u.ofdm.bandwidth); dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth));
if (fe->ops.tuner_ops.set_params) if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe, fep); fe->ops.tuner_ops.set_params(fe, fep);
/* start up the AGC */
state->agc_state = 0;
do {
time = dib7000p_agc_startup(fe, fep);
if (time != -1)
msleep(time);
} while (time != -1);
if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ||
fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.constellation == QAM_AUTO ||
fep->u.ofdm.code_rate_HP == FEC_AUTO) { fep->u.ofdm.code_rate_HP == FEC_AUTO) {
int i = 800, found; int i = 800, found;
dib7000p_autosearch_start(fe, &ch); dib7000p_autosearch_start(fe, fep);
do { do {
msleep(1); msleep(1);
found = dib7000p_autosearch_is_irq(fe); found = dib7000p_autosearch_is_irq(fe);
} while (found == 0 && i--); } while (found == 0 && i--);
dprintk("autosearch returns: %d\n",found); dprintk("autosearch returns: %d",found);
if (found == 0 || found == 1) if (found == 0 || found == 1)
return 0; // no channel found return 0; // no channel found
dib7000p_get_frontend(fe, fep); dib7000p_get_frontend(fe, fep);
FEP2DIB(fep, &ch);
} }
/* make this a config parameter */ /* make this a config parameter */
dib7000p_set_output_mode(state, OUTMODE_MPEG2_FIFO); dib7000p_set_output_mode(state, OUTMODE_MPEG2_FIFO);
return dib7000p_tune(fe, &ch); return dib7000p_tune(fe, fep);
} }
static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat) static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat)
...@@ -884,7 +1198,7 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap) ...@@ -884,7 +1198,7 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap)
if (i2c_transfer(i2c_adap, msg, 2) == 2) if (i2c_transfer(i2c_adap, msg, 2) == 2)
if (rx[0] == 0x01 && rx[1] == 0xb3) { if (rx[0] == 0x01 && rx[1] == 0xb3) {
dprintk("-D- DiB7000PC detected\n"); dprintk("-D- DiB7000PC detected");
return 1; return 1;
} }
...@@ -892,11 +1206,11 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap) ...@@ -892,11 +1206,11 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap)
if (i2c_transfer(i2c_adap, msg, 2) == 2) if (i2c_transfer(i2c_adap, msg, 2) == 2)
if (rx[0] == 0x01 && rx[1] == 0xb3) { if (rx[0] == 0x01 && rx[1] == 0xb3) {
dprintk("-D- DiB7000PC detected\n"); dprintk("-D- DiB7000PC detected");
return 1; return 1;
} }
dprintk("-D- DiB7000PC not detected\n"); dprintk("-D- DiB7000PC not detected");
return 0; return 0;
} }
EXPORT_SYMBOL(dib7000pc_detection); EXPORT_SYMBOL(dib7000pc_detection);
...@@ -934,7 +1248,7 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau ...@@ -934,7 +1248,7 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau
/* set new i2c address and force divstart */ /* set new i2c address and force divstart */
dib7000p_write_word(&st, 1285, (new_addr << 2) | 0x2); dib7000p_write_word(&st, 1285, (new_addr << 2) | 0x2);
dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
} }
for (k = 0; k < no_of_demods; k++) { for (k = 0; k < no_of_demods; k++) {
...@@ -1005,7 +1319,7 @@ static struct dvb_frontend_ops dib7000p_ops = { ...@@ -1005,7 +1319,7 @@ static struct dvb_frontend_ops dib7000p_ops = {
.release = dib7000p_release, .release = dib7000p_release,
.init = dib7000p_init, .init = dib7000p_wakeup,
.sleep = dib7000p_sleep, .sleep = dib7000p_sleep,
.set_frontend = dib7000p_set_frontend, .set_frontend = dib7000p_set_frontend,
......
...@@ -9,6 +9,7 @@ struct dib7000p_config { ...@@ -9,6 +9,7 @@ struct dib7000p_config {
u8 tuner_is_baseband; u8 tuner_is_baseband;
int (*update_lna) (struct dvb_frontend *, u16 agc_global); int (*update_lna) (struct dvb_frontend *, u16 agc_global);
u8 agc_config_count;
struct dibx000_agc_config *agc; struct dibx000_agc_config *agc;
struct dibx000_bandwidth_config *bw; struct dibx000_bandwidth_config *bw;
...@@ -27,15 +28,19 @@ struct dib7000p_config { ...@@ -27,15 +28,19 @@ struct dib7000p_config {
u8 quartz_direct; u8 quartz_direct;
u8 spur_protect;
int (*agc_control) (struct dvb_frontend *, u8 before); int (*agc_control) (struct dvb_frontend *, u8 before);
}; };
#define DEFAULT_DIB7000P_I2C_ADDRESS 18 #define DEFAULT_DIB7000P_I2C_ADDRESS 18
extern struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg); extern struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg);
extern int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]);
extern struct i2c_adapter * dib7000p_get_i2c_master(struct dvb_frontend *, enum dibx000_i2c_interface, int); extern struct i2c_adapter * dib7000p_get_i2c_master(struct dvb_frontend *, enum dibx000_i2c_interface, int);
extern int dib7000pc_detection(struct i2c_adapter *i2c_adap); extern int dib7000pc_detection(struct i2c_adapter *i2c_adap);
extern int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]);
/* TODO /* TODO
extern INT dib7000p_set_gpio(struct dibDemod *demod, UCHAR num, UCHAR dir, UCHAR val); extern INT dib7000p_set_gpio(struct dibDemod *demod, UCHAR num, UCHAR dir, UCHAR val);
extern INT dib7000p_enable_vbg_voltage(struct dibDemod *demod); extern INT dib7000p_enable_vbg_voltage(struct dibDemod *demod);
......
...@@ -111,6 +111,8 @@ struct dibx000_bandwidth_config { ...@@ -111,6 +111,8 @@ struct dibx000_bandwidth_config {
u32 ifreq; u32 ifreq;
u32 timf; u32 timf;
u32 xtal_hz;
}; };
enum dibx000_adc_states { enum dibx000_adc_states {
...@@ -122,7 +124,7 @@ enum dibx000_adc_states { ...@@ -122,7 +124,7 @@ enum dibx000_adc_states {
DIBX000_VBG_DISABLE, DIBX000_VBG_DISABLE,
}; };
#define BW_INDEX_TO_KHZ(v) ( (v) == BANDWIDTH_8_MHZ ? 8000 : \ #define BANDWIDTH_TO_KHZ(v) ( (v) == BANDWIDTH_8_MHZ ? 8000 : \
(v) == BANDWIDTH_7_MHZ ? 7000 : \ (v) == BANDWIDTH_7_MHZ ? 7000 : \
(v) == BANDWIDTH_6_MHZ ? 6000 : 8000 ) (v) == BANDWIDTH_6_MHZ ? 6000 : 8000 )
...@@ -133,45 +135,6 @@ enum dibx000_adc_states { ...@@ -133,45 +135,6 @@ enum dibx000_adc_states {
#define OUTMODE_MPEG2_SERIAL 7 #define OUTMODE_MPEG2_SERIAL 7
#define OUTMODE_DIVERSITY 4 #define OUTMODE_DIVERSITY 4
#define OUTMODE_MPEG2_FIFO 5 #define OUTMODE_MPEG2_FIFO 5
#define OUTMODE_ANALOG_ADC 6
/* I hope I can get rid of the following kludge in the near future */
struct dibx000_ofdm_channel {
u32 RF_kHz;
u8 Bw;
s16 nfft;
s16 guard;
s16 nqam;
s16 vit_hrch;
s16 vit_select_hp;
s16 vit_alpha;
s16 vit_code_rate_hp;
s16 vit_code_rate_lp;
u8 intlv_native;
};
#define FEP2DIB(fep,ch) \
(ch)->RF_kHz = (fep)->frequency / 1000; \
(ch)->Bw = (fep)->u.ofdm.bandwidth; \
(ch)->nfft = (fep)->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ? -1 : (fep)->u.ofdm.transmission_mode; \
(ch)->guard = (fep)->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ? -1 : (fep)->u.ofdm.guard_interval; \
(ch)->nqam = (fep)->u.ofdm.constellation == QAM_AUTO ? -1 : (fep)->u.ofdm.constellation == QAM_64 ? 2 : (fep)->u.ofdm.constellation; \
(ch)->vit_hrch = 0; /* linux-dvb is not prepared for HIERARCHICAL TRANSMISSION */ \
(ch)->vit_select_hp = 1; \
(ch)->vit_alpha = 1; \
(ch)->vit_code_rate_hp = (fep)->u.ofdm.code_rate_HP == FEC_AUTO ? -1 : (fep)->u.ofdm.code_rate_HP; \
(ch)->vit_code_rate_lp = (fep)->u.ofdm.code_rate_LP == FEC_AUTO ? -1 : (fep)->u.ofdm.code_rate_LP; \
(ch)->intlv_native = 1;
#define INIT_OFDM_CHANNEL(ch) do {\
(ch)->Bw = 0; \
(ch)->nfft = -1; \
(ch)->guard = -1; \
(ch)->nqam = -1; \
(ch)->vit_hrch = -1; \
(ch)->vit_select_hp = -1; \
(ch)->vit_alpha = -1; \
(ch)->vit_code_rate_hp = -1; \
(ch)->vit_code_rate_lp = -1; \
} while (0)
#endif #endif
...@@ -159,7 +159,7 @@ static int mt2266_set_params(struct dvb_frontend *fe, struct dvb_frontend_parame ...@@ -159,7 +159,7 @@ static int mt2266_set_params(struct dvb_frontend *fe, struct dvb_frontend_parame
b[3] = tune >> 13; b[3] = tune >> 13;
mt2266_writeregs(priv,b,4); mt2266_writeregs(priv,b,4);
dprintk("set_parms: tune=%d band=%d\n",(int)tune,(int)lnaband); dprintk("set_parms: tune=%d band=%d",(int)tune,(int)lnaband);
dprintk("set_parms: [1..3]: %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3]); dprintk("set_parms: [1..3]: %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3]);
b[0] = 0x05; b[0] = 0x05;
...@@ -176,7 +176,7 @@ static int mt2266_set_params(struct dvb_frontend *fe, struct dvb_frontend_parame ...@@ -176,7 +176,7 @@ static int mt2266_set_params(struct dvb_frontend *fe, struct dvb_frontend_parame
msleep(10); msleep(10);
i++; i++;
} while (i<10); } while (i<10);
dprintk("Lock when i=%i\n",(int)i); dprintk("Lock when i=%i",(int)i);
return ret; return ret;
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment