Commit bd75dd8c authored by Simon Kelley's avatar Simon Kelley Committed by Richard Henderson

[netdrvr] add atmel[_cs], new wireless driver

Attached is a driver for Atmel at76c50x WiFi cards. This code started
out as a GPL release from Atmel of pretty horrible quality and I've
extensively re-worked it with the aim of making it acceptable in the
kernel. Please could you take a look and either pass it into the patch
stream or let me know what's wrong with it?

The code has been tested on at least three different brand cards by
different people. Jean Tourrilhes took a look at an earlier version an
was positive. He's put incorporating this into 2.6 as a priority 1.
The patch works fine on 2.5.70.

The firmware issue has been addressed now. The only firmware in the
driver is a small stub which reads the MAC address from NVRAM on the
card. The source for that is included so there are no GPL issues. The
main firmware is loaded from userspace using Manuel Estrada Sainz's
sysfs firmware class. I know that the  patch for that has been
accepted but it hasn't turned up anywhere I can see yet. The 
driver compiles fine even without the firmware class. I've made a
package of the firmware images which is available from my website.

The remaining issues with the driver are migrating PCMCIA to the new
driver model and PCI support. I'm happy to produce followup patches as
the PCMCIA system gets evolved to the new driver model: the timing on
that is controlled by others. This set of chips includes a PCI version
and the driver should support that, but AFAIK there is no PCI hardware
available anywhere. If Atmel can provide me with some it will be
simple to add PCI support.

The driver uses the CRC32 library module and the firmware loader. I've
not put in dependencies on those, but when the lastest set of patches
go into Kconfig I'll set it up so that selecting the Atmel driver
selects CRC32 and FW_LOADER too.
parent b1871948
......@@ -281,6 +281,21 @@ config AIRO_CS
for location). You also want to check out the PCMCIA-HOWTO,
available from <http://www.tldp.org/docs.html#howto>.
config PCMCIA_ATMEL
tristate "Atmel at76c502/at76c504 PCMCIA cards"
depends on NET_RADIO && EXPERIMENTAL && PCMCIA
---help---
A driver for PCMCIA 802.11 wireless cards based on the
Atmel fast-vnet chips. This driver supports standard
Linux wireless extensions.
Many cards based on this chipset do not have flash memory
and need their firmware loaded at start-up. If yours is
one of these, you will need to provide a firmware image
to be loaded into the card by the driver. The Atmel
firmware package can be downloaded from
http://www.thekelleys.org.uk/atmel/atmel_firmware.tar.gz
# yes, this works even when no drivers are selected
config NET_WIRELESS
bool
......
......@@ -22,4 +22,5 @@ obj-$(CONFIG_AIRO_CS) += airo_cs.o airo.o
# 16-bit wireless PCMCIA client drivers
obj-$(CONFIG_PCMCIA_RAYCS) += ray_cs.o
obj-$(CONFIG_PCMCIA_ATMEL) += atmel_cs.o atmel.o
This source diff could not be displayed because it is too large. You can view the blob instead.
/*** -*- linux-c -*- **********************************************************
Driver for Atmel at76c502 at76c504 and at76c506 wireless cards.
Copyright 2000-2001 ATMEL Corporation.
Copyright 2003 Simon Kelley.
This code was developed from version 2.1.1 of the Atmel drivers,
released by Atmel corp. under the GPL in December 2002. It also
includes code from the Linux aironet drivers (C) Benjamin Reed,
and the Linux PCMCIA package, (C) David Hinds.
For all queries about this code, please contact the current author,
Simon Kelley <simon@thekelleys.org.uk> and not Atmel Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Atmel wireless lan drivers; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
******************************************************************************/
#include <linux/config.h>
#ifdef __IN_PCMCIA_PACKAGE__
#include <pcmcia/k_compat.h>
#endif
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/netdevice.h>
#include <linux/moduleparam.h>
#include <linux/device.h>
#include <pcmcia/version.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/ds.h>
#include <pcmcia/ciscode.h>
#include <asm/io.h>
#include <asm/system.h>
#include <linux/wireless.h>
#include <linux/802_11.h>
/*
All the PCMCIA modules use PCMCIA_DEBUG to control debugging. If
you do not define PCMCIA_DEBUG at all, all the debug code will be
left out. If you compile with PCMCIA_DEBUG=0, the debug code will
be present but disabled -- but it can then be enabled for specific
modules at load time with a 'pc_debug=#' option to insmod.
*/
#ifdef PCMCIA_DEBUG
static int pc_debug = PCMCIA_DEBUG;
MODULE_PARM(pc_debug, "i");
static char *version = "$Revision: 1.2 $";
#define DEBUG(n, args...) if (pc_debug>(n)) printk(KERN_DEBUG args);
#else
#define DEBUG(n, args...)
#endif
/*====================================================================*/
/* Parameters that can be set with 'insmod' */
/* The old way: bit map of interrupts to choose from */
/* This means pick from 15, 14, 12, 11, 10, 9, 7, 5, 4, and 3 */
static u_int irq_mask = 0xdeb8;
/* Newer, simpler way of listing specific interrupts */
static int irq_list[4] = { -1 };
MODULE_AUTHOR("Simon Kelley");
MODULE_DESCRIPTION("Support for Atmel at76c50x 802.11 wireless ethnet cards.");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("Atmel at76c50x PCMCIA cards");
MODULE_PARM(irq_mask, "i");
MODULE_PARM(irq_list, "1-4i");
/*====================================================================*/
/*
The event() function is this driver's Card Services event handler.
It will be called by Card Services when an appropriate card status
event is received. The config() and release() entry points are
used to configure or release a socket, in response to card
insertion and ejection events. They are invoked from the atmel_cs
event handler.
*/
struct net_device *init_atmel_card(int, int, char *, int, struct device *,
int (*present_func)(void *), void * );
void stop_atmel_card( struct net_device *, int );
int reset_atmel_card( struct net_device * );
static void atmel_config(dev_link_t *link);
static void atmel_release(u_long arg);
static int atmel_event(event_t event, int priority,
event_callback_args_t *args);
/*
The attach() and detach() entry points are used to create and destroy
"instances" of the driver, where each instance represents everything
needed to manage one actual PCMCIA card.
*/
static dev_link_t *atmel_attach(void);
static void atmel_detach(dev_link_t *);
/*
You'll also need to prototype all the functions that will actually
be used to talk to your device. See 'pcmem_cs' for a good example
of a fully self-sufficient driver; the other drivers rely more or
less on other parts of the kernel.
*/
/*
The dev_info variable is the "key" that is used to match up this
device driver with appropriate cards, through the card configuration
database.
*/
static dev_info_t dev_info = "atmel_cs";
/*
A linked list of "instances" of the atmelnet device. Each actual
PCMCIA card corresponds to one device instance, and is described
by one dev_link_t structure (defined in ds.h).
You may not want to use a linked list for this -- for example, the
memory card driver uses an array of dev_link_t pointers, where minor
device numbers are used to derive the corresponding array index.
*/
static dev_link_t *dev_list = NULL;
/*
A dev_link_t structure has fields for most things that are needed
to keep track of a socket, but there will usually be some device
specific information that also needs to be kept track of. The
'priv' pointer in a dev_link_t structure can be used to point to
a device-specific private data structure, like this.
A driver needs to provide a dev_node_t structure for each device
on a card. In some cases, there is only one device per card (for
example, ethernet cards, modems). In other cases, there may be
many actual or logical devices (SCSI adapters, memory cards with
multiple partitions). The dev_node_t structures need to be kept
in a linked list starting at the 'dev' field of a dev_link_t
structure. We allocate them in the card's private data structure,
because they generally shouldn't be allocated dynamically.
In this case, we also provide a flag to indicate if a device is
"stopped" due to a power management event, or card ejection. The
device IO routines can use a flag like this to throttle IO to a
card that is not ready to accept it.
*/
typedef struct local_info_t {
dev_node_t node;
struct net_device *eth_dev;
} local_info_t;
/*======================================================================
This bit of code is used to avoid unregistering network devices
at inappropriate times. 2.2 and later kernels are fairly picky
about when this can happen.
======================================================================*/
static void flush_stale_links(void)
{
dev_link_t *link, *next;
for (link = dev_list; link; link = next) {
next = link->next;
if (link->state & DEV_STALE_LINK)
atmel_detach(link);
}
}
/*======================================================================
atmel_attach() creates an "instance" of the driver, allocating
local data structures for one device. The device is registered
with Card Services.
The dev_link structure is initialized, but we don't actually
configure the card at this point -- we wait until we receive a
card insertion event.
======================================================================*/
static dev_link_t *atmel_attach(void)
{
client_reg_t client_reg;
dev_link_t *link;
local_info_t *local;
int ret, i;
DEBUG(0, "atmel_attach()\n");
flush_stale_links();
/* Initialize the dev_link_t structure */
link = kmalloc(sizeof(struct dev_link_t), GFP_KERNEL);
if (!link) {
printk(KERN_ERR "atmel_cs: no memory for new device\n");
return NULL;
}
memset(link, 0, sizeof(struct dev_link_t));
init_timer(&link->release);
link->release.function = &atmel_release;
link->release.data = (u_long)link;
/* Interrupt setup */
link->irq.Attributes = IRQ_TYPE_EXCLUSIVE;
link->irq.IRQInfo1 = IRQ_INFO2_VALID|IRQ_LEVEL_ID;
if (irq_list[0] == -1)
link->irq.IRQInfo2 = irq_mask;
else
for (i = 0; i < 4; i++)
link->irq.IRQInfo2 |= 1 << irq_list[i];
link->irq.Handler = NULL;
/*
General socket configuration defaults can go here. In this
client, we assume very little, and rely on the CIS for almost
everything. In most clients, many details (i.e., number, sizes,
and attributes of IO windows) are fixed by the nature of the
device, and can be hard-wired here.
*/
link->conf.Attributes = 0;
link->conf.Vcc = 50;
link->conf.IntType = INT_MEMORY_AND_IO;
/* Allocate space for private device-specific data */
local = kmalloc(sizeof(local_info_t), GFP_KERNEL);
if (!local) {
printk(KERN_ERR "atmel_cs: no memory for new device\n");
kfree (link);
return NULL;
}
memset(local, 0, sizeof(local_info_t));
link->priv = local;
/* Register with Card Services */
link->next = dev_list;
dev_list = link;
client_reg.dev_info = &dev_info;
client_reg.Attributes = INFO_IO_CLIENT | INFO_CARD_SHARE;
client_reg.EventMask =
CS_EVENT_CARD_INSERTION | CS_EVENT_CARD_REMOVAL |
CS_EVENT_RESET_PHYSICAL | CS_EVENT_CARD_RESET |
CS_EVENT_PM_SUSPEND | CS_EVENT_PM_RESUME;
client_reg.event_handler = &atmel_event;
client_reg.Version = 0x0210;
client_reg.event_callback_args.client_data = link;
ret = CardServices(RegisterClient, &link->handle, &client_reg);
if (ret != 0) {
cs_error(link->handle, RegisterClient, ret);
atmel_detach(link);
return NULL;
}
return link;
} /* atmel_attach */
/*======================================================================
This deletes a driver "instance". The device is de-registered
with Card Services. If it has been released, all local data
structures are freed. Otherwise, the structures will be freed
when the device is released.
======================================================================*/
static void atmel_detach(dev_link_t *link)
{
dev_link_t **linkp;
DEBUG(0, "atmel_detach(0x%p)\n", link);
/* Locate device structure */
for (linkp = &dev_list; *linkp; linkp = &(*linkp)->next)
if (*linkp == link) break;
if (*linkp == NULL)
return;
del_timer(&link->release);
if ( link->state & DEV_CONFIG ) {
atmel_release( (int)link );
if ( link->state & DEV_STALE_CONFIG ) {
link->state |= DEV_STALE_LINK;
return;
}
}
/* Break the link with Card Services */
if (link->handle)
CardServices(DeregisterClient, link->handle);
/* Unlink device structure, free pieces */
*linkp = link->next;
if (link->priv) {
kfree(link->priv);
}
kfree(link);
} /* atmel_detach */
/*======================================================================
atmel_config() is scheduled to run after a CARD_INSERTION event
is received, to configure the PCMCIA socket, and to make the
device available to the system.
======================================================================*/
#define CS_CHECK(fn, args...) \
while ((last_ret=CardServices(last_fn=(fn),args))!=0) goto cs_failed
#define CFG_CHECK(fn, args...) \
if (CardServices(fn, args) != 0) goto next_entry
/* Call-back function to interrogate PCMCIA-specific information
about the current existance of the card */
static int card_present(void *arg)
{
dev_link_t *link = (dev_link_t *)arg;
if (link->state & DEV_SUSPEND)
return 0;
else if (link->state & DEV_PRESENT)
return 1;
return 0;
}
/* list of cards we know about and their firmware requirements.
Go either by Manfid or version strings.
Cards not in this list will need a firmware parameter to the module
in all probability. Note that the SMC 2632 V2 and V3 have the same
manfids, so we ignore those and use the version1 strings. */
static struct {
int manf, card;
char *ver1;
char *firmware;
char *name;
} card_table[] = {
{ 0, 0, "WLAN/802.11b PC CARD", "atmel_at76c502d.bin", "Actiontec 802CAT1" },
{ 0, 0, "ATMEL/AT76C502AR", "atmel_at76c502.bin", "NoName-RFMD" },
{ 0, 0, "ATMEL/AT76C502AR_D", "atmel_at76c502d.bin", "NoName-revD" },
{ 0, 0, "ATMEL/AT76C502AR_E", "atmel_at76c502e.bin", "NoName-revE" },
{ 0, 0, "ATMEL/AT76C504", "atmel_at76c504.bin", "NoName-504" },
{ MANFID_3COM, 0x0620, NULL, "atmel_at76c502_3com.bin", "3com 3CRWE62092B" },
{ MANFID_3COM, 0x0696, NULL, "atmel_at76c502_3com.bin", "3com 3CRSHPW_96" },
{ 0, 0, "SMC/2632W-V2", "atmel_at76c502.bin", "SMC 2632W-V2" },
{ 0, 0, "SMC/2632W", "atmel_at76c502d.bin", "SMC 2632W-V3" },
{ 0xd601, 0x0007, NULL, "atmel_at76c502.bin", "Sitecom WLAN-011"}, /* suspect - from a usenet posting. */
{ 0x01bf, 0x3302, NULL, "atmel_at76c502d.bin", "Belkin F5D6060u"}, /* " " " " " */
};
/* This is strictly temporary, until PCMCIA devices get integrated into the device model. */
static struct device atmel_device = {
.name = "Atmel at76c50x wireless",
.bus_id = "pcmcia",
};
static void atmel_config(dev_link_t *link)
{
client_handle_t handle;
tuple_t tuple;
cisparse_t parse;
local_info_t *dev;
int last_fn, last_ret;
u_char buf[64];
int card_index = -1;
handle = link->handle;
dev = link->priv;
DEBUG(0, "atmel_config(0x%p)\n", link);
tuple.Attributes = 0;
tuple.TupleData = buf;
tuple.TupleDataMax = sizeof(buf);
tuple.TupleOffset = 0;
tuple.DesiredTuple = CISTPL_MANFID;
if (CardServices(GetFirstTuple, handle, &tuple) == 0) {
int i;
cistpl_manfid_t *manfid;
CS_CHECK(GetTupleData, handle, &tuple);
CS_CHECK(ParseTuple, handle, &tuple, &parse);
manfid = &(parse.manfid);
for (i = 0; i < sizeof(card_table)/sizeof(card_table[0]); i++) {
if (!card_table[i].ver1 &&
manfid->manf == card_table[i].manf &&
manfid->card == card_table[i].card) {
card_index = i;
goto done;
}
}
}
tuple.DesiredTuple = CISTPL_VERS_1;
if (CardServices(GetFirstTuple, handle, &tuple) == 0) {
int i, j, k;
cistpl_vers_1_t *ver1;
CS_CHECK(GetTupleData, handle, &tuple);
CS_CHECK(ParseTuple, handle, &tuple, &parse);
ver1 = &(parse.version_1);
for (i = 0; i < sizeof(card_table)/sizeof(card_table[0]); i++) {
for (j = 0; j < ver1->ns; j++) {
char *p = card_table[i].ver1;
char *q = &ver1->str[ver1->ofs[j]];
if (!p)
goto mismatch;
for (k = 0; k < j; k++) {
while ((*p != '\0') && (*p != '/')) p++;
if (*p == '\0')
goto mismatch;
p++;
}
while((*q != '\0') && (*p != '\0') &&
(*p != '/') && (*p == *q)) p++, q++;
if (((*p != '\0') && *p != '/') || *q != '\0')
goto mismatch;
}
card_index = i;
goto done;
mismatch:
}
done:
}
/*
This reads the card's CONFIG tuple to find its configuration
registers.
*/
tuple.DesiredTuple = CISTPL_CONFIG;
CS_CHECK(GetFirstTuple, handle, &tuple);
CS_CHECK(GetTupleData, handle, &tuple);
CS_CHECK(ParseTuple, handle, &tuple, &parse);
link->conf.ConfigBase = parse.config.base;
link->conf.Present = parse.config.rmask[0];
/* Configure card */
link->state |= DEV_CONFIG;
/*
In this loop, we scan the CIS for configuration table entries,
each of which describes a valid card configuration, including
voltage, IO window, memory window, and interrupt settings.
We make no assumptions about the card to be configured: we use
just the information available in the CIS. In an ideal world,
this would work for any PCMCIA card, but it requires a complete
and accurate CIS. In practice, a driver usually "knows" most of
these things without consulting the CIS, and most client drivers
will only use the CIS to fill in implementation-defined details.
*/
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
CS_CHECK(GetFirstTuple, handle, &tuple);
while (1) {
cistpl_cftable_entry_t dflt = { 0 };
cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
CFG_CHECK(GetTupleData, handle, &tuple);
CFG_CHECK(ParseTuple, handle, &tuple, &parse);
if (cfg->flags & CISTPL_CFTABLE_DEFAULT) dflt = *cfg;
if (cfg->index == 0) goto next_entry;
link->conf.ConfigIndex = cfg->index;
/* Does this card need audio output? */
if (cfg->flags & CISTPL_CFTABLE_AUDIO) {
link->conf.Attributes |= CONF_ENABLE_SPKR;
link->conf.Status = CCSR_AUDIO_ENA;
}
/* Use power settings for Vcc and Vpp if present */
/* Note that the CIS values need to be rescaled */
if (cfg->vcc.present & (1<<CISTPL_POWER_VNOM))
link->conf.Vcc = cfg->vcc.param[CISTPL_POWER_VNOM]/10000;
else if (dflt.vcc.present & (1<<CISTPL_POWER_VNOM))
link->conf.Vcc = dflt.vcc.param[CISTPL_POWER_VNOM]/10000;
if (cfg->vpp1.present & (1<<CISTPL_POWER_VNOM))
link->conf.Vpp1 = link->conf.Vpp2 =
cfg->vpp1.param[CISTPL_POWER_VNOM]/10000;
else if (dflt.vpp1.present & (1<<CISTPL_POWER_VNOM))
link->conf.Vpp1 = link->conf.Vpp2 =
dflt.vpp1.param[CISTPL_POWER_VNOM]/10000;
/* Do we need to allocate an interrupt? */
if (cfg->irq.IRQInfo1 || dflt.irq.IRQInfo1)
link->conf.Attributes |= CONF_ENABLE_IRQ;
/* IO window settings */
link->io.NumPorts1 = link->io.NumPorts2 = 0;
if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) {
cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt.io;
link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
if (!(io->flags & CISTPL_IO_8BIT))
link->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
if (!(io->flags & CISTPL_IO_16BIT))
link->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
link->io.BasePort1 = io->win[0].base;
link->io.NumPorts1 = io->win[0].len;
if (io->nwin > 1) {
link->io.Attributes2 = link->io.Attributes1;
link->io.BasePort2 = io->win[1].base;
link->io.NumPorts2 = io->win[1].len;
}
}
/* This reserves IO space but doesn't actually enable it */
CFG_CHECK(RequestIO, link->handle, &link->io);
/* If we got this far, we're cool! */
break;
next_entry:
CS_CHECK(GetNextTuple, handle, &tuple);
}
/*
Allocate an interrupt line. Note that this does not assign a
handler to the interrupt, unless the 'Handler' member of the
irq structure is initialized.
*/
if (link->conf.Attributes & CONF_ENABLE_IRQ)
CS_CHECK(RequestIRQ, link->handle, &link->irq);
/*
This actually configures the PCMCIA socket -- setting up
the I/O windows and the interrupt mapping, and putting the
card and host interface into "Memory and IO" mode.
*/
CS_CHECK(RequestConfiguration, link->handle, &link->conf);
if (link->irq.AssignedIRQ == 0) {
printk(KERN_ALERT
"atmel: cannot assign IRQ: check that CONFIG_ISA is set in kernel config.");
goto cs_failed;
}
((local_info_t*)link->priv)->eth_dev =
init_atmel_card(link->irq.AssignedIRQ,
link->io.BasePort1,
card_index == -1 ? NULL : card_table[card_index].firmware,
card_index == -1 ? 0 : (card_table[card_index].manf == MANFID_3COM),
&atmel_device,
card_present,
link);
if (!((local_info_t*)link->priv)->eth_dev)
goto cs_failed;
/*
At this point, the dev_node_t structure(s) need to be
initialized and arranged in a linked list at link->dev.
*/
strcpy(dev->node.dev_name, ((local_info_t*)link->priv)->eth_dev->name );
dev->node.major = dev->node.minor = 0;
link->dev = &dev->node;
/* Finally, report what we've done */
printk(KERN_INFO "%s: %s%sindex 0x%02x: Vcc %d.%d",
dev->node.dev_name,
card_index == -1 ? "" : card_table[card_index].name,
card_index == -1 ? "" : " ",
link->conf.ConfigIndex,
link->conf.Vcc/10, link->conf.Vcc%10);
if (link->conf.Vpp1)
printk(", Vpp %d.%d", link->conf.Vpp1/10, link->conf.Vpp1%10);
if (link->conf.Attributes & CONF_ENABLE_IRQ)
printk(", irq %d", link->irq.AssignedIRQ);
if (link->io.NumPorts1)
printk(", io 0x%04x-0x%04x", link->io.BasePort1,
link->io.BasePort1+link->io.NumPorts1-1);
if (link->io.NumPorts2)
printk(" & 0x%04x-0x%04x", link->io.BasePort2,
link->io.BasePort2+link->io.NumPorts2-1);
printk("\n");
link->state &= ~DEV_CONFIG_PENDING;
return;
cs_failed:
cs_error(link->handle, last_fn, last_ret);
atmel_release((u_long)link);
} /* atmel_config */
/*======================================================================
After a card is removed, atmel_release() will unregister the
device, and release the PCMCIA configuration. If the device is
still open, this will be postponed until it is closed.
======================================================================*/
static void atmel_release(u_long arg)
{
dev_link_t *link = (dev_link_t *)arg;
struct net_device *dev = ((local_info_t*)link->priv)->eth_dev;
DEBUG(0, "atmel_release(0x%p)\n", link);
/* Unlink the device chain */
link->dev = NULL;
if (dev)
stop_atmel_card(dev, 0);
((local_info_t*)link->priv)->eth_dev = 0;
/* Don't bother checking to see if these succeed or not */
CardServices(ReleaseConfiguration, link->handle);
if (link->io.NumPorts1)
CardServices(ReleaseIO, link->handle, &link->io);
if (link->irq.AssignedIRQ)
CardServices(ReleaseIRQ, link->handle, &link->irq);
link->state &= ~DEV_CONFIG;
} /* atmel_release */
/*======================================================================
The card status event handler. Mostly, this schedules other
stuff to run after an event is received.
When a CARD_REMOVAL event is received, we immediately set a
private flag to block future accesses to this device. All the
functions that actually access the device should check this flag
to make sure the card is still present.
======================================================================*/
static int atmel_event(event_t event, int priority,
event_callback_args_t *args)
{
dev_link_t *link = args->client_data;
local_info_t *local = link->priv;
DEBUG(1, "atmel_event(0x%06x)\n", event);
switch (event) {
case CS_EVENT_CARD_REMOVAL:
link->state &= ~DEV_PRESENT;
if (link->state & DEV_CONFIG) {
netif_device_detach(local->eth_dev);
mod_timer(&link->release, jiffies + HZ/20);
}
break;
case CS_EVENT_CARD_INSERTION:
link->state |= DEV_PRESENT | DEV_CONFIG_PENDING;
atmel_config(link);
break;
case CS_EVENT_PM_SUSPEND:
link->state |= DEV_SUSPEND;
/* Fall through... */
case CS_EVENT_RESET_PHYSICAL:
if (link->state & DEV_CONFIG) {
netif_device_detach(local->eth_dev);
CardServices(ReleaseConfiguration, link->handle);
}
break;
case CS_EVENT_PM_RESUME:
link->state &= ~DEV_SUSPEND;
/* Fall through... */
case CS_EVENT_CARD_RESET:
if (link->state & DEV_CONFIG) {
CardServices(RequestConfiguration, link->handle, &link->conf);
reset_atmel_card(local->eth_dev);
netif_device_attach(local->eth_dev);
}
break;
}
return 0;
} /* atmel_event */
/*====================================================================*/
static struct pcmcia_driver atmel_driver = {
.owner = THIS_MODULE,
.drv = {
.name = "atmel_cs",
},
.attach = atmel_attach,
.detach = atmel_detach,
};
static int atmel_cs_init(void)
{
return pcmcia_register_driver(&atmel_driver);
}
static void atmel_cs_cleanup(void)
{
pcmcia_unregister_driver(&atmel_driver);
/* XXX: this really needs to move into generic code.. */
while (dev_list != NULL) {
if (dev_list->state & DEV_CONFIG)
atmel_release((u_long)dev_list);
atmel_detach(dev_list);
}
}
/*
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
In addition:
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
module_init(atmel_cs_init);
module_exit(atmel_cs_cleanup);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment