Commit be12014d authored by Linus Torvalds's avatar Linus Torvalds

Merge git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched

* git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched: (61 commits)
  sched: refine negative nice level granularity
  sched: fix update_stats_enqueue() reniced codepath
  sched: round a bit better
  sched: make the multiplication table more accurate
  sched: optimize update_rq_clock() calls in the load-balancer
  sched: optimize activate_task()
  sched: clean up set_curr_task_fair()
  sched: remove __update_rq_clock() call from entity_tick()
  sched: move the __update_rq_clock() call to scheduler_tick()
  sched debug: remove the 'u64 now' parameter from print_task()/_rq()
  sched: remove the 'u64 now' local variables
  sched: remove the 'u64 now' parameter from deactivate_task()
  sched: remove the 'u64 now' parameter from dequeue_task()
  sched: remove the 'u64 now' parameter from enqueue_task()
  sched: remove the 'u64 now' parameter from dec_nr_running()
  sched: remove the 'u64 now' parameter from inc_nr_running()
  sched: remove the 'u64 now' parameter from dec_load()
  sched: remove the 'u64 now' parameter from inc_load()
  sched: remove the 'u64 now' parameter from update_curr_load()
  sched: remove the 'u64 now' parameter from ->task_new()
  ...
parents e3bcf5e2 7cff8cf6
......@@ -83,7 +83,7 @@ Some implementation details:
CFS uses nanosecond granularity accounting and does not rely on any
jiffies or other HZ detail. Thus the CFS scheduler has no notion of
'timeslices' and has no heuristics whatsoever. There is only one
central tunable:
central tunable (you have to switch on CONFIG_SCHED_DEBUG):
/proc/sys/kernel/sched_granularity_ns
......
This document explains the thinking about the revamped and streamlined
nice-levels implementation in the new Linux scheduler.
Nice levels were always pretty weak under Linux and people continuously
pestered us to make nice +19 tasks use up much less CPU time.
Unfortunately that was not that easy to implement under the old
scheduler, (otherwise we'd have done it long ago) because nice level
support was historically coupled to timeslice length, and timeslice
units were driven by the HZ tick, so the smallest timeslice was 1/HZ.
In the O(1) scheduler (in 2003) we changed negative nice levels to be
much stronger than they were before in 2.4 (and people were happy about
that change), and we also intentionally calibrated the linear timeslice
rule so that nice +19 level would be _exactly_ 1 jiffy. To better
understand it, the timeslice graph went like this (cheesy ASCII art
alert!):
A
\ | [timeslice length]
\ |
\ |
\ |
\ |
\|___100msecs
|^ . _
| ^ . _
| ^ . _
-*----------------------------------*-----> [nice level]
-20 | +19
|
|
So that if someone wanted to really renice tasks, +19 would give a much
bigger hit than the normal linear rule would do. (The solution of
changing the ABI to extend priorities was discarded early on.)
This approach worked to some degree for some time, but later on with
HZ=1000 it caused 1 jiffy to be 1 msec, which meant 0.1% CPU usage which
we felt to be a bit excessive. Excessive _not_ because it's too small of
a CPU utilization, but because it causes too frequent (once per
millisec) rescheduling. (and would thus trash the cache, etc. Remember,
this was long ago when hardware was weaker and caches were smaller, and
people were running number crunching apps at nice +19.)
So for HZ=1000 we changed nice +19 to 5msecs, because that felt like the
right minimal granularity - and this translates to 5% CPU utilization.
But the fundamental HZ-sensitive property for nice+19 still remained,
and we never got a single complaint about nice +19 being too _weak_ in
terms of CPU utilization, we only got complaints about it (still) being
too _strong_ :-)
To sum it up: we always wanted to make nice levels more consistent, but
within the constraints of HZ and jiffies and their nasty design level
coupling to timeslices and granularity it was not really viable.
The second (less frequent but still periodically occuring) complaint
about Linux's nice level support was its assymetry around the origo
(which you can see demonstrated in the picture above), or more
accurately: the fact that nice level behavior depended on the _absolute_
nice level as well, while the nice API itself is fundamentally
"relative":
int nice(int inc);
asmlinkage long sys_nice(int increment)
(the first one is the glibc API, the second one is the syscall API.)
Note that the 'inc' is relative to the current nice level. Tools like
bash's "nice" command mirror this relative API.
With the old scheduler, if you for example started a niced task with +1
and another task with +2, the CPU split between the two tasks would
depend on the nice level of the parent shell - if it was at nice -10 the
CPU split was different than if it was at +5 or +10.
A third complaint against Linux's nice level support was that negative
nice levels were not 'punchy enough', so lots of people had to resort to
run audio (and other multimedia) apps under RT priorities such as
SCHED_FIFO. But this caused other problems: SCHED_FIFO is not starvation
proof, and a buggy SCHED_FIFO app can also lock up the system for good.
The new scheduler in v2.6.23 addresses all three types of complaints:
To address the first complaint (of nice levels being not "punchy"
enough), the scheduler was decoupled from 'time slice' and HZ concepts
(and granularity was made a separate concept from nice levels) and thus
it was possible to implement better and more consistent nice +19
support: with the new scheduler nice +19 tasks get a HZ-independent
1.5%, instead of the variable 3%-5%-9% range they got in the old
scheduler.
To address the second complaint (of nice levels not being consistent),
the new scheduler makes nice(1) have the same CPU utilization effect on
tasks, regardless of their absolute nice levels. So on the new
scheduler, running a nice +10 and a nice 11 task has the same CPU
utilization "split" between them as running a nice -5 and a nice -4
task. (one will get 55% of the CPU, the other 45%.) That is why nice
levels were changed to be "multiplicative" (or exponential) - that way
it does not matter which nice level you start out from, the 'relative
result' will always be the same.
The third complaint (of negative nice levels not being "punchy" enough
and forcing audio apps to run under the more dangerous SCHED_FIFO
scheduling policy) is addressed by the new scheduler almost
automatically: stronger negative nice levels are an automatic
side-effect of the recalibrated dynamic range of nice levels.
......@@ -139,7 +139,7 @@ struct cfs_rq;
extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
extern void proc_sched_set_task(struct task_struct *p);
extern void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq, u64 now);
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
#else
static inline void
proc_sched_show_task(struct task_struct *p, struct seq_file *m)
......@@ -149,7 +149,7 @@ static inline void proc_sched_set_task(struct task_struct *p)
{
}
static inline void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq, u64 now)
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
{
}
#endif
......@@ -855,26 +855,24 @@ struct sched_domain;
struct sched_class {
struct sched_class *next;
void (*enqueue_task) (struct rq *rq, struct task_struct *p,
int wakeup, u64 now);
void (*dequeue_task) (struct rq *rq, struct task_struct *p,
int sleep, u64 now);
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
void (*yield_task) (struct rq *rq, struct task_struct *p);
void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
struct task_struct * (*pick_next_task) (struct rq *rq, u64 now);
void (*put_prev_task) (struct rq *rq, struct task_struct *p, u64 now);
struct task_struct * (*pick_next_task) (struct rq *rq);
void (*put_prev_task) (struct rq *rq, struct task_struct *p);
int (*load_balance) (struct rq *this_rq, int this_cpu,
unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
struct rq *busiest,
unsigned long max_nr_move, unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, unsigned long *total_load_moved);
int *all_pinned, int *this_best_prio);
void (*set_curr_task) (struct rq *rq);
void (*task_tick) (struct rq *rq, struct task_struct *p);
void (*task_new) (struct rq *rq, struct task_struct *p, u64 now);
void (*task_new) (struct rq *rq, struct task_struct *p);
};
struct load_weight {
......
This diff is collapsed.
......@@ -29,7 +29,7 @@
} while (0)
static void
print_task(struct seq_file *m, struct rq *rq, struct task_struct *p, u64 now)
print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
{
if (rq->curr == p)
SEQ_printf(m, "R");
......@@ -56,7 +56,7 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p, u64 now)
#endif
}
static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu, u64 now)
static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
{
struct task_struct *g, *p;
......@@ -77,7 +77,7 @@ static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu, u64 now)
if (!p->se.on_rq || task_cpu(p) != rq_cpu)
continue;
print_task(m, rq, p, now);
print_task(m, rq, p);
} while_each_thread(g, p);
read_unlock_irq(&tasklist_lock);
......@@ -106,7 +106,7 @@ print_cfs_rq_runtime_sum(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
(long long)wait_runtime_rq_sum);
}
void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq, u64 now)
void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
{
SEQ_printf(m, "\ncfs_rq %p\n", cfs_rq);
......@@ -124,7 +124,7 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq, u64 now)
print_cfs_rq_runtime_sum(m, cpu, cfs_rq);
}
static void print_cpu(struct seq_file *m, int cpu, u64 now)
static void print_cpu(struct seq_file *m, int cpu)
{
struct rq *rq = &per_cpu(runqueues, cpu);
......@@ -166,9 +166,9 @@ static void print_cpu(struct seq_file *m, int cpu, u64 now)
P(cpu_load[4]);
#undef P
print_cfs_stats(m, cpu, now);
print_cfs_stats(m, cpu);
print_rq(m, rq, cpu, now);
print_rq(m, rq, cpu);
}
static int sched_debug_show(struct seq_file *m, void *v)
......@@ -184,7 +184,7 @@ static int sched_debug_show(struct seq_file *m, void *v)
SEQ_printf(m, "now at %Lu nsecs\n", (unsigned long long)now);
for_each_online_cpu(cpu)
print_cpu(m, cpu, now);
print_cpu(m, cpu);
SEQ_printf(m, "\n");
......
This diff is collapsed.
......@@ -13,7 +13,7 @@ static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p)
resched_task(rq->idle);
}
static struct task_struct *pick_next_task_idle(struct rq *rq, u64 now)
static struct task_struct *pick_next_task_idle(struct rq *rq)
{
schedstat_inc(rq, sched_goidle);
......@@ -25,7 +25,7 @@ static struct task_struct *pick_next_task_idle(struct rq *rq, u64 now)
* message if some code attempts to do it:
*/
static void
dequeue_task_idle(struct rq *rq, struct task_struct *p, int sleep, u64 now)
dequeue_task_idle(struct rq *rq, struct task_struct *p, int sleep)
{
spin_unlock_irq(&rq->lock);
printk(KERN_ERR "bad: scheduling from the idle thread!\n");
......@@ -33,15 +33,15 @@ dequeue_task_idle(struct rq *rq, struct task_struct *p, int sleep, u64 now)
spin_lock_irq(&rq->lock);
}
static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, u64 now)
static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
{
}
static int
static unsigned long
load_balance_idle(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_nr_move, unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, unsigned long *total_load_moved)
int *all_pinned, int *this_best_prio)
{
return 0;
}
......
......@@ -7,7 +7,7 @@
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.
*/
static inline void update_curr_rt(struct rq *rq, u64 now)
static inline void update_curr_rt(struct rq *rq)
{
struct task_struct *curr = rq->curr;
u64 delta_exec;
......@@ -15,18 +15,17 @@ static inline void update_curr_rt(struct rq *rq, u64 now)
if (!task_has_rt_policy(curr))
return;
delta_exec = now - curr->se.exec_start;
delta_exec = rq->clock - curr->se.exec_start;
if (unlikely((s64)delta_exec < 0))
delta_exec = 0;
schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
curr->se.sum_exec_runtime += delta_exec;
curr->se.exec_start = now;
curr->se.exec_start = rq->clock;
}
static void
enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
struct rt_prio_array *array = &rq->rt.active;
......@@ -37,12 +36,11 @@ enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
/*
* Adding/removing a task to/from a priority array:
*/
static void
dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep, u64 now)
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
{
struct rt_prio_array *array = &rq->rt.active;
update_curr_rt(rq, now);
update_curr_rt(rq);
list_del(&p->run_list);
if (list_empty(array->queue + p->prio))
......@@ -75,7 +73,7 @@ static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
resched_task(rq->curr);
}
static struct task_struct *pick_next_task_rt(struct rq *rq, u64 now)
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
struct rt_prio_array *array = &rq->rt.active;
struct task_struct *next;
......@@ -89,14 +87,14 @@ static struct task_struct *pick_next_task_rt(struct rq *rq, u64 now)
queue = array->queue + idx;
next = list_entry(queue->next, struct task_struct, run_list);
next->se.exec_start = now;
next->se.exec_start = rq->clock;
return next;
}
static void put_prev_task_rt(struct rq *rq, struct task_struct *p, u64 now)
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq, now);
update_curr_rt(rq);
p->se.exec_start = 0;
}
......@@ -172,28 +170,15 @@ static struct task_struct *load_balance_next_rt(void *arg)
return p;
}
static int
static unsigned long
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_nr_move, unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, unsigned long *load_moved)
int *all_pinned, int *this_best_prio)
{
int this_best_prio, best_prio, best_prio_seen = 0;
int nr_moved;
struct rq_iterator rt_rq_iterator;
best_prio = sched_find_first_bit(busiest->rt.active.bitmap);
this_best_prio = sched_find_first_bit(this_rq->rt.active.bitmap);
/*
* Enable handling of the case where there is more than one task
* with the best priority. If the current running task is one
* of those with prio==best_prio we know it won't be moved
* and therefore it's safe to override the skip (based on load)
* of any task we find with that prio.
*/
if (busiest->curr->prio == best_prio)
best_prio_seen = 1;
unsigned long load_moved;
rt_rq_iterator.start = load_balance_start_rt;
rt_rq_iterator.next = load_balance_next_rt;
......@@ -203,11 +188,10 @@ load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
rt_rq_iterator.arg = busiest;
nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move,
max_load_move, sd, idle, all_pinned, load_moved,
this_best_prio, best_prio, best_prio_seen,
&rt_rq_iterator);
max_load_move, sd, idle, all_pinned, &load_moved,
this_best_prio, &rt_rq_iterator);
return nr_moved;
return load_moved;
}
static void task_tick_rt(struct rq *rq, struct task_struct *p)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment