Commit bc231d9e authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 platform updates from Ingo Molnar:
 "The main change is the addition of SGI/UV4 support"

* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
  x86/platform/UV: Fix incorrect nodes and pnodes for cpuless and memoryless nodes
  x86/platform/UV: Remove Obsolete GRU MMR address translation
  x86/platform/UV: Update physical address conversions for UV4
  x86/platform/UV: Build GAM reference tables
  x86/platform/UV: Support UV4 socket address changes
  x86/platform/UV: Add obtaining GAM Range Table from UV BIOS
  x86/platform/UV: Add UV4 addressing discovery function
  x86/platform/UV: Fold blade info into per node hub info structs
  x86/platform/UV: Allocate common per node hub info structs on local node
  x86/platform/UV: Move blade local processor ID to the per cpu info struct
  x86/platform/UV: Move scir info to the per cpu info struct
  x86/platform/UV: Create per cpu info structs to replace per hub info structs
  x86/platform/UV: Update MMIOH setup function to work for both UV3 and UV4
  x86/platform/UV: Clean up redunduncies after merge of UV4 MMR definitions
  x86/platform/UV: Add UV4 Specific MMR definitions
  x86/platform/UV: Prep for UV4 MMR updates
  x86/platform/UV: Add UV MMR Illegal Access Function
  x86/platform/UV: Add UV4 Specific Defines
  x86/platform/UV: Add UV Architecture Defines
  x86/platform/UV: Add Initial UV4 definitions
  ...
parents 62a00278 3cd0b535
...@@ -131,6 +131,7 @@ parameter is applicable: ...@@ -131,6 +131,7 @@ parameter is applicable:
More X86-64 boot options can be found in More X86-64 boot options can be found in
Documentation/x86/x86_64/boot-options.txt . Documentation/x86/x86_64/boot-options.txt .
X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64) X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64)
X86_UV SGI UV support is enabled.
XEN Xen support is enabled XEN Xen support is enabled
In addition, the following text indicates that the option: In addition, the following text indicates that the option:
...@@ -542,6 +543,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted. ...@@ -542,6 +543,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
Format: <int> (must be >=0) Format: <int> (must be >=0)
Default: 64 Default: 64
bau= [X86_UV] Enable the BAU on SGI UV. The default
behavior is to disable the BAU (i.e. bau=0).
Format: { "0" | "1" }
0 - Disable the BAU.
1 - Enable the BAU.
unset - Disable the BAU.
baycom_epp= [HW,AX25] baycom_epp= [HW,AX25]
Format: <io>,<mode> Format: <io>,<mode>
......
...@@ -17,27 +17,6 @@ static inline unsigned int get_bios_ebda(void) ...@@ -17,27 +17,6 @@ static inline unsigned int get_bios_ebda(void)
return address; /* 0 means none */ return address; /* 0 means none */
} }
/*
* Return the sanitized length of the EBDA in bytes, if it exists.
*/
static inline unsigned int get_bios_ebda_length(void)
{
unsigned int address;
unsigned int length;
address = get_bios_ebda();
if (!address)
return 0;
/* EBDA length is byte 0 of the EBDA (stored in KiB) */
length = *(unsigned char *)phys_to_virt(address);
length <<= 10;
/* Trim the length if it extends beyond 640KiB */
length = min_t(unsigned int, (640 * 1024) - address, length);
return length;
}
void reserve_ebda_region(void); void reserve_ebda_region(void);
#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
......
...@@ -51,15 +51,66 @@ enum { ...@@ -51,15 +51,66 @@ enum {
BIOS_STATUS_UNAVAIL = -EBUSY BIOS_STATUS_UNAVAIL = -EBUSY
}; };
/* Address map parameters */
struct uv_gam_parameters {
u64 mmr_base;
u64 gru_base;
u8 mmr_shift; /* Convert PNode to MMR space offset */
u8 gru_shift; /* Convert PNode to GRU space offset */
u8 gpa_shift; /* Size of offset field in GRU phys addr */
u8 unused1;
};
/* UV_TABLE_GAM_RANGE_ENTRY values */
#define UV_GAM_RANGE_TYPE_UNUSED 0 /* End of table */
#define UV_GAM_RANGE_TYPE_RAM 1 /* Normal RAM */
#define UV_GAM_RANGE_TYPE_NVRAM 2 /* Non-volatile memory */
#define UV_GAM_RANGE_TYPE_NV_WINDOW 3 /* NVMDIMM block window */
#define UV_GAM_RANGE_TYPE_NV_MAILBOX 4 /* NVMDIMM mailbox */
#define UV_GAM_RANGE_TYPE_HOLE 5 /* Unused address range */
#define UV_GAM_RANGE_TYPE_MAX 6
/* The structure stores PA bits 56:26, for 64MB granularity */
#define UV_GAM_RANGE_SHFT 26 /* 64MB */
struct uv_gam_range_entry {
char type; /* Entry type: GAM_RANGE_TYPE_UNUSED, etc. */
char unused1;
u16 nasid; /* HNasid */
u16 sockid; /* Socket ID, high bits of APIC ID */
u16 pnode; /* Index to MMR and GRU spaces */
u32 pxm; /* ACPI proximity domain number */
u32 limit; /* PA bits 56:26 (UV_GAM_RANGE_SHFT) */
};
#define UV_SYSTAB_SIG "UVST"
#define UV_SYSTAB_VERSION_1 1 /* UV1/2/3 BIOS version */
#define UV_SYSTAB_VERSION_UV4 0x400 /* UV4 BIOS base version */
#define UV_SYSTAB_VERSION_UV4_1 0x401 /* + gpa_shift */
#define UV_SYSTAB_VERSION_UV4_2 0x402 /* + TYPE_NVRAM/WINDOW/MBOX */
#define UV_SYSTAB_VERSION_UV4_LATEST UV_SYSTAB_VERSION_UV4_2
#define UV_SYSTAB_TYPE_UNUSED 0 /* End of table (offset == 0) */
#define UV_SYSTAB_TYPE_GAM_PARAMS 1 /* GAM PARAM conversions */
#define UV_SYSTAB_TYPE_GAM_RNG_TBL 2 /* GAM entry table */
#define UV_SYSTAB_TYPE_MAX 3
/* /*
* The UV system table describes specific firmware * The UV system table describes specific firmware
* capabilities available to the Linux kernel at runtime. * capabilities available to the Linux kernel at runtime.
*/ */
struct uv_systab { struct uv_systab {
char signature[4]; /* must be "UVST" */ char signature[4]; /* must be UV_SYSTAB_SIG */
u32 revision; /* distinguish different firmware revs */ u32 revision; /* distinguish different firmware revs */
u64 function; /* BIOS runtime callback function ptr */ u64 function; /* BIOS runtime callback function ptr */
u32 size; /* systab size (starting with _VERSION_UV4) */
struct {
u32 type:8; /* type of entry */
u32 offset:24; /* byte offset from struct start to entry */
} entry[1]; /* additional entries follow */
}; };
extern struct uv_systab *uv_systab;
/* (... end of definitions from UV BIOS ...) */
enum { enum {
BIOS_FREQ_BASE_PLATFORM = 0, BIOS_FREQ_BASE_PLATFORM = 0,
...@@ -99,7 +150,11 @@ extern s64 uv_bios_change_memprotect(u64, u64, enum uv_memprotect); ...@@ -99,7 +150,11 @@ extern s64 uv_bios_change_memprotect(u64, u64, enum uv_memprotect);
extern s64 uv_bios_reserved_page_pa(u64, u64 *, u64 *, u64 *); extern s64 uv_bios_reserved_page_pa(u64, u64 *, u64 *, u64 *);
extern int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus); extern int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus);
#ifdef CONFIG_EFI
extern void uv_bios_init(void); extern void uv_bios_init(void);
#else
void uv_bios_init(void) { }
#endif
extern unsigned long sn_rtc_cycles_per_second; extern unsigned long sn_rtc_cycles_per_second;
extern int uv_type; extern int uv_type;
...@@ -107,7 +162,7 @@ extern long sn_partition_id; ...@@ -107,7 +162,7 @@ extern long sn_partition_id;
extern long sn_coherency_id; extern long sn_coherency_id;
extern long sn_region_size; extern long sn_region_size;
extern long system_serial_number; extern long system_serial_number;
#define partition_coherence_id() (sn_coherency_id) #define uv_partition_coherence_id() (sn_coherency_id)
extern struct kobject *sgi_uv_kobj; /* /sys/firmware/sgi_uv */ extern struct kobject *sgi_uv_kobj; /* /sys/firmware/sgi_uv */
......
...@@ -598,7 +598,7 @@ struct bau_control { ...@@ -598,7 +598,7 @@ struct bau_control {
int timeout_tries; int timeout_tries;
int ipi_attempts; int ipi_attempts;
int conseccompletes; int conseccompletes;
short nobau; bool nobau;
short baudisabled; short baudisabled;
short cpu; short cpu;
short osnode; short osnode;
......
...@@ -16,9 +16,11 @@ ...@@ -16,9 +16,11 @@
#include <linux/percpu.h> #include <linux/percpu.h>
#include <linux/timer.h> #include <linux/timer.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/topology.h>
#include <asm/types.h> #include <asm/types.h>
#include <asm/percpu.h> #include <asm/percpu.h>
#include <asm/uv/uv_mmrs.h> #include <asm/uv/uv_mmrs.h>
#include <asm/uv/bios.h>
#include <asm/irq_vectors.h> #include <asm/irq_vectors.h>
#include <asm/io_apic.h> #include <asm/io_apic.h>
...@@ -103,7 +105,6 @@ ...@@ -103,7 +105,6 @@
* processor APICID register. * processor APICID register.
*/ */
/* /*
* Maximum number of bricks in all partitions and in all coherency domains. * Maximum number of bricks in all partitions and in all coherency domains.
* This is the total number of bricks accessible in the numalink fabric. It * This is the total number of bricks accessible in the numalink fabric. It
...@@ -127,6 +128,7 @@ ...@@ -127,6 +128,7 @@
*/ */
#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2) #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
/* System Controller Interface Reg info */
struct uv_scir_s { struct uv_scir_s {
struct timer_list timer; struct timer_list timer;
unsigned long offset; unsigned long offset;
...@@ -137,71 +139,173 @@ struct uv_scir_s { ...@@ -137,71 +139,173 @@ struct uv_scir_s {
unsigned char enabled; unsigned char enabled;
}; };
/* GAM (globally addressed memory) range table */
struct uv_gam_range_s {
u32 limit; /* PA bits 56:26 (GAM_RANGE_SHFT) */
u16 nasid; /* node's global physical address */
s8 base; /* entry index of node's base addr */
u8 reserved;
};
/* /*
* The following defines attributes of the HUB chip. These attributes are * The following defines attributes of the HUB chip. These attributes are
* frequently referenced and are kept in the per-cpu data areas of each cpu. * frequently referenced and are kept in a common per hub struct.
* They are kept together in a struct to minimize cache misses. * After setup, the struct is read only, so it should be readily
* available in the L3 cache on the cpu socket for the node.
*/ */
struct uv_hub_info_s { struct uv_hub_info_s {
unsigned long global_mmr_base; unsigned long global_mmr_base;
unsigned long global_mmr_shift;
unsigned long gpa_mask; unsigned long gpa_mask;
unsigned int gnode_extra; unsigned short *socket_to_node;
unsigned short *socket_to_pnode;
unsigned short *pnode_to_socket;
struct uv_gam_range_s *gr_table;
unsigned short min_socket;
unsigned short min_pnode;
unsigned char m_val;
unsigned char n_val;
unsigned char gr_table_len;
unsigned char hub_revision; unsigned char hub_revision;
unsigned char apic_pnode_shift; unsigned char apic_pnode_shift;
unsigned char gpa_shift;
unsigned char m_shift; unsigned char m_shift;
unsigned char n_lshift; unsigned char n_lshift;
unsigned int gnode_extra;
unsigned long gnode_upper; unsigned long gnode_upper;
unsigned long lowmem_remap_top; unsigned long lowmem_remap_top;
unsigned long lowmem_remap_base; unsigned long lowmem_remap_base;
unsigned long global_gru_base;
unsigned long global_gru_shift;
unsigned short pnode; unsigned short pnode;
unsigned short pnode_mask; unsigned short pnode_mask;
unsigned short coherency_domain_number; unsigned short coherency_domain_number;
unsigned short numa_blade_id; unsigned short numa_blade_id;
unsigned char blade_processor_id; unsigned short nr_possible_cpus;
unsigned char m_val; unsigned short nr_online_cpus;
unsigned char n_val; short memory_nid;
};
/* CPU specific info with a pointer to the hub common info struct */
struct uv_cpu_info_s {
void *p_uv_hub_info;
unsigned char blade_cpu_id;
struct uv_scir_s scir; struct uv_scir_s scir;
}; };
DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
#define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
#define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
#define uv_scir_info (&uv_cpu_info->scir)
#define uv_cpu_scir_info(cpu) (&uv_cpu_info_per(cpu)->scir)
/* Node specific hub common info struct */
extern void **__uv_hub_info_list;
static inline struct uv_hub_info_s *uv_hub_info_list(int node)
{
return (struct uv_hub_info_s *)__uv_hub_info_list[node];
}
static inline struct uv_hub_info_s *_uv_hub_info(void)
{
return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
}
#define uv_hub_info _uv_hub_info()
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info); static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
#define uv_hub_info this_cpu_ptr(&__uv_hub_info) {
#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu)) return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
}
#define UV_HUB_INFO_VERSION 0x7150
extern int uv_hub_info_version(void);
static inline int uv_hub_info_check(int version)
{
if (uv_hub_info_version() == version)
return 0;
pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
uv_hub_info_version(), version);
BUG(); /* Catastrophic - cannot continue on unknown UV system */
}
#define _uv_hub_info_check() uv_hub_info_check(UV_HUB_INFO_VERSION)
/* /*
* Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2 * HUB revision ranges for each UV HUB architecture.
* hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
* This is a software convention - NOT the hardware revision numbers in * This is a software convention - NOT the hardware revision numbers in
* the hub chip. * the hub chip.
*/ */
#define UV1_HUB_REVISION_BASE 1 #define UV1_HUB_REVISION_BASE 1
#define UV2_HUB_REVISION_BASE 3 #define UV2_HUB_REVISION_BASE 3
#define UV3_HUB_REVISION_BASE 5 #define UV3_HUB_REVISION_BASE 5
#define UV4_HUB_REVISION_BASE 7
#ifdef UV1_HUB_IS_SUPPORTED
static inline int is_uv1_hub(void) static inline int is_uv1_hub(void)
{ {
return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE; return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
} }
#else
static inline int is_uv1_hub(void)
{
return 0;
}
#endif
#ifdef UV2_HUB_IS_SUPPORTED
static inline int is_uv2_hub(void) static inline int is_uv2_hub(void)
{ {
return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) && return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE)); (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
} }
#else
static inline int is_uv2_hub(void)
{
return 0;
}
#endif
#ifdef UV3_HUB_IS_SUPPORTED
static inline int is_uv3_hub(void)
{
return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
(uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
}
#else
static inline int is_uv3_hub(void) static inline int is_uv3_hub(void)
{ {
return uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE; return 0;
} }
#endif
static inline int is_uv_hub(void) #ifdef UV4_HUB_IS_SUPPORTED
static inline int is_uv4_hub(void)
{ {
return uv_hub_info->hub_revision; return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
} }
#else
static inline int is_uv4_hub(void)
{
return 0;
}
#endif
/* code common to uv2 and uv3 only */
static inline int is_uvx_hub(void) static inline int is_uvx_hub(void)
{ {
return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE; if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
return uv_hub_info->hub_revision;
return 0;
}
static inline int is_uv_hub(void)
{
#ifdef UV1_HUB_IS_SUPPORTED
return uv_hub_info->hub_revision;
#endif
return is_uvx_hub();
} }
union uvh_apicid { union uvh_apicid {
...@@ -243,24 +347,42 @@ union uvh_apicid { ...@@ -243,24 +347,42 @@ union uvh_apicid {
#define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024) #define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024) #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
#define UV_LOCAL_MMR_BASE (is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \ #define UV4_LOCAL_MMR_BASE 0xfa000000UL
(is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \ #define UV4_GLOBAL_MMR32_BASE 0xfc000000UL
UV3_LOCAL_MMR_BASE)) #define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV_GLOBAL_MMR32_BASE (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE :\ #define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024)
(is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE :\
UV3_GLOBAL_MMR32_BASE)) #define UV_LOCAL_MMR_BASE ( \
#define UV_LOCAL_MMR_SIZE (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \ is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
(is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \ is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
UV3_LOCAL_MMR_SIZE)) is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
#define UV_GLOBAL_MMR32_SIZE (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\ /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
(is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE :\
UV3_GLOBAL_MMR32_SIZE)) #define UV_GLOBAL_MMR32_BASE ( \
is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
#define UV_LOCAL_MMR_SIZE ( \
is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
#define UV_GLOBAL_MMR32_SIZE ( \
is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base) #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
#define UV_GLOBAL_GRU_MMR_BASE 0x4000000 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
#define UV_GLOBAL_MMR32_PNODE_SHIFT 15 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
#define UV_GLOBAL_MMR64_PNODE_SHIFT 26 #define _UV_GLOBAL_MMR64_PNODE_SHIFT 26
#define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift)
#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT)) #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
...@@ -307,18 +429,74 @@ union uvh_apicid { ...@@ -307,18 +429,74 @@ union uvh_apicid {
* between socket virtual and socket physical addresses. * between socket virtual and socket physical addresses.
*/ */
/* global bits offset - number of local address bits in gpa for this UV arch */
static inline unsigned int uv_gpa_shift(void)
{
return uv_hub_info->gpa_shift;
}
#define _uv_gpa_shift
/* Find node that has the address range that contains global address */
static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
{
struct uv_gam_range_s *gr = uv_hub_info->gr_table;
unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
int i, num = uv_hub_info->gr_table_len;
if (gr) {
for (i = 0; i < num; i++, gr++) {
if (pal < gr->limit)
return gr;
}
}
pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
BUG();
}
/* Return base address of node that contains global address */
static inline unsigned long uv_gam_range_base(unsigned long pa)
{
struct uv_gam_range_s *gr = uv_gam_range(pa);
int base = gr->base;
if (base < 0)
return 0UL;
return uv_hub_info->gr_table[base].limit;
}
/* socket phys RAM --> UV global NASID (UV4+) */
static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
{
return uv_gam_range(paddr)->nasid;
}
#define _uv_soc_phys_ram_to_nasid
/* socket virtual --> UV global NASID (UV4+) */
static inline unsigned long uv_gpa_nasid(void *v)
{
return uv_soc_phys_ram_to_nasid(__pa(v));
}
/* socket phys RAM --> UV global physical address */ /* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr) static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{ {
unsigned int m_val = uv_hub_info->m_val;
if (paddr < uv_hub_info->lowmem_remap_top) if (paddr < uv_hub_info->lowmem_remap_top)
paddr |= uv_hub_info->lowmem_remap_base; paddr |= uv_hub_info->lowmem_remap_base;
paddr |= uv_hub_info->gnode_upper; paddr |= uv_hub_info->gnode_upper;
paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) | if (m_val)
((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift); paddr = ((paddr << uv_hub_info->m_shift)
>> uv_hub_info->m_shift) |
((paddr >> uv_hub_info->m_val)
<< uv_hub_info->n_lshift);
else
paddr |= uv_soc_phys_ram_to_nasid(paddr)
<< uv_hub_info->gpa_shift;
return paddr; return paddr;
} }
/* socket virtual --> UV global physical address */ /* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v) static inline unsigned long uv_gpa(void *v)
{ {
...@@ -338,54 +516,89 @@ static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa) ...@@ -338,54 +516,89 @@ static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
unsigned long paddr; unsigned long paddr;
unsigned long remap_base = uv_hub_info->lowmem_remap_base; unsigned long remap_base = uv_hub_info->lowmem_remap_base;
unsigned long remap_top = uv_hub_info->lowmem_remap_top; unsigned long remap_top = uv_hub_info->lowmem_remap_top;
unsigned int m_val = uv_hub_info->m_val;
if (m_val)
gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
paddr = gpa & uv_hub_info->gpa_mask; paddr = gpa & uv_hub_info->gpa_mask;
if (paddr >= remap_base && paddr < remap_base + remap_top) if (paddr >= remap_base && paddr < remap_base + remap_top)
paddr -= remap_base; paddr -= remap_base;
return paddr; return paddr;
} }
/* gpa -> gnode */
/* gpa -> pnode */
static inline unsigned long uv_gpa_to_gnode(unsigned long gpa) static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
{ {
return gpa >> uv_hub_info->n_lshift; unsigned int n_lshift = uv_hub_info->n_lshift;
if (n_lshift)
return gpa >> n_lshift;
return uv_gam_range(gpa)->nasid >> 1;
} }
/* gpa -> pnode */ /* gpa -> pnode */
static inline int uv_gpa_to_pnode(unsigned long gpa) static inline int uv_gpa_to_pnode(unsigned long gpa)
{ {
unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1; return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
return uv_gpa_to_gnode(gpa) & n_mask;
} }
/* gpa -> node offset*/ /* gpa -> node offset */
static inline unsigned long uv_gpa_to_offset(unsigned long gpa) static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
{ {
return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift; unsigned int m_shift = uv_hub_info->m_shift;
if (m_shift)
return (gpa << m_shift) >> m_shift;
return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
}
/* Convert socket to node */
static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
{
return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
}
static inline int uv_socket_to_node(int socket)
{
return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
} }
/* pnode, offset --> socket virtual */ /* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset) static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{ {
return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset); unsigned int m_val = uv_hub_info->m_val;
} unsigned long base;
unsigned short sockid, node, *p2s;
if (m_val)
return __va(((unsigned long)pnode << m_val) | offset);
/* p2s = uv_hub_info->pnode_to_socket;
* Extract a PNODE from an APICID (full apicid, not processor subset) sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
*/ node = uv_socket_to_node(sockid);
/* limit address of previous socket is our base, except node 0 is 0 */
if (!node)
return __va((unsigned long)offset);
base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
return __va(base << UV_GAM_RANGE_SHFT | offset);
}
/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
static inline int uv_apicid_to_pnode(int apicid) static inline int uv_apicid_to_pnode(int apicid)
{ {
return (apicid >> uv_hub_info->apic_pnode_shift); int pnode = apicid >> uv_hub_info->apic_pnode_shift;
unsigned short *s2pn = uv_hub_info->socket_to_pnode;
return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
} }
/* /* Convert an apicid to the socket number on the blade */
* Convert an apicid to the socket number on the blade
*/
static inline int uv_apicid_to_socket(int apicid) static inline int uv_apicid_to_socket(int apicid)
{ {
if (is_uv1_hub()) if (is_uv1_hub())
...@@ -434,16 +647,6 @@ static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset ...@@ -434,16 +647,6 @@ static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset
return readq(uv_global_mmr64_address(pnode, offset)); return readq(uv_global_mmr64_address(pnode, offset));
} }
/*
* Global MMR space addresses when referenced by the GRU. (GRU does
* NOT use socket addressing).
*/
static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
{
return UV_GLOBAL_GRU_MMR_BASE | offset |
((unsigned long)pnode << uv_hub_info->m_val);
}
static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val) static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
{ {
writeb(val, uv_global_mmr64_address(pnode, offset)); writeb(val, uv_global_mmr64_address(pnode, offset));
...@@ -483,27 +686,23 @@ static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val) ...@@ -483,27 +686,23 @@ static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
writeb(val, uv_local_mmr_address(offset)); writeb(val, uv_local_mmr_address(offset));
} }
/*
* Structures and definitions for converting between cpu, node, pnode, and blade
* numbers.
*/
struct uv_blade_info {
unsigned short nr_possible_cpus;
unsigned short nr_online_cpus;
unsigned short pnode;
short memory_nid;
spinlock_t nmi_lock; /* obsolete, see uv_hub_nmi */
unsigned long nmi_count; /* obsolete, see uv_hub_nmi */
};
extern struct uv_blade_info *uv_blade_info;
extern short *uv_node_to_blade;
extern short *uv_cpu_to_blade;
extern short uv_possible_blades;
/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */ /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void) static inline int uv_blade_processor_id(void)
{ {
return uv_hub_info->blade_processor_id; return uv_cpu_info->blade_cpu_id;
}
/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
static inline int uv_cpu_blade_processor_id(int cpu)
{
return uv_cpu_info_per(cpu)->blade_cpu_id;
}
#define _uv_cpu_blade_processor_id 1 /* indicate function available */
/* Blade number to Node number (UV1..UV4 is 1:1) */
static inline int uv_blade_to_node(int blade)
{
return blade;
} }
/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */ /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
...@@ -512,55 +711,60 @@ static inline int uv_numa_blade_id(void) ...@@ -512,55 +711,60 @@ static inline int uv_numa_blade_id(void)
return uv_hub_info->numa_blade_id; return uv_hub_info->numa_blade_id;
} }
/* Convert a cpu number to the the UV blade number */ /*
static inline int uv_cpu_to_blade_id(int cpu) * Convert linux node number to the UV blade number.
* .. Currently for UV1 thru UV4 the node and the blade are identical.
* .. If this changes then you MUST check references to this function!
*/
static inline int uv_node_to_blade_id(int nid)
{ {
return uv_cpu_to_blade[cpu]; return nid;
} }
/* Convert linux node number to the UV blade number */ /* Convert a cpu number to the the UV blade number */
static inline int uv_node_to_blade_id(int nid) static inline int uv_cpu_to_blade_id(int cpu)
{ {
return uv_node_to_blade[nid]; return uv_node_to_blade_id(cpu_to_node(cpu));
} }
/* Convert a blade id to the PNODE of the blade */ /* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid) static inline int uv_blade_to_pnode(int bid)
{ {
return uv_blade_info[bid].pnode; return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
} }
/* Nid of memory node on blade. -1 if no blade-local memory */ /* Nid of memory node on blade. -1 if no blade-local memory */
static inline int uv_blade_to_memory_nid(int bid) static inline int uv_blade_to_memory_nid(int bid)
{ {
return uv_blade_info[bid].memory_nid; return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
} }
/* Determine the number of possible cpus on a blade */ /* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid) static inline int uv_blade_nr_possible_cpus(int bid)
{ {
return uv_blade_info[bid].nr_possible_cpus; return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
} }
/* Determine the number of online cpus on a blade */ /* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid) static inline int uv_blade_nr_online_cpus(int bid)
{ {
return uv_blade_info[bid].nr_online_cpus; return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
} }
/* Convert a cpu id to the PNODE of the blade containing the cpu */ /* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu) static inline int uv_cpu_to_pnode(int cpu)
{ {
return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode; return uv_cpu_hub_info(cpu)->pnode;
} }
/* Convert a linux node number to the PNODE of the blade */ /* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid) static inline int uv_node_to_pnode(int nid)
{ {
return uv_blade_info[uv_node_to_blade_id(nid)].pnode; return uv_hub_info_list(nid)->pnode;
} }
/* Maximum possible number of blades */ /* Maximum possible number of blades */
extern short uv_possible_blades;
static inline int uv_num_possible_blades(void) static inline int uv_num_possible_blades(void)
{ {
return uv_possible_blades; return uv_possible_blades;
...@@ -578,9 +782,7 @@ extern void uv_nmi_setup(void); ...@@ -578,9 +782,7 @@ extern void uv_nmi_setup(void);
/* Newer SMM NMI handler, not present in all systems */ /* Newer SMM NMI handler, not present in all systems */
#define UVH_NMI_MMRX UVH_EVENT_OCCURRED0 #define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
#define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS #define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
#define UVH_NMI_MMRX_SHIFT (is_uv1_hub() ? \ #define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
UV1H_EVENT_OCCURRED0_EXTIO_INT0_SHFT :\
UVXH_EVENT_OCCURRED0_EXTIO_INT0_SHFT)
#define UVH_NMI_MMRX_TYPE "EXTIO_INT0" #define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
/* Non-zero indicates newer SMM NMI handler present */ /* Non-zero indicates newer SMM NMI handler present */
...@@ -622,9 +824,9 @@ DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi); ...@@ -622,9 +824,9 @@ DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
/* Update SCIR state */ /* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value) static inline void uv_set_scir_bits(unsigned char value)
{ {
if (uv_hub_info->scir.state != value) { if (uv_scir_info->state != value) {
uv_hub_info->scir.state = value; uv_scir_info->state = value;
uv_write_local_mmr8(uv_hub_info->scir.offset, value); uv_write_local_mmr8(uv_scir_info->offset, value);
} }
} }
...@@ -635,10 +837,10 @@ static inline unsigned long uv_scir_offset(int apicid) ...@@ -635,10 +837,10 @@ static inline unsigned long uv_scir_offset(int apicid)
static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value) static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
{ {
if (uv_cpu_hub_info(cpu)->scir.state != value) { if (uv_cpu_scir_info(cpu)->state != value) {
uv_write_global_mmr8(uv_cpu_to_pnode(cpu), uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
uv_cpu_hub_info(cpu)->scir.offset, value); uv_cpu_scir_info(cpu)->offset, value);
uv_cpu_hub_info(cpu)->scir.state = value; uv_cpu_scir_info(cpu)->state = value;
} }
} }
...@@ -666,10 +868,7 @@ static inline void uv_hub_send_ipi(int pnode, int apicid, int vector) ...@@ -666,10 +868,7 @@ static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
/* /*
* Get the minimum revision number of the hub chips within the partition. * Get the minimum revision number of the hub chips within the partition.
* 1 - UV1 rev 1.0 initial silicon * (See UVx_HUB_REVISION_BASE above for specific values.)
* 2 - UV1 rev 2.0 production silicon
* 3 - UV2 rev 1.0 initial silicon
* 5 - UV3 rev 1.0 initial silicon
*/ */
static inline int uv_get_min_hub_revision_id(void) static inline int uv_get_min_hub_revision_id(void)
{ {
......
This source diff could not be displayed because it is too large. You can view the blob instead.
...@@ -48,12 +48,35 @@ static u64 gru_start_paddr, gru_end_paddr; ...@@ -48,12 +48,35 @@ static u64 gru_start_paddr, gru_end_paddr;
static u64 gru_dist_base, gru_first_node_paddr = -1LL, gru_last_node_paddr; static u64 gru_dist_base, gru_first_node_paddr = -1LL, gru_last_node_paddr;
static u64 gru_dist_lmask, gru_dist_umask; static u64 gru_dist_lmask, gru_dist_umask;
static union uvh_apicid uvh_apicid; static union uvh_apicid uvh_apicid;
/* info derived from CPUID */
static struct {
unsigned int apicid_shift;
unsigned int apicid_mask;
unsigned int socketid_shift; /* aka pnode_shift for UV1/2/3 */
unsigned int pnode_mask;
unsigned int gpa_shift;
} uv_cpuid;
int uv_min_hub_revision_id; int uv_min_hub_revision_id;
EXPORT_SYMBOL_GPL(uv_min_hub_revision_id); EXPORT_SYMBOL_GPL(uv_min_hub_revision_id);
unsigned int uv_apicid_hibits; unsigned int uv_apicid_hibits;
EXPORT_SYMBOL_GPL(uv_apicid_hibits); EXPORT_SYMBOL_GPL(uv_apicid_hibits);
static struct apic apic_x2apic_uv_x; static struct apic apic_x2apic_uv_x;
static struct uv_hub_info_s uv_hub_info_node0;
/* Set this to use hardware error handler instead of kernel panic */
static int disable_uv_undefined_panic = 1;
unsigned long uv_undefined(char *str)
{
if (likely(!disable_uv_undefined_panic))
panic("UV: error: undefined MMR: %s\n", str);
else
pr_crit("UV: error: undefined MMR: %s\n", str);
return ~0ul; /* cause a machine fault */
}
EXPORT_SYMBOL(uv_undefined);
static unsigned long __init uv_early_read_mmr(unsigned long addr) static unsigned long __init uv_early_read_mmr(unsigned long addr)
{ {
...@@ -108,21 +131,71 @@ static int __init early_get_pnodeid(void) ...@@ -108,21 +131,71 @@ static int __init early_get_pnodeid(void)
case UV3_HUB_PART_NUMBER_X: case UV3_HUB_PART_NUMBER_X:
uv_min_hub_revision_id += UV3_HUB_REVISION_BASE; uv_min_hub_revision_id += UV3_HUB_REVISION_BASE;
break; break;
case UV4_HUB_PART_NUMBER:
uv_min_hub_revision_id += UV4_HUB_REVISION_BASE - 1;
break;
} }
uv_hub_info->hub_revision = uv_min_hub_revision_id; uv_hub_info->hub_revision = uv_min_hub_revision_id;
pnode = (node_id.s.node_id >> 1) & ((1 << m_n_config.s.n_skt) - 1); uv_cpuid.pnode_mask = (1 << m_n_config.s.n_skt) - 1;
pnode = (node_id.s.node_id >> 1) & uv_cpuid.pnode_mask;
uv_cpuid.gpa_shift = 46; /* default unless changed */
pr_info("UV: rev:%d part#:%x nodeid:%04x n_skt:%d pnmsk:%x pn:%x\n",
node_id.s.revision, node_id.s.part_number, node_id.s.node_id,
m_n_config.s.n_skt, uv_cpuid.pnode_mask, pnode);
return pnode; return pnode;
} }
static void __init early_get_apic_pnode_shift(void) /* [copied from arch/x86/kernel/cpu/topology.c:detect_extended_topology()] */
#define SMT_LEVEL 0 /* leaf 0xb SMT level */
#define INVALID_TYPE 0 /* leaf 0xb sub-leaf types */
#define SMT_TYPE 1
#define CORE_TYPE 2
#define LEAFB_SUBTYPE(ecx) (((ecx) >> 8) & 0xff)
#define BITS_SHIFT_NEXT_LEVEL(eax) ((eax) & 0x1f)
static void set_x2apic_bits(void)
{
unsigned int eax, ebx, ecx, edx, sub_index;
unsigned int sid_shift;
cpuid(0, &eax, &ebx, &ecx, &edx);
if (eax < 0xb) {
pr_info("UV: CPU does not have CPUID.11\n");
return;
}
cpuid_count(0xb, SMT_LEVEL, &eax, &ebx, &ecx, &edx);
if (ebx == 0 || (LEAFB_SUBTYPE(ecx) != SMT_TYPE)) {
pr_info("UV: CPUID.11 not implemented\n");
return;
}
sid_shift = BITS_SHIFT_NEXT_LEVEL(eax);
sub_index = 1;
do {
cpuid_count(0xb, sub_index, &eax, &ebx, &ecx, &edx);
if (LEAFB_SUBTYPE(ecx) == CORE_TYPE) {
sid_shift = BITS_SHIFT_NEXT_LEVEL(eax);
break;
}
sub_index++;
} while (LEAFB_SUBTYPE(ecx) != INVALID_TYPE);
uv_cpuid.apicid_shift = 0;
uv_cpuid.apicid_mask = (~(-1 << sid_shift));
uv_cpuid.socketid_shift = sid_shift;
}
static void __init early_get_apic_socketid_shift(void)
{ {
uvh_apicid.v = uv_early_read_mmr(UVH_APICID); if (is_uv2_hub() || is_uv3_hub())
if (!uvh_apicid.v) uvh_apicid.v = uv_early_read_mmr(UVH_APICID);
/*
* Old bios, use default value set_x2apic_bits();
*/
uvh_apicid.s.pnode_shift = UV_APIC_PNODE_SHIFT; pr_info("UV: apicid_shift:%d apicid_mask:0x%x\n",
uv_cpuid.apicid_shift, uv_cpuid.apicid_mask);
pr_info("UV: socketid_shift:%d pnode_mask:0x%x\n",
uv_cpuid.socketid_shift, uv_cpuid.pnode_mask);
} }
/* /*
...@@ -150,13 +223,18 @@ static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id) ...@@ -150,13 +223,18 @@ static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
if (strncmp(oem_id, "SGI", 3) != 0) if (strncmp(oem_id, "SGI", 3) != 0)
return 0; return 0;
/* Setup early hub type field in uv_hub_info for Node 0 */
uv_cpu_info->p_uv_hub_info = &uv_hub_info_node0;
/* /*
* Determine UV arch type. * Determine UV arch type.
* SGI: UV100/1000 * SGI: UV100/1000
* SGI2: UV2000/3000 * SGI2: UV2000/3000
* SGI3: UV300 (truncated to 4 chars because of different varieties) * SGI3: UV300 (truncated to 4 chars because of different varieties)
* SGI4: UV400 (truncated to 4 chars because of different varieties)
*/ */
uv_hub_info->hub_revision = uv_hub_info->hub_revision =
!strncmp(oem_id, "SGI4", 4) ? UV4_HUB_REVISION_BASE :
!strncmp(oem_id, "SGI3", 4) ? UV3_HUB_REVISION_BASE : !strncmp(oem_id, "SGI3", 4) ? UV3_HUB_REVISION_BASE :
!strcmp(oem_id, "SGI2") ? UV2_HUB_REVISION_BASE : !strcmp(oem_id, "SGI2") ? UV2_HUB_REVISION_BASE :
!strcmp(oem_id, "SGI") ? UV1_HUB_REVISION_BASE : 0; !strcmp(oem_id, "SGI") ? UV1_HUB_REVISION_BASE : 0;
...@@ -165,7 +243,7 @@ static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id) ...@@ -165,7 +243,7 @@ static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
goto badbios; goto badbios;
pnodeid = early_get_pnodeid(); pnodeid = early_get_pnodeid();
early_get_apic_pnode_shift(); early_get_apic_socketid_shift();
x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range; x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range;
x86_platform.nmi_init = uv_nmi_init; x86_platform.nmi_init = uv_nmi_init;
...@@ -211,17 +289,11 @@ int is_uv_system(void) ...@@ -211,17 +289,11 @@ int is_uv_system(void)
} }
EXPORT_SYMBOL_GPL(is_uv_system); EXPORT_SYMBOL_GPL(is_uv_system);
DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info); void **__uv_hub_info_list;
EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info); EXPORT_SYMBOL_GPL(__uv_hub_info_list);
struct uv_blade_info *uv_blade_info;
EXPORT_SYMBOL_GPL(uv_blade_info);
short *uv_node_to_blade;
EXPORT_SYMBOL_GPL(uv_node_to_blade);
short *uv_cpu_to_blade; DEFINE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
EXPORT_SYMBOL_GPL(uv_cpu_to_blade); EXPORT_PER_CPU_SYMBOL_GPL(__uv_cpu_info);
short uv_possible_blades; short uv_possible_blades;
EXPORT_SYMBOL_GPL(uv_possible_blades); EXPORT_SYMBOL_GPL(uv_possible_blades);
...@@ -229,6 +301,115 @@ EXPORT_SYMBOL_GPL(uv_possible_blades); ...@@ -229,6 +301,115 @@ EXPORT_SYMBOL_GPL(uv_possible_blades);
unsigned long sn_rtc_cycles_per_second; unsigned long sn_rtc_cycles_per_second;
EXPORT_SYMBOL(sn_rtc_cycles_per_second); EXPORT_SYMBOL(sn_rtc_cycles_per_second);
/* the following values are used for the per node hub info struct */
static __initdata unsigned short *_node_to_pnode;
static __initdata unsigned short _min_socket, _max_socket;
static __initdata unsigned short _min_pnode, _max_pnode, _gr_table_len;
static __initdata struct uv_gam_range_entry *uv_gre_table;
static __initdata struct uv_gam_parameters *uv_gp_table;
static __initdata unsigned short *_socket_to_node;
static __initdata unsigned short *_socket_to_pnode;
static __initdata unsigned short *_pnode_to_socket;
static __initdata struct uv_gam_range_s *_gr_table;
#define SOCK_EMPTY ((unsigned short)~0)
extern int uv_hub_info_version(void)
{
return UV_HUB_INFO_VERSION;
}
EXPORT_SYMBOL(uv_hub_info_version);
/* Build GAM range lookup table */
static __init void build_uv_gr_table(void)
{
struct uv_gam_range_entry *gre = uv_gre_table;
struct uv_gam_range_s *grt;
unsigned long last_limit = 0, ram_limit = 0;
int bytes, i, sid, lsid = -1;
if (!gre)
return;
bytes = _gr_table_len * sizeof(struct uv_gam_range_s);
grt = kzalloc(bytes, GFP_KERNEL);
BUG_ON(!grt);
_gr_table = grt;
for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
if (gre->type == UV_GAM_RANGE_TYPE_HOLE) {
if (!ram_limit) { /* mark hole between ram/non-ram */
ram_limit = last_limit;
last_limit = gre->limit;
lsid++;
continue;
}
last_limit = gre->limit;
pr_info("UV: extra hole in GAM RE table @%d\n",
(int)(gre - uv_gre_table));
continue;
}
if (_max_socket < gre->sockid) {
pr_err("UV: GAM table sockid(%d) too large(>%d) @%d\n",
gre->sockid, _max_socket,
(int)(gre - uv_gre_table));
continue;
}
sid = gre->sockid - _min_socket;
if (lsid < sid) { /* new range */
grt = &_gr_table[sid];
grt->base = lsid;
grt->nasid = gre->nasid;
grt->limit = last_limit = gre->limit;
lsid = sid;
continue;
}
if (lsid == sid && !ram_limit) { /* update range */
if (grt->limit == last_limit) { /* .. if contiguous */
grt->limit = last_limit = gre->limit;
continue;
}
}
if (!ram_limit) { /* non-contiguous ram range */
grt++;
grt->base = sid - 1;
grt->nasid = gre->nasid;
grt->limit = last_limit = gre->limit;
continue;
}
grt++; /* non-contiguous/non-ram */
grt->base = grt - _gr_table; /* base is this entry */
grt->nasid = gre->nasid;
grt->limit = last_limit = gre->limit;
lsid++;
}
/* shorten table if possible */
grt++;
i = grt - _gr_table;
if (i < _gr_table_len) {
void *ret;
bytes = i * sizeof(struct uv_gam_range_s);
ret = krealloc(_gr_table, bytes, GFP_KERNEL);
if (ret) {
_gr_table = ret;
_gr_table_len = i;
}
}
/* display resultant gam range table */
for (i = 0, grt = _gr_table; i < _gr_table_len; i++, grt++) {
int gb = grt->base;
unsigned long start = gb < 0 ? 0 :
(unsigned long)_gr_table[gb].limit << UV_GAM_RANGE_SHFT;
unsigned long end =
(unsigned long)grt->limit << UV_GAM_RANGE_SHFT;
pr_info("UV: GAM Range %2d %04x 0x%013lx-0x%013lx (%d)\n",
i, grt->nasid, start, end, gb);
}
}
static int uv_wakeup_secondary(int phys_apicid, unsigned long start_rip) static int uv_wakeup_secondary(int phys_apicid, unsigned long start_rip)
{ {
unsigned long val; unsigned long val;
...@@ -355,7 +536,6 @@ static unsigned long set_apic_id(unsigned int id) ...@@ -355,7 +536,6 @@ static unsigned long set_apic_id(unsigned int id)
static unsigned int uv_read_apic_id(void) static unsigned int uv_read_apic_id(void)
{ {
return x2apic_get_apic_id(apic_read(APIC_ID)); return x2apic_get_apic_id(apic_read(APIC_ID));
} }
...@@ -430,58 +610,38 @@ static void set_x2apic_extra_bits(int pnode) ...@@ -430,58 +610,38 @@ static void set_x2apic_extra_bits(int pnode)
__this_cpu_write(x2apic_extra_bits, pnode << uvh_apicid.s.pnode_shift); __this_cpu_write(x2apic_extra_bits, pnode << uvh_apicid.s.pnode_shift);
} }
/* #define UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH 3
* Called on boot cpu.
*/
static __init int boot_pnode_to_blade(int pnode)
{
int blade;
for (blade = 0; blade < uv_num_possible_blades(); blade++)
if (pnode == uv_blade_info[blade].pnode)
return blade;
BUG();
}
struct redir_addr {
unsigned long redirect;
unsigned long alias;
};
#define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
static __initdata struct redir_addr redir_addrs[] = {
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_0_MMR},
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_1_MMR},
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_2_MMR},
};
static unsigned char get_n_lshift(int m_val)
{
union uv3h_gr0_gam_gr_config_u m_gr_config;
if (is_uv1_hub())
return m_val;
if (is_uv2_hub())
return m_val == 40 ? 40 : 39;
m_gr_config.v = uv_read_local_mmr(UV3H_GR0_GAM_GR_CONFIG);
return m_gr_config.s3.m_skt;
}
static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size) static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
{ {
union uvh_rh_gam_alias210_overlay_config_2_mmr_u alias; union uvh_rh_gam_alias210_overlay_config_2_mmr_u alias;
union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect; union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
unsigned long m_redirect;
unsigned long m_overlay;
int i; int i;
for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) { for (i = 0; i < UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH; i++) {
alias.v = uv_read_local_mmr(redir_addrs[i].alias); switch (i) {
case 0:
m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR;
m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_0_MMR;
break;
case 1:
m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR;
m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_1_MMR;
break;
case 2:
m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR;
m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_2_MMR;
break;
}
alias.v = uv_read_local_mmr(m_overlay);
if (alias.s.enable && alias.s.base == 0) { if (alias.s.enable && alias.s.base == 0) {
*size = (1UL << alias.s.m_alias); *size = (1UL << alias.s.m_alias);
redirect.v = uv_read_local_mmr(redir_addrs[i].redirect); redirect.v = uv_read_local_mmr(m_redirect);
*base = (unsigned long)redirect.s.dest_base << DEST_SHIFT; *base = (unsigned long)redirect.s.dest_base
<< DEST_SHIFT;
return; return;
} }
} }
...@@ -544,6 +704,8 @@ static __init void map_gru_high(int max_pnode) ...@@ -544,6 +704,8 @@ static __init void map_gru_high(int max_pnode)
{ {
union uvh_rh_gam_gru_overlay_config_mmr_u gru; union uvh_rh_gam_gru_overlay_config_mmr_u gru;
int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT; int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
unsigned long mask = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_MASK;
unsigned long base;
gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR); gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
if (!gru.s.enable) { if (!gru.s.enable) {
...@@ -555,8 +717,9 @@ static __init void map_gru_high(int max_pnode) ...@@ -555,8 +717,9 @@ static __init void map_gru_high(int max_pnode)
map_gru_distributed(gru.v); map_gru_distributed(gru.v);
return; return;
} }
map_high("GRU", gru.s.base, shift, shift, max_pnode, map_wb); base = (gru.v & mask) >> shift;
gru_start_paddr = ((u64)gru.s.base << shift); map_high("GRU", base, shift, shift, max_pnode, map_wb);
gru_start_paddr = ((u64)base << shift);
gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1); gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1);
} }
...@@ -595,6 +758,7 @@ static __initdata struct mmioh_config mmiohs[] = { ...@@ -595,6 +758,7 @@ static __initdata struct mmioh_config mmiohs[] = {
}, },
}; };
/* UV3 & UV4 have identical MMIOH overlay configs */
static __init void map_mmioh_high_uv3(int index, int min_pnode, int max_pnode) static __init void map_mmioh_high_uv3(int index, int min_pnode, int max_pnode)
{ {
union uv3h_rh_gam_mmioh_overlay_config0_mmr_u overlay; union uv3h_rh_gam_mmioh_overlay_config0_mmr_u overlay;
...@@ -674,7 +838,7 @@ static __init void map_mmioh_high(int min_pnode, int max_pnode) ...@@ -674,7 +838,7 @@ static __init void map_mmioh_high(int min_pnode, int max_pnode)
unsigned long mmr, base; unsigned long mmr, base;
int shift, enable, m_io, n_io; int shift, enable, m_io, n_io;
if (is_uv3_hub()) { if (is_uv3_hub() || is_uv4_hub()) {
/* Map both MMIOH Regions */ /* Map both MMIOH Regions */
map_mmioh_high_uv3(0, min_pnode, max_pnode); map_mmioh_high_uv3(0, min_pnode, max_pnode);
map_mmioh_high_uv3(1, min_pnode, max_pnode); map_mmioh_high_uv3(1, min_pnode, max_pnode);
...@@ -739,8 +903,8 @@ static __init void uv_rtc_init(void) ...@@ -739,8 +903,8 @@ static __init void uv_rtc_init(void)
*/ */
static void uv_heartbeat(unsigned long ignored) static void uv_heartbeat(unsigned long ignored)
{ {
struct timer_list *timer = &uv_hub_info->scir.timer; struct timer_list *timer = &uv_scir_info->timer;
unsigned char bits = uv_hub_info->scir.state; unsigned char bits = uv_scir_info->state;
/* flip heartbeat bit */ /* flip heartbeat bit */
bits ^= SCIR_CPU_HEARTBEAT; bits ^= SCIR_CPU_HEARTBEAT;
...@@ -760,14 +924,14 @@ static void uv_heartbeat(unsigned long ignored) ...@@ -760,14 +924,14 @@ static void uv_heartbeat(unsigned long ignored)
static void uv_heartbeat_enable(int cpu) static void uv_heartbeat_enable(int cpu)
{ {
while (!uv_cpu_hub_info(cpu)->scir.enabled) { while (!uv_cpu_scir_info(cpu)->enabled) {
struct timer_list *timer = &uv_cpu_hub_info(cpu)->scir.timer; struct timer_list *timer = &uv_cpu_scir_info(cpu)->timer;
uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY); uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY);
setup_timer(timer, uv_heartbeat, cpu); setup_timer(timer, uv_heartbeat, cpu);
timer->expires = jiffies + SCIR_CPU_HB_INTERVAL; timer->expires = jiffies + SCIR_CPU_HB_INTERVAL;
add_timer_on(timer, cpu); add_timer_on(timer, cpu);
uv_cpu_hub_info(cpu)->scir.enabled = 1; uv_cpu_scir_info(cpu)->enabled = 1;
/* also ensure that boot cpu is enabled */ /* also ensure that boot cpu is enabled */
cpu = 0; cpu = 0;
...@@ -777,9 +941,9 @@ static void uv_heartbeat_enable(int cpu) ...@@ -777,9 +941,9 @@ static void uv_heartbeat_enable(int cpu)
#ifdef CONFIG_HOTPLUG_CPU #ifdef CONFIG_HOTPLUG_CPU
static void uv_heartbeat_disable(int cpu) static void uv_heartbeat_disable(int cpu)
{ {
if (uv_cpu_hub_info(cpu)->scir.enabled) { if (uv_cpu_scir_info(cpu)->enabled) {
uv_cpu_hub_info(cpu)->scir.enabled = 0; uv_cpu_scir_info(cpu)->enabled = 0;
del_timer(&uv_cpu_hub_info(cpu)->scir.timer); del_timer(&uv_cpu_scir_info(cpu)->timer);
} }
uv_set_cpu_scir_bits(cpu, 0xff); uv_set_cpu_scir_bits(cpu, 0xff);
} }
...@@ -862,155 +1026,475 @@ int uv_set_vga_state(struct pci_dev *pdev, bool decode, ...@@ -862,155 +1026,475 @@ int uv_set_vga_state(struct pci_dev *pdev, bool decode,
void uv_cpu_init(void) void uv_cpu_init(void)
{ {
/* CPU 0 initialization will be done via uv_system_init. */ /* CPU 0 initialization will be done via uv_system_init. */
if (!uv_blade_info) if (smp_processor_id() == 0)
return; return;
uv_blade_info[uv_numa_blade_id()].nr_online_cpus++; uv_hub_info->nr_online_cpus++;
if (get_uv_system_type() == UV_NON_UNIQUE_APIC) if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
set_x2apic_extra_bits(uv_hub_info->pnode); set_x2apic_extra_bits(uv_hub_info->pnode);
} }
void __init uv_system_init(void) struct mn {
unsigned char m_val;
unsigned char n_val;
unsigned char m_shift;
unsigned char n_lshift;
};
static void get_mn(struct mn *mnp)
{ {
union uvh_rh_gam_config_mmr_u m_n_config; union uvh_rh_gam_config_mmr_u m_n_config;
union uvh_node_id_u node_id; union uv3h_gr0_gam_gr_config_u m_gr_config;
unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
int gnode_extra, min_pnode = 999999, max_pnode = -1;
unsigned long mmr_base, present, paddr;
unsigned short pnode_mask;
unsigned char n_lshift;
char *hub = (is_uv1_hub() ? "UV100/1000" :
(is_uv2_hub() ? "UV2000/3000" :
(is_uv3_hub() ? "UV300" : NULL)));
if (!hub) { m_n_config.v = uv_read_local_mmr(UVH_RH_GAM_CONFIG_MMR);
pr_err("UV: Unknown/unsupported UV hub\n"); mnp->n_val = m_n_config.s.n_skt;
return; if (is_uv4_hub()) {
mnp->m_val = 0;
mnp->n_lshift = 0;
} else if (is_uv3_hub()) {
mnp->m_val = m_n_config.s3.m_skt;
m_gr_config.v = uv_read_local_mmr(UV3H_GR0_GAM_GR_CONFIG);
mnp->n_lshift = m_gr_config.s3.m_skt;
} else if (is_uv2_hub()) {
mnp->m_val = m_n_config.s2.m_skt;
mnp->n_lshift = mnp->m_val == 40 ? 40 : 39;
} else if (is_uv1_hub()) {
mnp->m_val = m_n_config.s1.m_skt;
mnp->n_lshift = mnp->m_val;
} }
pr_info("UV: Found %s hub\n", hub); mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0;
}
map_low_mmrs(); void __init uv_init_hub_info(struct uv_hub_info_s *hub_info)
{
struct mn mn = {0}; /* avoid unitialized warnings */
union uvh_node_id_u node_id;
m_n_config.v = uv_read_local_mmr(UVH_RH_GAM_CONFIG_MMR ); get_mn(&mn);
m_val = m_n_config.s.m_skt; hub_info->m_val = mn.m_val;
n_val = m_n_config.s.n_skt; hub_info->n_val = mn.n_val;
pnode_mask = (1 << n_val) - 1; hub_info->m_shift = mn.m_shift;
n_lshift = get_n_lshift(m_val); hub_info->n_lshift = mn.n_lshift ? mn.n_lshift : 0;
mmr_base =
uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) & hub_info->hub_revision = uv_hub_info->hub_revision;
~UV_MMR_ENABLE; hub_info->pnode_mask = uv_cpuid.pnode_mask;
hub_info->min_pnode = _min_pnode;
hub_info->min_socket = _min_socket;
hub_info->pnode_to_socket = _pnode_to_socket;
hub_info->socket_to_node = _socket_to_node;
hub_info->socket_to_pnode = _socket_to_pnode;
hub_info->gr_table_len = _gr_table_len;
hub_info->gr_table = _gr_table;
hub_info->gpa_mask = mn.m_val ?
(1UL << (mn.m_val + mn.n_val)) - 1 :
(1UL << uv_cpuid.gpa_shift) - 1;
node_id.v = uv_read_local_mmr(UVH_NODE_ID); node_id.v = uv_read_local_mmr(UVH_NODE_ID);
gnode_extra = (node_id.s.node_id & ~((1 << n_val) - 1)) >> 1; hub_info->gnode_extra =
gnode_upper = ((unsigned long)gnode_extra << m_val); (node_id.s.node_id & ~((1 << mn.n_val) - 1)) >> 1;
pr_info("UV: N:%d M:%d pnode_mask:0x%x gnode_upper/extra:0x%lx/0x%x n_lshift 0x%x\n",
n_val, m_val, pnode_mask, gnode_upper, gnode_extra, hub_info->gnode_upper =
n_lshift); ((unsigned long)hub_info->gnode_extra << mn.m_val);
if (uv_gp_table) {
hub_info->global_mmr_base = uv_gp_table->mmr_base;
hub_info->global_mmr_shift = uv_gp_table->mmr_shift;
hub_info->global_gru_base = uv_gp_table->gru_base;
hub_info->global_gru_shift = uv_gp_table->gru_shift;
hub_info->gpa_shift = uv_gp_table->gpa_shift;
hub_info->gpa_mask = (1UL << hub_info->gpa_shift) - 1;
} else {
hub_info->global_mmr_base =
uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
~UV_MMR_ENABLE;
hub_info->global_mmr_shift = _UV_GLOBAL_MMR64_PNODE_SHIFT;
}
pr_info("UV: global MMR base 0x%lx\n", mmr_base); get_lowmem_redirect(
&hub_info->lowmem_remap_base, &hub_info->lowmem_remap_top);
for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) hub_info->apic_pnode_shift = uv_cpuid.socketid_shift;
uv_possible_blades +=
hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
/* uv_num_possible_blades() is really the hub count */ /* show system specific info */
pr_info("UV: Found %d blades, %d hubs\n", pr_info("UV: N:%d M:%d m_shift:%d n_lshift:%d\n",
is_uv1_hub() ? uv_num_possible_blades() : hub_info->n_val, hub_info->m_val,
(uv_num_possible_blades() + 1) / 2, hub_info->m_shift, hub_info->n_lshift);
uv_num_possible_blades());
bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades(); pr_info("UV: gpa_mask/shift:0x%lx/%d pnode_mask:0x%x apic_pns:%d\n",
uv_blade_info = kzalloc(bytes, GFP_KERNEL); hub_info->gpa_mask, hub_info->gpa_shift,
BUG_ON(!uv_blade_info); hub_info->pnode_mask, hub_info->apic_pnode_shift);
for (blade = 0; blade < uv_num_possible_blades(); blade++) pr_info("UV: mmr_base/shift:0x%lx/%ld gru_base/shift:0x%lx/%ld\n",
uv_blade_info[blade].memory_nid = -1; hub_info->global_mmr_base, hub_info->global_mmr_shift,
hub_info->global_gru_base, hub_info->global_gru_shift);
get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size); pr_info("UV: gnode_upper:0x%lx gnode_extra:0x%x\n",
hub_info->gnode_upper, hub_info->gnode_extra);
}
static void __init decode_gam_params(unsigned long ptr)
{
uv_gp_table = (struct uv_gam_parameters *)ptr;
pr_info("UV: GAM Params...\n");
pr_info("UV: mmr_base/shift:0x%llx/%d gru_base/shift:0x%llx/%d gpa_shift:%d\n",
uv_gp_table->mmr_base, uv_gp_table->mmr_shift,
uv_gp_table->gru_base, uv_gp_table->gru_shift,
uv_gp_table->gpa_shift);
}
static void __init decode_gam_rng_tbl(unsigned long ptr)
{
struct uv_gam_range_entry *gre = (struct uv_gam_range_entry *)ptr;
unsigned long lgre = 0;
int index = 0;
int sock_min = 999999, pnode_min = 99999;
int sock_max = -1, pnode_max = -1;
uv_gre_table = gre;
for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
if (!index) {
pr_info("UV: GAM Range Table...\n");
pr_info("UV: # %20s %14s %5s %4s %5s %3s %2s %3s\n",
"Range", "", "Size", "Type", "NASID",
"SID", "PN", "PXM");
}
pr_info(
"UV: %2d: 0x%014lx-0x%014lx %5luG %3d %04x %02x %02x %3d\n",
index++,
(unsigned long)lgre << UV_GAM_RANGE_SHFT,
(unsigned long)gre->limit << UV_GAM_RANGE_SHFT,
((unsigned long)(gre->limit - lgre)) >>
(30 - UV_GAM_RANGE_SHFT), /* 64M -> 1G */
gre->type, gre->nasid, gre->sockid,
gre->pnode, gre->pxm);
lgre = gre->limit;
if (sock_min > gre->sockid)
sock_min = gre->sockid;
if (sock_max < gre->sockid)
sock_max = gre->sockid;
if (pnode_min > gre->pnode)
pnode_min = gre->pnode;
if (pnode_max < gre->pnode)
pnode_max = gre->pnode;
}
_min_socket = sock_min;
_max_socket = sock_max;
_min_pnode = pnode_min;
_max_pnode = pnode_max;
_gr_table_len = index;
pr_info(
"UV: GRT: %d entries, sockets(min:%x,max:%x) pnodes(min:%x,max:%x)\n",
index, _min_socket, _max_socket, _min_pnode, _max_pnode);
}
static void __init decode_uv_systab(void)
{
struct uv_systab *st;
int i;
st = uv_systab;
if ((!st || st->revision < UV_SYSTAB_VERSION_UV4) && !is_uv4_hub())
return;
if (st->revision != UV_SYSTAB_VERSION_UV4_LATEST) {
pr_crit(
"UV: BIOS UVsystab version(%x) mismatch, expecting(%x)\n",
st->revision, UV_SYSTAB_VERSION_UV4_LATEST);
BUG();
}
for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) {
unsigned long ptr = st->entry[i].offset;
bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes(); if (!ptr)
uv_node_to_blade = kmalloc(bytes, GFP_KERNEL); continue;
BUG_ON(!uv_node_to_blade);
memset(uv_node_to_blade, 255, bytes); ptr = ptr + (unsigned long)st;
switch (st->entry[i].type) {
case UV_SYSTAB_TYPE_GAM_PARAMS:
decode_gam_params(ptr);
break;
case UV_SYSTAB_TYPE_GAM_RNG_TBL:
decode_gam_rng_tbl(ptr);
break;
}
}
}
bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus(); /*
uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL); * Setup physical blade translations from UVH_NODE_PRESENT_TABLE
BUG_ON(!uv_cpu_to_blade); * .. NB: UVH_NODE_PRESENT_TABLE is going away,
memset(uv_cpu_to_blade, 255, bytes); * .. being replaced by GAM Range Table
*/
static __init void boot_init_possible_blades(struct uv_hub_info_s *hub_info)
{
int i, uv_pb = 0;
blade = 0; pr_info("UV: NODE_PRESENT_DEPTH = %d\n", UVH_NODE_PRESENT_TABLE_DEPTH);
for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) { for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8); unsigned long np;
for (j = 0; j < 64; j++) {
if (!test_bit(j, &present)) np = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
continue; if (np)
pnode = (i * 64 + j) & pnode_mask; pr_info("UV: NODE_PRESENT(%d) = 0x%016lx\n", i, np);
uv_blade_info[blade].pnode = pnode;
uv_blade_info[blade].nr_possible_cpus = 0; uv_pb += hweight64(np);
uv_blade_info[blade].nr_online_cpus = 0; }
spin_lock_init(&uv_blade_info[blade].nmi_lock); if (uv_possible_blades != uv_pb)
min_pnode = min(pnode, min_pnode); uv_possible_blades = uv_pb;
max_pnode = max(pnode, max_pnode); }
blade++;
static void __init build_socket_tables(void)
{
struct uv_gam_range_entry *gre = uv_gre_table;
int num, nump;
int cpu, i, lnid;
int minsock = _min_socket;
int maxsock = _max_socket;
int minpnode = _min_pnode;
int maxpnode = _max_pnode;
size_t bytes;
if (!gre) {
if (is_uv1_hub() || is_uv2_hub() || is_uv3_hub()) {
pr_info("UV: No UVsystab socket table, ignoring\n");
return; /* not required */
} }
pr_crit(
"UV: Error: UVsystab address translations not available!\n");
BUG();
}
/* build socket id -> node id, pnode */
num = maxsock - minsock + 1;
bytes = num * sizeof(_socket_to_node[0]);
_socket_to_node = kmalloc(bytes, GFP_KERNEL);
_socket_to_pnode = kmalloc(bytes, GFP_KERNEL);
nump = maxpnode - minpnode + 1;
bytes = nump * sizeof(_pnode_to_socket[0]);
_pnode_to_socket = kmalloc(bytes, GFP_KERNEL);
BUG_ON(!_socket_to_node || !_socket_to_pnode || !_pnode_to_socket);
for (i = 0; i < num; i++)
_socket_to_node[i] = _socket_to_pnode[i] = SOCK_EMPTY;
for (i = 0; i < nump; i++)
_pnode_to_socket[i] = SOCK_EMPTY;
/* fill in pnode/node/addr conversion list values */
pr_info("UV: GAM Building socket/pnode/pxm conversion tables\n");
for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
if (gre->type == UV_GAM_RANGE_TYPE_HOLE)
continue;
i = gre->sockid - minsock;
if (_socket_to_pnode[i] != SOCK_EMPTY)
continue; /* duplicate */
_socket_to_pnode[i] = gre->pnode;
_socket_to_node[i] = gre->pxm;
i = gre->pnode - minpnode;
_pnode_to_socket[i] = gre->sockid;
pr_info(
"UV: sid:%02x type:%d nasid:%04x pn:%02x pxm:%2d pn2s:%2x\n",
gre->sockid, gre->type, gre->nasid,
_socket_to_pnode[gre->sockid - minsock],
_socket_to_node[gre->sockid - minsock],
_pnode_to_socket[gre->pnode - minpnode]);
} }
uv_bios_init(); /* check socket -> node values */
lnid = -1;
for_each_present_cpu(cpu) {
int nid = cpu_to_node(cpu);
int apicid, sockid;
if (lnid == nid)
continue;
lnid = nid;
apicid = per_cpu(x86_cpu_to_apicid, cpu);
sockid = apicid >> uv_cpuid.socketid_shift;
i = sockid - minsock;
if (nid != _socket_to_node[i]) {
pr_warn(
"UV: %02x: type:%d socket:%02x PXM:%02x != node:%2d\n",
i, sockid, gre->type, _socket_to_node[i], nid);
_socket_to_node[i] = nid;
}
}
/* Setup physical blade to pnode translation from GAM Range Table */
bytes = num_possible_nodes() * sizeof(_node_to_pnode[0]);
_node_to_pnode = kmalloc(bytes, GFP_KERNEL);
BUG_ON(!_node_to_pnode);
for (lnid = 0; lnid < num_possible_nodes(); lnid++) {
unsigned short sockid;
for (sockid = minsock; sockid <= maxsock; sockid++) {
if (lnid == _socket_to_node[sockid - minsock]) {
_node_to_pnode[lnid] =
_socket_to_pnode[sockid - minsock];
break;
}
}
if (sockid > maxsock) {
pr_err("UV: socket for node %d not found!\n", lnid);
BUG();
}
}
/*
* If socket id == pnode or socket id == node for all nodes,
* system runs faster by removing corresponding conversion table.
*/
pr_info("UV: Checking socket->node/pnode for identity maps\n");
if (minsock == 0) {
for (i = 0; i < num; i++)
if (_socket_to_node[i] == SOCK_EMPTY ||
i != _socket_to_node[i])
break;
if (i >= num) {
kfree(_socket_to_node);
_socket_to_node = NULL;
pr_info("UV: 1:1 socket_to_node table removed\n");
}
}
if (minsock == minpnode) {
for (i = 0; i < num; i++)
if (_socket_to_pnode[i] != SOCK_EMPTY &&
_socket_to_pnode[i] != i + minpnode)
break;
if (i >= num) {
kfree(_socket_to_pnode);
_socket_to_pnode = NULL;
pr_info("UV: 1:1 socket_to_pnode table removed\n");
}
}
}
void __init uv_system_init(void)
{
struct uv_hub_info_s hub_info = {0};
int bytes, cpu, nodeid;
unsigned short min_pnode = 9999, max_pnode = 0;
char *hub = is_uv4_hub() ? "UV400" :
is_uv3_hub() ? "UV300" :
is_uv2_hub() ? "UV2000/3000" :
is_uv1_hub() ? "UV100/1000" : NULL;
if (!hub) {
pr_err("UV: Unknown/unsupported UV hub\n");
return;
}
pr_info("UV: Found %s hub\n", hub);
map_low_mmrs();
uv_bios_init(); /* get uv_systab for decoding */
decode_uv_systab();
build_socket_tables();
build_uv_gr_table();
uv_init_hub_info(&hub_info);
uv_possible_blades = num_possible_nodes();
if (!_node_to_pnode)
boot_init_possible_blades(&hub_info);
/* uv_num_possible_blades() is really the hub count */
pr_info("UV: Found %d hubs, %d nodes, %d cpus\n",
uv_num_possible_blades(),
num_possible_nodes(),
num_possible_cpus());
uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id, uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id,
&sn_region_size, &system_serial_number); &sn_region_size, &system_serial_number);
hub_info.coherency_domain_number = sn_coherency_id;
uv_rtc_init(); uv_rtc_init();
for_each_present_cpu(cpu) { bytes = sizeof(void *) * uv_num_possible_blades();
int apicid = per_cpu(x86_cpu_to_apicid, cpu); __uv_hub_info_list = kzalloc(bytes, GFP_KERNEL);
BUG_ON(!__uv_hub_info_list);
nid = cpu_to_node(cpu); bytes = sizeof(struct uv_hub_info_s);
/* for_each_node(nodeid) {
* apic_pnode_shift must be set before calling uv_apicid_to_pnode(); struct uv_hub_info_s *new_hub;
*/
uv_cpu_hub_info(cpu)->pnode_mask = pnode_mask;
uv_cpu_hub_info(cpu)->apic_pnode_shift = uvh_apicid.s.pnode_shift;
uv_cpu_hub_info(cpu)->hub_revision = uv_hub_info->hub_revision;
uv_cpu_hub_info(cpu)->m_shift = 64 - m_val; if (__uv_hub_info_list[nodeid]) {
uv_cpu_hub_info(cpu)->n_lshift = n_lshift; pr_err("UV: Node %d UV HUB already initialized!?\n",
nodeid);
BUG();
}
/* Allocate new per hub info list */
new_hub = (nodeid == 0) ?
&uv_hub_info_node0 :
kzalloc_node(bytes, GFP_KERNEL, nodeid);
BUG_ON(!new_hub);
__uv_hub_info_list[nodeid] = new_hub;
new_hub = uv_hub_info_list(nodeid);
BUG_ON(!new_hub);
*new_hub = hub_info;
/* Use information from GAM table if available */
if (_node_to_pnode)
new_hub->pnode = _node_to_pnode[nodeid];
else /* Fill in during cpu loop */
new_hub->pnode = 0xffff;
new_hub->numa_blade_id = uv_node_to_blade_id(nodeid);
new_hub->memory_nid = -1;
new_hub->nr_possible_cpus = 0;
new_hub->nr_online_cpus = 0;
}
/* Initialize per cpu info */
for_each_possible_cpu(cpu) {
int apicid = per_cpu(x86_cpu_to_apicid, cpu);
int numa_node_id;
unsigned short pnode;
nodeid = cpu_to_node(cpu);
numa_node_id = numa_cpu_node(cpu);
pnode = uv_apicid_to_pnode(apicid); pnode = uv_apicid_to_pnode(apicid);
blade = boot_pnode_to_blade(pnode);
lcpu = uv_blade_info[blade].nr_possible_cpus; uv_cpu_info_per(cpu)->p_uv_hub_info = uv_hub_info_list(nodeid);
uv_blade_info[blade].nr_possible_cpus++; uv_cpu_info_per(cpu)->blade_cpu_id =
uv_cpu_hub_info(cpu)->nr_possible_cpus++;
/* Any node on the blade, else will contain -1. */ if (uv_cpu_hub_info(cpu)->memory_nid == -1)
uv_blade_info[blade].memory_nid = nid; uv_cpu_hub_info(cpu)->memory_nid = cpu_to_node(cpu);
if (nodeid != numa_node_id && /* init memoryless node */
uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base; uv_hub_info_list(numa_node_id)->pnode == 0xffff)
uv_cpu_hub_info(cpu)->lowmem_remap_top = lowmem_redir_size; uv_hub_info_list(numa_node_id)->pnode = pnode;
uv_cpu_hub_info(cpu)->m_val = m_val; else if (uv_cpu_hub_info(cpu)->pnode == 0xffff)
uv_cpu_hub_info(cpu)->n_val = n_val; uv_cpu_hub_info(cpu)->pnode = pnode;
uv_cpu_hub_info(cpu)->numa_blade_id = blade; uv_cpu_scir_info(cpu)->offset = uv_scir_offset(apicid);
uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
uv_cpu_hub_info(cpu)->pnode = pnode;
uv_cpu_hub_info(cpu)->gpa_mask = (1UL << (m_val + n_val)) - 1;
uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
uv_cpu_hub_info(cpu)->gnode_extra = gnode_extra;
uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
uv_cpu_hub_info(cpu)->coherency_domain_number = sn_coherency_id;
uv_cpu_hub_info(cpu)->scir.offset = uv_scir_offset(apicid);
uv_node_to_blade[nid] = blade;
uv_cpu_to_blade[cpu] = blade;
} }
/* Add blade/pnode info for nodes without cpus */ for_each_node(nodeid) {
for_each_online_node(nid) { unsigned short pnode = uv_hub_info_list(nodeid)->pnode;
if (uv_node_to_blade[nid] >= 0)
continue; /* Add pnode info for pre-GAM list nodes without cpus */
paddr = node_start_pfn(nid) << PAGE_SHIFT; if (pnode == 0xffff) {
pnode = uv_gpa_to_pnode(uv_soc_phys_ram_to_gpa(paddr)); unsigned long paddr;
blade = boot_pnode_to_blade(pnode);
uv_node_to_blade[nid] = blade; paddr = node_start_pfn(nodeid) << PAGE_SHIFT;
pnode = uv_gpa_to_pnode(uv_soc_phys_ram_to_gpa(paddr));
uv_hub_info_list(nodeid)->pnode = pnode;
}
min_pnode = min(pnode, min_pnode);
max_pnode = max(pnode, max_pnode);
pr_info("UV: UVHUB node:%2d pn:%02x nrcpus:%d\n",
nodeid,
uv_hub_info_list(nodeid)->pnode,
uv_hub_info_list(nodeid)->nr_possible_cpus);
} }
pr_info("UV: min_pnode:%02x max_pnode:%02x\n", min_pnode, max_pnode);
map_gru_high(max_pnode); map_gru_high(max_pnode);
map_mmr_high(max_pnode); map_mmr_high(max_pnode);
map_mmioh_high(min_pnode, max_pnode); map_mmioh_high(min_pnode, max_pnode);
......
...@@ -21,19 +21,20 @@ ...@@ -21,19 +21,20 @@
#include <linux/efi.h> #include <linux/efi.h>
#include <linux/export.h> #include <linux/export.h>
#include <linux/slab.h>
#include <asm/efi.h> #include <asm/efi.h>
#include <linux/io.h> #include <linux/io.h>
#include <asm/uv/bios.h> #include <asm/uv/bios.h>
#include <asm/uv/uv_hub.h> #include <asm/uv/uv_hub.h>
static struct uv_systab uv_systab; struct uv_systab *uv_systab;
s64 uv_bios_call(enum uv_bios_cmd which, u64 a1, u64 a2, u64 a3, u64 a4, u64 a5) s64 uv_bios_call(enum uv_bios_cmd which, u64 a1, u64 a2, u64 a3, u64 a4, u64 a5)
{ {
struct uv_systab *tab = &uv_systab; struct uv_systab *tab = uv_systab;
s64 ret; s64 ret;
if (!tab->function) if (!tab || !tab->function)
/* /*
* BIOS does not support UV systab * BIOS does not support UV systab
*/ */
...@@ -183,34 +184,31 @@ int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus) ...@@ -183,34 +184,31 @@ int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus)
} }
EXPORT_SYMBOL_GPL(uv_bios_set_legacy_vga_target); EXPORT_SYMBOL_GPL(uv_bios_set_legacy_vga_target);
#ifdef CONFIG_EFI #ifdef CONFIG_EFI
void uv_bios_init(void) void uv_bios_init(void)
{ {
struct uv_systab *tab; uv_systab = NULL;
if ((efi.uv_systab == EFI_INVALID_TABLE_ADDR) || !efi.uv_systab) {
if ((efi.uv_systab == EFI_INVALID_TABLE_ADDR) || pr_crit("UV: UVsystab: missing\n");
(efi.uv_systab == (unsigned long)NULL)) {
printk(KERN_CRIT "No EFI UV System Table.\n");
uv_systab.function = (unsigned long)NULL;
return; return;
} }
tab = (struct uv_systab *)ioremap(efi.uv_systab, uv_systab = ioremap(efi.uv_systab, sizeof(struct uv_systab));
sizeof(struct uv_systab)); if (!uv_systab || strncmp(uv_systab->signature, UV_SYSTAB_SIG, 4)) {
if (strncmp(tab->signature, "UVST", 4) != 0) pr_err("UV: UVsystab: bad signature!\n");
printk(KERN_ERR "bad signature in UV system table!"); iounmap(uv_systab);
return;
/* }
* Copy table to permanent spot for later use.
*/
memcpy(&uv_systab, tab, sizeof(struct uv_systab));
iounmap(tab);
printk(KERN_INFO "EFI UV System Table Revision %d\n", if (uv_systab->revision >= UV_SYSTAB_VERSION_UV4) {
uv_systab.revision); iounmap(uv_systab);
uv_systab = ioremap(efi.uv_systab, uv_systab->size);
if (!uv_systab) {
pr_err("UV: UVsystab: ioremap(%d) failed!\n",
uv_systab->size);
return;
}
}
pr_info("UV: UVsystab: Revision:%x\n", uv_systab->revision);
} }
#else /* !CONFIG_EFI */
void uv_bios_init(void) { }
#endif #endif
...@@ -37,7 +37,7 @@ static int timeout_base_ns[] = { ...@@ -37,7 +37,7 @@ static int timeout_base_ns[] = {
}; };
static int timeout_us; static int timeout_us;
static int nobau; static bool nobau = true;
static int nobau_perm; static int nobau_perm;
static cycles_t congested_cycles; static cycles_t congested_cycles;
...@@ -106,13 +106,28 @@ static char *stat_description[] = { ...@@ -106,13 +106,28 @@ static char *stat_description[] = {
"enable: number times use of the BAU was re-enabled" "enable: number times use of the BAU was re-enabled"
}; };
static int __init static int __init setup_bau(char *arg)
setup_nobau(char *arg)
{ {
nobau = 1; int result;
if (!arg)
return -EINVAL;
result = strtobool(arg, &nobau);
if (result)
return result;
/* we need to flip the logic here, so that bau=y sets nobau to false */
nobau = !nobau;
if (!nobau)
pr_info("UV BAU Enabled\n");
else
pr_info("UV BAU Disabled\n");
return 0; return 0;
} }
early_param("nobau", setup_nobau); early_param("bau", setup_bau);
/* base pnode in this partition */ /* base pnode in this partition */
static int uv_base_pnode __read_mostly; static int uv_base_pnode __read_mostly;
...@@ -131,10 +146,10 @@ set_bau_on(void) ...@@ -131,10 +146,10 @@ set_bau_on(void)
pr_info("BAU not initialized; cannot be turned on\n"); pr_info("BAU not initialized; cannot be turned on\n");
return; return;
} }
nobau = 0; nobau = false;
for_each_present_cpu(cpu) { for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu); bcp = &per_cpu(bau_control, cpu);
bcp->nobau = 0; bcp->nobau = false;
} }
pr_info("BAU turned on\n"); pr_info("BAU turned on\n");
return; return;
...@@ -146,10 +161,10 @@ set_bau_off(void) ...@@ -146,10 +161,10 @@ set_bau_off(void)
int cpu; int cpu;
struct bau_control *bcp; struct bau_control *bcp;
nobau = 1; nobau = true;
for_each_present_cpu(cpu) { for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu); bcp = &per_cpu(bau_control, cpu);
bcp->nobau = 1; bcp->nobau = true;
} }
pr_info("BAU turned off\n"); pr_info("BAU turned off\n");
return; return;
...@@ -1886,7 +1901,7 @@ static void __init init_per_cpu_tunables(void) ...@@ -1886,7 +1901,7 @@ static void __init init_per_cpu_tunables(void)
bcp = &per_cpu(bau_control, cpu); bcp = &per_cpu(bau_control, cpu);
bcp->baudisabled = 0; bcp->baudisabled = 0;
if (nobau) if (nobau)
bcp->nobau = 1; bcp->nobau = true;
bcp->statp = &per_cpu(ptcstats, cpu); bcp->statp = &per_cpu(ptcstats, cpu);
/* time interval to catch a hardware stay-busy bug */ /* time interval to catch a hardware stay-busy bug */
bcp->timeout_interval = usec_2_cycles(2*timeout_us); bcp->timeout_interval = usec_2_cycles(2*timeout_us);
...@@ -2025,7 +2040,8 @@ static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp, ...@@ -2025,7 +2040,8 @@ static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
return 1; return 1;
} }
bcp->uvhub_master = *hmasterp; bcp->uvhub_master = *hmasterp;
bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id; bcp->uvhub_cpu = uv_cpu_blade_processor_id(cpu);
if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) { if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
printk(KERN_EMERG "%d cpus per uvhub invalid\n", printk(KERN_EMERG "%d cpus per uvhub invalid\n",
bcp->uvhub_cpu); bcp->uvhub_cpu);
......
...@@ -34,7 +34,7 @@ static ssize_t partition_id_show(struct kobject *kobj, ...@@ -34,7 +34,7 @@ static ssize_t partition_id_show(struct kobject *kobj,
static ssize_t coherence_id_show(struct kobject *kobj, static ssize_t coherence_id_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf) struct kobj_attribute *attr, char *buf)
{ {
return snprintf(buf, PAGE_SIZE, "%ld\n", partition_coherence_id()); return snprintf(buf, PAGE_SIZE, "%ld\n", uv_partition_coherence_id());
} }
static struct kobj_attribute partition_id_attr = static struct kobj_attribute partition_id_attr =
......
...@@ -165,7 +165,7 @@ static __init int uv_rtc_allocate_timers(void) ...@@ -165,7 +165,7 @@ static __init int uv_rtc_allocate_timers(void)
for_each_present_cpu(cpu) { for_each_present_cpu(cpu) {
int nid = cpu_to_node(cpu); int nid = cpu_to_node(cpu);
int bid = uv_cpu_to_blade_id(cpu); int bid = uv_cpu_to_blade_id(cpu);
int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; int bcpu = uv_cpu_blade_processor_id(cpu);
struct uv_rtc_timer_head *head = blade_info[bid]; struct uv_rtc_timer_head *head = blade_info[bid];
if (!head) { if (!head) {
...@@ -226,7 +226,7 @@ static int uv_rtc_set_timer(int cpu, u64 expires) ...@@ -226,7 +226,7 @@ static int uv_rtc_set_timer(int cpu, u64 expires)
int pnode = uv_cpu_to_pnode(cpu); int pnode = uv_cpu_to_pnode(cpu);
int bid = uv_cpu_to_blade_id(cpu); int bid = uv_cpu_to_blade_id(cpu);
struct uv_rtc_timer_head *head = blade_info[bid]; struct uv_rtc_timer_head *head = blade_info[bid];
int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; int bcpu = uv_cpu_blade_processor_id(cpu);
u64 *t = &head->cpu[bcpu].expires; u64 *t = &head->cpu[bcpu].expires;
unsigned long flags; unsigned long flags;
int next_cpu; int next_cpu;
...@@ -262,7 +262,7 @@ static int uv_rtc_unset_timer(int cpu, int force) ...@@ -262,7 +262,7 @@ static int uv_rtc_unset_timer(int cpu, int force)
int pnode = uv_cpu_to_pnode(cpu); int pnode = uv_cpu_to_pnode(cpu);
int bid = uv_cpu_to_blade_id(cpu); int bid = uv_cpu_to_blade_id(cpu);
struct uv_rtc_timer_head *head = blade_info[bid]; struct uv_rtc_timer_head *head = blade_info[bid];
int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; int bcpu = uv_cpu_blade_processor_id(cpu);
u64 *t = &head->cpu[bcpu].expires; u64 *t = &head->cpu[bcpu].expires;
unsigned long flags; unsigned long flags;
int rc = 0; int rc = 0;
......
...@@ -718,8 +718,8 @@ static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd, ...@@ -718,8 +718,8 @@ static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd, static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
void *mesg, int lines) void *mesg, int lines)
{ {
unsigned long m, *val = mesg, gpa, save; unsigned long m;
int ret; int ret, loops = 200; /* experimentally determined */
m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6); m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
if (lines == 2) { if (lines == 2) {
...@@ -735,22 +735,28 @@ static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd, ...@@ -735,22 +735,28 @@ static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
return MQE_OK; return MQE_OK;
/* /*
* Send a cross-partition interrupt to the SSI that contains the target * Send a noop message in order to deliver a cross-partition interrupt
* message queue. Normally, the interrupt is automatically delivered by * to the SSI that contains the target message queue. Normally, the
* hardware but some error conditions require explicit delivery. * interrupt is automatically delivered by hardware following mesq
* Use the GRU to deliver the interrupt. Otherwise partition failures * operations, but some error conditions require explicit delivery.
* The noop message will trigger delivery. Otherwise partition failures
* could cause unrecovered errors. * could cause unrecovered errors.
*/ */
gpa = uv_global_gru_mmr_address(mqd->interrupt_pnode, UVH_IPI_INT); do {
save = *val; ret = send_noop_message(cb, mqd, mesg);
*val = uv_hub_ipi_value(mqd->interrupt_apicid, mqd->interrupt_vector, } while ((ret == MQIE_AGAIN || ret == MQE_CONGESTION) && (loops-- > 0));
dest_Fixed);
gru_vstore_phys(cb, gpa, gru_get_tri(mesg), IAA_REGISTER, IMA); if (ret == MQIE_AGAIN || ret == MQE_CONGESTION) {
ret = gru_wait(cb); /*
*val = save; * Don't indicate to the app to resend the message, as it's
if (ret != CBS_IDLE) * already been successfully sent. We simply send an OK
return MQE_UNEXPECTED_CB_ERR; * (rather than fail the send with MQE_UNEXPECTED_CB_ERR),
return MQE_OK; * assuming that the other side is receiving enough
* interrupts to get this message processed anyway.
*/
ret = MQE_OK;
}
return ret;
} }
/* /*
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment