Commit b9ed919f authored by Ben Skeggs's avatar Ben Skeggs

drm/nouveau/drm/pm: remove everything except the hwmon interfaces to THERM

Signed-off-by: default avatarBen Skeggs <bskeggs@redhat.com>
parent c52f4fa6
...@@ -270,9 +270,7 @@ include $(src)/dispnv04/Makefile ...@@ -270,9 +270,7 @@ include $(src)/dispnv04/Makefile
nouveau-y += nv50_display.o nouveau-y += nv50_display.o
# drm/pm # drm/pm
nouveau-y += nouveau_pm.o nouveau_volt.o nouveau_perf.o nouveau-y += nouveau_hwmon.o
nouveau-y += nv04_pm.o nv40_pm.o nv50_pm.o nva3_pm.o nvc0_pm.o
nouveau-y += nouveau_mem.o
# other random bits # other random bits
nouveau-$(CONFIG_COMPAT) += nouveau_ioc32.o nouveau-$(CONFIG_COMPAT) += nouveau_ioc32.o
......
...@@ -46,7 +46,7 @@ ...@@ -46,7 +46,7 @@
#include "nouveau_gem.h" #include "nouveau_gem.h"
#include "nouveau_agp.h" #include "nouveau_agp.h"
#include "nouveau_vga.h" #include "nouveau_vga.h"
#include "nouveau_pm.h" #include "nouveau_hwmon.h"
#include "nouveau_acpi.h" #include "nouveau_acpi.h"
#include "nouveau_bios.h" #include "nouveau_bios.h"
#include "nouveau_ioctl.h" #include "nouveau_ioctl.h"
...@@ -384,8 +384,7 @@ nouveau_drm_load(struct drm_device *dev, unsigned long flags) ...@@ -384,8 +384,7 @@ nouveau_drm_load(struct drm_device *dev, unsigned long flags)
goto fail_dispinit; goto fail_dispinit;
} }
nouveau_pm_init(dev); nouveau_hwmon_init(dev);
nouveau_accel_init(drm); nouveau_accel_init(drm);
nouveau_fbcon_init(dev); nouveau_fbcon_init(dev);
...@@ -421,8 +420,7 @@ nouveau_drm_unload(struct drm_device *dev) ...@@ -421,8 +420,7 @@ nouveau_drm_unload(struct drm_device *dev)
pm_runtime_get_sync(dev->dev); pm_runtime_get_sync(dev->dev);
nouveau_fbcon_fini(dev); nouveau_fbcon_fini(dev);
nouveau_accel_fini(drm); nouveau_accel_fini(drm);
nouveau_hwmon_fini(dev);
nouveau_pm_fini(dev);
if (dev->mode_config.num_crtc) if (dev->mode_config.num_crtc)
nouveau_display_fini(dev); nouveau_display_fini(dev);
...@@ -562,7 +560,6 @@ nouveau_do_resume(struct drm_device *dev) ...@@ -562,7 +560,6 @@ nouveau_do_resume(struct drm_device *dev)
} }
nouveau_run_vbios_init(dev); nouveau_run_vbios_init(dev);
nouveau_pm_resume(dev);
if (dev->mode_config.num_crtc) { if (dev->mode_config.num_crtc) {
NV_INFO(drm, "resuming display...\n"); NV_INFO(drm, "resuming display...\n");
......
...@@ -129,7 +129,7 @@ struct nouveau_drm { ...@@ -129,7 +129,7 @@ struct nouveau_drm {
struct backlight_device *backlight; struct backlight_device *backlight;
/* power management */ /* power management */
struct nouveau_pm *pm; struct nouveau_hwmon *hwmon;
/* display power reference */ /* display power reference */
bool have_disp_power_ref; bool have_disp_power_ref;
......
...@@ -32,369 +32,12 @@ ...@@ -32,369 +32,12 @@
#include <drm/drmP.h> #include <drm/drmP.h>
#include "nouveau_drm.h" #include "nouveau_drm.h"
#include "nouveau_pm.h" #include "nouveau_hwmon.h"
#include <subdev/gpio.h> #include <subdev/gpio.h>
#include <subdev/timer.h> #include <subdev/timer.h>
#include <subdev/therm.h> #include <subdev/therm.h>
MODULE_PARM_DESC(perflvl, "Performance level (default: boot)");
static char *nouveau_perflvl;
module_param_named(perflvl, nouveau_perflvl, charp, 0400);
MODULE_PARM_DESC(perflvl_wr, "Allow perflvl changes (warning: dangerous!)");
static int nouveau_perflvl_wr;
module_param_named(perflvl_wr, nouveau_perflvl_wr, int, 0400);
static int
nouveau_pm_perflvl_aux(struct drm_device *dev, struct nouveau_pm_level *perflvl,
struct nouveau_pm_level *a, struct nouveau_pm_level *b)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_pm *pm = nouveau_pm(dev);
struct nouveau_therm *therm = nouveau_therm(drm->device);
int ret;
/*XXX: not on all boards, we should control based on temperature
* on recent boards.. or maybe on some other factor we don't
* know about?
*/
if (therm && therm->fan_set &&
a->fanspeed && b->fanspeed && b->fanspeed > a->fanspeed) {
ret = therm->fan_set(therm, perflvl->fanspeed);
if (ret && ret != -ENODEV) {
NV_ERROR(drm, "fanspeed set failed: %d\n", ret);
}
}
if (pm->voltage.supported && pm->voltage_set) {
if (perflvl->volt_min && b->volt_min > a->volt_min) {
ret = pm->voltage_set(dev, perflvl->volt_min);
if (ret) {
NV_ERROR(drm, "voltage set failed: %d\n", ret);
return ret;
}
}
}
return 0;
}
static int
nouveau_pm_perflvl_set(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nouveau_pm *pm = nouveau_pm(dev);
void *state;
int ret;
if (perflvl == pm->cur)
return 0;
ret = nouveau_pm_perflvl_aux(dev, perflvl, pm->cur, perflvl);
if (ret)
return ret;
state = pm->clocks_pre(dev, perflvl);
if (IS_ERR(state)) {
ret = PTR_ERR(state);
goto error;
}
ret = pm->clocks_set(dev, state);
if (ret)
goto error;
ret = nouveau_pm_perflvl_aux(dev, perflvl, perflvl, pm->cur);
if (ret)
return ret;
pm->cur = perflvl;
return 0;
error:
/* restore the fan speed and voltage before leaving */
nouveau_pm_perflvl_aux(dev, perflvl, perflvl, pm->cur);
return ret;
}
void
nouveau_pm_trigger(struct drm_device *dev)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_timer *ptimer = nouveau_timer(drm->device);
struct nouveau_pm *pm = nouveau_pm(dev);
struct nouveau_pm_profile *profile = NULL;
struct nouveau_pm_level *perflvl = NULL;
int ret;
/* select power profile based on current power source */
if (power_supply_is_system_supplied())
profile = pm->profile_ac;
else
profile = pm->profile_dc;
if (profile != pm->profile) {
pm->profile->func->fini(pm->profile);
pm->profile = profile;
pm->profile->func->init(pm->profile);
}
/* select performance level based on profile */
perflvl = profile->func->select(profile);
/* change perflvl, if necessary */
if (perflvl != pm->cur) {
u64 time0 = ptimer->read(ptimer);
NV_INFO(drm, "setting performance level: %d", perflvl->id);
ret = nouveau_pm_perflvl_set(dev, perflvl);
if (ret)
NV_INFO(drm, "> reclocking failed: %d\n\n", ret);
NV_INFO(drm, "> reclocking took %lluns\n\n",
ptimer->read(ptimer) - time0);
}
}
static struct nouveau_pm_profile *
profile_find(struct drm_device *dev, const char *string)
{
struct nouveau_pm *pm = nouveau_pm(dev);
struct nouveau_pm_profile *profile;
list_for_each_entry(profile, &pm->profiles, head) {
if (!strncmp(profile->name, string, sizeof(profile->name)))
return profile;
}
return NULL;
}
static int
nouveau_pm_profile_set(struct drm_device *dev, const char *profile)
{
struct nouveau_pm *pm = nouveau_pm(dev);
struct nouveau_pm_profile *ac = NULL, *dc = NULL;
char string[16], *cur = string, *ptr;
/* safety precaution, for now */
if (nouveau_perflvl_wr != 7777)
return -EPERM;
strncpy(string, profile, sizeof(string));
string[sizeof(string) - 1] = 0;
if ((ptr = strchr(string, '\n')))
*ptr = '\0';
ptr = strsep(&cur, ",");
if (ptr)
ac = profile_find(dev, ptr);
ptr = strsep(&cur, ",");
if (ptr)
dc = profile_find(dev, ptr);
else
dc = ac;
if (ac == NULL || dc == NULL)
return -EINVAL;
pm->profile_ac = ac;
pm->profile_dc = dc;
nouveau_pm_trigger(dev);
return 0;
}
static void
nouveau_pm_static_dummy(struct nouveau_pm_profile *profile)
{
}
static struct nouveau_pm_level *
nouveau_pm_static_select(struct nouveau_pm_profile *profile)
{
return container_of(profile, struct nouveau_pm_level, profile);
}
const struct nouveau_pm_profile_func nouveau_pm_static_profile_func = {
.destroy = nouveau_pm_static_dummy,
.init = nouveau_pm_static_dummy,
.fini = nouveau_pm_static_dummy,
.select = nouveau_pm_static_select,
};
static int
nouveau_pm_perflvl_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_pm *pm = nouveau_pm(dev);
struct nouveau_therm *therm = nouveau_therm(drm->device);
int ret;
memset(perflvl, 0, sizeof(*perflvl));
if (pm->clocks_get) {
ret = pm->clocks_get(dev, perflvl);
if (ret)
return ret;
}
if (pm->voltage.supported && pm->voltage_get) {
ret = pm->voltage_get(dev);
if (ret > 0) {
perflvl->volt_min = ret;
perflvl->volt_max = ret;
}
}
if (therm && therm->fan_get) {
ret = therm->fan_get(therm);
if (ret >= 0)
perflvl->fanspeed = ret;
}
nouveau_mem_timing_read(dev, &perflvl->timing);
return 0;
}
static void
nouveau_pm_perflvl_info(struct nouveau_pm_level *perflvl, char *ptr, int len)
{
char c[16], s[16], v[32], f[16], m[16];
c[0] = '\0';
if (perflvl->core)
snprintf(c, sizeof(c), " core %dMHz", perflvl->core / 1000);
s[0] = '\0';
if (perflvl->shader)
snprintf(s, sizeof(s), " shader %dMHz", perflvl->shader / 1000);
m[0] = '\0';
if (perflvl->memory)
snprintf(m, sizeof(m), " memory %dMHz", perflvl->memory / 1000);
v[0] = '\0';
if (perflvl->volt_min && perflvl->volt_min != perflvl->volt_max) {
snprintf(v, sizeof(v), " voltage %dmV-%dmV",
perflvl->volt_min / 1000, perflvl->volt_max / 1000);
} else
if (perflvl->volt_min) {
snprintf(v, sizeof(v), " voltage %dmV",
perflvl->volt_min / 1000);
}
f[0] = '\0';
if (perflvl->fanspeed)
snprintf(f, sizeof(f), " fanspeed %d%%", perflvl->fanspeed);
snprintf(ptr, len, "%s%s%s%s%s\n", c, s, m, v, f);
}
static ssize_t
nouveau_pm_get_perflvl_info(struct device *d,
struct device_attribute *a, char *buf)
{
struct nouveau_pm_level *perflvl =
container_of(a, struct nouveau_pm_level, dev_attr);
char *ptr = buf;
int len = PAGE_SIZE;
snprintf(ptr, len, "%d:", perflvl->id);
ptr += strlen(buf);
len -= strlen(buf);
nouveau_pm_perflvl_info(perflvl, ptr, len);
return strlen(buf);
}
static ssize_t
nouveau_pm_get_perflvl(struct device *d, struct device_attribute *a, char *buf)
{
struct drm_device *dev = pci_get_drvdata(to_pci_dev(d));
struct nouveau_pm *pm = nouveau_pm(dev);
struct nouveau_pm_level cur;
int len = PAGE_SIZE, ret;
char *ptr = buf;
snprintf(ptr, len, "profile: %s, %s\nc:",
pm->profile_ac->name, pm->profile_dc->name);
ptr += strlen(buf);
len -= strlen(buf);
ret = nouveau_pm_perflvl_get(dev, &cur);
if (ret == 0)
nouveau_pm_perflvl_info(&cur, ptr, len);
return strlen(buf);
}
static ssize_t
nouveau_pm_set_perflvl(struct device *d, struct device_attribute *a,
const char *buf, size_t count)
{
struct drm_device *dev = pci_get_drvdata(to_pci_dev(d));
int ret;
ret = nouveau_pm_profile_set(dev, buf);
if (ret)
return ret;
return strlen(buf);
}
static DEVICE_ATTR(performance_level, S_IRUGO | S_IWUSR,
nouveau_pm_get_perflvl, nouveau_pm_set_perflvl);
static int
nouveau_sysfs_init(struct drm_device *dev)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_pm *pm = nouveau_pm(dev);
struct device *d = &dev->pdev->dev;
int ret, i;
ret = device_create_file(d, &dev_attr_performance_level);
if (ret)
return ret;
for (i = 0; i < pm->nr_perflvl; i++) {
struct nouveau_pm_level *perflvl = &pm->perflvl[i];
perflvl->dev_attr.attr.name = perflvl->name;
perflvl->dev_attr.attr.mode = S_IRUGO;
perflvl->dev_attr.show = nouveau_pm_get_perflvl_info;
perflvl->dev_attr.store = NULL;
sysfs_attr_init(&perflvl->dev_attr.attr);
ret = device_create_file(d, &perflvl->dev_attr);
if (ret) {
NV_ERROR(drm, "failed pervlvl %d sysfs: %d\n",
perflvl->id, i);
perflvl->dev_attr.attr.name = NULL;
nouveau_pm_fini(dev);
return ret;
}
}
return 0;
}
static void
nouveau_sysfs_fini(struct drm_device *dev)
{
struct nouveau_pm *pm = nouveau_pm(dev);
struct device *d = &dev->pdev->dev;
int i;
device_remove_file(d, &dev_attr_performance_level);
for (i = 0; i < pm->nr_perflvl; i++) {
struct nouveau_pm_level *pl = &pm->perflvl[i];
if (!pl->dev_attr.attr.name)
break;
device_remove_file(d, &pl->dev_attr);
}
}
#if defined(CONFIG_HWMON) || (defined(MODULE) && defined(CONFIG_HWMON_MODULE)) #if defined(CONFIG_HWMON) || (defined(MODULE) && defined(CONFIG_HWMON_MODULE))
static ssize_t static ssize_t
nouveau_hwmon_show_temp(struct device *d, struct device_attribute *a, char *buf) nouveau_hwmon_show_temp(struct device *d, struct device_attribute *a, char *buf)
...@@ -778,9 +421,6 @@ nouveau_hwmon_set_pwm1(struct device *d, struct device_attribute *a, ...@@ -778,9 +421,6 @@ nouveau_hwmon_set_pwm1(struct device *d, struct device_attribute *a,
int ret = -ENODEV; int ret = -ENODEV;
long value; long value;
if (nouveau_perflvl_wr != 7777)
return -EPERM;
if (kstrtol(buf, 10, &value) == -EINVAL) if (kstrtol(buf, 10, &value) == -EINVAL)
return -EINVAL; return -EINVAL;
...@@ -919,17 +559,21 @@ static const struct attribute_group hwmon_pwm_fan_attrgroup = { ...@@ -919,17 +559,21 @@ static const struct attribute_group hwmon_pwm_fan_attrgroup = {
}; };
#endif #endif
static int int
nouveau_hwmon_init(struct drm_device *dev) nouveau_hwmon_init(struct drm_device *dev)
{ {
struct nouveau_pm *pm = nouveau_pm(dev);
#if defined(CONFIG_HWMON) || (defined(MODULE) && defined(CONFIG_HWMON_MODULE)) #if defined(CONFIG_HWMON) || (defined(MODULE) && defined(CONFIG_HWMON_MODULE))
struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_therm *therm = nouveau_therm(drm->device); struct nouveau_therm *therm = nouveau_therm(drm->device);
struct nouveau_hwmon *hwmon;
struct device *hwmon_dev; struct device *hwmon_dev;
int ret = 0; int ret = 0;
hwmon = drm->hwmon = kzalloc(sizeof(*hwmon), GFP_KERNEL);
if (!hwmon)
return -ENOMEM;
hwmon->dev = dev;
if (!therm || !therm->temp_get || !therm->attr_get || !therm->attr_set) if (!therm || !therm->temp_get || !therm->attr_get || !therm->attr_set)
return -ENODEV; return -ENODEV;
...@@ -976,199 +620,37 @@ nouveau_hwmon_init(struct drm_device *dev) ...@@ -976,199 +620,37 @@ nouveau_hwmon_init(struct drm_device *dev)
goto error; goto error;
} }
pm->hwmon = hwmon_dev; hwmon->hwmon = hwmon_dev;
return 0; return 0;
error: error:
NV_ERROR(drm, "Unable to create some hwmon sysfs files: %d\n", ret); NV_ERROR(drm, "Unable to create some hwmon sysfs files: %d\n", ret);
hwmon_device_unregister(hwmon_dev); hwmon_device_unregister(hwmon_dev);
pm->hwmon = NULL; hwmon->hwmon = NULL;
return ret; return ret;
#else #else
pm->hwmon = NULL; hwmon->hwmon = NULL;
return 0; return 0;
#endif #endif
} }
static void void
nouveau_hwmon_fini(struct drm_device *dev) nouveau_hwmon_fini(struct drm_device *dev)
{ {
#if defined(CONFIG_HWMON) || (defined(MODULE) && defined(CONFIG_HWMON_MODULE)) #if defined(CONFIG_HWMON) || (defined(MODULE) && defined(CONFIG_HWMON_MODULE))
struct nouveau_pm *pm = nouveau_pm(dev); struct nouveau_hwmon *hwmon = nouveau_hwmon(dev);
if (pm->hwmon) { if (hwmon->hwmon) {
sysfs_remove_group(&pm->hwmon->kobj, &hwmon_default_attrgroup); sysfs_remove_group(&hwmon->hwmon->kobj, &hwmon_default_attrgroup);
sysfs_remove_group(&pm->hwmon->kobj, &hwmon_temp_attrgroup); sysfs_remove_group(&hwmon->hwmon->kobj, &hwmon_temp_attrgroup);
sysfs_remove_group(&pm->hwmon->kobj, &hwmon_pwm_fan_attrgroup); sysfs_remove_group(&hwmon->hwmon->kobj, &hwmon_pwm_fan_attrgroup);
sysfs_remove_group(&pm->hwmon->kobj, &hwmon_fan_rpm_attrgroup); sysfs_remove_group(&hwmon->hwmon->kobj, &hwmon_fan_rpm_attrgroup);
hwmon_device_unregister(pm->hwmon); hwmon_device_unregister(hwmon->hwmon);
} }
#endif
}
#if defined(CONFIG_ACPI) && defined(CONFIG_POWER_SUPPLY)
static int
nouveau_pm_acpi_event(struct notifier_block *nb, unsigned long val, void *data)
{
struct nouveau_pm *pm = container_of(nb, struct nouveau_pm, acpi_nb);
struct nouveau_drm *drm = nouveau_drm(pm->dev);
struct acpi_bus_event *entry = (struct acpi_bus_event *)data;
if (strcmp(entry->device_class, "ac_adapter") == 0) {
bool ac = power_supply_is_system_supplied();
NV_DEBUG(drm, "power supply changed: %s\n", ac ? "AC" : "DC"); nouveau_drm(dev)->hwmon = NULL;
nouveau_pm_trigger(pm->dev); kfree(hwmon);
}
return NOTIFY_OK;
}
#endif #endif
int
nouveau_pm_init(struct drm_device *dev)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_pm *pm;
char info[256];
int ret, i;
pm = drm->pm = kzalloc(sizeof(*pm), GFP_KERNEL);
if (!pm)
return -ENOMEM;
pm->dev = dev;
if (device->card_type < NV_40) {
pm->clocks_get = nv04_pm_clocks_get;
pm->clocks_pre = nv04_pm_clocks_pre;
pm->clocks_set = nv04_pm_clocks_set;
if (nouveau_gpio(drm->device)) {
pm->voltage_get = nouveau_voltage_gpio_get;
pm->voltage_set = nouveau_voltage_gpio_set;
}
} else
if (device->card_type < NV_50) {
pm->clocks_get = nv40_pm_clocks_get;
pm->clocks_pre = nv40_pm_clocks_pre;
pm->clocks_set = nv40_pm_clocks_set;
pm->voltage_get = nouveau_voltage_gpio_get;
pm->voltage_set = nouveau_voltage_gpio_set;
} else
if (device->card_type < NV_C0) {
if (device->chipset < 0xa3 ||
device->chipset == 0xaa ||
device->chipset == 0xac) {
pm->clocks_get = nv50_pm_clocks_get;
pm->clocks_pre = nv50_pm_clocks_pre;
pm->clocks_set = nv50_pm_clocks_set;
} else {
pm->clocks_get = nva3_pm_clocks_get;
pm->clocks_pre = nva3_pm_clocks_pre;
pm->clocks_set = nva3_pm_clocks_set;
}
pm->voltage_get = nouveau_voltage_gpio_get;
pm->voltage_set = nouveau_voltage_gpio_set;
} else
if (device->card_type < NV_E0) {
pm->clocks_get = nvc0_pm_clocks_get;
pm->clocks_pre = nvc0_pm_clocks_pre;
pm->clocks_set = nvc0_pm_clocks_set;
pm->voltage_get = nouveau_voltage_gpio_get;
pm->voltage_set = nouveau_voltage_gpio_set;
}
/* parse aux tables from vbios */
nouveau_volt_init(dev);
INIT_LIST_HEAD(&pm->profiles);
/* determine current ("boot") performance level */
ret = nouveau_pm_perflvl_get(dev, &pm->boot);
if (ret) {
NV_ERROR(drm, "failed to determine boot perflvl\n");
return ret;
}
strncpy(pm->boot.name, "boot", 4);
strncpy(pm->boot.profile.name, "boot", 4);
pm->boot.profile.func = &nouveau_pm_static_profile_func;
list_add(&pm->boot.profile.head, &pm->profiles);
pm->profile_ac = &pm->boot.profile;
pm->profile_dc = &pm->boot.profile;
pm->profile = &pm->boot.profile;
pm->cur = &pm->boot;
/* add performance levels from vbios */
nouveau_perf_init(dev);
/* display available performance levels */
NV_INFO(drm, "%d available performance level(s)\n", pm->nr_perflvl);
for (i = 0; i < pm->nr_perflvl; i++) {
nouveau_pm_perflvl_info(&pm->perflvl[i], info, sizeof(info));
NV_INFO(drm, "%d:%s", pm->perflvl[i].id, info);
}
nouveau_pm_perflvl_info(&pm->boot, info, sizeof(info));
NV_INFO(drm, "c:%s", info);
/* switch performance levels now if requested */
if (nouveau_perflvl != NULL)
nouveau_pm_profile_set(dev, nouveau_perflvl);
nouveau_sysfs_init(dev);
nouveau_hwmon_init(dev);
#if defined(CONFIG_ACPI) && defined(CONFIG_POWER_SUPPLY)
pm->acpi_nb.notifier_call = nouveau_pm_acpi_event;
register_acpi_notifier(&pm->acpi_nb);
#endif
return 0;
}
void
nouveau_pm_fini(struct drm_device *dev)
{
struct nouveau_pm *pm = nouveau_pm(dev);
struct nouveau_pm_profile *profile, *tmp;
list_for_each_entry_safe(profile, tmp, &pm->profiles, head) {
list_del(&profile->head);
profile->func->destroy(profile);
}
if (pm->cur != &pm->boot)
nouveau_pm_perflvl_set(dev, &pm->boot);
nouveau_perf_fini(dev);
nouveau_volt_fini(dev);
#if defined(CONFIG_ACPI) && defined(CONFIG_POWER_SUPPLY)
unregister_acpi_notifier(&pm->acpi_nb);
#endif
nouveau_hwmon_fini(dev);
nouveau_sysfs_fini(dev);
nouveau_drm(dev)->pm = NULL;
kfree(pm);
}
void
nouveau_pm_resume(struct drm_device *dev)
{
struct nouveau_pm *pm = nouveau_pm(dev);
struct nouveau_pm_level *perflvl;
if (!pm->cur || pm->cur == &pm->boot)
return;
perflvl = pm->cur;
pm->cur = &pm->boot;
nouveau_pm_perflvl_set(dev, perflvl);
} }
...@@ -22,94 +22,22 @@ ...@@ -22,94 +22,22 @@
* Authors: Ben Skeggs * Authors: Ben Skeggs
*/ */
#ifndef __NOUVEAU_HWSQ_H__ #ifndef __NOUVEAU_PM_H__
#define __NOUVEAU_HWSQ_H__ #define __NOUVEAU_PM_H__
struct hwsq_ucode { struct nouveau_hwmon {
u8 data[0x200]; struct drm_device *dev;
union { struct device *hwmon;
u8 *u08;
u16 *u16;
u32 *u32;
} ptr;
u16 len;
u32 reg;
u32 val;
}; };
static inline void static inline struct nouveau_hwmon *
hwsq_init(struct hwsq_ucode *hwsq) nouveau_hwmon(struct drm_device *dev)
{
hwsq->ptr.u08 = hwsq->data;
hwsq->reg = 0xffffffff;
hwsq->val = 0xffffffff;
}
static inline void
hwsq_fini(struct hwsq_ucode *hwsq)
{
do {
*hwsq->ptr.u08++ = 0x7f;
hwsq->len = hwsq->ptr.u08 - hwsq->data;
} while (hwsq->len & 3);
hwsq->ptr.u08 = hwsq->data;
}
static inline void
hwsq_usec(struct hwsq_ucode *hwsq, u8 usec)
{
u32 shift = 0;
while (usec & ~3) {
usec >>= 2;
shift++;
}
*hwsq->ptr.u08++ = (shift << 2) | usec;
}
static inline void
hwsq_setf(struct hwsq_ucode *hwsq, u8 flag, int val)
{
flag += 0x80;
if (val >= 0)
flag += 0x20;
if (val >= 1)
flag += 0x20;
*hwsq->ptr.u08++ = flag;
}
static inline void
hwsq_op5f(struct hwsq_ucode *hwsq, u8 v0, u8 v1)
{ {
*hwsq->ptr.u08++ = 0x5f; return nouveau_drm(dev)->hwmon;
*hwsq->ptr.u08++ = v0;
*hwsq->ptr.u08++ = v1;
} }
static inline void /* nouveau_hwmon.c */
hwsq_wr32(struct hwsq_ucode *hwsq, u32 reg, u32 val) int nouveau_hwmon_init(struct drm_device *dev);
{ void nouveau_hwmon_fini(struct drm_device *dev);
if (val != hwsq->val) {
if ((val & 0xffff0000) == (hwsq->val & 0xffff0000)) {
*hwsq->ptr.u08++ = 0x42;
*hwsq->ptr.u16++ = (val & 0x0000ffff);
} else {
*hwsq->ptr.u08++ = 0xe2;
*hwsq->ptr.u32++ = val;
}
hwsq->val = val;
}
if ((reg & 0xffff0000) == (hwsq->reg & 0xffff0000)) {
*hwsq->ptr.u08++ = 0x40;
*hwsq->ptr.u16++ = (reg & 0x0000ffff);
} else {
*hwsq->ptr.u08++ = 0xe0;
*hwsq->ptr.u32++ = reg;
}
hwsq->reg = reg;
}
#endif #endif
/*
* Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.
* Copyright 2005 Stephane Marchesin
*
* The Weather Channel (TM) funded Tungsten Graphics to develop the
* initial release of the Radeon 8500 driver under the XFree86 license.
* This notice must be preserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Ben Skeggs <bskeggs@redhat.com>
* Roy Spliet <r.spliet@student.tudelft.nl>
*/
#include "nouveau_drm.h"
#include "nouveau_pm.h"
#include <subdev/fb.h>
static int
nv40_mem_timing_calc(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
struct nouveau_drm *drm = nouveau_drm(dev);
t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC);
/* XXX: I don't trust the -1's and +1's... they must come
* from somewhere! */
t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 |
1 << 16 |
(e->tWTR + 2 + (t->tCWL - 1)) << 8 |
(e->tCL + 2 - (t->tCWL - 1));
t->reg[2] = 0x20200000 |
((t->tCWL - 1) << 24 |
e->tRRD << 16 |
e->tRCDWR << 8 |
e->tRCDRD);
NV_DEBUG(drm, "Entry %d: 220: %08x %08x %08x\n", t->id,
t->reg[0], t->reg[1], t->reg[2]);
return 0;
}
static int
nv50_mem_timing_calc(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_fb *pfb = nouveau_fb(device);
struct nouveau_drm *drm = nouveau_drm(dev);
struct bit_entry P;
uint8_t unk18 = 1, unk20 = 0, unk21 = 0, tmp7_3;
if (bit_table(dev, 'P', &P))
return -EINVAL;
switch (min(len, (u8) 22)) {
case 22:
unk21 = e->tUNK_21;
case 21:
unk20 = e->tUNK_20;
case 20:
if (e->tCWL > 0)
t->tCWL = e->tCWL;
case 19:
unk18 = e->tUNK_18;
break;
}
t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC);
t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 |
max(unk18, (u8) 1) << 16 |
(e->tWTR + 2 + (t->tCWL - 1)) << 8;
t->reg[2] = ((t->tCWL - 1) << 24 |
e->tRRD << 16 |
e->tRCDWR << 8 |
e->tRCDRD);
t->reg[4] = e->tUNK_13 << 8 | e->tUNK_13;
t->reg[5] = (e->tRFC << 24 | max(e->tRCDRD, e->tRCDWR) << 16 | e->tRP);
t->reg[8] = boot->reg[8] & 0xffffff00;
if (P.version == 1) {
t->reg[1] |= (e->tCL + 2 - (t->tCWL - 1));
t->reg[3] = (0x14 + e->tCL) << 24 |
0x16 << 16 |
(e->tCL - 1) << 8 |
(e->tCL - 1);
t->reg[4] |= boot->reg[4] & 0xffff0000;
t->reg[6] = (0x33 - t->tCWL) << 16 |
t->tCWL << 8 |
(0x2e + e->tCL - t->tCWL);
t->reg[7] = 0x4000202 | (e->tCL - 1) << 16;
/* XXX: P.version == 1 only has DDR2 and GDDR3? */
if (pfb->ram->type == NV_MEM_TYPE_DDR2) {
t->reg[5] |= (e->tCL + 3) << 8;
t->reg[6] |= (t->tCWL - 2) << 8;
t->reg[8] |= (e->tCL - 4);
} else {
t->reg[5] |= (e->tCL + 2) << 8;
t->reg[6] |= t->tCWL << 8;
t->reg[8] |= (e->tCL - 2);
}
} else {
t->reg[1] |= (5 + e->tCL - (t->tCWL));
/* XXX: 0xb? 0x30? */
t->reg[3] = (0x30 + e->tCL) << 24 |
(boot->reg[3] & 0x00ff0000)|
(0xb + e->tCL) << 8 |
(e->tCL - 1);
t->reg[4] |= (unk20 << 24 | unk21 << 16);
/* XXX: +6? */
t->reg[5] |= (t->tCWL + 6) << 8;
t->reg[6] = (0x5a + e->tCL) << 16 |
(6 - e->tCL + t->tCWL) << 8 |
(0x50 + e->tCL - t->tCWL);
tmp7_3 = (boot->reg[7] & 0xff000000) >> 24;
t->reg[7] = (tmp7_3 << 24) |
((tmp7_3 - 6 + e->tCL) << 16) |
0x202;
}
NV_DEBUG(drm, "Entry %d: 220: %08x %08x %08x %08x\n", t->id,
t->reg[0], t->reg[1], t->reg[2], t->reg[3]);
NV_DEBUG(drm, " 230: %08x %08x %08x %08x\n",
t->reg[4], t->reg[5], t->reg[6], t->reg[7]);
NV_DEBUG(drm, " 240: %08x\n", t->reg[8]);
return 0;
}
static int
nvc0_mem_timing_calc(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
struct nouveau_drm *drm = nouveau_drm(dev);
if (e->tCWL > 0)
t->tCWL = e->tCWL;
t->reg[0] = (e->tRP << 24 | (e->tRAS & 0x7f) << 17 |
e->tRFC << 8 | e->tRC);
t->reg[1] = (boot->reg[1] & 0xff000000) |
(e->tRCDWR & 0x0f) << 20 |
(e->tRCDRD & 0x0f) << 14 |
(t->tCWL << 7) |
(e->tCL & 0x0f);
t->reg[2] = (boot->reg[2] & 0xff0000ff) |
e->tWR << 16 | e->tWTR << 8;
t->reg[3] = (e->tUNK_20 & 0x1f) << 9 |
(e->tUNK_21 & 0xf) << 5 |
(e->tUNK_13 & 0x1f);
t->reg[4] = (boot->reg[4] & 0xfff00fff) |
(e->tRRD&0x1f) << 15;
NV_DEBUG(drm, "Entry %d: 290: %08x %08x %08x %08x\n", t->id,
t->reg[0], t->reg[1], t->reg[2], t->reg[3]);
NV_DEBUG(drm, " 2a0: %08x\n", t->reg[4]);
return 0;
}
/**
* MR generation methods
*/
static int
nouveau_mem_ddr2_mr(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
struct nouveau_drm *drm = nouveau_drm(dev);
t->drive_strength = 0;
if (len < 15) {
t->odt = boot->odt;
} else {
t->odt = e->RAM_FT1 & 0x07;
}
if (e->tCL >= NV_MEM_CL_DDR2_MAX) {
NV_WARN(drm, "(%u) Invalid tCL: %u", t->id, e->tCL);
return -ERANGE;
}
if (e->tWR >= NV_MEM_WR_DDR2_MAX) {
NV_WARN(drm, "(%u) Invalid tWR: %u", t->id, e->tWR);
return -ERANGE;
}
if (t->odt > 3) {
NV_WARN(drm, "(%u) Invalid odt value, assuming disabled: %x",
t->id, t->odt);
t->odt = 0;
}
t->mr[0] = (boot->mr[0] & 0x100f) |
(e->tCL) << 4 |
(e->tWR - 1) << 9;
t->mr[1] = (boot->mr[1] & 0x101fbb) |
(t->odt & 0x1) << 2 |
(t->odt & 0x2) << 5;
NV_DEBUG(drm, "(%u) MR: %08x", t->id, t->mr[0]);
return 0;
}
static const uint8_t nv_mem_wr_lut_ddr3[NV_MEM_WR_DDR3_MAX] = {
0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 0, 0};
static int
nouveau_mem_ddr3_mr(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
struct nouveau_drm *drm = nouveau_drm(dev);
u8 cl = e->tCL - 4;
t->drive_strength = 0;
if (len < 15) {
t->odt = boot->odt;
} else {
t->odt = e->RAM_FT1 & 0x07;
}
if (e->tCL >= NV_MEM_CL_DDR3_MAX || e->tCL < 4) {
NV_WARN(drm, "(%u) Invalid tCL: %u", t->id, e->tCL);
return -ERANGE;
}
if (e->tWR >= NV_MEM_WR_DDR3_MAX || e->tWR < 4) {
NV_WARN(drm, "(%u) Invalid tWR: %u", t->id, e->tWR);
return -ERANGE;
}
if (e->tCWL < 5) {
NV_WARN(drm, "(%u) Invalid tCWL: %u", t->id, e->tCWL);
return -ERANGE;
}
t->mr[0] = (boot->mr[0] & 0x180b) |
/* CAS */
(cl & 0x7) << 4 |
(cl & 0x8) >> 1 |
(nv_mem_wr_lut_ddr3[e->tWR]) << 9;
t->mr[1] = (boot->mr[1] & 0x101dbb) |
(t->odt & 0x1) << 2 |
(t->odt & 0x2) << 5 |
(t->odt & 0x4) << 7;
t->mr[2] = (boot->mr[2] & 0x20ffb7) | (e->tCWL - 5) << 3;
NV_DEBUG(drm, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[2]);
return 0;
}
static const uint8_t nv_mem_cl_lut_gddr3[NV_MEM_CL_GDDR3_MAX] = {
0, 0, 0, 0, 4, 5, 6, 7, 0, 1, 2, 3, 8, 9, 10, 11};
static const uint8_t nv_mem_wr_lut_gddr3[NV_MEM_WR_GDDR3_MAX] = {
0, 0, 0, 0, 0, 2, 3, 8, 9, 10, 11, 0, 0, 1, 1, 0, 3};
static int
nouveau_mem_gddr3_mr(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
struct nouveau_drm *drm = nouveau_drm(dev);
if (len < 15) {
t->drive_strength = boot->drive_strength;
t->odt = boot->odt;
} else {
t->drive_strength = (e->RAM_FT1 & 0x30) >> 4;
t->odt = e->RAM_FT1 & 0x07;
}
if (e->tCL >= NV_MEM_CL_GDDR3_MAX) {
NV_WARN(drm, "(%u) Invalid tCL: %u", t->id, e->tCL);
return -ERANGE;
}
if (e->tWR >= NV_MEM_WR_GDDR3_MAX) {
NV_WARN(drm, "(%u) Invalid tWR: %u", t->id, e->tWR);
return -ERANGE;
}
if (t->odt > 3) {
NV_WARN(drm, "(%u) Invalid odt value, assuming autocal: %x",
t->id, t->odt);
t->odt = 0;
}
t->mr[0] = (boot->mr[0] & 0xe0b) |
/* CAS */
((nv_mem_cl_lut_gddr3[e->tCL] & 0x7) << 4) |
((nv_mem_cl_lut_gddr3[e->tCL] & 0x8) >> 2);
t->mr[1] = (boot->mr[1] & 0x100f40) | t->drive_strength |
(t->odt << 2) |
(nv_mem_wr_lut_gddr3[e->tWR] & 0xf) << 4;
t->mr[2] = boot->mr[2];
NV_DEBUG(drm, "(%u) MR: %08x %08x %08x", t->id,
t->mr[0], t->mr[1], t->mr[2]);
return 0;
}
static int
nouveau_mem_gddr5_mr(struct drm_device *dev, u32 freq,
struct nouveau_pm_tbl_entry *e, u8 len,
struct nouveau_pm_memtiming *boot,
struct nouveau_pm_memtiming *t)
{
struct nouveau_drm *drm = nouveau_drm(dev);
if (len < 15) {
t->drive_strength = boot->drive_strength;
t->odt = boot->odt;
} else {
t->drive_strength = (e->RAM_FT1 & 0x30) >> 4;
t->odt = e->RAM_FT1 & 0x03;
}
if (e->tCL >= NV_MEM_CL_GDDR5_MAX) {
NV_WARN(drm, "(%u) Invalid tCL: %u", t->id, e->tCL);
return -ERANGE;
}
if (e->tWR >= NV_MEM_WR_GDDR5_MAX) {
NV_WARN(drm, "(%u) Invalid tWR: %u", t->id, e->tWR);
return -ERANGE;
}
if (t->odt > 3) {
NV_WARN(drm, "(%u) Invalid odt value, assuming autocal: %x",
t->id, t->odt);
t->odt = 0;
}
t->mr[0] = (boot->mr[0] & 0x007) |
((e->tCL - 5) << 3) |
((e->tWR - 4) << 8);
t->mr[1] = (boot->mr[1] & 0x1007f0) |
t->drive_strength |
(t->odt << 2);
NV_DEBUG(drm, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[1]);
return 0;
}
int
nouveau_mem_timing_calc(struct drm_device *dev, u32 freq,
struct nouveau_pm_memtiming *t)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_fb *pfb = nouveau_fb(device);
struct nouveau_pm *pm = nouveau_pm(dev);
struct nouveau_pm_memtiming *boot = &pm->boot.timing;
struct nouveau_pm_tbl_entry *e;
u8 ver, len, *ptr, *ramcfg;
int ret;
ptr = nouveau_perf_timing(dev, freq, &ver, &len);
if (!ptr || ptr[0] == 0x00) {
*t = *boot;
return 0;
}
e = (struct nouveau_pm_tbl_entry *)ptr;
t->tCWL = boot->tCWL;
switch (device->card_type) {
case NV_40:
ret = nv40_mem_timing_calc(dev, freq, e, len, boot, t);
break;
case NV_50:
ret = nv50_mem_timing_calc(dev, freq, e, len, boot, t);
break;
case NV_C0:
case NV_D0:
ret = nvc0_mem_timing_calc(dev, freq, e, len, boot, t);
break;
default:
ret = -ENODEV;
break;
}
switch (pfb->ram->type * !ret) {
case NV_MEM_TYPE_GDDR3:
ret = nouveau_mem_gddr3_mr(dev, freq, e, len, boot, t);
break;
case NV_MEM_TYPE_GDDR5:
ret = nouveau_mem_gddr5_mr(dev, freq, e, len, boot, t);
break;
case NV_MEM_TYPE_DDR2:
ret = nouveau_mem_ddr2_mr(dev, freq, e, len, boot, t);
break;
case NV_MEM_TYPE_DDR3:
ret = nouveau_mem_ddr3_mr(dev, freq, e, len, boot, t);
break;
default:
ret = -EINVAL;
break;
}
ramcfg = nouveau_perf_ramcfg(dev, freq, &ver, &len);
if (ramcfg) {
int dll_off;
if (ver == 0x00)
dll_off = !!(ramcfg[3] & 0x04);
else
dll_off = !!(ramcfg[2] & 0x40);
switch (pfb->ram->type) {
case NV_MEM_TYPE_GDDR3:
t->mr[1] &= ~0x00000040;
t->mr[1] |= 0x00000040 * dll_off;
break;
default:
t->mr[1] &= ~0x00000001;
t->mr[1] |= 0x00000001 * dll_off;
break;
}
}
return ret;
}
void
nouveau_mem_timing_read(struct drm_device *dev, struct nouveau_pm_memtiming *t)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_fb *pfb = nouveau_fb(device);
u32 timing_base, timing_regs, mr_base;
int i;
if (device->card_type >= 0xC0) {
timing_base = 0x10f290;
mr_base = 0x10f300;
} else {
timing_base = 0x100220;
mr_base = 0x1002c0;
}
t->id = -1;
switch (device->card_type) {
case NV_50:
timing_regs = 9;
break;
case NV_C0:
case NV_D0:
timing_regs = 5;
break;
case NV_30:
case NV_40:
timing_regs = 3;
break;
default:
timing_regs = 0;
return;
}
for(i = 0; i < timing_regs; i++)
t->reg[i] = nv_rd32(device, timing_base + (0x04 * i));
t->tCWL = 0;
if (device->card_type < NV_C0) {
t->tCWL = ((nv_rd32(device, 0x100228) & 0x0f000000) >> 24) + 1;
} else if (device->card_type <= NV_D0) {
t->tCWL = ((nv_rd32(device, 0x10f294) & 0x00000f80) >> 7);
}
t->mr[0] = nv_rd32(device, mr_base);
t->mr[1] = nv_rd32(device, mr_base + 0x04);
t->mr[2] = nv_rd32(device, mr_base + 0x20);
t->mr[3] = nv_rd32(device, mr_base + 0x24);
t->odt = 0;
t->drive_strength = 0;
switch (pfb->ram->type) {
case NV_MEM_TYPE_DDR3:
t->odt |= (t->mr[1] & 0x200) >> 7;
case NV_MEM_TYPE_DDR2:
t->odt |= (t->mr[1] & 0x04) >> 2 |
(t->mr[1] & 0x40) >> 5;
break;
case NV_MEM_TYPE_GDDR3:
case NV_MEM_TYPE_GDDR5:
t->drive_strength = t->mr[1] & 0x03;
t->odt = (t->mr[1] & 0x0c) >> 2;
break;
default:
break;
}
}
int
nouveau_mem_exec(struct nouveau_mem_exec_func *exec,
struct nouveau_pm_level *perflvl)
{
struct nouveau_drm *drm = nouveau_drm(exec->dev);
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nouveau_fb *pfb = nouveau_fb(device);
struct nouveau_pm_memtiming *info = &perflvl->timing;
u32 tMRD = 1000, tCKSRE = 0, tCKSRX = 0, tXS = 0, tDLLK = 0;
u32 mr[3] = { info->mr[0], info->mr[1], info->mr[2] };
u32 mr1_dlloff;
switch (pfb->ram->type) {
case NV_MEM_TYPE_DDR2:
tDLLK = 2000;
mr1_dlloff = 0x00000001;
break;
case NV_MEM_TYPE_DDR3:
tDLLK = 12000;
tCKSRE = 2000;
tXS = 1000;
mr1_dlloff = 0x00000001;
break;
case NV_MEM_TYPE_GDDR3:
tDLLK = 40000;
mr1_dlloff = 0x00000040;
break;
default:
NV_ERROR(drm, "cannot reclock unsupported memtype\n");
return -ENODEV;
}
/* fetch current MRs */
switch (pfb->ram->type) {
case NV_MEM_TYPE_GDDR3:
case NV_MEM_TYPE_DDR3:
mr[2] = exec->mrg(exec, 2);
default:
mr[1] = exec->mrg(exec, 1);
mr[0] = exec->mrg(exec, 0);
break;
}
/* DLL 'on' -> DLL 'off' mode, disable before entering self-refresh */
if (!(mr[1] & mr1_dlloff) && (info->mr[1] & mr1_dlloff)) {
exec->precharge(exec);
exec->mrs (exec, 1, mr[1] | mr1_dlloff);
exec->wait(exec, tMRD);
}
/* enter self-refresh mode */
exec->precharge(exec);
exec->refresh(exec);
exec->refresh(exec);
exec->refresh_auto(exec, false);
exec->refresh_self(exec, true);
exec->wait(exec, tCKSRE);
/* modify input clock frequency */
exec->clock_set(exec);
/* exit self-refresh mode */
exec->wait(exec, tCKSRX);
exec->precharge(exec);
exec->refresh_self(exec, false);
exec->refresh_auto(exec, true);
exec->wait(exec, tXS);
exec->wait(exec, tXS);
/* update MRs */
if (mr[2] != info->mr[2]) {
exec->mrs (exec, 2, info->mr[2]);
exec->wait(exec, tMRD);
}
if (mr[1] != info->mr[1]) {
/* need to keep DLL off until later, at least on GDDR3 */
exec->mrs (exec, 1, info->mr[1] | (mr[1] & mr1_dlloff));
exec->wait(exec, tMRD);
}
if (mr[0] != info->mr[0]) {
exec->mrs (exec, 0, info->mr[0]);
exec->wait(exec, tMRD);
}
/* update PFB timing registers */
exec->timing_set(exec);
/* DLL (enable + ) reset */
if (!(info->mr[1] & mr1_dlloff)) {
if (mr[1] & mr1_dlloff) {
exec->mrs (exec, 1, info->mr[1]);
exec->wait(exec, tMRD);
}
exec->mrs (exec, 0, info->mr[0] | 0x00000100);
exec->wait(exec, tMRD);
exec->mrs (exec, 0, info->mr[0] | 0x00000000);
exec->wait(exec, tMRD);
exec->wait(exec, tDLLK);
if (pfb->ram->type == NV_MEM_TYPE_GDDR3)
exec->precharge(exec);
}
return 0;
}
/*
* Copyright 2010 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <drm/drmP.h>
#include "nouveau_drm.h"
#include "nouveau_reg.h"
#include "nouveau_pm.h"
static u8 *
nouveau_perf_table(struct drm_device *dev, u8 *ver)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvbios *bios = &drm->vbios;
struct bit_entry P;
if (!bit_table(dev, 'P', &P) && P.version && P.version <= 2) {
u8 *perf = ROMPTR(dev, P.data[0]);
if (perf) {
*ver = perf[0];
return perf;
}
}
if (bios->type == NVBIOS_BMP) {
if (bios->data[bios->offset + 6] >= 0x25) {
u8 *perf = ROMPTR(dev, bios->data[bios->offset + 0x94]);
if (perf) {
*ver = perf[1];
return perf;
}
}
}
return NULL;
}
static u8 *
nouveau_perf_entry(struct drm_device *dev, int idx,
u8 *ver, u8 *hdr, u8 *cnt, u8 *len)
{
u8 *perf = nouveau_perf_table(dev, ver);
if (perf) {
if (*ver >= 0x12 && *ver < 0x20 && idx < perf[2]) {
*hdr = perf[3];
*cnt = 0;
*len = 0;
return perf + perf[0] + idx * perf[3];
} else
if (*ver >= 0x20 && *ver < 0x40 && idx < perf[2]) {
*hdr = perf[3];
*cnt = perf[4];
*len = perf[5];
return perf + perf[1] + idx * (*hdr + (*cnt * *len));
} else
if (*ver >= 0x40 && *ver < 0x41 && idx < perf[5]) {
*hdr = perf[2];
*cnt = perf[4];
*len = perf[3];
return perf + perf[1] + idx * (*hdr + (*cnt * *len));
}
}
return NULL;
}
u8 *
nouveau_perf_rammap(struct drm_device *dev, u32 freq,
u8 *ver, u8 *hdr, u8 *cnt, u8 *len)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct bit_entry P;
u8 *perf, i = 0;
if (!bit_table(dev, 'P', &P) && P.version == 2) {
u8 *rammap = ROMPTR(dev, P.data[4]);
if (rammap) {
u8 *ramcfg = rammap + rammap[1];
*ver = rammap[0];
*hdr = rammap[2];
*cnt = rammap[4];
*len = rammap[3];
freq /= 1000;
for (i = 0; i < rammap[5]; i++) {
if (freq >= ROM16(ramcfg[0]) &&
freq <= ROM16(ramcfg[2]))
return ramcfg;
ramcfg += *hdr + (*cnt * *len);
}
}
return NULL;
}
if (nv_device(drm->device)->chipset == 0x49 ||
nv_device(drm->device)->chipset == 0x4b)
freq /= 2;
while ((perf = nouveau_perf_entry(dev, i++, ver, hdr, cnt, len))) {
if (*ver >= 0x20 && *ver < 0x25) {
if (perf[0] != 0xff && freq <= ROM16(perf[11]) * 1000)
break;
} else
if (*ver >= 0x25 && *ver < 0x40) {
if (perf[0] != 0xff && freq <= ROM16(perf[12]) * 1000)
break;
}
}
if (perf) {
u8 *ramcfg = perf + *hdr;
*ver = 0x00;
*hdr = 0;
return ramcfg;
}
return NULL;
}
u8 *
nouveau_perf_ramcfg(struct drm_device *dev, u32 freq, u8 *ver, u8 *len)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvbios *bios = &drm->vbios;
u8 strap, hdr, cnt;
u8 *rammap;
strap = (nv_rd32(device, 0x101000) & 0x0000003c) >> 2;
if (bios->ram_restrict_tbl_ptr)
strap = bios->data[bios->ram_restrict_tbl_ptr + strap];
rammap = nouveau_perf_rammap(dev, freq, ver, &hdr, &cnt, len);
if (rammap && strap < cnt)
return rammap + hdr + (strap * *len);
return NULL;
}
u8 *
nouveau_perf_timing(struct drm_device *dev, u32 freq, u8 *ver, u8 *len)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvbios *bios = &drm->vbios;
struct bit_entry P;
u8 *perf, *timing = NULL;
u8 i = 0, hdr, cnt;
if (bios->type == NVBIOS_BMP) {
while ((perf = nouveau_perf_entry(dev, i++, ver, &hdr, &cnt,
len)) && *ver == 0x15) {
if (freq <= ROM32(perf[5]) * 20) {
*ver = 0x00;
*len = 14;
return perf + 41;
}
}
return NULL;
}
if (!bit_table(dev, 'P', &P)) {
if (P.version == 1)
timing = ROMPTR(dev, P.data[4]);
else
if (P.version == 2)
timing = ROMPTR(dev, P.data[8]);
}
if (timing && timing[0] == 0x10) {
u8 *ramcfg = nouveau_perf_ramcfg(dev, freq, ver, len);
if (ramcfg && ramcfg[1] < timing[2]) {
*ver = timing[0];
*len = timing[3];
return timing + timing[1] + (ramcfg[1] * timing[3]);
}
}
return NULL;
}
static void
legacy_perf_init(struct drm_device *dev)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvbios *bios = &drm->vbios;
struct nouveau_pm *pm = nouveau_pm(dev);
char *perf, *entry, *bmp = &bios->data[bios->offset];
int headerlen, use_straps;
if (bmp[5] < 0x5 || bmp[6] < 0x14) {
NV_DEBUG(drm, "BMP version too old for perf\n");
return;
}
perf = ROMPTR(dev, bmp[0x73]);
if (!perf) {
NV_DEBUG(drm, "No memclock table pointer found.\n");
return;
}
switch (perf[0]) {
case 0x12:
case 0x14:
case 0x18:
use_straps = 0;
headerlen = 1;
break;
case 0x01:
use_straps = perf[1] & 1;
headerlen = (use_straps ? 8 : 2);
break;
default:
NV_WARN(drm, "Unknown memclock table version %x.\n", perf[0]);
return;
}
entry = perf + headerlen;
if (use_straps)
entry += (nv_rd32(device, NV_PEXTDEV_BOOT_0) & 0x3c) >> 1;
sprintf(pm->perflvl[0].name, "performance_level_0");
pm->perflvl[0].memory = ROM16(entry[0]) * 20;
pm->nr_perflvl = 1;
}
static void
nouveau_perf_voltage(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct bit_entry P;
u8 *vmap;
int id;
id = perflvl->volt_min;
perflvl->volt_min = 0;
/* boards using voltage table version <0x40 store the voltage
* level directly in the perflvl entry as a multiple of 10mV
*/
if (drm->pm->voltage.version < 0x40) {
perflvl->volt_min = id * 10000;
perflvl->volt_max = perflvl->volt_min;
return;
}
/* on newer ones, the perflvl stores an index into yet another
* vbios table containing a min/max voltage value for the perflvl
*/
if (bit_table(dev, 'P', &P) || P.version != 2 || P.length < 34) {
NV_DEBUG(drm, "where's our volt map table ptr? %d %d\n",
P.version, P.length);
return;
}
vmap = ROMPTR(dev, P.data[32]);
if (!vmap) {
NV_DEBUG(drm, "volt map table pointer invalid\n");
return;
}
if (id < vmap[3]) {
vmap += vmap[1] + (vmap[2] * id);
perflvl->volt_min = ROM32(vmap[0]);
perflvl->volt_max = ROM32(vmap[4]);
}
}
void
nouveau_perf_init(struct drm_device *dev)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_pm *pm = nouveau_pm(dev);
struct nvbios *bios = &drm->vbios;
u8 *perf, ver, hdr, cnt, len;
int ret, vid, i = -1;
if (bios->type == NVBIOS_BMP && bios->data[bios->offset + 6] < 0x25) {
legacy_perf_init(dev);
return;
}
perf = nouveau_perf_table(dev, &ver);
while ((perf = nouveau_perf_entry(dev, ++i, &ver, &hdr, &cnt, &len))) {
struct nouveau_pm_level *perflvl = &pm->perflvl[pm->nr_perflvl];
if (perf[0] == 0xff)
continue;
switch (ver) {
case 0x12:
case 0x13:
case 0x15:
perflvl->fanspeed = perf[55];
if (hdr > 56)
perflvl->volt_min = perf[56];
perflvl->core = ROM32(perf[1]) * 10;
perflvl->memory = ROM32(perf[5]) * 20;
break;
case 0x21:
case 0x23:
case 0x24:
perflvl->fanspeed = perf[4];
perflvl->volt_min = perf[5];
perflvl->shader = ROM16(perf[6]) * 1000;
perflvl->core = perflvl->shader;
perflvl->core += (signed char)perf[8] * 1000;
if (nv_device(drm->device)->chipset == 0x49 ||
nv_device(drm->device)->chipset == 0x4b)
perflvl->memory = ROM16(perf[11]) * 1000;
else
perflvl->memory = ROM16(perf[11]) * 2000;
break;
case 0x25:
perflvl->fanspeed = perf[4];
perflvl->volt_min = perf[5];
perflvl->core = ROM16(perf[6]) * 1000;
perflvl->shader = ROM16(perf[10]) * 1000;
perflvl->memory = ROM16(perf[12]) * 1000;
break;
case 0x30:
perflvl->memscript = ROM16(perf[2]);
case 0x35:
perflvl->fanspeed = perf[6];
perflvl->volt_min = perf[7];
perflvl->core = ROM16(perf[8]) * 1000;
perflvl->shader = ROM16(perf[10]) * 1000;
perflvl->memory = ROM16(perf[12]) * 1000;
perflvl->vdec = ROM16(perf[16]) * 1000;
perflvl->dom6 = ROM16(perf[20]) * 1000;
break;
case 0x40:
#define subent(n) ((ROM16(perf[hdr + (n) * len]) & 0xfff) * 1000)
perflvl->fanspeed = 0; /*XXX*/
perflvl->volt_min = perf[2];
if (nv_device(drm->device)->card_type == NV_50) {
perflvl->core = subent(0);
perflvl->shader = subent(1);
perflvl->memory = subent(2);
perflvl->vdec = subent(3);
perflvl->unka0 = subent(4);
} else {
perflvl->hub06 = subent(0);
perflvl->hub01 = subent(1);
perflvl->copy = subent(2);
perflvl->shader = subent(3);
perflvl->rop = subent(4);
perflvl->memory = subent(5);
perflvl->vdec = subent(6);
perflvl->daemon = subent(10);
perflvl->hub07 = subent(11);
perflvl->core = perflvl->shader / 2;
}
break;
}
/* make sure vid is valid */
nouveau_perf_voltage(dev, perflvl);
if (pm->voltage.supported && perflvl->volt_min) {
vid = nouveau_volt_vid_lookup(dev, perflvl->volt_min);
if (vid < 0) {
NV_DEBUG(drm, "perflvl %d, bad vid\n", i);
continue;
}
}
/* get the corresponding memory timings */
ret = nouveau_mem_timing_calc(dev, perflvl->memory,
&perflvl->timing);
if (ret) {
NV_DEBUG(drm, "perflvl %d, bad timing: %d\n", i, ret);
continue;
}
snprintf(perflvl->name, sizeof(perflvl->name),
"performance_level_%d", i);
perflvl->id = i;
snprintf(perflvl->profile.name, sizeof(perflvl->profile.name),
"%d", perflvl->id);
perflvl->profile.func = &nouveau_pm_static_profile_func;
list_add_tail(&perflvl->profile.head, &pm->profiles);
pm->nr_perflvl++;
}
}
void
nouveau_perf_fini(struct drm_device *dev)
{
}
/*
* Copyright 2010 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#ifndef __NOUVEAU_PM_H__
#define __NOUVEAU_PM_H__
#include <subdev/bios/pll.h>
#include <subdev/clock.h>
struct nouveau_pm_voltage_level {
u32 voltage; /* microvolts */
u8 vid;
};
struct nouveau_pm_voltage {
bool supported;
u8 version;
u8 vid_mask;
struct nouveau_pm_voltage_level *level;
int nr_level;
};
/* Exclusive upper limits */
#define NV_MEM_CL_DDR2_MAX 8
#define NV_MEM_WR_DDR2_MAX 9
#define NV_MEM_CL_DDR3_MAX 17
#define NV_MEM_WR_DDR3_MAX 17
#define NV_MEM_CL_GDDR3_MAX 16
#define NV_MEM_WR_GDDR3_MAX 18
#define NV_MEM_CL_GDDR5_MAX 21
#define NV_MEM_WR_GDDR5_MAX 20
struct nouveau_pm_memtiming {
int id;
u32 reg[9];
u32 mr[4];
u8 tCWL;
u8 odt;
u8 drive_strength;
};
struct nouveau_pm_tbl_header {
u8 version;
u8 header_len;
u8 entry_cnt;
u8 entry_len;
};
struct nouveau_pm_tbl_entry {
u8 tWR;
u8 tWTR;
u8 tCL;
u8 tRC;
u8 empty_4;
u8 tRFC; /* Byte 5 */
u8 empty_6;
u8 tRAS; /* Byte 7 */
u8 empty_8;
u8 tRP; /* Byte 9 */
u8 tRCDRD;
u8 tRCDWR;
u8 tRRD;
u8 tUNK_13;
u8 RAM_FT1; /* 14, a bitmask of random RAM features */
u8 empty_15;
u8 tUNK_16;
u8 empty_17;
u8 tUNK_18;
u8 tCWL;
u8 tUNK_20, tUNK_21;
};
struct nouveau_pm_profile;
struct nouveau_pm_profile_func {
void (*destroy)(struct nouveau_pm_profile *);
void (*init)(struct nouveau_pm_profile *);
void (*fini)(struct nouveau_pm_profile *);
struct nouveau_pm_level *(*select)(struct nouveau_pm_profile *);
};
struct nouveau_pm_profile {
const struct nouveau_pm_profile_func *func;
struct list_head head;
char name[8];
};
#define NOUVEAU_PM_MAX_LEVEL 8
struct nouveau_pm_level {
struct nouveau_pm_profile profile;
struct device_attribute dev_attr;
char name[32];
int id;
struct nouveau_pm_memtiming timing;
u32 memory;
u16 memscript;
u32 core;
u32 shader;
u32 rop;
u32 copy;
u32 daemon;
u32 vdec;
u32 dom6;
u32 unka0; /* nva3:nvc0 */
u32 hub01; /* nvc0- */
u32 hub06; /* nvc0- */
u32 hub07; /* nvc0- */
u32 volt_min; /* microvolts */
u32 volt_max;
u8 fanspeed;
};
struct nouveau_pm_temp_sensor_constants {
u16 offset_constant;
s16 offset_mult;
s16 offset_div;
s16 slope_mult;
s16 slope_div;
};
struct nouveau_pm_threshold_temp {
s16 critical;
s16 down_clock;
};
struct nouveau_pm {
struct drm_device *dev;
struct nouveau_pm_voltage voltage;
struct nouveau_pm_level perflvl[NOUVEAU_PM_MAX_LEVEL];
int nr_perflvl;
struct nouveau_pm_temp_sensor_constants sensor_constants;
struct nouveau_pm_threshold_temp threshold_temp;
struct nouveau_pm_profile *profile_ac;
struct nouveau_pm_profile *profile_dc;
struct nouveau_pm_profile *profile;
struct list_head profiles;
struct nouveau_pm_level boot;
struct nouveau_pm_level *cur;
struct device *hwmon;
struct notifier_block acpi_nb;
int (*clocks_get)(struct drm_device *, struct nouveau_pm_level *);
void *(*clocks_pre)(struct drm_device *, struct nouveau_pm_level *);
int (*clocks_set)(struct drm_device *, void *);
int (*voltage_get)(struct drm_device *);
int (*voltage_set)(struct drm_device *, int voltage);
};
static inline struct nouveau_pm *
nouveau_pm(struct drm_device *dev)
{
return nouveau_drm(dev)->pm;
}
struct nouveau_mem_exec_func {
struct drm_device *dev;
void (*precharge)(struct nouveau_mem_exec_func *);
void (*refresh)(struct nouveau_mem_exec_func *);
void (*refresh_auto)(struct nouveau_mem_exec_func *, bool);
void (*refresh_self)(struct nouveau_mem_exec_func *, bool);
void (*wait)(struct nouveau_mem_exec_func *, u32 nsec);
u32 (*mrg)(struct nouveau_mem_exec_func *, int mr);
void (*mrs)(struct nouveau_mem_exec_func *, int mr, u32 data);
void (*clock_set)(struct nouveau_mem_exec_func *);
void (*timing_set)(struct nouveau_mem_exec_func *);
void *priv;
};
/* nouveau_mem.c */
int nouveau_mem_exec(struct nouveau_mem_exec_func *,
struct nouveau_pm_level *);
/* nouveau_pm.c */
int nouveau_pm_init(struct drm_device *dev);
void nouveau_pm_fini(struct drm_device *dev);
void nouveau_pm_resume(struct drm_device *dev);
extern const struct nouveau_pm_profile_func nouveau_pm_static_profile_func;
void nouveau_pm_trigger(struct drm_device *dev);
/* nouveau_volt.c */
void nouveau_volt_init(struct drm_device *);
void nouveau_volt_fini(struct drm_device *);
int nouveau_volt_vid_lookup(struct drm_device *, int voltage);
int nouveau_volt_lvl_lookup(struct drm_device *, int vid);
int nouveau_voltage_gpio_get(struct drm_device *);
int nouveau_voltage_gpio_set(struct drm_device *, int voltage);
/* nouveau_perf.c */
void nouveau_perf_init(struct drm_device *);
void nouveau_perf_fini(struct drm_device *);
u8 *nouveau_perf_rammap(struct drm_device *, u32 freq, u8 *ver,
u8 *hdr, u8 *cnt, u8 *len);
u8 *nouveau_perf_ramcfg(struct drm_device *, u32 freq, u8 *ver, u8 *len);
u8 *nouveau_perf_timing(struct drm_device *, u32 freq, u8 *ver, u8 *len);
/* nouveau_mem.c */
void nouveau_mem_timing_init(struct drm_device *);
void nouveau_mem_timing_fini(struct drm_device *);
/* nv04_pm.c */
int nv04_pm_clocks_get(struct drm_device *, struct nouveau_pm_level *);
void *nv04_pm_clocks_pre(struct drm_device *, struct nouveau_pm_level *);
int nv04_pm_clocks_set(struct drm_device *, void *);
/* nv40_pm.c */
int nv40_pm_clocks_get(struct drm_device *, struct nouveau_pm_level *);
void *nv40_pm_clocks_pre(struct drm_device *, struct nouveau_pm_level *);
int nv40_pm_clocks_set(struct drm_device *, void *);
int nv40_pm_pwm_get(struct drm_device *, int, u32 *, u32 *);
int nv40_pm_pwm_set(struct drm_device *, int, u32, u32);
/* nv50_pm.c */
int nv50_pm_clocks_get(struct drm_device *, struct nouveau_pm_level *);
void *nv50_pm_clocks_pre(struct drm_device *, struct nouveau_pm_level *);
int nv50_pm_clocks_set(struct drm_device *, void *);
int nv50_pm_pwm_get(struct drm_device *, int, u32 *, u32 *);
int nv50_pm_pwm_set(struct drm_device *, int, u32, u32);
/* nva3_pm.c */
int nva3_pm_clocks_get(struct drm_device *, struct nouveau_pm_level *);
void *nva3_pm_clocks_pre(struct drm_device *, struct nouveau_pm_level *);
int nva3_pm_clocks_set(struct drm_device *, void *);
/* nvc0_pm.c */
int nvc0_pm_clocks_get(struct drm_device *, struct nouveau_pm_level *);
void *nvc0_pm_clocks_pre(struct drm_device *, struct nouveau_pm_level *);
int nvc0_pm_clocks_set(struct drm_device *, void *);
/* nouveau_mem.c */
int nouveau_mem_timing_calc(struct drm_device *, u32 freq,
struct nouveau_pm_memtiming *);
void nouveau_mem_timing_read(struct drm_device *,
struct nouveau_pm_memtiming *);
static inline int
nva3_calc_pll(struct drm_device *dev, struct nvbios_pll *pll, u32 freq,
int *N, int *fN, int *M, int *P)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_clock *clk = nouveau_clock(device);
struct nouveau_pll_vals pv;
int ret;
ret = clk->pll_calc(clk, pll, freq, &pv);
*N = pv.N1;
*M = pv.M1;
*P = pv.log2P;
return ret;
}
#endif
/*
* Copyright 2010 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <drm/drmP.h>
#include "nouveau_drm.h"
#include "nouveau_pm.h"
#include <subdev/bios/gpio.h>
#include <subdev/gpio.h>
static const enum dcb_gpio_func_name vidtag[] = { 0x04, 0x05, 0x06, 0x1a, 0x73 };
static int nr_vidtag = sizeof(vidtag) / sizeof(vidtag[0]);
int
nouveau_voltage_gpio_get(struct drm_device *dev)
{
struct nouveau_pm_voltage *volt = &nouveau_pm(dev)->voltage;
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_gpio *gpio = nouveau_gpio(device);
u8 vid = 0;
int i;
for (i = 0; i < nr_vidtag; i++) {
if (!(volt->vid_mask & (1 << i)))
continue;
vid |= gpio->get(gpio, 0, vidtag[i], 0xff) << i;
}
return nouveau_volt_lvl_lookup(dev, vid);
}
int
nouveau_voltage_gpio_set(struct drm_device *dev, int voltage)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_gpio *gpio = nouveau_gpio(device);
struct nouveau_pm_voltage *volt = &nouveau_pm(dev)->voltage;
int vid, i;
vid = nouveau_volt_vid_lookup(dev, voltage);
if (vid < 0)
return vid;
for (i = 0; i < nr_vidtag; i++) {
if (!(volt->vid_mask & (1 << i)))
continue;
gpio->set(gpio, 0, vidtag[i], 0xff, !!(vid & (1 << i)));
}
return 0;
}
int
nouveau_volt_vid_lookup(struct drm_device *dev, int voltage)
{
struct nouveau_pm_voltage *volt = &nouveau_pm(dev)->voltage;
int i;
for (i = 0; i < volt->nr_level; i++) {
if (volt->level[i].voltage == voltage)
return volt->level[i].vid;
}
return -ENOENT;
}
int
nouveau_volt_lvl_lookup(struct drm_device *dev, int vid)
{
struct nouveau_pm_voltage *volt = &nouveau_pm(dev)->voltage;
int i;
for (i = 0; i < volt->nr_level; i++) {
if (volt->level[i].vid == vid)
return volt->level[i].voltage;
}
return -ENOENT;
}
void
nouveau_volt_init(struct drm_device *dev)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_gpio *gpio = nouveau_gpio(drm->device);
struct nouveau_pm *pm = nouveau_pm(dev);
struct nouveau_pm_voltage *voltage = &pm->voltage;
struct nvbios *bios = &drm->vbios;
struct dcb_gpio_func func;
struct bit_entry P;
u8 *volt = NULL, *entry;
int i, headerlen, recordlen, entries, vidmask, vidshift;
if (bios->type == NVBIOS_BIT) {
if (bit_table(dev, 'P', &P))
return;
if (P.version == 1)
volt = ROMPTR(dev, P.data[16]);
else
if (P.version == 2)
volt = ROMPTR(dev, P.data[12]);
else {
NV_WARN(drm, "unknown volt for BIT P %d\n", P.version);
}
} else {
if (bios->data[bios->offset + 6] < 0x27) {
NV_DEBUG(drm, "BMP version too old for voltage\n");
return;
}
volt = ROMPTR(dev, bios->data[bios->offset + 0x98]);
}
if (!volt) {
NV_DEBUG(drm, "voltage table pointer invalid\n");
return;
}
switch (volt[0]) {
case 0x10:
case 0x11:
case 0x12:
headerlen = 5;
recordlen = volt[1];
entries = volt[2];
vidshift = 0;
vidmask = volt[4];
break;
case 0x20:
headerlen = volt[1];
recordlen = volt[3];
entries = volt[2];
vidshift = 0; /* could be vidshift like 0x30? */
vidmask = volt[5];
break;
case 0x30:
headerlen = volt[1];
recordlen = volt[2];
entries = volt[3];
vidmask = volt[4];
/* no longer certain what volt[5] is, if it's related to
* the vid shift then it's definitely not a function of
* how many bits are set.
*
* after looking at a number of nva3+ vbios images, they
* all seem likely to have a static shift of 2.. lets
* go with that for now until proven otherwise.
*/
vidshift = 2;
break;
case 0x40:
headerlen = volt[1];
recordlen = volt[2];
entries = volt[3]; /* not a clue what the entries are for.. */
vidmask = volt[11]; /* guess.. */
vidshift = 0;
break;
default:
NV_WARN(drm, "voltage table 0x%02x unknown\n", volt[0]);
return;
}
/* validate vid mask */
voltage->vid_mask = vidmask;
if (!voltage->vid_mask)
return;
i = 0;
while (vidmask) {
if (i > nr_vidtag) {
NV_DEBUG(drm, "vid bit %d unknown\n", i);
return;
}
if (gpio && gpio->find(gpio, 0, vidtag[i], 0xff, &func)) {
NV_DEBUG(drm, "vid bit %d has no gpio tag\n", i);
return;
}
vidmask >>= 1;
i++;
}
/* parse vbios entries into common format */
voltage->version = volt[0];
if (voltage->version < 0x40) {
voltage->nr_level = entries;
voltage->level =
kcalloc(entries, sizeof(*voltage->level), GFP_KERNEL);
if (!voltage->level)
return;
entry = volt + headerlen;
for (i = 0; i < entries; i++, entry += recordlen) {
voltage->level[i].voltage = entry[0] * 10000;
voltage->level[i].vid = entry[1] >> vidshift;
}
} else {
u32 volt_uv = ROM32(volt[4]);
s16 step_uv = ROM16(volt[8]);
u8 vid;
voltage->nr_level = voltage->vid_mask + 1;
voltage->level = kcalloc(voltage->nr_level,
sizeof(*voltage->level), GFP_KERNEL);
if (!voltage->level)
return;
for (vid = 0; vid <= voltage->vid_mask; vid++) {
voltage->level[vid].voltage = volt_uv;
voltage->level[vid].vid = vid;
volt_uv += step_uv;
}
}
voltage->supported = true;
}
void
nouveau_volt_fini(struct drm_device *dev)
{
struct nouveau_pm_voltage *volt = &nouveau_pm(dev)->voltage;
kfree(volt->level);
}
/*
* Copyright 2010 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <drm/drmP.h>
#include "nouveau_drm.h"
#include "nouveau_reg.h"
#include "dispnv04/hw.h"
#include "nouveau_pm.h"
#include <subdev/bios/pll.h>
#include <subdev/clock.h>
#include <subdev/timer.h>
int
nv04_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
int ret;
ret = nouveau_hw_get_clock(dev, PLL_CORE);
if (ret < 0)
return ret;
perflvl->core = ret;
ret = nouveau_hw_get_clock(dev, PLL_MEMORY);
if (ret < 0)
return ret;
perflvl->memory = ret;
return 0;
}
struct nv04_pm_clock {
struct nvbios_pll pll;
struct nouveau_pll_vals calc;
};
struct nv04_pm_state {
struct nv04_pm_clock core;
struct nv04_pm_clock memory;
};
static int
calc_pll(struct drm_device *dev, u32 id, int khz, struct nv04_pm_clock *clk)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_bios *bios = nouveau_bios(device);
struct nouveau_clock *pclk = nouveau_clock(device);
int ret;
ret = nvbios_pll_parse(bios, id, &clk->pll);
if (ret)
return ret;
ret = pclk->pll_calc(pclk, &clk->pll, khz, &clk->calc);
if (!ret)
return -EINVAL;
return 0;
}
void *
nv04_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nv04_pm_state *info;
int ret;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
ret = calc_pll(dev, PLL_CORE, perflvl->core, &info->core);
if (ret)
goto error;
if (perflvl->memory) {
ret = calc_pll(dev, PLL_MEMORY, perflvl->memory, &info->memory);
if (ret)
goto error;
}
return info;
error:
kfree(info);
return ERR_PTR(ret);
}
static void
prog_pll(struct drm_device *dev, struct nv04_pm_clock *clk)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_clock *pclk = nouveau_clock(device);
u32 reg = clk->pll.reg;
/* thank the insane nouveau_hw_setpll() interface for this */
if (device->card_type >= NV_40)
reg += 4;
pclk->pll_prog(pclk, reg, &clk->calc);
}
int
nv04_pm_clocks_set(struct drm_device *dev, void *pre_state)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_timer *ptimer = nouveau_timer(device);
struct nv04_pm_state *state = pre_state;
prog_pll(dev, &state->core);
if (state->memory.pll.reg) {
prog_pll(dev, &state->memory);
if (device->card_type < NV_30) {
if (device->card_type == NV_20)
nv_mask(device, 0x1002c4, 0, 1 << 20);
/* Reset the DLLs */
nv_mask(device, 0x1002c0, 0, 1 << 8);
}
}
nv_ofuncs(ptimer)->init(nv_object(ptimer));
kfree(state);
return 0;
}
/*
* Copyright 2011 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <drm/drmP.h>
#include "nouveau_drm.h"
#include "nouveau_bios.h"
#include "nouveau_pm.h"
#include "dispnv04/hw.h"
#include <subdev/bios/pll.h>
#include <subdev/clock.h>
#include <subdev/timer.h>
#include <engine/fifo.h>
#define min2(a,b) ((a) < (b) ? (a) : (b))
static u32
read_pll_1(struct drm_device *dev, u32 reg)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ctrl = nv_rd32(device, reg + 0x00);
int P = (ctrl & 0x00070000) >> 16;
int N = (ctrl & 0x0000ff00) >> 8;
int M = (ctrl & 0x000000ff) >> 0;
u32 ref = 27000, clk = 0;
if (ctrl & 0x80000000)
clk = ref * N / M;
return clk >> P;
}
static u32
read_pll_2(struct drm_device *dev, u32 reg)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ctrl = nv_rd32(device, reg + 0x00);
u32 coef = nv_rd32(device, reg + 0x04);
int N2 = (coef & 0xff000000) >> 24;
int M2 = (coef & 0x00ff0000) >> 16;
int N1 = (coef & 0x0000ff00) >> 8;
int M1 = (coef & 0x000000ff) >> 0;
int P = (ctrl & 0x00070000) >> 16;
u32 ref = 27000, clk = 0;
if ((ctrl & 0x80000000) && M1) {
clk = ref * N1 / M1;
if ((ctrl & 0x40000100) == 0x40000000) {
if (M2)
clk = clk * N2 / M2;
else
clk = 0;
}
}
return clk >> P;
}
static u32
read_clk(struct drm_device *dev, u32 src)
{
switch (src) {
case 3:
return read_pll_2(dev, 0x004000);
case 2:
return read_pll_1(dev, 0x004008);
default:
break;
}
return 0;
}
int
nv40_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ctrl = nv_rd32(device, 0x00c040);
perflvl->core = read_clk(dev, (ctrl & 0x00000003) >> 0);
perflvl->shader = read_clk(dev, (ctrl & 0x00000030) >> 4);
perflvl->memory = read_pll_2(dev, 0x4020);
return 0;
}
struct nv40_pm_state {
u32 ctrl;
u32 npll_ctrl;
u32 npll_coef;
u32 spll;
u32 mpll_ctrl;
u32 mpll_coef;
};
static int
nv40_calc_pll(struct drm_device *dev, u32 reg, struct nvbios_pll *pll,
u32 clk, int *N1, int *M1, int *N2, int *M2, int *log2P)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_bios *bios = nouveau_bios(device);
struct nouveau_clock *pclk = nouveau_clock(device);
struct nouveau_pll_vals coef;
int ret;
ret = nvbios_pll_parse(bios, reg, pll);
if (ret)
return ret;
if (clk < pll->vco1.max_freq)
pll->vco2.max_freq = 0;
ret = pclk->pll_calc(pclk, pll, clk, &coef);
if (ret == 0)
return -ERANGE;
*N1 = coef.N1;
*M1 = coef.M1;
if (N2 && M2) {
if (pll->vco2.max_freq) {
*N2 = coef.N2;
*M2 = coef.M2;
} else {
*N2 = 1;
*M2 = 1;
}
}
*log2P = coef.log2P;
return 0;
}
void *
nv40_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nv40_pm_state *info;
struct nvbios_pll pll;
int N1, N2, M1, M2, log2P;
int ret;
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
/* core/geometric clock */
ret = nv40_calc_pll(dev, 0x004000, &pll, perflvl->core,
&N1, &M1, &N2, &M2, &log2P);
if (ret < 0)
goto out;
if (N2 == M2) {
info->npll_ctrl = 0x80000100 | (log2P << 16);
info->npll_coef = (N1 << 8) | M1;
} else {
info->npll_ctrl = 0xc0000000 | (log2P << 16);
info->npll_coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1;
}
/* use the second PLL for shader/rop clock, if it differs from core */
if (perflvl->shader && perflvl->shader != perflvl->core) {
ret = nv40_calc_pll(dev, 0x004008, &pll, perflvl->shader,
&N1, &M1, NULL, NULL, &log2P);
if (ret < 0)
goto out;
info->spll = 0xc0000000 | (log2P << 16) | (N1 << 8) | M1;
info->ctrl = 0x00000223;
} else {
info->spll = 0x00000000;
info->ctrl = 0x00000333;
}
/* memory clock */
if (!perflvl->memory) {
info->mpll_ctrl = 0x00000000;
goto out;
}
ret = nv40_calc_pll(dev, 0x004020, &pll, perflvl->memory,
&N1, &M1, &N2, &M2, &log2P);
if (ret < 0)
goto out;
info->mpll_ctrl = 0x80000000 | (log2P << 16);
info->mpll_ctrl |= min2(pll.bias_p + log2P, pll.max_p) << 20;
if (N2 == M2) {
info->mpll_ctrl |= 0x00000100;
info->mpll_coef = (N1 << 8) | M1;
} else {
info->mpll_ctrl |= 0x40000000;
info->mpll_coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1;
}
out:
if (ret < 0) {
kfree(info);
info = ERR_PTR(ret);
}
return info;
}
static bool
nv40_pm_gr_idle(void *data)
{
struct drm_device *dev = data;
struct nouveau_device *device = nouveau_dev(dev);
if ((nv_rd32(device, 0x400760) & 0x000000f0) >> 4 !=
(nv_rd32(device, 0x400760) & 0x0000000f))
return false;
if (nv_rd32(device, 0x400700))
return false;
return true;
}
int
nv40_pm_clocks_set(struct drm_device *dev, void *pre_state)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_fifo *pfifo = nouveau_fifo(device);
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv40_pm_state *info = pre_state;
unsigned long flags;
struct bit_entry M;
u32 crtc_mask = 0;
u8 sr1[2];
int i, ret = -EAGAIN;
/* determine which CRTCs are active, fetch VGA_SR1 for each */
for (i = 0; i < 2; i++) {
u32 vbl = nv_rd32(device, 0x600808 + (i * 0x2000));
u32 cnt = 0;
do {
if (vbl != nv_rd32(device, 0x600808 + (i * 0x2000))) {
nv_wr08(device, 0x0c03c4 + (i * 0x2000), 0x01);
sr1[i] = nv_rd08(device, 0x0c03c5 + (i * 0x2000));
if (!(sr1[i] & 0x20))
crtc_mask |= (1 << i);
break;
}
udelay(1);
} while (cnt++ < 32);
}
/* halt and idle engines */
pfifo->pause(pfifo, &flags);
if (!nv_wait_cb(device, nv40_pm_gr_idle, dev))
goto resume;
ret = 0;
/* set engine clocks */
nv_mask(device, 0x00c040, 0x00000333, 0x00000000);
nv_wr32(device, 0x004004, info->npll_coef);
nv_mask(device, 0x004000, 0xc0070100, info->npll_ctrl);
nv_mask(device, 0x004008, 0xc007ffff, info->spll);
mdelay(5);
nv_mask(device, 0x00c040, 0x00000333, info->ctrl);
if (!info->mpll_ctrl)
goto resume;
/* wait for vblank start on active crtcs, disable memory access */
for (i = 0; i < 2; i++) {
if (!(crtc_mask & (1 << i)))
continue;
nv_wait(device, 0x600808 + (i * 0x2000), 0x00010000, 0x00000000);
nv_wait(device, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000);
nv_wr08(device, 0x0c03c4 + (i * 0x2000), 0x01);
nv_wr08(device, 0x0c03c5 + (i * 0x2000), sr1[i] | 0x20);
}
/* prepare ram for reclocking */
nv_wr32(device, 0x1002d4, 0x00000001); /* precharge */
nv_wr32(device, 0x1002d0, 0x00000001); /* refresh */
nv_wr32(device, 0x1002d0, 0x00000001); /* refresh */
nv_mask(device, 0x100210, 0x80000000, 0x00000000); /* no auto refresh */
nv_wr32(device, 0x1002dc, 0x00000001); /* enable self-refresh */
/* change the PLL of each memory partition */
nv_mask(device, 0x00c040, 0x0000c000, 0x00000000);
switch (nv_device(drm->device)->chipset) {
case 0x40:
case 0x45:
case 0x41:
case 0x42:
case 0x47:
nv_mask(device, 0x004044, 0xc0771100, info->mpll_ctrl);
nv_mask(device, 0x00402c, 0xc0771100, info->mpll_ctrl);
nv_wr32(device, 0x004048, info->mpll_coef);
nv_wr32(device, 0x004030, info->mpll_coef);
case 0x43:
case 0x49:
case 0x4b:
nv_mask(device, 0x004038, 0xc0771100, info->mpll_ctrl);
nv_wr32(device, 0x00403c, info->mpll_coef);
default:
nv_mask(device, 0x004020, 0xc0771100, info->mpll_ctrl);
nv_wr32(device, 0x004024, info->mpll_coef);
break;
}
udelay(100);
nv_mask(device, 0x00c040, 0x0000c000, 0x0000c000);
/* re-enable normal operation of memory controller */
nv_wr32(device, 0x1002dc, 0x00000000);
nv_mask(device, 0x100210, 0x80000000, 0x80000000);
udelay(100);
/* execute memory reset script from vbios */
if (!bit_table(dev, 'M', &M))
nouveau_bios_run_init_table(dev, ROM16(M.data[0]), NULL, 0);
/* make sure we're in vblank (hopefully the same one as before), and
* then re-enable crtc memory access
*/
for (i = 0; i < 2; i++) {
if (!(crtc_mask & (1 << i)))
continue;
nv_wait(device, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000);
nv_wr08(device, 0x0c03c4 + (i * 0x2000), 0x01);
nv_wr08(device, 0x0c03c5 + (i * 0x2000), sr1[i]);
}
/* resume engines */
resume:
pfifo->start(pfifo, &flags);
kfree(info);
return ret;
}
/*
* Copyright 2010 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <drm/drmP.h>
#include "nouveau_drm.h"
#include "nouveau_bios.h"
#include "dispnv04/hw.h"
#include "nouveau_pm.h"
#include "nouveau_hwsq.h"
#include "nv50_display.h"
#include <subdev/bios/pll.h>
#include <subdev/clock.h>
#include <subdev/timer.h>
#include <subdev/fb.h>
enum clk_src {
clk_src_crystal,
clk_src_href,
clk_src_hclk,
clk_src_hclkm3,
clk_src_hclkm3d2,
clk_src_host,
clk_src_nvclk,
clk_src_sclk,
clk_src_mclk,
clk_src_vdec,
clk_src_dom6
};
static u32 read_clk(struct drm_device *, enum clk_src);
static u32
read_div(struct drm_device *dev)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
switch (nv_device(drm->device)->chipset) {
case 0x50: /* it exists, but only has bit 31, not the dividers.. */
case 0x84:
case 0x86:
case 0x98:
case 0xa0:
return nv_rd32(device, 0x004700);
case 0x92:
case 0x94:
case 0x96:
return nv_rd32(device, 0x004800);
default:
return 0x00000000;
}
}
static u32
read_pll_src(struct drm_device *dev, u32 base)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
u32 coef, ref = read_clk(dev, clk_src_crystal);
u32 rsel = nv_rd32(device, 0x00e18c);
int P, N, M, id;
switch (nv_device(drm->device)->chipset) {
case 0x50:
case 0xa0:
switch (base) {
case 0x4020:
case 0x4028: id = !!(rsel & 0x00000004); break;
case 0x4008: id = !!(rsel & 0x00000008); break;
case 0x4030: id = 0; break;
default:
NV_ERROR(drm, "ref: bad pll 0x%06x\n", base);
return 0;
}
coef = nv_rd32(device, 0x00e81c + (id * 0x0c));
ref *= (coef & 0x01000000) ? 2 : 4;
P = (coef & 0x00070000) >> 16;
N = ((coef & 0x0000ff00) >> 8) + 1;
M = ((coef & 0x000000ff) >> 0) + 1;
break;
case 0x84:
case 0x86:
case 0x92:
coef = nv_rd32(device, 0x00e81c);
P = (coef & 0x00070000) >> 16;
N = (coef & 0x0000ff00) >> 8;
M = (coef & 0x000000ff) >> 0;
break;
case 0x94:
case 0x96:
case 0x98:
rsel = nv_rd32(device, 0x00c050);
switch (base) {
case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
case 0x4030: rsel = 3; break;
default:
NV_ERROR(drm, "ref: bad pll 0x%06x\n", base);
return 0;
}
switch (rsel) {
case 0: id = 1; break;
case 1: return read_clk(dev, clk_src_crystal);
case 2: return read_clk(dev, clk_src_href);
case 3: id = 0; break;
}
coef = nv_rd32(device, 0x00e81c + (id * 0x28));
P = (nv_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
P += (coef & 0x00070000) >> 16;
N = (coef & 0x0000ff00) >> 8;
M = (coef & 0x000000ff) >> 0;
break;
default:
BUG_ON(1);
}
if (M)
return (ref * N / M) >> P;
return 0;
}
static u32
read_pll_ref(struct drm_device *dev, u32 base)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
u32 src, mast = nv_rd32(device, 0x00c040);
switch (base) {
case 0x004028:
src = !!(mast & 0x00200000);
break;
case 0x004020:
src = !!(mast & 0x00400000);
break;
case 0x004008:
src = !!(mast & 0x00010000);
break;
case 0x004030:
src = !!(mast & 0x02000000);
break;
case 0x00e810:
return read_clk(dev, clk_src_crystal);
default:
NV_ERROR(drm, "bad pll 0x%06x\n", base);
return 0;
}
if (src)
return read_clk(dev, clk_src_href);
return read_pll_src(dev, base);
}
static u32
read_pll(struct drm_device *dev, u32 base)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
u32 mast = nv_rd32(device, 0x00c040);
u32 ctrl = nv_rd32(device, base + 0);
u32 coef = nv_rd32(device, base + 4);
u32 ref = read_pll_ref(dev, base);
u32 clk = 0;
int N1, N2, M1, M2;
if (base == 0x004028 && (mast & 0x00100000)) {
/* wtf, appears to only disable post-divider on nva0 */
if (nv_device(drm->device)->chipset != 0xa0)
return read_clk(dev, clk_src_dom6);
}
N2 = (coef & 0xff000000) >> 24;
M2 = (coef & 0x00ff0000) >> 16;
N1 = (coef & 0x0000ff00) >> 8;
M1 = (coef & 0x000000ff);
if ((ctrl & 0x80000000) && M1) {
clk = ref * N1 / M1;
if ((ctrl & 0x40000100) == 0x40000000) {
if (M2)
clk = clk * N2 / M2;
else
clk = 0;
}
}
return clk;
}
static u32
read_clk(struct drm_device *dev, enum clk_src src)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
u32 mast = nv_rd32(device, 0x00c040);
u32 P = 0;
switch (src) {
case clk_src_crystal:
return device->crystal;
case clk_src_href:
return 100000; /* PCIE reference clock */
case clk_src_hclk:
return read_clk(dev, clk_src_href) * 27778 / 10000;
case clk_src_hclkm3:
return read_clk(dev, clk_src_hclk) * 3;
case clk_src_hclkm3d2:
return read_clk(dev, clk_src_hclk) * 3 / 2;
case clk_src_host:
switch (mast & 0x30000000) {
case 0x00000000: return read_clk(dev, clk_src_href);
case 0x10000000: break;
case 0x20000000: /* !0x50 */
case 0x30000000: return read_clk(dev, clk_src_hclk);
}
break;
case clk_src_nvclk:
if (!(mast & 0x00100000))
P = (nv_rd32(device, 0x004028) & 0x00070000) >> 16;
switch (mast & 0x00000003) {
case 0x00000000: return read_clk(dev, clk_src_crystal) >> P;
case 0x00000001: return read_clk(dev, clk_src_dom6);
case 0x00000002: return read_pll(dev, 0x004020) >> P;
case 0x00000003: return read_pll(dev, 0x004028) >> P;
}
break;
case clk_src_sclk:
P = (nv_rd32(device, 0x004020) & 0x00070000) >> 16;
switch (mast & 0x00000030) {
case 0x00000000:
if (mast & 0x00000080)
return read_clk(dev, clk_src_host) >> P;
return read_clk(dev, clk_src_crystal) >> P;
case 0x00000010: break;
case 0x00000020: return read_pll(dev, 0x004028) >> P;
case 0x00000030: return read_pll(dev, 0x004020) >> P;
}
break;
case clk_src_mclk:
P = (nv_rd32(device, 0x004008) & 0x00070000) >> 16;
if (nv_rd32(device, 0x004008) & 0x00000200) {
switch (mast & 0x0000c000) {
case 0x00000000:
return read_clk(dev, clk_src_crystal) >> P;
case 0x00008000:
case 0x0000c000:
return read_clk(dev, clk_src_href) >> P;
}
} else {
return read_pll(dev, 0x004008) >> P;
}
break;
case clk_src_vdec:
P = (read_div(dev) & 0x00000700) >> 8;
switch (nv_device(drm->device)->chipset) {
case 0x84:
case 0x86:
case 0x92:
case 0x94:
case 0x96:
case 0xa0:
switch (mast & 0x00000c00) {
case 0x00000000:
if (nv_device(drm->device)->chipset == 0xa0) /* wtf?? */
return read_clk(dev, clk_src_nvclk) >> P;
return read_clk(dev, clk_src_crystal) >> P;
case 0x00000400:
return 0;
case 0x00000800:
if (mast & 0x01000000)
return read_pll(dev, 0x004028) >> P;
return read_pll(dev, 0x004030) >> P;
case 0x00000c00:
return read_clk(dev, clk_src_nvclk) >> P;
}
break;
case 0x98:
switch (mast & 0x00000c00) {
case 0x00000000:
return read_clk(dev, clk_src_nvclk) >> P;
case 0x00000400:
return 0;
case 0x00000800:
return read_clk(dev, clk_src_hclkm3d2) >> P;
case 0x00000c00:
return read_clk(dev, clk_src_mclk) >> P;
}
break;
}
break;
case clk_src_dom6:
switch (nv_device(drm->device)->chipset) {
case 0x50:
case 0xa0:
return read_pll(dev, 0x00e810) >> 2;
case 0x84:
case 0x86:
case 0x92:
case 0x94:
case 0x96:
case 0x98:
P = (read_div(dev) & 0x00000007) >> 0;
switch (mast & 0x0c000000) {
case 0x00000000: return read_clk(dev, clk_src_href);
case 0x04000000: break;
case 0x08000000: return read_clk(dev, clk_src_hclk);
case 0x0c000000:
return read_clk(dev, clk_src_hclkm3) >> P;
}
break;
default:
break;
}
default:
break;
}
NV_DEBUG(drm, "unknown clock source %d 0x%08x\n", src, mast);
return 0;
}
int
nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nouveau_drm *drm = nouveau_drm(dev);
if (nv_device(drm->device)->chipset == 0xaa ||
nv_device(drm->device)->chipset == 0xac)
return 0;
perflvl->core = read_clk(dev, clk_src_nvclk);
perflvl->shader = read_clk(dev, clk_src_sclk);
perflvl->memory = read_clk(dev, clk_src_mclk);
if (nv_device(drm->device)->chipset != 0x50) {
perflvl->vdec = read_clk(dev, clk_src_vdec);
perflvl->dom6 = read_clk(dev, clk_src_dom6);
}
return 0;
}
struct nv50_pm_state {
struct nouveau_pm_level *perflvl;
struct hwsq_ucode eclk_hwsq;
struct hwsq_ucode mclk_hwsq;
u32 mscript;
u32 mmast;
u32 mctrl;
u32 mcoef;
};
static u32
calc_pll(struct drm_device *dev, u32 reg, struct nvbios_pll *pll,
u32 clk, int *N1, int *M1, int *log2P)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_bios *bios = nouveau_bios(device);
struct nouveau_clock *pclk = nouveau_clock(device);
struct nouveau_pll_vals coef;
int ret;
ret = nvbios_pll_parse(bios, reg, pll);
if (ret)
return 0;
pll->vco2.max_freq = 0;
pll->refclk = read_pll_ref(dev, reg);
if (!pll->refclk)
return 0;
ret = pclk->pll_calc(pclk, pll, clk, &coef);
if (ret == 0)
return 0;
*N1 = coef.N1;
*M1 = coef.M1;
*log2P = coef.log2P;
return ret;
}
static inline u32
calc_div(u32 src, u32 target, int *div)
{
u32 clk0 = src, clk1 = src;
for (*div = 0; *div <= 7; (*div)++) {
if (clk0 <= target) {
clk1 = clk0 << (*div ? 1 : 0);
break;
}
clk0 >>= 1;
}
if (target - clk0 <= clk1 - target)
return clk0;
(*div)--;
return clk1;
}
static inline u32
clk_same(u32 a, u32 b)
{
return ((a / 1000) == (b / 1000));
}
static void
mclk_precharge(struct nouveau_mem_exec_func *exec)
{
struct nv50_pm_state *info = exec->priv;
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
hwsq_wr32(hwsq, 0x1002d4, 0x00000001);
}
static void
mclk_refresh(struct nouveau_mem_exec_func *exec)
{
struct nv50_pm_state *info = exec->priv;
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
hwsq_wr32(hwsq, 0x1002d0, 0x00000001);
}
static void
mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
{
struct nv50_pm_state *info = exec->priv;
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
hwsq_wr32(hwsq, 0x100210, enable ? 0x80000000 : 0x00000000);
}
static void
mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
{
struct nv50_pm_state *info = exec->priv;
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
hwsq_wr32(hwsq, 0x1002dc, enable ? 0x00000001 : 0x00000000);
}
static void
mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
{
struct nv50_pm_state *info = exec->priv;
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
if (nsec > 1000)
hwsq_usec(hwsq, (nsec + 500) / 1000);
}
static u32
mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
if (mr <= 1)
return nv_rd32(device, 0x1002c0 + ((mr - 0) * 4));
if (mr <= 3)
return nv_rd32(device, 0x1002e0 + ((mr - 2) * 4));
return 0;
}
static void
mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nouveau_fb *pfb = nouveau_fb(device);
struct nv50_pm_state *info = exec->priv;
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
if (mr <= 1) {
if (pfb->ram->ranks > 1)
hwsq_wr32(hwsq, 0x1002c8 + ((mr - 0) * 4), data);
hwsq_wr32(hwsq, 0x1002c0 + ((mr - 0) * 4), data);
} else
if (mr <= 3) {
if (pfb->ram->ranks > 1)
hwsq_wr32(hwsq, 0x1002e8 + ((mr - 2) * 4), data);
hwsq_wr32(hwsq, 0x1002e0 + ((mr - 2) * 4), data);
}
}
static void
mclk_clock_set(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nv50_pm_state *info = exec->priv;
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
u32 ctrl = nv_rd32(device, 0x004008);
info->mmast = nv_rd32(device, 0x00c040);
info->mmast &= ~0xc0000000; /* get MCLK_2 from HREF */
info->mmast |= 0x0000c000; /* use MCLK_2 as MPLL_BYPASS clock */
hwsq_wr32(hwsq, 0xc040, info->mmast);
hwsq_wr32(hwsq, 0x4008, ctrl | 0x00000200); /* bypass MPLL */
if (info->mctrl & 0x80000000)
hwsq_wr32(hwsq, 0x400c, info->mcoef);
hwsq_wr32(hwsq, 0x4008, info->mctrl);
}
static void
mclk_timing_set(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nv50_pm_state *info = exec->priv;
struct nouveau_pm_level *perflvl = info->perflvl;
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
int i;
for (i = 0; i < 9; i++) {
u32 reg = 0x100220 + (i * 4);
u32 val = nv_rd32(device, reg);
if (val != perflvl->timing.reg[i])
hwsq_wr32(hwsq, reg, perflvl->timing.reg[i]);
}
}
static int
calc_mclk(struct drm_device *dev, struct nouveau_pm_level *perflvl,
struct nv50_pm_state *info)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_device *device = nouveau_dev(dev);
u32 crtc_mask = 0; /*XXX: nv50_display_active_crtcs(dev); */
struct nouveau_mem_exec_func exec = {
.dev = dev,
.precharge = mclk_precharge,
.refresh = mclk_refresh,
.refresh_auto = mclk_refresh_auto,
.refresh_self = mclk_refresh_self,
.wait = mclk_wait,
.mrg = mclk_mrg,
.mrs = mclk_mrs,
.clock_set = mclk_clock_set,
.timing_set = mclk_timing_set,
.priv = info
};
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
struct nvbios_pll pll;
int N, M, P;
int ret;
/* use pcie refclock if possible, otherwise use mpll */
info->mctrl = nv_rd32(device, 0x004008);
info->mctrl &= ~0x81ff0200;
if (clk_same(perflvl->memory, read_clk(dev, clk_src_href))) {
info->mctrl |= 0x00000200 | (pll.bias_p << 19);
} else {
ret = calc_pll(dev, 0x4008, &pll, perflvl->memory, &N, &M, &P);
if (ret == 0)
return -EINVAL;
info->mctrl |= 0x80000000 | (P << 22) | (P << 16);
info->mctrl |= pll.bias_p << 19;
info->mcoef = (N << 8) | M;
}
/* build the ucode which will reclock the memory for us */
hwsq_init(hwsq);
if (crtc_mask) {
hwsq_op5f(hwsq, crtc_mask, 0x00); /* wait for scanout */
hwsq_op5f(hwsq, crtc_mask, 0x01); /* wait for vblank */
}
if (nv_device(drm->device)->chipset >= 0x92)
hwsq_wr32(hwsq, 0x611200, 0x00003300); /* disable scanout */
hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
hwsq_op5f(hwsq, 0x00, 0x01); /* no idea :s */
ret = nouveau_mem_exec(&exec, perflvl);
if (ret)
return ret;
hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
hwsq_op5f(hwsq, 0x00, 0x00); /* no idea, reverse of 0x00, 0x01? */
if (nv_device(drm->device)->chipset >= 0x92)
hwsq_wr32(hwsq, 0x611200, 0x00003330); /* enable scanout */
hwsq_fini(hwsq);
return 0;
}
void *
nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv50_pm_state *info;
struct hwsq_ucode *hwsq;
struct nvbios_pll pll;
u32 out, mast, divs, ctrl;
int clk, ret = -EINVAL;
int N, M, P1, P2;
if (nv_device(drm->device)->chipset == 0xaa ||
nv_device(drm->device)->chipset == 0xac)
return ERR_PTR(-ENODEV);
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
info->perflvl = perflvl;
/* memory: build hwsq ucode which we'll use to reclock memory.
* use pcie refclock if possible, otherwise use mpll */
info->mclk_hwsq.len = 0;
if (perflvl->memory) {
ret = calc_mclk(dev, perflvl, info);
if (ret)
goto error;
info->mscript = perflvl->memscript;
}
divs = read_div(dev);
mast = info->mmast;
/* start building HWSQ script for engine reclocking */
hwsq = &info->eclk_hwsq;
hwsq_init(hwsq);
hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
hwsq_op5f(hwsq, 0x00, 0x01); /* wait for access disabled? */
/* vdec/dom6: switch to "safe" clocks temporarily */
if (perflvl->vdec) {
mast &= ~0x00000c00;
divs &= ~0x00000700;
}
if (perflvl->dom6) {
mast &= ~0x0c000000;
divs &= ~0x00000007;
}
hwsq_wr32(hwsq, 0x00c040, mast);
/* vdec: avoid modifying xpll until we know exactly how the other
* clock domains work, i suspect at least some of them can also be
* tied to xpll...
*/
if (perflvl->vdec) {
/* see how close we can get using nvclk as a source */
clk = calc_div(perflvl->core, perflvl->vdec, &P1);
/* see how close we can get using xpll/hclk as a source */
if (nv_device(drm->device)->chipset != 0x98)
out = read_pll(dev, 0x004030);
else
out = read_clk(dev, clk_src_hclkm3d2);
out = calc_div(out, perflvl->vdec, &P2);
/* select whichever gets us closest */
if (abs((int)perflvl->vdec - clk) <=
abs((int)perflvl->vdec - out)) {
if (nv_device(drm->device)->chipset != 0x98)
mast |= 0x00000c00;
divs |= P1 << 8;
} else {
mast |= 0x00000800;
divs |= P2 << 8;
}
}
/* dom6: nfi what this is, but we're limited to various combinations
* of the host clock frequency
*/
if (perflvl->dom6) {
if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) {
mast |= 0x00000000;
} else
if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) {
mast |= 0x08000000;
} else {
clk = read_clk(dev, clk_src_hclk) * 3;
clk = calc_div(clk, perflvl->dom6, &P1);
mast |= 0x0c000000;
divs |= P1;
}
}
/* vdec/dom6: complete switch to new clocks */
switch (nv_device(drm->device)->chipset) {
case 0x92:
case 0x94:
case 0x96:
hwsq_wr32(hwsq, 0x004800, divs);
break;
default:
hwsq_wr32(hwsq, 0x004700, divs);
break;
}
hwsq_wr32(hwsq, 0x00c040, mast);
/* core/shader: make sure sclk/nvclk are disconnected from their
* PLLs (nvclk to dom6, sclk to hclk)
*/
if (nv_device(drm->device)->chipset < 0x92)
mast = (mast & ~0x001000b0) | 0x00100080;
else
mast = (mast & ~0x000000b3) | 0x00000081;
hwsq_wr32(hwsq, 0x00c040, mast);
/* core: for the moment at least, always use nvpll */
clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1);
if (clk == 0)
goto error;
ctrl = nv_rd32(device, 0x004028) & ~0xc03f0100;
mast &= ~0x00100000;
mast |= 3;
hwsq_wr32(hwsq, 0x004028, 0x80000000 | (P1 << 19) | (P1 << 16) | ctrl);
hwsq_wr32(hwsq, 0x00402c, (N << 8) | M);
/* shader: tie to nvclk if possible, otherwise use spll. have to be
* very careful that the shader clock is at least twice the core, or
* some chipsets will be very unhappy. i expect most or all of these
* cases will be handled by tying to nvclk, but it's possible there's
* corners
*/
ctrl = nv_rd32(device, 0x004020) & ~0xc03f0100;
if (P1-- && perflvl->shader == (perflvl->core << 1)) {
hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl);
hwsq_wr32(hwsq, 0x00c040, 0x00000020 | mast);
} else {
clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1);
if (clk == 0)
goto error;
ctrl |= 0x80000000;
hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl);
hwsq_wr32(hwsq, 0x004024, (N << 8) | M);
hwsq_wr32(hwsq, 0x00c040, 0x00000030 | mast);
}
hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
hwsq_op5f(hwsq, 0x00, 0x00); /* wait for access enabled? */
hwsq_fini(hwsq);
return info;
error:
kfree(info);
return ERR_PTR(ret);
}
static int
prog_hwsq(struct drm_device *dev, struct hwsq_ucode *hwsq)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
u32 hwsq_data, hwsq_kick;
int i;
if (nv_device(drm->device)->chipset < 0x94) {
hwsq_data = 0x001400;
hwsq_kick = 0x00000003;
} else {
hwsq_data = 0x080000;
hwsq_kick = 0x00000001;
}
/* upload hwsq ucode */
nv_mask(device, 0x001098, 0x00000008, 0x00000000);
nv_wr32(device, 0x001304, 0x00000000);
if (nv_device(drm->device)->chipset >= 0x92)
nv_wr32(device, 0x001318, 0x00000000);
for (i = 0; i < hwsq->len / 4; i++)
nv_wr32(device, hwsq_data + (i * 4), hwsq->ptr.u32[i]);
nv_mask(device, 0x001098, 0x00000018, 0x00000018);
/* launch, and wait for completion */
nv_wr32(device, 0x00130c, hwsq_kick);
if (!nv_wait(device, 0x001308, 0x00000100, 0x00000000)) {
NV_ERROR(drm, "hwsq ucode exec timed out\n");
NV_ERROR(drm, "0x001308: 0x%08x\n", nv_rd32(device, 0x001308));
for (i = 0; i < hwsq->len / 4; i++) {
NV_ERROR(drm, "0x%06x: 0x%08x\n", 0x1400 + (i * 4),
nv_rd32(device, 0x001400 + (i * 4)));
}
return -EIO;
}
return 0;
}
int
nv50_pm_clocks_set(struct drm_device *dev, void *data)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nv50_pm_state *info = data;
struct bit_entry M;
int ret = -EBUSY;
/* halt and idle execution engines */
nv_mask(device, 0x002504, 0x00000001, 0x00000001);
if (!nv_wait(device, 0x002504, 0x00000010, 0x00000010))
goto resume;
if (!nv_wait(device, 0x00251c, 0x0000003f, 0x0000003f))
goto resume;
/* program memory clock, if necessary - must come before engine clock
* reprogramming due to how we construct the hwsq scripts in pre()
*/
#define nouveau_bios_init_exec(a,b) nouveau_bios_run_init_table((a), (b), NULL, 0)
if (info->mclk_hwsq.len) {
/* execute some scripts that do ??? from the vbios.. */
if (!bit_table(dev, 'M', &M) && M.version == 1) {
if (M.length >= 6)
nouveau_bios_init_exec(dev, ROM16(M.data[5]));
if (M.length >= 8)
nouveau_bios_init_exec(dev, ROM16(M.data[7]));
if (M.length >= 10)
nouveau_bios_init_exec(dev, ROM16(M.data[9]));
nouveau_bios_init_exec(dev, info->mscript);
}
ret = prog_hwsq(dev, &info->mclk_hwsq);
if (ret)
goto resume;
}
/* program engine clocks */
ret = prog_hwsq(dev, &info->eclk_hwsq);
resume:
nv_mask(device, 0x002504, 0x00000001, 0x00000000);
kfree(info);
return ret;
}
/*
* Copyright 2010 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <drm/drmP.h>
#include "nouveau_drm.h"
#include "nouveau_bios.h"
#include "nouveau_pm.h"
#include <subdev/bios/pll.h>
#include <subdev/bios.h>
#include <subdev/clock.h>
#include <subdev/timer.h>
#include <subdev/fb.h>
static u32 read_clk(struct drm_device *, int, bool);
static u32 read_pll(struct drm_device *, int, u32);
static u32
read_vco(struct drm_device *dev, int clk)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 sctl = nv_rd32(device, 0x4120 + (clk * 4));
if ((sctl & 0x00000030) != 0x00000030)
return read_pll(dev, 0x41, 0x00e820);
return read_pll(dev, 0x42, 0x00e8a0);
}
static u32
read_clk(struct drm_device *dev, int clk, bool ignore_en)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
u32 sctl, sdiv, sclk;
/* refclk for the 0xe8xx plls is a fixed frequency */
if (clk >= 0x40) {
if (nv_device(drm->device)->chipset == 0xaf) {
/* no joke.. seriously.. sigh.. */
return nv_rd32(device, 0x00471c) * 1000;
}
return device->crystal;
}
sctl = nv_rd32(device, 0x4120 + (clk * 4));
if (!ignore_en && !(sctl & 0x00000100))
return 0;
switch (sctl & 0x00003000) {
case 0x00000000:
return device->crystal;
case 0x00002000:
if (sctl & 0x00000040)
return 108000;
return 100000;
case 0x00003000:
sclk = read_vco(dev, clk);
sdiv = ((sctl & 0x003f0000) >> 16) + 2;
return (sclk * 2) / sdiv;
default:
return 0;
}
}
static u32
read_pll(struct drm_device *dev, int clk, u32 pll)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ctrl = nv_rd32(device, pll + 0);
u32 sclk = 0, P = 1, N = 1, M = 1;
if (!(ctrl & 0x00000008)) {
if (ctrl & 0x00000001) {
u32 coef = nv_rd32(device, pll + 4);
M = (coef & 0x000000ff) >> 0;
N = (coef & 0x0000ff00) >> 8;
P = (coef & 0x003f0000) >> 16;
/* no post-divider on these.. */
if ((pll & 0x00ff00) == 0x00e800)
P = 1;
sclk = read_clk(dev, 0x00 + clk, false);
}
} else {
sclk = read_clk(dev, 0x10 + clk, false);
}
if (M * P)
return sclk * N / (M * P);
return 0;
}
struct creg {
u32 clk;
u32 pll;
};
static int
calc_clk(struct drm_device *dev, int clk, u32 pll, u32 khz, struct creg *reg)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_bios *bios = nouveau_bios(device);
struct nvbios_pll limits;
u32 oclk, sclk, sdiv;
int P, N, M, diff;
int ret;
reg->pll = 0;
reg->clk = 0;
if (!khz) {
NV_DEBUG(drm, "no clock for 0x%04x/0x%02x\n", pll, clk);
return 0;
}
switch (khz) {
case 27000:
reg->clk = 0x00000100;
return khz;
case 100000:
reg->clk = 0x00002100;
return khz;
case 108000:
reg->clk = 0x00002140;
return khz;
default:
sclk = read_vco(dev, clk);
sdiv = min((sclk * 2) / (khz - 2999), (u32)65);
/* if the clock has a PLL attached, and we can get a within
* [-2, 3) MHz of a divider, we'll disable the PLL and use
* the divider instead.
*
* divider can go as low as 2, limited here because NVIDIA
* and the VBIOS on my NVA8 seem to prefer using the PLL
* for 810MHz - is there a good reason?
*/
if (sdiv > 4) {
oclk = (sclk * 2) / sdiv;
diff = khz - oclk;
if (!pll || (diff >= -2000 && diff < 3000)) {
reg->clk = (((sdiv - 2) << 16) | 0x00003100);
return oclk;
}
}
if (!pll) {
NV_ERROR(drm, "bad freq %02x: %d %d\n", clk, khz, sclk);
return -ERANGE;
}
break;
}
ret = nvbios_pll_parse(bios, pll, &limits);
if (ret)
return ret;
limits.refclk = read_clk(dev, clk - 0x10, true);
if (!limits.refclk)
return -EINVAL;
ret = nva3_calc_pll(dev, &limits, khz, &N, NULL, &M, &P);
if (ret >= 0) {
reg->clk = nv_rd32(device, 0x4120 + (clk * 4));
reg->pll = (P << 16) | (N << 8) | M;
}
return ret;
}
static void
prog_pll(struct drm_device *dev, int clk, u32 pll, struct creg *reg)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
const u32 src0 = 0x004120 + (clk * 4);
const u32 src1 = 0x004160 + (clk * 4);
const u32 ctrl = pll + 0;
const u32 coef = pll + 4;
if (!reg->clk && !reg->pll) {
NV_DEBUG(drm, "no clock for %02x\n", clk);
return;
}
if (reg->pll) {
nv_mask(device, src0, 0x00000101, 0x00000101);
nv_wr32(device, coef, reg->pll);
nv_mask(device, ctrl, 0x00000015, 0x00000015);
nv_mask(device, ctrl, 0x00000010, 0x00000000);
nv_wait(device, ctrl, 0x00020000, 0x00020000);
nv_mask(device, ctrl, 0x00000010, 0x00000010);
nv_mask(device, ctrl, 0x00000008, 0x00000000);
nv_mask(device, src1, 0x00000100, 0x00000000);
nv_mask(device, src1, 0x00000001, 0x00000000);
} else {
nv_mask(device, src1, 0x003f3141, 0x00000101 | reg->clk);
nv_mask(device, ctrl, 0x00000018, 0x00000018);
udelay(20);
nv_mask(device, ctrl, 0x00000001, 0x00000000);
nv_mask(device, src0, 0x00000100, 0x00000000);
nv_mask(device, src0, 0x00000001, 0x00000000);
}
}
static void
prog_clk(struct drm_device *dev, int clk, struct creg *reg)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
if (!reg->clk) {
NV_DEBUG(drm, "no clock for %02x\n", clk);
return;
}
nv_mask(device, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | reg->clk);
}
int
nva3_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
perflvl->core = read_pll(dev, 0x00, 0x4200);
perflvl->shader = read_pll(dev, 0x01, 0x4220);
perflvl->memory = read_pll(dev, 0x02, 0x4000);
perflvl->unka0 = read_clk(dev, 0x20, false);
perflvl->vdec = read_clk(dev, 0x21, false);
perflvl->daemon = read_clk(dev, 0x25, false);
perflvl->copy = perflvl->core;
return 0;
}
struct nva3_pm_state {
struct nouveau_pm_level *perflvl;
struct creg nclk;
struct creg sclk;
struct creg vdec;
struct creg unka0;
struct creg mclk;
u8 *rammap;
u8 rammap_ver;
u8 rammap_len;
u8 *ramcfg;
u8 ramcfg_len;
u32 r004018;
u32 r100760;
};
void *
nva3_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nva3_pm_state *info;
u8 ramcfg_cnt;
int ret;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
ret = calc_clk(dev, 0x10, 0x4200, perflvl->core, &info->nclk);
if (ret < 0)
goto out;
ret = calc_clk(dev, 0x11, 0x4220, perflvl->shader, &info->sclk);
if (ret < 0)
goto out;
ret = calc_clk(dev, 0x12, 0x4000, perflvl->memory, &info->mclk);
if (ret < 0)
goto out;
ret = calc_clk(dev, 0x20, 0x0000, perflvl->unka0, &info->unka0);
if (ret < 0)
goto out;
ret = calc_clk(dev, 0x21, 0x0000, perflvl->vdec, &info->vdec);
if (ret < 0)
goto out;
info->rammap = nouveau_perf_rammap(dev, perflvl->memory,
&info->rammap_ver,
&info->rammap_len,
&ramcfg_cnt, &info->ramcfg_len);
if (info->rammap_ver != 0x10 || info->rammap_len < 5)
info->rammap = NULL;
info->ramcfg = nouveau_perf_ramcfg(dev, perflvl->memory,
&info->rammap_ver,
&info->ramcfg_len);
if (info->rammap_ver != 0x10)
info->ramcfg = NULL;
info->perflvl = perflvl;
out:
if (ret < 0) {
kfree(info);
info = ERR_PTR(ret);
}
return info;
}
static bool
nva3_pm_grcp_idle(void *data)
{
struct drm_device *dev = data;
struct nouveau_device *device = nouveau_dev(dev);
if (!(nv_rd32(device, 0x400304) & 0x00000001))
return true;
if (nv_rd32(device, 0x400308) == 0x0050001c)
return true;
return false;
}
static void
mclk_precharge(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
nv_wr32(device, 0x1002d4, 0x00000001);
}
static void
mclk_refresh(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
nv_wr32(device, 0x1002d0, 0x00000001);
}
static void
mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
nv_wr32(device, 0x100210, enable ? 0x80000000 : 0x00000000);
}
static void
mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
nv_wr32(device, 0x1002dc, enable ? 0x00000001 : 0x00000000);
}
static void
mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
volatile u32 post = nv_rd32(device, 0); (void)post;
udelay((nsec + 500) / 1000);
}
static u32
mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
if (mr <= 1)
return nv_rd32(device, 0x1002c0 + ((mr - 0) * 4));
if (mr <= 3)
return nv_rd32(device, 0x1002e0 + ((mr - 2) * 4));
return 0;
}
static void
mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nouveau_fb *pfb = nouveau_fb(device);
if (mr <= 1) {
if (pfb->ram->ranks > 1)
nv_wr32(device, 0x1002c8 + ((mr - 0) * 4), data);
nv_wr32(device, 0x1002c0 + ((mr - 0) * 4), data);
} else
if (mr <= 3) {
if (pfb->ram->ranks > 1)
nv_wr32(device, 0x1002e8 + ((mr - 2) * 4), data);
nv_wr32(device, 0x1002e0 + ((mr - 2) * 4), data);
}
}
static void
mclk_clock_set(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nva3_pm_state *info = exec->priv;
u32 ctrl;
ctrl = nv_rd32(device, 0x004000);
if (!(ctrl & 0x00000008) && info->mclk.pll) {
nv_wr32(device, 0x004000, (ctrl |= 0x00000008));
nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
nv_wr32(device, 0x004018, 0x00001000);
nv_wr32(device, 0x004000, (ctrl &= ~0x00000001));
nv_wr32(device, 0x004004, info->mclk.pll);
nv_wr32(device, 0x004000, (ctrl |= 0x00000001));
udelay(64);
nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
udelay(20);
} else
if (!info->mclk.pll) {
nv_mask(device, 0x004168, 0x003f3040, info->mclk.clk);
nv_wr32(device, 0x004000, (ctrl |= 0x00000008));
nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
nv_wr32(device, 0x004018, 0x0000d000 | info->r004018);
}
if (info->rammap) {
if (info->ramcfg && (info->rammap[4] & 0x08)) {
u32 unk5a0 = (ROM16(info->ramcfg[5]) << 8) |
info->ramcfg[5];
u32 unk5a4 = ROM16(info->ramcfg[7]);
u32 unk804 = (info->ramcfg[9] & 0xf0) << 16 |
(info->ramcfg[3] & 0x0f) << 16 |
(info->ramcfg[9] & 0x0f) |
0x80000000;
nv_wr32(device, 0x1005a0, unk5a0);
nv_wr32(device, 0x1005a4, unk5a4);
nv_wr32(device, 0x10f804, unk804);
nv_mask(device, 0x10053c, 0x00001000, 0x00000000);
} else {
nv_mask(device, 0x10053c, 0x00001000, 0x00001000);
nv_mask(device, 0x10f804, 0x80000000, 0x00000000);
nv_mask(device, 0x100760, 0x22222222, info->r100760);
nv_mask(device, 0x1007a0, 0x22222222, info->r100760);
nv_mask(device, 0x1007e0, 0x22222222, info->r100760);
}
}
if (info->mclk.pll) {
nv_mask(device, 0x1110e0, 0x00088000, 0x00011000);
nv_wr32(device, 0x004000, (ctrl &= ~0x00000008));
}
}
static void
mclk_timing_set(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nva3_pm_state *info = exec->priv;
struct nouveau_pm_level *perflvl = info->perflvl;
int i;
for (i = 0; i < 9; i++)
nv_wr32(device, 0x100220 + (i * 4), perflvl->timing.reg[i]);
if (info->ramcfg) {
u32 data = (info->ramcfg[2] & 0x08) ? 0x00000000 : 0x00001000;
nv_mask(device, 0x100200, 0x00001000, data);
}
if (info->ramcfg) {
u32 unk714 = nv_rd32(device, 0x100714) & ~0xf0000010;
u32 unk718 = nv_rd32(device, 0x100718) & ~0x00000100;
u32 unk71c = nv_rd32(device, 0x10071c) & ~0x00000100;
if ( (info->ramcfg[2] & 0x20))
unk714 |= 0xf0000000;
if (!(info->ramcfg[2] & 0x04))
unk714 |= 0x00000010;
nv_wr32(device, 0x100714, unk714);
if (info->ramcfg[2] & 0x01)
unk71c |= 0x00000100;
nv_wr32(device, 0x10071c, unk71c);
if (info->ramcfg[2] & 0x02)
unk718 |= 0x00000100;
nv_wr32(device, 0x100718, unk718);
if (info->ramcfg[2] & 0x10)
nv_wr32(device, 0x111100, 0x48000000); /*XXX*/
}
}
static void
prog_mem(struct drm_device *dev, struct nva3_pm_state *info)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_mem_exec_func exec = {
.dev = dev,
.precharge = mclk_precharge,
.refresh = mclk_refresh,
.refresh_auto = mclk_refresh_auto,
.refresh_self = mclk_refresh_self,
.wait = mclk_wait,
.mrg = mclk_mrg,
.mrs = mclk_mrs,
.clock_set = mclk_clock_set,
.timing_set = mclk_timing_set,
.priv = info
};
u32 ctrl;
/* XXX: where the fuck does 750MHz come from? */
if (info->perflvl->memory <= 750000) {
info->r004018 = 0x10000000;
info->r100760 = 0x22222222;
}
ctrl = nv_rd32(device, 0x004000);
if (ctrl & 0x00000008) {
if (info->mclk.pll) {
nv_mask(device, 0x004128, 0x00000101, 0x00000101);
nv_wr32(device, 0x004004, info->mclk.pll);
nv_wr32(device, 0x004000, (ctrl |= 0x00000001));
nv_wr32(device, 0x004000, (ctrl &= 0xffffffef));
nv_wait(device, 0x004000, 0x00020000, 0x00020000);
nv_wr32(device, 0x004000, (ctrl |= 0x00000010));
nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
nv_wr32(device, 0x004000, (ctrl |= 0x00000004));
}
} else {
u32 ssel = 0x00000101;
if (info->mclk.clk)
ssel |= info->mclk.clk;
else
ssel |= 0x00080000; /* 324MHz, shouldn't matter... */
nv_mask(device, 0x004168, 0x003f3141, ctrl);
}
if (info->ramcfg) {
if (info->ramcfg[2] & 0x10) {
nv_mask(device, 0x111104, 0x00000600, 0x00000000);
} else {
nv_mask(device, 0x111100, 0x40000000, 0x40000000);
nv_mask(device, 0x111104, 0x00000180, 0x00000000);
}
}
if (info->rammap && !(info->rammap[4] & 0x02))
nv_mask(device, 0x100200, 0x00000800, 0x00000000);
nv_wr32(device, 0x611200, 0x00003300);
if (!(info->ramcfg[2] & 0x10))
nv_wr32(device, 0x111100, 0x4c020000); /*XXX*/
nouveau_mem_exec(&exec, info->perflvl);
nv_wr32(device, 0x611200, 0x00003330);
if (info->rammap && (info->rammap[4] & 0x02))
nv_mask(device, 0x100200, 0x00000800, 0x00000800);
if (info->ramcfg) {
if (info->ramcfg[2] & 0x10) {
nv_mask(device, 0x111104, 0x00000180, 0x00000180);
nv_mask(device, 0x111100, 0x40000000, 0x00000000);
} else {
nv_mask(device, 0x111104, 0x00000600, 0x00000600);
}
}
if (info->mclk.pll) {
nv_mask(device, 0x004168, 0x00000001, 0x00000000);
nv_mask(device, 0x004168, 0x00000100, 0x00000000);
} else {
nv_mask(device, 0x004000, 0x00000001, 0x00000000);
nv_mask(device, 0x004128, 0x00000001, 0x00000000);
nv_mask(device, 0x004128, 0x00000100, 0x00000000);
}
}
int
nva3_pm_clocks_set(struct drm_device *dev, void *pre_state)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
struct nva3_pm_state *info = pre_state;
int ret = -EAGAIN;
/* prevent any new grctx switches from starting */
nv_wr32(device, 0x400324, 0x00000000);
nv_wr32(device, 0x400328, 0x0050001c); /* wait flag 0x1c */
/* wait for any pending grctx switches to complete */
if (!nv_wait_cb(device, nva3_pm_grcp_idle, dev)) {
NV_ERROR(drm, "pm: ctxprog didn't go idle\n");
goto cleanup;
}
/* freeze PFIFO */
nv_mask(device, 0x002504, 0x00000001, 0x00000001);
if (!nv_wait(device, 0x002504, 0x00000010, 0x00000010)) {
NV_ERROR(drm, "pm: fifo didn't go idle\n");
goto cleanup;
}
prog_pll(dev, 0x00, 0x004200, &info->nclk);
prog_pll(dev, 0x01, 0x004220, &info->sclk);
prog_clk(dev, 0x20, &info->unka0);
prog_clk(dev, 0x21, &info->vdec);
if (info->mclk.clk || info->mclk.pll)
prog_mem(dev, info);
ret = 0;
cleanup:
/* unfreeze PFIFO */
nv_mask(device, 0x002504, 0x00000001, 0x00000000);
/* restore ctxprog to normal */
nv_wr32(device, 0x400324, 0x00000000);
nv_wr32(device, 0x400328, 0x0070009c); /* set flag 0x1c */
/* unblock it if necessary */
if (nv_rd32(device, 0x400308) == 0x0050001c)
nv_mask(device, 0x400824, 0x10000000, 0x10000000);
kfree(info);
return ret;
}
/*
* Copyright 2011 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "nouveau_drm.h"
#include "nouveau_bios.h"
#include "nouveau_pm.h"
#include <subdev/bios/pll.h>
#include <subdev/bios.h>
#include <subdev/clock.h>
#include <subdev/timer.h>
#include <subdev/fb.h>
static u32 read_div(struct drm_device *, int, u32, u32);
static u32 read_pll(struct drm_device *, u32);
static u32
read_vco(struct drm_device *dev, u32 dsrc)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ssrc = nv_rd32(device, dsrc);
if (!(ssrc & 0x00000100))
return read_pll(dev, 0x00e800);
return read_pll(dev, 0x00e820);
}
static u32
read_pll(struct drm_device *dev, u32 pll)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ctrl = nv_rd32(device, pll + 0);
u32 coef = nv_rd32(device, pll + 4);
u32 P = (coef & 0x003f0000) >> 16;
u32 N = (coef & 0x0000ff00) >> 8;
u32 M = (coef & 0x000000ff) >> 0;
u32 sclk, doff;
if (!(ctrl & 0x00000001))
return 0;
switch (pll & 0xfff000) {
case 0x00e000:
sclk = 27000;
P = 1;
break;
case 0x137000:
doff = (pll - 0x137000) / 0x20;
sclk = read_div(dev, doff, 0x137120, 0x137140);
break;
case 0x132000:
switch (pll) {
case 0x132000:
sclk = read_pll(dev, 0x132020);
break;
case 0x132020:
sclk = read_div(dev, 0, 0x137320, 0x137330);
break;
default:
return 0;
}
break;
default:
return 0;
}
return sclk * N / M / P;
}
static u32
read_div(struct drm_device *dev, int doff, u32 dsrc, u32 dctl)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ssrc = nv_rd32(device, dsrc + (doff * 4));
u32 sctl = nv_rd32(device, dctl + (doff * 4));
switch (ssrc & 0x00000003) {
case 0:
if ((ssrc & 0x00030000) != 0x00030000)
return 27000;
return 108000;
case 2:
return 100000;
case 3:
if (sctl & 0x80000000) {
u32 sclk = read_vco(dev, dsrc + (doff * 4));
u32 sdiv = (sctl & 0x0000003f) + 2;
return (sclk * 2) / sdiv;
}
return read_vco(dev, dsrc + (doff * 4));
default:
return 0;
}
}
static u32
read_mem(struct drm_device *dev)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ssel = nv_rd32(device, 0x1373f0);
if (ssel & 0x00000001)
return read_div(dev, 0, 0x137300, 0x137310);
return read_pll(dev, 0x132000);
}
static u32
read_clk(struct drm_device *dev, int clk)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 sctl = nv_rd32(device, 0x137250 + (clk * 4));
u32 ssel = nv_rd32(device, 0x137100);
u32 sclk, sdiv;
if (ssel & (1 << clk)) {
if (clk < 7)
sclk = read_pll(dev, 0x137000 + (clk * 0x20));
else
sclk = read_pll(dev, 0x1370e0);
sdiv = ((sctl & 0x00003f00) >> 8) + 2;
} else {
sclk = read_div(dev, clk, 0x137160, 0x1371d0);
sdiv = ((sctl & 0x0000003f) >> 0) + 2;
}
if (sctl & 0x80000000)
return (sclk * 2) / sdiv;
return sclk;
}
int
nvc0_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
perflvl->shader = read_clk(dev, 0x00);
perflvl->core = perflvl->shader / 2;
perflvl->memory = read_mem(dev);
perflvl->rop = read_clk(dev, 0x01);
perflvl->hub07 = read_clk(dev, 0x02);
perflvl->hub06 = read_clk(dev, 0x07);
perflvl->hub01 = read_clk(dev, 0x08);
perflvl->copy = read_clk(dev, 0x09);
perflvl->daemon = read_clk(dev, 0x0c);
perflvl->vdec = read_clk(dev, 0x0e);
return 0;
}
struct nvc0_pm_clock {
u32 freq;
u32 ssel;
u32 mdiv;
u32 dsrc;
u32 ddiv;
u32 coef;
};
struct nvc0_pm_state {
struct nouveau_pm_level *perflvl;
struct nvc0_pm_clock eng[16];
struct nvc0_pm_clock mem;
};
static u32
calc_div(struct drm_device *dev, int clk, u32 ref, u32 freq, u32 *ddiv)
{
u32 div = min((ref * 2) / freq, (u32)65);
if (div < 2)
div = 2;
*ddiv = div - 2;
return (ref * 2) / div;
}
static u32
calc_src(struct drm_device *dev, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
{
u32 sclk;
/* use one of the fixed frequencies if possible */
*ddiv = 0x00000000;
switch (freq) {
case 27000:
case 108000:
*dsrc = 0x00000000;
if (freq == 108000)
*dsrc |= 0x00030000;
return freq;
case 100000:
*dsrc = 0x00000002;
return freq;
default:
*dsrc = 0x00000003;
break;
}
/* otherwise, calculate the closest divider */
sclk = read_vco(dev, clk);
if (clk < 7)
sclk = calc_div(dev, clk, sclk, freq, ddiv);
return sclk;
}
static u32
calc_pll(struct drm_device *dev, int clk, u32 freq, u32 *coef)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_bios *bios = nouveau_bios(device);
struct nvbios_pll limits;
int N, M, P, ret;
ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
if (ret)
return 0;
limits.refclk = read_div(dev, clk, 0x137120, 0x137140);
if (!limits.refclk)
return 0;
ret = nva3_calc_pll(dev, &limits, freq, &N, NULL, &M, &P);
if (ret <= 0)
return 0;
*coef = (P << 16) | (N << 8) | M;
return ret;
}
/* A (likely rather simplified and incomplete) view of the clock tree
*
* Key:
*
* S: source select
* D: divider
* P: pll
* F: switch
*
* Engine clocks:
*
* 137250(D) ---- 137100(F0) ---- 137160(S)/1371d0(D) ------------------- ref
* (F1) ---- 1370X0(P) ---- 137120(S)/137140(D) ---- ref
*
* Not all registers exist for all clocks. For example: clocks >= 8 don't
* have their own PLL (all tied to clock 7's PLL when in PLL mode), nor do
* they have the divider at 1371d0, though the source selection at 137160
* still exists. You must use the divider at 137250 for these instead.
*
* Memory clock:
*
* TBD, read_mem() above is likely very wrong...
*
*/
static int
calc_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info, u32 freq)
{
u32 src0, div0, div1D, div1P = 0;
u32 clk0, clk1 = 0;
/* invalid clock domain */
if (!freq)
return 0;
/* first possible path, using only dividers */
clk0 = calc_src(dev, clk, freq, &src0, &div0);
clk0 = calc_div(dev, clk, clk0, freq, &div1D);
/* see if we can get any closer using PLLs */
if (clk0 != freq && (0x00004387 & (1 << clk))) {
if (clk < 7)
clk1 = calc_pll(dev, clk, freq, &info->coef);
else
clk1 = read_pll(dev, 0x1370e0);
clk1 = calc_div(dev, clk, clk1, freq, &div1P);
}
/* select the method which gets closest to target freq */
if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
info->dsrc = src0;
if (div0) {
info->ddiv |= 0x80000000;
info->ddiv |= div0 << 8;
info->ddiv |= div0;
}
if (div1D) {
info->mdiv |= 0x80000000;
info->mdiv |= div1D;
}
info->ssel = 0;
info->freq = clk0;
} else {
if (div1P) {
info->mdiv |= 0x80000000;
info->mdiv |= div1P << 8;
}
info->ssel = (1 << clk);
info->freq = clk1;
}
return 0;
}
static int
calc_mem(struct drm_device *dev, struct nvc0_pm_clock *info, u32 freq)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_bios *bios = nouveau_bios(device);
struct nvbios_pll pll;
int N, M, P, ret;
u32 ctrl;
/* mclk pll input freq comes from another pll, make sure it's on */
ctrl = nv_rd32(device, 0x132020);
if (!(ctrl & 0x00000001)) {
/* if not, program it to 567MHz. nfi where this value comes
* from - it looks like it's in the pll limits table for
* 132000 but the binary driver ignores all my attempts to
* change this value.
*/
nv_wr32(device, 0x137320, 0x00000103);
nv_wr32(device, 0x137330, 0x81200606);
nv_wait(device, 0x132020, 0x00010000, 0x00010000);
nv_wr32(device, 0x132024, 0x0001150f);
nv_mask(device, 0x132020, 0x00000001, 0x00000001);
nv_wait(device, 0x137390, 0x00020000, 0x00020000);
nv_mask(device, 0x132020, 0x00000004, 0x00000004);
}
/* for the moment, until the clock tree is better understood, use
* pll mode for all clock frequencies
*/
ret = nvbios_pll_parse(bios, 0x132000, &pll);
if (ret == 0) {
pll.refclk = read_pll(dev, 0x132020);
if (pll.refclk) {
ret = nva3_calc_pll(dev, &pll, freq, &N, NULL, &M, &P);
if (ret > 0) {
info->coef = (P << 16) | (N << 8) | M;
return 0;
}
}
}
return -EINVAL;
}
void *
nvc0_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nvc0_pm_state *info;
int ret;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
/* NFI why this is still in the performance table, the ROPCs appear
* to get their clock from clock 2 ("hub07", actually hub05 on this
* chip, but, anyway...) as well. nvatiming confirms hub05 and ROP
* are always the same freq with the binary driver even when the
* performance table says they should differ.
*/
if (device->chipset == 0xd9)
perflvl->rop = 0;
if ((ret = calc_clk(dev, 0x00, &info->eng[0x00], perflvl->shader)) ||
(ret = calc_clk(dev, 0x01, &info->eng[0x01], perflvl->rop)) ||
(ret = calc_clk(dev, 0x02, &info->eng[0x02], perflvl->hub07)) ||
(ret = calc_clk(dev, 0x07, &info->eng[0x07], perflvl->hub06)) ||
(ret = calc_clk(dev, 0x08, &info->eng[0x08], perflvl->hub01)) ||
(ret = calc_clk(dev, 0x09, &info->eng[0x09], perflvl->copy)) ||
(ret = calc_clk(dev, 0x0c, &info->eng[0x0c], perflvl->daemon)) ||
(ret = calc_clk(dev, 0x0e, &info->eng[0x0e], perflvl->vdec))) {
kfree(info);
return ERR_PTR(ret);
}
if (perflvl->memory) {
ret = calc_mem(dev, &info->mem, perflvl->memory);
if (ret) {
kfree(info);
return ERR_PTR(ret);
}
}
info->perflvl = perflvl;
return info;
}
static void
prog_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info)
{
struct nouveau_device *device = nouveau_dev(dev);
/* program dividers at 137160/1371d0 first */
if (clk < 7 && !info->ssel) {
nv_mask(device, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv);
nv_wr32(device, 0x137160 + (clk * 0x04), info->dsrc);
}
/* switch clock to non-pll mode */
nv_mask(device, 0x137100, (1 << clk), 0x00000000);
nv_wait(device, 0x137100, (1 << clk), 0x00000000);
/* reprogram pll */
if (clk < 7) {
/* make sure it's disabled first... */
u32 base = 0x137000 + (clk * 0x20);
u32 ctrl = nv_rd32(device, base + 0x00);
if (ctrl & 0x00000001) {
nv_mask(device, base + 0x00, 0x00000004, 0x00000000);
nv_mask(device, base + 0x00, 0x00000001, 0x00000000);
}
/* program it to new values, if necessary */
if (info->ssel) {
nv_wr32(device, base + 0x04, info->coef);
nv_mask(device, base + 0x00, 0x00000001, 0x00000001);
nv_wait(device, base + 0x00, 0x00020000, 0x00020000);
nv_mask(device, base + 0x00, 0x00020004, 0x00000004);
}
}
/* select pll/non-pll mode, and program final clock divider */
nv_mask(device, 0x137100, (1 << clk), info->ssel);
nv_wait(device, 0x137100, (1 << clk), info->ssel);
nv_mask(device, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv);
}
static void
mclk_precharge(struct nouveau_mem_exec_func *exec)
{
}
static void
mclk_refresh(struct nouveau_mem_exec_func *exec)
{
}
static void
mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
nv_wr32(device, 0x10f210, enable ? 0x80000000 : 0x00000000);
}
static void
mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
{
}
static void
mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
{
udelay((nsec + 500) / 1000);
}
static u32
mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nouveau_fb *pfb = nouveau_fb(device);
if (pfb->ram->type != NV_MEM_TYPE_GDDR5) {
if (mr <= 1)
return nv_rd32(device, 0x10f300 + ((mr - 0) * 4));
return nv_rd32(device, 0x10f320 + ((mr - 2) * 4));
} else {
if (mr == 0)
return nv_rd32(device, 0x10f300 + (mr * 4));
else
if (mr <= 7)
return nv_rd32(device, 0x10f32c + (mr * 4));
return nv_rd32(device, 0x10f34c);
}
}
static void
mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nouveau_fb *pfb = nouveau_fb(device);
if (pfb->ram->type != NV_MEM_TYPE_GDDR5) {
if (mr <= 1) {
nv_wr32(device, 0x10f300 + ((mr - 0) * 4), data);
if (pfb->ram->ranks > 1)
nv_wr32(device, 0x10f308 + ((mr - 0) * 4), data);
} else
if (mr <= 3) {
nv_wr32(device, 0x10f320 + ((mr - 2) * 4), data);
if (pfb->ram->ranks > 1)
nv_wr32(device, 0x10f328 + ((mr - 2) * 4), data);
}
} else {
if (mr == 0) nv_wr32(device, 0x10f300 + (mr * 4), data);
else if (mr <= 7) nv_wr32(device, 0x10f32c + (mr * 4), data);
else if (mr == 15) nv_wr32(device, 0x10f34c, data);
}
}
static void
mclk_clock_set(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nvc0_pm_state *info = exec->priv;
u32 ctrl = nv_rd32(device, 0x132000);
nv_wr32(device, 0x137360, 0x00000001);
nv_wr32(device, 0x137370, 0x00000000);
nv_wr32(device, 0x137380, 0x00000000);
if (ctrl & 0x00000001)
nv_wr32(device, 0x132000, (ctrl &= ~0x00000001));
nv_wr32(device, 0x132004, info->mem.coef);
nv_wr32(device, 0x132000, (ctrl |= 0x00000001));
nv_wait(device, 0x137390, 0x00000002, 0x00000002);
nv_wr32(device, 0x132018, 0x00005000);
nv_wr32(device, 0x137370, 0x00000001);
nv_wr32(device, 0x137380, 0x00000001);
nv_wr32(device, 0x137360, 0x00000000);
}
static void
mclk_timing_set(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nvc0_pm_state *info = exec->priv;
struct nouveau_pm_level *perflvl = info->perflvl;
int i;
for (i = 0; i < 5; i++)
nv_wr32(device, 0x10f290 + (i * 4), perflvl->timing.reg[i]);
}
static void
prog_mem(struct drm_device *dev, struct nvc0_pm_state *info)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_mem_exec_func exec = {
.dev = dev,
.precharge = mclk_precharge,
.refresh = mclk_refresh,
.refresh_auto = mclk_refresh_auto,
.refresh_self = mclk_refresh_self,
.wait = mclk_wait,
.mrg = mclk_mrg,
.mrs = mclk_mrs,
.clock_set = mclk_clock_set,
.timing_set = mclk_timing_set,
.priv = info
};
if (device->chipset < 0xd0)
nv_wr32(device, 0x611200, 0x00003300);
else
nv_wr32(device, 0x62c000, 0x03030000);
nouveau_mem_exec(&exec, info->perflvl);
if (device->chipset < 0xd0)
nv_wr32(device, 0x611200, 0x00003330);
else
nv_wr32(device, 0x62c000, 0x03030300);
}
int
nvc0_pm_clocks_set(struct drm_device *dev, void *data)
{
struct nvc0_pm_state *info = data;
int i;
if (info->mem.coef)
prog_mem(dev, info);
for (i = 0; i < 16; i++) {
if (!info->eng[i].freq)
continue;
prog_clk(dev, i, &info->eng[i]);
}
kfree(info);
return 0;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment