Commit c24a7be2 authored by Paolo Bonzini's avatar Paolo Bonzini

Merge tag 'kvm-arm-for-v4.12' of...

Merge tag 'kvm-arm-for-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/ARM Changes for v4.12.

Changes include:
 - Using the common sysreg definitions between KVM and arm64
 - Improved hyp-stub implementation with support for kexec and kdump on the 32-bit side
 - Proper PMU exception handling
 - Performance improvements of our GIC handling
 - Support for irqchip in userspace with in-kernel arch-timers and PMU support
 - A fix for a race condition in our PSCI code

Conflicts:
	Documentation/virtual/kvm/api.txt
	include/uapi/linux/kvm.h
parents 70f3aac9 1edb6321
......@@ -4120,3 +4120,44 @@ This capability indicates that guest using memory monotoring instructions
(MWAIT/MWAITX) to stop the virtual CPU will not cause a VM exit. As such time
spent while virtual CPU is halted in this way will then be accounted for as
guest running time on the host (as opposed to e.g. HLT).
8.9 KVM_CAP_ARM_USER_IRQ
Architectures: arm, arm64
This capability, if KVM_CHECK_EXTENSION indicates that it is available, means
that if userspace creates a VM without an in-kernel interrupt controller, it
will be notified of changes to the output level of in-kernel emulated devices,
which can generate virtual interrupts, presented to the VM.
For such VMs, on every return to userspace, the kernel
updates the vcpu's run->s.regs.device_irq_level field to represent the actual
output level of the device.
Whenever kvm detects a change in the device output level, kvm guarantees at
least one return to userspace before running the VM. This exit could either
be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way,
userspace can always sample the device output level and re-compute the state of
the userspace interrupt controller. Userspace should always check the state
of run->s.regs.device_irq_level on every kvm exit.
The value in run->s.regs.device_irq_level can represent both level and edge
triggered interrupt signals, depending on the device. Edge triggered interrupt
signals will exit to userspace with the bit in run->s.regs.device_irq_level
set exactly once per edge signal.
The field run->s.regs.device_irq_level is available independent of
run->kvm_valid_regs or run->kvm_dirty_regs bits.
If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a
number larger than 0 indicating the version of this capability is implemented
and thereby which bits in in run->s.regs.device_irq_level can signal values.
Currently the following bits are defined for the device_irq_level bitmap:
KVM_CAP_ARM_USER_IRQ >= 1:
KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer
KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer
KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal
Future versions of kvm may implement additional events. These will get
indicated by returning a higher number from KVM_CHECK_EXTENSION and will be
listed above.
* Internal ABI between the kernel and HYP
This file documents the interaction between the Linux kernel and the
hypervisor layer when running Linux as a hypervisor (for example
KVM). It doesn't cover the interaction of the kernel with the
hypervisor when running as a guest (under Xen, KVM or any other
hypervisor), or any hypervisor-specific interaction when the kernel is
used as a host.
On arm and arm64 (without VHE), the kernel doesn't run in hypervisor
mode, but still needs to interact with it, allowing a built-in
hypervisor to be either installed or torn down.
In order to achieve this, the kernel must be booted at HYP (arm) or
EL2 (arm64), allowing it to install a set of stubs before dropping to
SVC/EL1. These stubs are accessible by using a 'hvc #0' instruction,
and only act on individual CPUs.
Unless specified otherwise, any built-in hypervisor must implement
these functions (see arch/arm{,64}/include/asm/virt.h):
* r0/x0 = HVC_SET_VECTORS
r1/x1 = vectors
Set HVBAR/VBAR_EL2 to 'vectors' to enable a hypervisor. 'vectors'
must be a physical address, and respect the alignment requirements
of the architecture. Only implemented by the initial stubs, not by
Linux hypervisors.
* r0/x0 = HVC_RESET_VECTORS
Turn HYP/EL2 MMU off, and reset HVBAR/VBAR_EL2 to the initials
stubs' exception vector value. This effectively disables an existing
hypervisor.
* r0/x0 = HVC_SOFT_RESTART
r1/x1 = restart address
x2 = x0's value when entering the next payload (arm64)
x3 = x1's value when entering the next payload (arm64)
x4 = x2's value when entering the next payload (arm64)
Mask all exceptions, disable the MMU, move the arguments into place
(arm64 only), and jump to the restart address while at HYP/EL2. This
hypercall is not expected to return to its caller.
Any other value of r0/x0 triggers a hypervisor-specific handling,
which is not documented here.
The return value of a stub hypercall is held by r0/x0, and is 0 on
success, and HVC_STUB_ERR on error. A stub hypercall is allowed to
clobber any of the caller-saved registers (x0-x18 on arm64, r0-r3 and
ip on arm). It is thus recommended to use a function call to perform
the hypercall.
......@@ -422,7 +422,17 @@ dtb_check_done:
cmp r0, #HYP_MODE
bne 1f
bl __hyp_get_vectors
/*
* Compute the address of the hyp vectors after relocation.
* This requires some arithmetic since we cannot directly
* reference __hyp_stub_vectors in a PC-relative way.
* Call __hyp_set_vectors with the new address so that we
* can HVC again after the copy.
*/
0: adr r0, 0b
movw r1, #:lower16:__hyp_stub_vectors - 0b
movt r1, #:upper16:__hyp_stub_vectors - 0b
add r0, r0, r1
sub r0, r0, r5
add r0, r0, r10
bl __hyp_set_vectors
......
......@@ -33,7 +33,7 @@
#define ARM_EXCEPTION_IRQ 5
#define ARM_EXCEPTION_FIQ 6
#define ARM_EXCEPTION_HVC 7
#define ARM_EXCEPTION_HYP_GONE HVC_STUB_ERR
/*
* The rr_lo_hi macro swaps a pair of registers depending on
* current endianness. It is used in conjunction with ldrd and strd
......@@ -72,10 +72,11 @@ extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
extern void __init_stage2_translation(void);
extern void __kvm_hyp_reset(unsigned long);
extern u64 __vgic_v3_get_ich_vtr_el2(void);
extern u64 __vgic_v3_read_vmcr(void);
extern void __vgic_v3_write_vmcr(u32 vmcr);
extern void __vgic_v3_init_lrs(void);
#endif
#endif /* __ARM_KVM_ASM_H__ */
......@@ -269,12 +269,6 @@ static inline void __cpu_init_stage2(void)
kvm_call_hyp(__init_stage2_translation);
}
static inline void __cpu_reset_hyp_mode(unsigned long vector_ptr,
phys_addr_t phys_idmap_start)
{
kvm_call_hyp((void *)virt_to_idmap(__kvm_hyp_reset), vector_ptr);
}
static inline int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext)
{
return 0;
......
......@@ -56,7 +56,6 @@ void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
phys_addr_t kvm_mmu_get_httbr(void);
phys_addr_t kvm_get_idmap_vector(void);
phys_addr_t kvm_get_idmap_start(void);
int kvm_mmu_init(void);
void kvm_clear_hyp_idmap(void);
......
......@@ -43,7 +43,7 @@ extern struct processor {
/*
* Special stuff for a reset
*/
void (*reset)(unsigned long addr) __attribute__((noreturn));
void (*reset)(unsigned long addr, bool hvc) __attribute__((noreturn));
/*
* Idle the processor
*/
......@@ -88,7 +88,7 @@ extern void cpu_set_pte_ext(pte_t *ptep, pte_t pte);
#else
extern void cpu_set_pte_ext(pte_t *ptep, pte_t pte, unsigned int ext);
#endif
extern void cpu_reset(unsigned long addr) __attribute__((noreturn));
extern void cpu_reset(unsigned long addr, bool hvc) __attribute__((noreturn));
/* These three are private to arch/arm/kernel/suspend.c */
extern void cpu_do_suspend(void *);
......
......@@ -53,7 +53,7 @@ static inline void sync_boot_mode(void)
}
void __hyp_set_vectors(unsigned long phys_vector_base);
unsigned long __hyp_get_vectors(void);
void __hyp_reset_vectors(void);
#else
#define __boot_cpu_mode (SVC_MODE)
#define sync_boot_mode()
......@@ -94,6 +94,18 @@ extern char __hyp_text_start[];
extern char __hyp_text_end[];
#endif
#else
/* Only assembly code should need those */
#define HVC_SET_VECTORS 0
#define HVC_SOFT_RESTART 1
#define HVC_RESET_VECTORS 2
#define HVC_STUB_HCALL_NR 3
#endif /* __ASSEMBLY__ */
#define HVC_STUB_ERR 0xbadca11
#endif /* ! VIRT_H */
......@@ -116,6 +116,8 @@ struct kvm_debug_exit_arch {
};
struct kvm_sync_regs {
/* Used with KVM_CAP_ARM_USER_IRQ */
__u64 device_irq_level;
};
struct kvm_arch_memory_slot {
......
......@@ -125,7 +125,7 @@ ENTRY(__hyp_stub_install_secondary)
* (see safe_svcmode_maskall).
*/
@ Now install the hypervisor stub:
adr r7, __hyp_stub_vectors
W(adr) r7, __hyp_stub_vectors
mcr p15, 4, r7, c12, c0, 0 @ set hypervisor vector base (HVBAR)
@ Disable all traps, so we don't get any nasty surprise
......@@ -202,9 +202,23 @@ ARM_BE8(orr r7, r7, #(1 << 25)) @ HSCTLR.EE
ENDPROC(__hyp_stub_install_secondary)
__hyp_stub_do_trap:
cmp r0, #-1
mrceq p15, 4, r0, c12, c0, 0 @ get HVBAR
mcrne p15, 4, r0, c12, c0, 0 @ set HVBAR
teq r0, #HVC_SET_VECTORS
bne 1f
mcr p15, 4, r1, c12, c0, 0 @ set HVBAR
b __hyp_stub_exit
1: teq r0, #HVC_SOFT_RESTART
bne 1f
bx r1
1: teq r0, #HVC_RESET_VECTORS
beq __hyp_stub_exit
ldr r0, =HVC_STUB_ERR
__ERET
__hyp_stub_exit:
mov r0, #0
__ERET
ENDPROC(__hyp_stub_do_trap)
......@@ -230,15 +244,26 @@ ENDPROC(__hyp_stub_do_trap)
* so you will need to set that to something sensible at the new hypervisor's
* initialisation entry point.
*/
ENTRY(__hyp_get_vectors)
mov r0, #-1
ENDPROC(__hyp_get_vectors)
@ fall through
ENTRY(__hyp_set_vectors)
mov r1, r0
mov r0, #HVC_SET_VECTORS
__HVC(0)
ret lr
ENDPROC(__hyp_set_vectors)
ENTRY(__hyp_soft_restart)
mov r1, r0
mov r0, #HVC_SOFT_RESTART
__HVC(0)
ret lr
ENDPROC(__hyp_soft_restart)
ENTRY(__hyp_reset_vectors)
mov r0, #HVC_RESET_VECTORS
__HVC(0)
ret lr
ENDPROC(__hyp_reset_vectors)
#ifndef ZIMAGE
.align 2
.L__boot_cpu_mode_offset:
......@@ -246,7 +271,7 @@ ENDPROC(__hyp_set_vectors)
#endif
.align 5
__hyp_stub_vectors:
ENTRY(__hyp_stub_vectors)
__hyp_stub_reset: W(b) .
__hyp_stub_und: W(b) .
__hyp_stub_svc: W(b) .
......
......@@ -12,10 +12,11 @@
#include <asm/cacheflush.h>
#include <asm/idmap.h>
#include <asm/virt.h>
#include "reboot.h"
typedef void (*phys_reset_t)(unsigned long);
typedef void (*phys_reset_t)(unsigned long, bool);
/*
* Function pointers to optional machine specific functions
......@@ -51,7 +52,9 @@ static void __soft_restart(void *addr)
/* Switch to the identity mapping. */
phys_reset = (phys_reset_t)virt_to_idmap(cpu_reset);
phys_reset((unsigned long)addr);
/* original stub should be restored by kvm */
phys_reset((unsigned long)addr, is_hyp_mode_available());
/* Should never get here. */
BUG();
......
......@@ -53,7 +53,6 @@ __asm__(".arch_extension virt");
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
static unsigned long hyp_default_vectors;
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
......@@ -227,6 +226,13 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
else
r = kvm->arch.vgic.msis_require_devid;
break;
case KVM_CAP_ARM_USER_IRQ:
/*
* 1: EL1_VTIMER, EL1_PTIMER, and PMU.
* (bump this number if adding more devices)
*/
r = 1;
break;
default:
r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
break;
......@@ -348,15 +354,14 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
kvm_arm_set_running_vcpu(vcpu);
kvm_vgic_load(vcpu);
}
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
/*
* The arch-generic KVM code expects the cpu field of a vcpu to be -1
* if the vcpu is no longer assigned to a cpu. This is used for the
* optimized make_all_cpus_request path.
*/
kvm_vgic_put(vcpu);
vcpu->cpu = -1;
kvm_arm_set_running_vcpu(NULL);
......@@ -514,12 +519,6 @@ static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
return ret;
}
/*
* Enable the arch timers only if we have an in-kernel VGIC
* and it has been properly initialized, since we cannot handle
* interrupts from the virtual timer with a userspace gic.
*/
if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
ret = kvm_timer_enable(vcpu);
return ret;
......@@ -630,16 +629,23 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
* non-preemptible context.
*/
preempt_disable();
kvm_pmu_flush_hwstate(vcpu);
kvm_timer_flush_hwstate(vcpu);
kvm_vgic_flush_hwstate(vcpu);
local_irq_disable();
/*
* Re-check atomic conditions
* If we have a singal pending, or need to notify a userspace
* irqchip about timer or PMU level changes, then we exit (and
* update the timer level state in kvm_timer_update_run
* below).
*/
if (signal_pending(current)) {
if (signal_pending(current) ||
kvm_timer_should_notify_user(vcpu) ||
kvm_pmu_should_notify_user(vcpu)) {
ret = -EINTR;
run->exit_reason = KVM_EXIT_INTR;
}
......@@ -711,6 +717,12 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
ret = handle_exit(vcpu, run, ret);
}
/* Tell userspace about in-kernel device output levels */
if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
kvm_timer_update_run(vcpu);
kvm_pmu_update_run(vcpu);
}
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
return ret;
......@@ -1109,8 +1121,16 @@ static void cpu_init_hyp_mode(void *dummy)
kvm_arm_init_debug();
}
static void cpu_hyp_reset(void)
{
if (!is_kernel_in_hyp_mode())
__hyp_reset_vectors();
}
static void cpu_hyp_reinit(void)
{
cpu_hyp_reset();
if (is_kernel_in_hyp_mode()) {
/*
* __cpu_init_stage2() is safe to call even if the PM
......@@ -1118,18 +1138,10 @@ static void cpu_hyp_reinit(void)
*/
__cpu_init_stage2();
} else {
if (__hyp_get_vectors() == hyp_default_vectors)
cpu_init_hyp_mode(NULL);
}
}
static void cpu_hyp_reset(void)
{
if (!is_kernel_in_hyp_mode())
__cpu_reset_hyp_mode(hyp_default_vectors,
kvm_get_idmap_start());
}
static void _kvm_arch_hardware_enable(void *discard)
{
if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
......@@ -1312,12 +1324,6 @@ static int init_hyp_mode(void)
if (err)
goto out_err;
/*
* It is probably enough to obtain the default on one
* CPU. It's unlikely to be different on the others.
*/
hyp_default_vectors = __hyp_get_vectors();
/*
* Allocate stack pages for Hypervisor-mode
*/
......
......@@ -40,6 +40,24 @@
* Co-processor emulation
*****************************************************************************/
static bool write_to_read_only(struct kvm_vcpu *vcpu,
const struct coproc_params *params)
{
WARN_ONCE(1, "CP15 write to read-only register\n");
print_cp_instr(params);
kvm_inject_undefined(vcpu);
return false;
}
static bool read_from_write_only(struct kvm_vcpu *vcpu,
const struct coproc_params *params)
{
WARN_ONCE(1, "CP15 read to write-only register\n");
print_cp_instr(params);
kvm_inject_undefined(vcpu);
return false;
}
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;
......@@ -502,15 +520,15 @@ static int emulate_cp15(struct kvm_vcpu *vcpu,
if (likely(r->access(vcpu, params, r))) {
/* Skip instruction, since it was emulated */
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
return 1;
}
/* If access function fails, it should complain. */
} else {
/* If access function fails, it should complain. */
kvm_err("Unsupported guest CP15 access at: %08lx\n",
*vcpu_pc(vcpu));
print_cp_instr(params);
}
kvm_inject_undefined(vcpu);
}
return 1;
}
......
......@@ -81,24 +81,6 @@ static inline bool read_zero(struct kvm_vcpu *vcpu,
return true;
}
static inline bool write_to_read_only(struct kvm_vcpu *vcpu,
const struct coproc_params *params)
{
kvm_debug("CP15 write to read-only register at: %08lx\n",
*vcpu_pc(vcpu));
print_cp_instr(params);
return false;
}
static inline bool read_from_write_only(struct kvm_vcpu *vcpu,
const struct coproc_params *params)
{
kvm_debug("CP15 read to write-only register at: %08lx\n",
*vcpu_pc(vcpu));
print_cp_instr(params);
return false;
}
/* Reset functions */
static inline void reset_unknown(struct kvm_vcpu *vcpu,
const struct coproc_reg *r)
......
......@@ -160,6 +160,14 @@ int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
case ARM_EXCEPTION_DATA_ABORT:
kvm_inject_vabt(vcpu);
return 1;
case ARM_EXCEPTION_HYP_GONE:
/*
* HYP has been reset to the hyp-stub. This happens
* when a guest is pre-empted by kvm_reboot()'s
* shutdown call.
*/
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
return 0;
default:
kvm_pr_unimpl("Unsupported exception type: %d",
exception_index);
......
......@@ -126,11 +126,29 @@ hyp_hvc:
*/
pop {r0, r1, r2}
/* Check for __hyp_get_vectors */
cmp r0, #-1
mrceq p15, 4, r0, c12, c0, 0 @ get HVBAR
beq 1f
/*
* Check if we have a kernel function, which is guaranteed to be
* bigger than the maximum hyp stub hypercall
*/
cmp r0, #HVC_STUB_HCALL_NR
bhs 1f
/*
* Not a kernel function, treat it as a stub hypercall.
* Compute the physical address for __kvm_handle_stub_hvc
* (as the code lives in the idmaped page) and branch there.
* We hijack ip (r12) as a tmp register.
*/
push {r1}
ldr r1, =kimage_voffset
ldr r1, [r1]
ldr ip, =__kvm_handle_stub_hvc
sub ip, ip, r1
pop {r1}
bx ip
1:
push {lr}
mov lr, r0
......@@ -142,7 +160,7 @@ THUMB( orr lr, #1)
blx lr @ Call the HYP function
pop {lr}
1: eret
eret
guest_trap:
load_vcpu r0 @ Load VCPU pointer to r0
......
......@@ -23,6 +23,7 @@
#include <asm/kvm_asm.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include <asm/virt.h>
/********************************************************************
* Hypervisor initialization
......@@ -39,6 +40,10 @@
* - Setup the page tables
* - Enable the MMU
* - Profit! (or eret, if you only care about the code).
*
* Another possibility is to get a HYP stub hypercall.
* We discriminate between the two by checking if r0 contains a value
* that is less than HVC_STUB_HCALL_NR.
*/
.text
......@@ -58,6 +63,10 @@ __kvm_hyp_init:
W(b) .
__do_hyp_init:
@ Check for a stub hypercall
cmp r0, #HVC_STUB_HCALL_NR
blo __kvm_handle_stub_hvc
@ Set stack pointer
mov sp, r0
......@@ -112,20 +121,46 @@ __do_hyp_init:
eret
@ r0 : stub vectors address
ENTRY(__kvm_hyp_reset)
ENTRY(__kvm_handle_stub_hvc)
cmp r0, #HVC_SOFT_RESTART
bne 1f
/* The target is expected in r1 */
msr ELR_hyp, r1
mrs r0, cpsr
bic r0, r0, #MODE_MASK
orr r0, r0, #HYP_MODE
THUMB( orr r0, r0, #PSR_T_BIT )
msr spsr_cxsf, r0
b reset
1: cmp r0, #HVC_RESET_VECTORS
bne 1f
reset:
/* We're now in idmap, disable MMU */
mrc p15, 4, r1, c1, c0, 0 @ HSCTLR
ldr r2, =(HSCTLR_M | HSCTLR_A | HSCTLR_C | HSCTLR_I)
bic r1, r1, r2
ldr r0, =(HSCTLR_M | HSCTLR_A | HSCTLR_C | HSCTLR_I)
bic r1, r1, r0
mcr p15, 4, r1, c1, c0, 0 @ HSCTLR
/* Install stub vectors */
mcr p15, 4, r0, c12, c0, 0 @ HVBAR
isb
/*
* Install stub vectors, using ardb's VA->PA trick.
*/
0: adr r0, 0b @ PA(0)
movw r1, #:lower16:__hyp_stub_vectors - 0b @ VA(stub) - VA(0)
movt r1, #:upper16:__hyp_stub_vectors - 0b
add r1, r1, r0 @ PA(stub)
mcr p15, 4, r1, c12, c0, 0 @ HVBAR
b exit
1: ldr r0, =HVC_STUB_ERR
eret
exit:
mov r0, #0
eret
ENDPROC(__kvm_hyp_reset)
ENDPROC(__kvm_handle_stub_hvc)
.ltorg
......
......@@ -37,10 +37,6 @@
* in Hyp mode (see init_hyp_mode in arch/arm/kvm/arm.c). Return values are
* passed in r0 (strictly 32bit).
*
* A function pointer with a value of 0xffffffff has a special meaning,
* and is used to implement __hyp_get_vectors in the same way as in
* arch/arm/kernel/hyp_stub.S.
*
* The calling convention follows the standard AAPCS:
* r0 - r3: caller save
* r12: caller save
......
......@@ -1512,7 +1512,8 @@ static int handle_hva_to_gpa(struct kvm *kvm,
unsigned long start,
unsigned long end,
int (*handler)(struct kvm *kvm,
gpa_t gpa, void *data),
gpa_t gpa, u64 size,
void *data),
void *data)
{
struct kvm_memslots *slots;
......@@ -1524,7 +1525,7 @@ static int handle_hva_to_gpa(struct kvm *kvm,
/* we only care about the pages that the guest sees */
kvm_for_each_memslot(memslot, slots) {
unsigned long hva_start, hva_end;
gfn_t gfn, gfn_end;
gfn_t gpa;
hva_start = max(start, memslot->userspace_addr);
hva_end = min(end, memslot->userspace_addr +
......@@ -1532,25 +1533,16 @@ static int handle_hva_to_gpa(struct kvm *kvm,
if (hva_start >= hva_end)
continue;
/*
* {gfn(page) | page intersects with [hva_start, hva_end)} =
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
*/
gfn = hva_to_gfn_memslot(hva_start, memslot);
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
for (; gfn < gfn_end; ++gfn) {
gpa_t gpa = gfn << PAGE_SHIFT;
ret |= handler(kvm, gpa, data);
}
gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
}
return ret;
}
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
{
unmap_stage2_range(kvm, gpa, PAGE_SIZE);
unmap_stage2_range(kvm, gpa, size);
return 0;
}
......@@ -1577,10 +1569,11 @@ int kvm_unmap_hva_range(struct kvm *kvm,
return 0;
}
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
{
pte_t *pte = (pte_t *)data;
WARN_ON(size != PAGE_SIZE);
/*
* We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
* flag clear because MMU notifiers will have unmapped a huge PMD before
......@@ -1606,11 +1599,12 @@ void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
{
pmd_t *pmd;
pte_t *pte;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
pmd = stage2_get_pmd(kvm, NULL, gpa);
if (!pmd || pmd_none(*pmd)) /* Nothing there */
return 0;
......@@ -1625,11 +1619,12 @@ static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
return stage2_ptep_test_and_clear_young(pte);
}
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
{
pmd_t *pmd;
pte_t *pte;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
pmd = stage2_get_pmd(kvm, NULL, gpa);
if (!pmd || pmd_none(*pmd)) /* Nothing there */
return 0;
......@@ -1674,11 +1669,6 @@ phys_addr_t kvm_get_idmap_vector(void)
return hyp_idmap_vector;
}
phys_addr_t kvm_get_idmap_start(void)
{
return hyp_idmap_start;
}
static int kvm_map_idmap_text(pgd_t *pgd)
{
int err;
......
......@@ -208,9 +208,10 @@ int kvm_psci_version(struct kvm_vcpu *vcpu)
static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
{
int ret = 1;
struct kvm *kvm = vcpu->kvm;
unsigned long psci_fn = vcpu_get_reg(vcpu, 0) & ~((u32) 0);
unsigned long val;
int ret = 1;
switch (psci_fn) {
case PSCI_0_2_FN_PSCI_VERSION:
......@@ -230,7 +231,9 @@ static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
break;
case PSCI_0_2_FN_CPU_ON:
case PSCI_0_2_FN64_CPU_ON:
mutex_lock(&kvm->lock);
val = kvm_psci_vcpu_on(vcpu);
mutex_unlock(&kvm->lock);
break;
case PSCI_0_2_FN_AFFINITY_INFO:
case PSCI_0_2_FN64_AFFINITY_INFO:
......@@ -279,6 +282,7 @@ static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
unsigned long psci_fn = vcpu_get_reg(vcpu, 0) & ~((u32) 0);
unsigned long val;
......@@ -288,7 +292,9 @@ static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
val = PSCI_RET_SUCCESS;
break;
case KVM_PSCI_FN_CPU_ON:
mutex_lock(&kvm->lock);
val = kvm_psci_vcpu_on(vcpu);
mutex_unlock(&kvm->lock);
break;
default:
val = PSCI_RET_NOT_SUPPORTED;
......
......@@ -87,6 +87,8 @@ struct cachepolicy {
#define s2_policy(policy) 0
#endif
unsigned long kimage_voffset __ro_after_init;
static struct cachepolicy cache_policies[] __initdata = {
{
.policy = "uncached",
......@@ -1635,4 +1637,7 @@ void __init paging_init(const struct machine_desc *mdesc)
empty_zero_page = virt_to_page(zero_page);
__flush_dcache_page(NULL, empty_zero_page);
/* Compute the virt/idmap offset, mostly for the sake of KVM */
kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
}
......@@ -39,13 +39,14 @@ ENTRY(cpu_v7_proc_fin)
ENDPROC(cpu_v7_proc_fin)
/*
* cpu_v7_reset(loc)
* cpu_v7_reset(loc, hyp)
*
* Perform a soft reset of the system. Put the CPU into the
* same state as it would be if it had been reset, and branch
* to what would be the reset vector.
*
* - loc - location to jump to for soft reset
* - hyp - indicate if restart occurs in HYP mode
*
* This code must be executed using a flat identity mapping with
* caches disabled.
......@@ -53,11 +54,15 @@ ENDPROC(cpu_v7_proc_fin)
.align 5
.pushsection .idmap.text, "ax"
ENTRY(cpu_v7_reset)
mrc p15, 0, r1, c1, c0, 0 @ ctrl register
bic r1, r1, #0x1 @ ...............m
THUMB( bic r1, r1, #1 << 30 ) @ SCTLR.TE (Thumb exceptions)
mcr p15, 0, r1, c1, c0, 0 @ disable MMU
mrc p15, 0, r2, c1, c0, 0 @ ctrl register
bic r2, r2, #0x1 @ ...............m
THUMB( bic r2, r2, #1 << 30 ) @ SCTLR.TE (Thumb exceptions)
mcr p15, 0, r2, c1, c0, 0 @ disable MMU
isb
#ifdef CONFIG_ARM_VIRT_EXT
teq r1, #0
bne __hyp_soft_restart
#endif
bx r0
ENDPROC(cpu_v7_reset)
.popsection
......
......@@ -20,69 +20,14 @@
#include <asm/sysreg.h>
#define ICC_EOIR1_EL1 sys_reg(3, 0, 12, 12, 1)
#define ICC_DIR_EL1 sys_reg(3, 0, 12, 11, 1)
#define ICC_IAR1_EL1 sys_reg(3, 0, 12, 12, 0)
#define ICC_SGI1R_EL1 sys_reg(3, 0, 12, 11, 5)
#define ICC_PMR_EL1 sys_reg(3, 0, 4, 6, 0)
#define ICC_CTLR_EL1 sys_reg(3, 0, 12, 12, 4)
#define ICC_SRE_EL1 sys_reg(3, 0, 12, 12, 5)
#define ICC_GRPEN1_EL1 sys_reg(3, 0, 12, 12, 7)
#define ICC_BPR1_EL1 sys_reg(3, 0, 12, 12, 3)
#define ICC_SRE_EL2 sys_reg(3, 4, 12, 9, 5)
/*
* System register definitions
*/
#define ICH_VSEIR_EL2 sys_reg(3, 4, 12, 9, 4)
#define ICH_HCR_EL2 sys_reg(3, 4, 12, 11, 0)
#define ICH_VTR_EL2 sys_reg(3, 4, 12, 11, 1)
#define ICH_MISR_EL2 sys_reg(3, 4, 12, 11, 2)
#define ICH_EISR_EL2 sys_reg(3, 4, 12, 11, 3)
#define ICH_ELSR_EL2 sys_reg(3, 4, 12, 11, 5)
#define ICH_VMCR_EL2 sys_reg(3, 4, 12, 11, 7)
#define __LR0_EL2(x) sys_reg(3, 4, 12, 12, x)
#define __LR8_EL2(x) sys_reg(3, 4, 12, 13, x)
#define ICH_LR0_EL2 __LR0_EL2(0)
#define ICH_LR1_EL2 __LR0_EL2(1)
#define ICH_LR2_EL2 __LR0_EL2(2)
#define ICH_LR3_EL2 __LR0_EL2(3)
#define ICH_LR4_EL2 __LR0_EL2(4)
#define ICH_LR5_EL2 __LR0_EL2(5)
#define ICH_LR6_EL2 __LR0_EL2(6)
#define ICH_LR7_EL2 __LR0_EL2(7)
#define ICH_LR8_EL2 __LR8_EL2(0)
#define ICH_LR9_EL2 __LR8_EL2(1)
#define ICH_LR10_EL2 __LR8_EL2(2)
#define ICH_LR11_EL2 __LR8_EL2(3)
#define ICH_LR12_EL2 __LR8_EL2(4)
#define ICH_LR13_EL2 __LR8_EL2(5)
#define ICH_LR14_EL2 __LR8_EL2(6)
#define ICH_LR15_EL2 __LR8_EL2(7)
#define __AP0Rx_EL2(x) sys_reg(3, 4, 12, 8, x)
#define ICH_AP0R0_EL2 __AP0Rx_EL2(0)
#define ICH_AP0R1_EL2 __AP0Rx_EL2(1)
#define ICH_AP0R2_EL2 __AP0Rx_EL2(2)
#define ICH_AP0R3_EL2 __AP0Rx_EL2(3)
#define __AP1Rx_EL2(x) sys_reg(3, 4, 12, 9, x)
#define ICH_AP1R0_EL2 __AP1Rx_EL2(0)
#define ICH_AP1R1_EL2 __AP1Rx_EL2(1)
#define ICH_AP1R2_EL2 __AP1Rx_EL2(2)
#define ICH_AP1R3_EL2 __AP1Rx_EL2(3)
#ifndef __ASSEMBLY__
#include <linux/stringify.h>
#include <asm/barrier.h>
#include <asm/cacheflush.h>
#define read_gicreg read_sysreg_s
#define write_gicreg write_sysreg_s
#define read_gicreg(r) read_sysreg_s(SYS_ ## r)
#define write_gicreg(v, r) write_sysreg_s(v, SYS_ ## r)
/*
* Low-level accessors
......@@ -93,13 +38,13 @@
static inline void gic_write_eoir(u32 irq)
{
write_sysreg_s(irq, ICC_EOIR1_EL1);
write_sysreg_s(irq, SYS_ICC_EOIR1_EL1);
isb();
}
static inline void gic_write_dir(u32 irq)
{
write_sysreg_s(irq, ICC_DIR_EL1);
write_sysreg_s(irq, SYS_ICC_DIR_EL1);
isb();
}
......@@ -107,7 +52,7 @@ static inline u64 gic_read_iar_common(void)
{
u64 irqstat;
irqstat = read_sysreg_s(ICC_IAR1_EL1);
irqstat = read_sysreg_s(SYS_ICC_IAR1_EL1);
dsb(sy);
return irqstat;
}
......@@ -124,7 +69,7 @@ static inline u64 gic_read_iar_cavium_thunderx(void)
u64 irqstat;
nops(8);
irqstat = read_sysreg_s(ICC_IAR1_EL1);
irqstat = read_sysreg_s(SYS_ICC_IAR1_EL1);
nops(4);
mb();
......@@ -133,40 +78,40 @@ static inline u64 gic_read_iar_cavium_thunderx(void)
static inline void gic_write_pmr(u32 val)
{
write_sysreg_s(val, ICC_PMR_EL1);
write_sysreg_s(val, SYS_ICC_PMR_EL1);
}
static inline void gic_write_ctlr(u32 val)
{
write_sysreg_s(val, ICC_CTLR_EL1);
write_sysreg_s(val, SYS_ICC_CTLR_EL1);
isb();
}
static inline void gic_write_grpen1(u32 val)
{
write_sysreg_s(val, ICC_GRPEN1_EL1);
write_sysreg_s(val, SYS_ICC_GRPEN1_EL1);
isb();
}
static inline void gic_write_sgi1r(u64 val)
{
write_sysreg_s(val, ICC_SGI1R_EL1);
write_sysreg_s(val, SYS_ICC_SGI1R_EL1);
}
static inline u32 gic_read_sre(void)
{
return read_sysreg_s(ICC_SRE_EL1);
return read_sysreg_s(SYS_ICC_SRE_EL1);
}
static inline void gic_write_sre(u32 val)
{
write_sysreg_s(val, ICC_SRE_EL1);
write_sysreg_s(val, SYS_ICC_SRE_EL1);
isb();
}
static inline void gic_write_bpr1(u32 val)
{
asm volatile("msr_s " __stringify(ICC_BPR1_EL1) ", %0" : : "r" (val));
write_sysreg_s(val, SYS_ICC_BPR1_EL1);
}
#define gic_read_typer(c) readq_relaxed(c)
......
......@@ -28,7 +28,7 @@
#define ARM_EXCEPTION_EL1_SERROR 1
#define ARM_EXCEPTION_TRAP 2
/* The hyp-stub will return this for any kvm_call_hyp() call */
#define ARM_EXCEPTION_HYP_GONE 3
#define ARM_EXCEPTION_HYP_GONE HVC_STUB_ERR
#define KVM_ARM64_DEBUG_DIRTY_SHIFT 0
#define KVM_ARM64_DEBUG_DIRTY (1 << KVM_ARM64_DEBUG_DIRTY_SHIFT)
......@@ -47,7 +47,6 @@ struct kvm_vcpu;
extern char __kvm_hyp_init[];
extern char __kvm_hyp_init_end[];
extern char __kvm_hyp_reset[];
extern char __kvm_hyp_vector[];
......@@ -59,6 +58,8 @@ extern void __kvm_tlb_flush_local_vmid(struct kvm_vcpu *vcpu);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
extern u64 __vgic_v3_get_ich_vtr_el2(void);
extern u64 __vgic_v3_read_vmcr(void);
extern void __vgic_v3_write_vmcr(u32 vmcr);
extern void __vgic_v3_init_lrs(void);
extern u32 __kvm_get_mdcr_el2(void);
......
......@@ -361,13 +361,6 @@ static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr);
}
void __kvm_hyp_teardown(void);
static inline void __cpu_reset_hyp_mode(unsigned long vector_ptr,
phys_addr_t phys_idmap_start)
{
kvm_call_hyp(__kvm_hyp_teardown, phys_idmap_start);
}
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
static inline void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) {}
......
......@@ -155,7 +155,6 @@ void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
phys_addr_t kvm_mmu_get_httbr(void);
phys_addr_t kvm_get_idmap_vector(void);
phys_addr_t kvm_get_idmap_start(void);
int kvm_mmu_init(void);
void kvm_clear_hyp_idmap(void);
......
......@@ -48,6 +48,8 @@
((crn) << CRn_shift) | ((crm) << CRm_shift) | \
((op2) << Op2_shift))
#define sys_insn sys_reg
#define sys_reg_Op0(id) (((id) >> Op0_shift) & Op0_mask)
#define sys_reg_Op1(id) (((id) >> Op1_shift) & Op1_mask)
#define sys_reg_CRn(id) (((id) >> CRn_shift) & CRn_mask)
......@@ -81,6 +83,41 @@
#endif /* CONFIG_BROKEN_GAS_INST */
#define REG_PSTATE_PAN_IMM sys_reg(0, 0, 4, 0, 4)
#define REG_PSTATE_UAO_IMM sys_reg(0, 0, 4, 0, 3)
#define SET_PSTATE_PAN(x) __emit_inst(0xd5000000 | REG_PSTATE_PAN_IMM | \
(!!x)<<8 | 0x1f)
#define SET_PSTATE_UAO(x) __emit_inst(0xd5000000 | REG_PSTATE_UAO_IMM | \
(!!x)<<8 | 0x1f)
#define SYS_DC_ISW sys_insn(1, 0, 7, 6, 2)
#define SYS_DC_CSW sys_insn(1, 0, 7, 10, 2)
#define SYS_DC_CISW sys_insn(1, 0, 7, 14, 2)
#define SYS_OSDTRRX_EL1 sys_reg(2, 0, 0, 0, 2)
#define SYS_MDCCINT_EL1 sys_reg(2, 0, 0, 2, 0)
#define SYS_MDSCR_EL1 sys_reg(2, 0, 0, 2, 2)
#define SYS_OSDTRTX_EL1 sys_reg(2, 0, 0, 3, 2)
#define SYS_OSECCR_EL1 sys_reg(2, 0, 0, 6, 2)
#define SYS_DBGBVRn_EL1(n) sys_reg(2, 0, 0, n, 4)
#define SYS_DBGBCRn_EL1(n) sys_reg(2, 0, 0, n, 5)
#define SYS_DBGWVRn_EL1(n) sys_reg(2, 0, 0, n, 6)
#define SYS_DBGWCRn_EL1(n) sys_reg(2, 0, 0, n, 7)
#define SYS_MDRAR_EL1 sys_reg(2, 0, 1, 0, 0)
#define SYS_OSLAR_EL1 sys_reg(2, 0, 1, 0, 4)
#define SYS_OSLSR_EL1 sys_reg(2, 0, 1, 1, 4)
#define SYS_OSDLR_EL1 sys_reg(2, 0, 1, 3, 4)
#define SYS_DBGPRCR_EL1 sys_reg(2, 0, 1, 4, 4)
#define SYS_DBGCLAIMSET_EL1 sys_reg(2, 0, 7, 8, 6)
#define SYS_DBGCLAIMCLR_EL1 sys_reg(2, 0, 7, 9, 6)
#define SYS_DBGAUTHSTATUS_EL1 sys_reg(2, 0, 7, 14, 6)
#define SYS_MDCCSR_EL0 sys_reg(2, 3, 0, 1, 0)
#define SYS_DBGDTR_EL0 sys_reg(2, 3, 0, 4, 0)
#define SYS_DBGDTRRX_EL0 sys_reg(2, 3, 0, 5, 0)
#define SYS_DBGDTRTX_EL0 sys_reg(2, 3, 0, 5, 0)
#define SYS_DBGVCR32_EL2 sys_reg(2, 4, 0, 7, 0)
#define SYS_MIDR_EL1 sys_reg(3, 0, 0, 0, 0)
#define SYS_MPIDR_EL1 sys_reg(3, 0, 0, 0, 5)
#define SYS_REVIDR_EL1 sys_reg(3, 0, 0, 0, 6)
......@@ -88,6 +125,7 @@
#define SYS_ID_PFR0_EL1 sys_reg(3, 0, 0, 1, 0)
#define SYS_ID_PFR1_EL1 sys_reg(3, 0, 0, 1, 1)
#define SYS_ID_DFR0_EL1 sys_reg(3, 0, 0, 1, 2)
#define SYS_ID_AFR0_EL1 sys_reg(3, 0, 0, 1, 3)
#define SYS_ID_MMFR0_EL1 sys_reg(3, 0, 0, 1, 4)
#define SYS_ID_MMFR1_EL1 sys_reg(3, 0, 0, 1, 5)
#define SYS_ID_MMFR2_EL1 sys_reg(3, 0, 0, 1, 6)
......@@ -118,17 +156,127 @@
#define SYS_ID_AA64MMFR1_EL1 sys_reg(3, 0, 0, 7, 1)
#define SYS_ID_AA64MMFR2_EL1 sys_reg(3, 0, 0, 7, 2)
#define SYS_CNTFRQ_EL0 sys_reg(3, 3, 14, 0, 0)
#define SYS_SCTLR_EL1 sys_reg(3, 0, 1, 0, 0)
#define SYS_ACTLR_EL1 sys_reg(3, 0, 1, 0, 1)
#define SYS_CPACR_EL1 sys_reg(3, 0, 1, 0, 2)
#define SYS_TTBR0_EL1 sys_reg(3, 0, 2, 0, 0)
#define SYS_TTBR1_EL1 sys_reg(3, 0, 2, 0, 1)
#define SYS_TCR_EL1 sys_reg(3, 0, 2, 0, 2)
#define SYS_ICC_PMR_EL1 sys_reg(3, 0, 4, 6, 0)
#define SYS_AFSR0_EL1 sys_reg(3, 0, 5, 1, 0)
#define SYS_AFSR1_EL1 sys_reg(3, 0, 5, 1, 1)
#define SYS_ESR_EL1 sys_reg(3, 0, 5, 2, 0)
#define SYS_FAR_EL1 sys_reg(3, 0, 6, 0, 0)
#define SYS_PAR_EL1 sys_reg(3, 0, 7, 4, 0)
#define SYS_PMINTENSET_EL1 sys_reg(3, 0, 9, 14, 1)
#define SYS_PMINTENCLR_EL1 sys_reg(3, 0, 9, 14, 2)
#define SYS_MAIR_EL1 sys_reg(3, 0, 10, 2, 0)
#define SYS_AMAIR_EL1 sys_reg(3, 0, 10, 3, 0)
#define SYS_VBAR_EL1 sys_reg(3, 0, 12, 0, 0)
#define SYS_ICC_DIR_EL1 sys_reg(3, 0, 12, 11, 1)
#define SYS_ICC_SGI1R_EL1 sys_reg(3, 0, 12, 11, 5)
#define SYS_ICC_IAR1_EL1 sys_reg(3, 0, 12, 12, 0)
#define SYS_ICC_EOIR1_EL1 sys_reg(3, 0, 12, 12, 1)
#define SYS_ICC_BPR1_EL1 sys_reg(3, 0, 12, 12, 3)
#define SYS_ICC_CTLR_EL1 sys_reg(3, 0, 12, 12, 4)
#define SYS_ICC_SRE_EL1 sys_reg(3, 0, 12, 12, 5)
#define SYS_ICC_GRPEN1_EL1 sys_reg(3, 0, 12, 12, 7)
#define SYS_CONTEXTIDR_EL1 sys_reg(3, 0, 13, 0, 1)
#define SYS_TPIDR_EL1 sys_reg(3, 0, 13, 0, 4)
#define SYS_CNTKCTL_EL1 sys_reg(3, 0, 14, 1, 0)
#define SYS_CLIDR_EL1 sys_reg(3, 1, 0, 0, 1)
#define SYS_AIDR_EL1 sys_reg(3, 1, 0, 0, 7)
#define SYS_CSSELR_EL1 sys_reg(3, 2, 0, 0, 0)
#define SYS_CTR_EL0 sys_reg(3, 3, 0, 0, 1)
#define SYS_DCZID_EL0 sys_reg(3, 3, 0, 0, 7)
#define REG_PSTATE_PAN_IMM sys_reg(0, 0, 4, 0, 4)
#define REG_PSTATE_UAO_IMM sys_reg(0, 0, 4, 0, 3)
#define SYS_PMCR_EL0 sys_reg(3, 3, 9, 12, 0)
#define SYS_PMCNTENSET_EL0 sys_reg(3, 3, 9, 12, 1)
#define SYS_PMCNTENCLR_EL0 sys_reg(3, 3, 9, 12, 2)
#define SYS_PMOVSCLR_EL0 sys_reg(3, 3, 9, 12, 3)
#define SYS_PMSWINC_EL0 sys_reg(3, 3, 9, 12, 4)
#define SYS_PMSELR_EL0 sys_reg(3, 3, 9, 12, 5)
#define SYS_PMCEID0_EL0 sys_reg(3, 3, 9, 12, 6)
#define SYS_PMCEID1_EL0 sys_reg(3, 3, 9, 12, 7)
#define SYS_PMCCNTR_EL0 sys_reg(3, 3, 9, 13, 0)
#define SYS_PMXEVTYPER_EL0 sys_reg(3, 3, 9, 13, 1)
#define SYS_PMXEVCNTR_EL0 sys_reg(3, 3, 9, 13, 2)
#define SYS_PMUSERENR_EL0 sys_reg(3, 3, 9, 14, 0)
#define SYS_PMOVSSET_EL0 sys_reg(3, 3, 9, 14, 3)
#define SYS_TPIDR_EL0 sys_reg(3, 3, 13, 0, 2)
#define SYS_TPIDRRO_EL0 sys_reg(3, 3, 13, 0, 3)
#define SET_PSTATE_PAN(x) __emit_inst(0xd5000000 | REG_PSTATE_PAN_IMM | \
(!!x)<<8 | 0x1f)
#define SET_PSTATE_UAO(x) __emit_inst(0xd5000000 | REG_PSTATE_UAO_IMM | \
(!!x)<<8 | 0x1f)
#define SYS_CNTFRQ_EL0 sys_reg(3, 3, 14, 0, 0)
#define SYS_CNTP_TVAL_EL0 sys_reg(3, 3, 14, 2, 0)
#define SYS_CNTP_CTL_EL0 sys_reg(3, 3, 14, 2, 1)
#define SYS_CNTP_CVAL_EL0 sys_reg(3, 3, 14, 2, 2)
#define __PMEV_op2(n) ((n) & 0x7)
#define __CNTR_CRm(n) (0x8 | (((n) >> 3) & 0x3))
#define SYS_PMEVCNTRn_EL0(n) sys_reg(3, 3, 14, __CNTR_CRm(n), __PMEV_op2(n))
#define __TYPER_CRm(n) (0xc | (((n) >> 3) & 0x3))
#define SYS_PMEVTYPERn_EL0(n) sys_reg(3, 3, 14, __TYPER_CRm(n), __PMEV_op2(n))
#define SYS_PMCCFILTR_EL0 sys_reg (3, 3, 14, 15, 7)
#define SYS_DACR32_EL2 sys_reg(3, 4, 3, 0, 0)
#define SYS_IFSR32_EL2 sys_reg(3, 4, 5, 0, 1)
#define SYS_FPEXC32_EL2 sys_reg(3, 4, 5, 3, 0)
#define __SYS__AP0Rx_EL2(x) sys_reg(3, 4, 12, 8, x)
#define SYS_ICH_AP0R0_EL2 __SYS__AP0Rx_EL2(0)
#define SYS_ICH_AP0R1_EL2 __SYS__AP0Rx_EL2(1)
#define SYS_ICH_AP0R2_EL2 __SYS__AP0Rx_EL2(2)
#define SYS_ICH_AP0R3_EL2 __SYS__AP0Rx_EL2(3)
#define __SYS__AP1Rx_EL2(x) sys_reg(3, 4, 12, 9, x)
#define SYS_ICH_AP1R0_EL2 __SYS__AP1Rx_EL2(0)
#define SYS_ICH_AP1R1_EL2 __SYS__AP1Rx_EL2(1)
#define SYS_ICH_AP1R2_EL2 __SYS__AP1Rx_EL2(2)
#define SYS_ICH_AP1R3_EL2 __SYS__AP1Rx_EL2(3)
#define SYS_ICH_VSEIR_EL2 sys_reg(3, 4, 12, 9, 4)
#define SYS_ICC_SRE_EL2 sys_reg(3, 4, 12, 9, 5)
#define SYS_ICH_HCR_EL2 sys_reg(3, 4, 12, 11, 0)
#define SYS_ICH_VTR_EL2 sys_reg(3, 4, 12, 11, 1)
#define SYS_ICH_MISR_EL2 sys_reg(3, 4, 12, 11, 2)
#define SYS_ICH_EISR_EL2 sys_reg(3, 4, 12, 11, 3)
#define SYS_ICH_ELSR_EL2 sys_reg(3, 4, 12, 11, 5)
#define SYS_ICH_VMCR_EL2 sys_reg(3, 4, 12, 11, 7)
#define __SYS__LR0_EL2(x) sys_reg(3, 4, 12, 12, x)
#define SYS_ICH_LR0_EL2 __SYS__LR0_EL2(0)
#define SYS_ICH_LR1_EL2 __SYS__LR0_EL2(1)
#define SYS_ICH_LR2_EL2 __SYS__LR0_EL2(2)
#define SYS_ICH_LR3_EL2 __SYS__LR0_EL2(3)
#define SYS_ICH_LR4_EL2 __SYS__LR0_EL2(4)
#define SYS_ICH_LR5_EL2 __SYS__LR0_EL2(5)
#define SYS_ICH_LR6_EL2 __SYS__LR0_EL2(6)
#define SYS_ICH_LR7_EL2 __SYS__LR0_EL2(7)
#define __SYS__LR8_EL2(x) sys_reg(3, 4, 12, 13, x)
#define SYS_ICH_LR8_EL2 __SYS__LR8_EL2(0)
#define SYS_ICH_LR9_EL2 __SYS__LR8_EL2(1)
#define SYS_ICH_LR10_EL2 __SYS__LR8_EL2(2)
#define SYS_ICH_LR11_EL2 __SYS__LR8_EL2(3)
#define SYS_ICH_LR12_EL2 __SYS__LR8_EL2(4)
#define SYS_ICH_LR13_EL2 __SYS__LR8_EL2(5)
#define SYS_ICH_LR14_EL2 __SYS__LR8_EL2(6)
#define SYS_ICH_LR15_EL2 __SYS__LR8_EL2(7)
/* Common SCTLR_ELx flags. */
#define SCTLR_ELx_EE (1 << 25)
......
......@@ -19,25 +19,38 @@
#define __ASM__VIRT_H
/*
* The arm64 hcall implementation uses x0 to specify the hcall type. A value
* less than 0xfff indicates a special hcall, such as get/set vector.
* Any other value is used as a pointer to the function to call.
* The arm64 hcall implementation uses x0 to specify the hcall
* number. A value less than HVC_STUB_HCALL_NR indicates a special
* hcall, such as set vector. Any other value is handled in a
* hypervisor specific way.
*
* The hypercall is allowed to clobber any of the caller-saved
* registers (x0-x18), so it is advisable to use it through the
* indirection of a function call (as implemented in hyp-stub.S).
*/
/* HVC_GET_VECTORS - Return the value of the vbar_el2 register. */
#define HVC_GET_VECTORS 0
/*
* HVC_SET_VECTORS - Set the value of the vbar_el2 register.
*
* @x1: Physical address of the new vector table.
*/
#define HVC_SET_VECTORS 1
#define HVC_SET_VECTORS 0
/*
* HVC_SOFT_RESTART - CPU soft reset, used by the cpu_soft_restart routine.
*/
#define HVC_SOFT_RESTART 2
#define HVC_SOFT_RESTART 1
/*
* HVC_RESET_VECTORS - Restore the vectors to the original HYP stubs
*/
#define HVC_RESET_VECTORS 2
/* Max number of HYP stub hypercalls */
#define HVC_STUB_HCALL_NR 3
/* Error returned when an invalid stub number is passed into x0 */
#define HVC_STUB_ERR 0xbadca11
#define BOOT_CPU_MODE_EL1 (0xe11)
#define BOOT_CPU_MODE_EL2 (0xe12)
......@@ -61,7 +74,7 @@
extern u32 __boot_cpu_mode[2];
void __hyp_set_vectors(phys_addr_t phys_vector_base);
phys_addr_t __hyp_get_vectors(void);
void __hyp_reset_vectors(void);
/* Reports the availability of HYP mode */
static inline bool is_hyp_mode_available(void)
......
......@@ -145,6 +145,8 @@ struct kvm_debug_exit_arch {
#define KVM_GUESTDBG_USE_HW (1 << 17)
struct kvm_sync_regs {
/* Used with KVM_CAP_ARM_USER_IRQ */
__u64 device_irq_level;
};
struct kvm_arch_memory_slot {
......
......@@ -594,14 +594,14 @@ set_hcr:
cmp x0, #1
b.ne 3f
mrs_s x0, ICC_SRE_EL2
mrs_s x0, SYS_ICC_SRE_EL2
orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1
orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1
msr_s ICC_SRE_EL2, x0
msr_s SYS_ICC_SRE_EL2, x0
isb // Make sure SRE is now set
mrs_s x0, ICC_SRE_EL2 // Read SRE back,
mrs_s x0, SYS_ICC_SRE_EL2 // Read SRE back,
tbz x0, #0, 3f // and check that it sticks
msr_s ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults
msr_s SYS_ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults
3:
#endif
......
......@@ -55,18 +55,7 @@ ENDPROC(__hyp_stub_vectors)
.align 11
el1_sync:
mrs x30, esr_el2
lsr x30, x30, #ESR_ELx_EC_SHIFT
cmp x30, #ESR_ELx_EC_HVC64
b.ne 9f // Not an HVC trap
cmp x0, #HVC_GET_VECTORS
b.ne 1f
mrs x0, vbar_el2
b 9f
1: cmp x0, #HVC_SET_VECTORS
cmp x0, #HVC_SET_VECTORS
b.ne 2f
msr vbar_el2, x1
b 9f
......@@ -79,10 +68,15 @@ el1_sync:
mov x1, x3
br x4 // no return
3: cmp x0, #HVC_RESET_VECTORS
beq 9f // Nothing to reset!
/* Someone called kvm_call_hyp() against the hyp-stub... */
3: mov x0, #ARM_EXCEPTION_HYP_GONE
ldr x0, =HVC_STUB_ERR
eret
9: eret
9: mov x0, xzr
eret
ENDPROC(el1_sync)
.macro invalid_vector label
......@@ -121,19 +115,15 @@ ENDPROC(\label)
* initialisation entry point.
*/
ENTRY(__hyp_get_vectors)
str lr, [sp, #-16]!
mov x0, #HVC_GET_VECTORS
hvc #0
ldr lr, [sp], #16
ret
ENDPROC(__hyp_get_vectors)
ENTRY(__hyp_set_vectors)
str lr, [sp, #-16]!
mov x1, x0
mov x0, #HVC_SET_VECTORS
hvc #0
ldr lr, [sp], #16
ret
ENDPROC(__hyp_set_vectors)
ENTRY(__hyp_reset_vectors)
mov x0, #HVC_RESET_VECTORS
hvc #0
ret
ENDPROC(__hyp_reset_vectors)
......@@ -22,6 +22,7 @@
#include <asm/kvm_mmu.h>
#include <asm/pgtable-hwdef.h>
#include <asm/sysreg.h>
#include <asm/virt.h>
.text
.pushsection .hyp.idmap.text, "ax"
......@@ -58,6 +59,9 @@ __invalid:
* x2: HYP vectors
*/
__do_hyp_init:
/* Check for a stub HVC call */
cmp x0, #HVC_STUB_HCALL_NR
b.lo __kvm_handle_stub_hvc
msr ttbr0_el2, x0
......@@ -119,23 +123,45 @@ __do_hyp_init:
eret
ENDPROC(__kvm_hyp_init)
ENTRY(__kvm_handle_stub_hvc)
cmp x0, #HVC_SOFT_RESTART
b.ne 1f
/* This is where we're about to jump, staying at EL2 */
msr elr_el2, x1
mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT | PSR_MODE_EL2h)
msr spsr_el2, x0
/* Shuffle the arguments, and don't come back */
mov x0, x2
mov x1, x3
mov x2, x4
b reset
1: cmp x0, #HVC_RESET_VECTORS
b.ne 1f
reset:
/*
* Reset kvm back to the hyp stub.
* Reset kvm back to the hyp stub. Do not clobber x0-x4 in
* case we coming via HVC_SOFT_RESTART.
*/
ENTRY(__kvm_hyp_reset)
/* We're now in idmap, disable MMU */
mrs x0, sctlr_el2
ldr x1, =SCTLR_ELx_FLAGS
bic x0, x0, x1 // Clear SCTL_M and etc
msr sctlr_el2, x0
mrs x5, sctlr_el2
ldr x6, =SCTLR_ELx_FLAGS
bic x5, x5, x6 // Clear SCTL_M and etc
msr sctlr_el2, x5
isb
/* Install stub vectors */
adr_l x0, __hyp_stub_vectors
msr vbar_el2, x0
adr_l x5, __hyp_stub_vectors
msr vbar_el2, x5
mov x0, xzr
eret
1: /* Bad stub call */
ldr x0, =HVC_STUB_ERR
eret
ENDPROC(__kvm_hyp_reset)
ENDPROC(__kvm_handle_stub_hvc)
.ltorg
......
......@@ -36,15 +36,12 @@
* passed in x0.
*
* A function pointer with a value less than 0xfff has a special meaning,
* and is used to implement __hyp_get_vectors in the same way as in
* and is used to implement hyp stubs in the same way as in
* arch/arm64/kernel/hyp_stub.S.
* HVC behaves as a 'bl' call and will clobber lr.
*/
ENTRY(__kvm_call_hyp)
alternative_if_not ARM64_HAS_VIRT_HOST_EXTN
str lr, [sp, #-16]!
hvc #0
ldr lr, [sp], #16
ret
alternative_else_nop_endif
b __vhe_hyp_call
......
......@@ -32,17 +32,17 @@
* Shuffle the parameters before calling the function
* pointed to in x0. Assumes parameters in x[1,2,3].
*/
str lr, [sp, #-16]!
mov lr, x0
mov x0, x1
mov x1, x2
mov x2, x3
blr lr
ldr lr, [sp], #16
.endm
ENTRY(__vhe_hyp_call)
str lr, [sp, #-16]!
do_el2_call
ldr lr, [sp], #16
/*
* We used to rely on having an exception return to get
* an implicit isb. In the E2H case, we don't have it anymore.
......@@ -53,21 +53,6 @@ ENTRY(__vhe_hyp_call)
ret
ENDPROC(__vhe_hyp_call)
/*
* Compute the idmap address of __kvm_hyp_reset based on the idmap
* start passed as a parameter, and jump there.
*
* x0: HYP phys_idmap_start
*/
ENTRY(__kvm_hyp_teardown)
mov x4, x0
adr_l x3, __kvm_hyp_reset
/* insert __kvm_hyp_reset()s offset into phys_idmap_start */
bfi x4, x3, #0, #PAGE_SHIFT
br x4
ENDPROC(__kvm_hyp_teardown)
el1_sync: // Guest trapped into EL2
stp x0, x1, [sp, #-16]!
......@@ -87,10 +72,24 @@ alternative_endif
/* Here, we're pretty sure the host called HVC. */
ldp x0, x1, [sp], #16
cmp x0, #HVC_GET_VECTORS
b.ne 1f
mrs x0, vbar_el2
b 2f
/* Check for a stub HVC call */
cmp x0, #HVC_STUB_HCALL_NR
b.hs 1f
/*
* Compute the idmap address of __kvm_handle_stub_hvc and
* jump there. Since we use kimage_voffset, do not use the
* HYP VA for __kvm_handle_stub_hvc, but the kernel VA instead
* (by loading it from the constant pool).
*
* Preserve x0-x4, which may contain stub parameters.
*/
ldr x5, =__kvm_handle_stub_hvc
ldr_l x6, kimage_voffset
/* x5 = __pa(x5) */
sub x5, x5, x6
br x5
1:
/*
......@@ -99,7 +98,7 @@ alternative_endif
kern_hyp_va x0
do_el2_call
2: eret
eret
el1_trap:
/*
......
......@@ -55,6 +55,15 @@
* 64bit interface.
*/
static bool read_from_write_only(struct kvm_vcpu *vcpu,
const struct sys_reg_params *params)
{
WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
print_sys_reg_instr(params);
kvm_inject_undefined(vcpu);
return false;
}
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;
......@@ -460,35 +469,35 @@ static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
vcpu_sys_reg(vcpu, PMCR_EL0) = val;
}
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
if (!enabled)
kvm_inject_undefined(vcpu);
return !enabled;
}
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
}
return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
|| vcpu_mode_priv(vcpu));
static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
}
static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
|| vcpu_mode_priv(vcpu));
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
}
static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
|| vcpu_mode_priv(vcpu));
return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
}
static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
......@@ -567,8 +576,10 @@ static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
kvm_inject_undefined(vcpu);
return false;
}
return true;
}
......@@ -707,8 +718,10 @@ static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (!vcpu_mode_priv(vcpu))
if (!vcpu_mode_priv(vcpu)) {
kvm_inject_undefined(vcpu);
return false;
}
if (p->is_write) {
u64 val = p->regval & mask;
......@@ -759,16 +772,15 @@ static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
if (!kvm_arm_pmu_v3_ready(vcpu))
return trap_raz_wi(vcpu, p, r);
if (!p->is_write)
return read_from_write_only(vcpu, p);
if (pmu_write_swinc_el0_disabled(vcpu))
return false;
if (p->is_write) {
mask = kvm_pmu_valid_counter_mask(vcpu);
kvm_pmu_software_increment(vcpu, p->regval & mask);
return true;
}
return false;
}
static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
......@@ -778,8 +790,10 @@ static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
return trap_raz_wi(vcpu, p, r);
if (p->is_write) {
if (!vcpu_mode_priv(vcpu))
if (!vcpu_mode_priv(vcpu)) {
kvm_inject_undefined(vcpu);
return false;
}
vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
& ARMV8_PMU_USERENR_MASK;
......@@ -793,31 +807,23 @@ static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
/* DBGBVRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
{ SYS_DESC(SYS_DBGBVRn_EL1(n)), \
trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
/* DBGBCRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
{ SYS_DESC(SYS_DBGBCRn_EL1(n)), \
trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
/* DBGWVRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
{ SYS_DESC(SYS_DBGWVRn_EL1(n)), \
trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
/* DBGWCRn_EL1 */ \
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
{ SYS_DESC(SYS_DBGWCRn_EL1(n)), \
trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n) \
/* PMEVCNTRn_EL0 */ \
{ Op0(0b11), Op1(0b011), CRn(0b1110), \
CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n) \
/* PMEVTYPERn_EL0 */ \
{ Op0(0b11), Op1(0b011), CRn(0b1110), \
CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
static bool access_cntp_tval(struct kvm_vcpu *vcpu,
......@@ -887,24 +893,14 @@ static bool access_cntp_cval(struct kvm_vcpu *vcpu,
* more demanding guest...
*/
static const struct sys_reg_desc sys_reg_descs[] = {
/* DC ISW */
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
access_dcsw },
/* DC CSW */
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
access_dcsw },
/* DC CISW */
{ Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
access_dcsw },
{ SYS_DESC(SYS_DC_ISW), access_dcsw },
{ SYS_DESC(SYS_DC_CSW), access_dcsw },
{ SYS_DESC(SYS_DC_CISW), access_dcsw },
DBG_BCR_BVR_WCR_WVR_EL1(0),
DBG_BCR_BVR_WCR_WVR_EL1(1),
/* MDCCINT_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
/* MDSCR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
trap_debug_regs, reset_val, MDSCR_EL1, 0 },
{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
DBG_BCR_BVR_WCR_WVR_EL1(2),
DBG_BCR_BVR_WCR_WVR_EL1(3),
DBG_BCR_BVR_WCR_WVR_EL1(4),
......@@ -920,179 +916,77 @@ static const struct sys_reg_desc sys_reg_descs[] = {
DBG_BCR_BVR_WCR_WVR_EL1(14),
DBG_BCR_BVR_WCR_WVR_EL1(15),
/* MDRAR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
trap_raz_wi },
/* OSLAR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
trap_raz_wi },
/* OSLSR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
trap_oslsr_el1 },
/* OSDLR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
trap_raz_wi },
/* DBGPRCR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
trap_raz_wi },
/* DBGCLAIMSET_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
trap_raz_wi },
/* DBGCLAIMCLR_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
trap_raz_wi },
/* DBGAUTHSTATUS_EL1 */
{ Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
trap_dbgauthstatus_el1 },
/* MDCCSR_EL1 */
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
trap_raz_wi },
/* DBGDTR_EL0 */
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
trap_raz_wi },
/* DBGDTR[TR]X_EL0 */
{ Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
trap_raz_wi },
/* DBGVCR32_EL2 */
{ Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
NULL, reset_val, DBGVCR32_EL2, 0 },
/* MPIDR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
NULL, reset_mpidr, MPIDR_EL1 },
/* SCTLR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
/* CPACR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
NULL, reset_val, CPACR_EL1, 0 },
/* TTBR0_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
access_vm_reg, reset_unknown, TTBR0_EL1 },
/* TTBR1_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
access_vm_reg, reset_unknown, TTBR1_EL1 },
/* TCR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
access_vm_reg, reset_val, TCR_EL1, 0 },
/* AFSR0_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
access_vm_reg, reset_unknown, AFSR0_EL1 },
/* AFSR1_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
access_vm_reg, reset_unknown, AFSR1_EL1 },
/* ESR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
access_vm_reg, reset_unknown, ESR_EL1 },
/* FAR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
access_vm_reg, reset_unknown, FAR_EL1 },
/* PAR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
NULL, reset_unknown, PAR_EL1 },
/* PMINTENSET_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
access_pminten, reset_unknown, PMINTENSET_EL1 },
/* PMINTENCLR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
access_pminten, NULL, PMINTENSET_EL1 },
/* MAIR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
access_vm_reg, reset_unknown, MAIR_EL1 },
/* AMAIR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
access_vm_reg, reset_amair_el1, AMAIR_EL1 },
/* VBAR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
NULL, reset_val, VBAR_EL1, 0 },
/* ICC_SGI1R_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
access_gic_sgi },
/* ICC_SRE_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
access_gic_sre },
/* CONTEXTIDR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
/* TPIDR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
NULL, reset_unknown, TPIDR_EL1 },
/* CNTKCTL_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
NULL, reset_val, CNTKCTL_EL1, 0},
/* CSSELR_EL1 */
{ Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
NULL, reset_unknown, CSSELR_EL1 },
/* PMCR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
access_pmcr, reset_pmcr, },
/* PMCNTENSET_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
/* PMCNTENCLR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
access_pmcnten, NULL, PMCNTENSET_EL0 },
/* PMOVSCLR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
access_pmovs, NULL, PMOVSSET_EL0 },
/* PMSWINC_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
access_pmswinc, reset_unknown, PMSWINC_EL0 },
/* PMSELR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
access_pmselr, reset_unknown, PMSELR_EL0 },
/* PMCEID0_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
access_pmceid },
/* PMCEID1_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
access_pmceid },
/* PMCCNTR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
/* PMXEVTYPER_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
access_pmu_evtyper },
/* PMXEVCNTR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
access_pmu_evcntr },
/* PMUSERENR_EL0
* This register resets as unknown in 64bit mode while it resets as zero
{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
// DBGDTR[TR]X_EL0 share the same encoding
{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
{ SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
/*
* PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency.
*/
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
/* PMOVSSET_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
access_pmovs, reset_unknown, PMOVSSET_EL0 },
/* TPIDR_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
NULL, reset_unknown, TPIDR_EL0 },
/* TPIDRRO_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
NULL, reset_unknown, TPIDRRO_EL0 },
/* CNTP_TVAL_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b000),
access_cntp_tval },
/* CNTP_CTL_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b001),
access_cntp_ctl },
/* CNTP_CVAL_EL0 */
{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b0010), Op2(0b010),
access_cntp_cval },
{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
{ SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
/* PMEVCNTRn_EL0 */
PMU_PMEVCNTR_EL0(0),
......@@ -1158,22 +1052,15 @@ static const struct sys_reg_desc sys_reg_descs[] = {
PMU_PMEVTYPER_EL0(28),
PMU_PMEVTYPER_EL0(29),
PMU_PMEVTYPER_EL0(30),
/* PMCCFILTR_EL0
* This register resets as unknown in 64bit mode while it resets as zero
/*
* PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
* in 32bit mode. Here we choose to reset it as zero for consistency.
*/
{ Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
/* DACR32_EL2 */
{ Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
NULL, reset_unknown, DACR32_EL2 },
/* IFSR32_EL2 */
{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
NULL, reset_unknown, IFSR32_EL2 },
/* FPEXC32_EL2 */
{ Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
NULL, reset_val, FPEXC32_EL2, 0x70 },
{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x70 },
};
static bool trap_dbgidr(struct kvm_vcpu *vcpu,
......@@ -1557,6 +1444,22 @@ int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
return 1;
}
static void perform_access(struct kvm_vcpu *vcpu,
struct sys_reg_params *params,
const struct sys_reg_desc *r)
{
/*
* Not having an accessor means that we have configured a trap
* that we don't know how to handle. This certainly qualifies
* as a gross bug that should be fixed right away.
*/
BUG_ON(!r->access);
/* Skip instruction if instructed so */
if (likely(r->access(vcpu, params, r)))
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
}
/*
* emulate_cp -- tries to match a sys_reg access in a handling table, and
* call the corresponding trap handler.
......@@ -1580,21 +1483,9 @@ static int emulate_cp(struct kvm_vcpu *vcpu,
r = find_reg(params, table, num);
if (r) {
/*
* Not having an accessor means that we have
* configured a trap that we don't know how to
* handle. This certainly qualifies as a gross bug
* that should be fixed right away.
*/
BUG_ON(!r->access);
if (likely(r->access(vcpu, params, r))) {
/* Skip instruction, since it was emulated */
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
/* Handled */
perform_access(vcpu, params, r);
return 0;
}
}
/* Not handled */
return -1;
......@@ -1660,20 +1551,25 @@ static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
}
if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
goto out;
if (!emulate_cp(vcpu, &params, global, nr_global))
goto out;
unhandled_cp_access(vcpu, &params);
out:
/*
* Try to emulate the coprocessor access using the target
* specific table first, and using the global table afterwards.
* If either of the tables contains a handler, handle the
* potential register operation in the case of a read and return
* with success.
*/
if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
!emulate_cp(vcpu, &params, global, nr_global)) {
/* Split up the value between registers for the read side */
if (!params.is_write) {
vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
}
return 1;
}
unhandled_cp_access(vcpu, &params);
return 1;
}
......@@ -1763,26 +1659,13 @@ static int emulate_sys_reg(struct kvm_vcpu *vcpu,
r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
if (likely(r)) {
/*
* Not having an accessor means that we have
* configured a trap that we don't know how to
* handle. This certainly qualifies as a gross bug
* that should be fixed right away.
*/
BUG_ON(!r->access);
if (likely(r->access(vcpu, params, r))) {
/* Skip instruction, since it was emulated */
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
return 1;
}
/* If access function fails, it should complain. */
perform_access(vcpu, params, r);
} else {
kvm_err("Unsupported guest sys_reg access at: %lx\n",
*vcpu_pc(vcpu));
print_sys_reg_instr(params);
}
kvm_inject_undefined(vcpu);
}
return 1;
}
......@@ -1932,44 +1815,25 @@ FUNCTION_INVARIANT(aidr_el1)
/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
NULL, get_midr_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
NULL, get_revidr_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
NULL, get_id_pfr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
NULL, get_id_pfr1_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
NULL, get_id_dfr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
NULL, get_id_afr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
NULL, get_id_mmfr0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
NULL, get_id_mmfr1_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
NULL, get_id_mmfr2_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
NULL, get_id_mmfr3_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
NULL, get_id_isar0_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
NULL, get_id_isar1_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
NULL, get_id_isar2_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
NULL, get_id_isar3_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
NULL, get_id_isar4_el1 },
{ Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
NULL, get_id_isar5_el1 },
{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
NULL, get_clidr_el1 },
{ Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
NULL, get_aidr_el1 },
{ Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
NULL, get_ctr_el0 },
{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
{ SYS_DESC(SYS_ID_PFR0_EL1), NULL, get_id_pfr0_el1 },
{ SYS_DESC(SYS_ID_PFR1_EL1), NULL, get_id_pfr1_el1 },
{ SYS_DESC(SYS_ID_DFR0_EL1), NULL, get_id_dfr0_el1 },
{ SYS_DESC(SYS_ID_AFR0_EL1), NULL, get_id_afr0_el1 },
{ SYS_DESC(SYS_ID_MMFR0_EL1), NULL, get_id_mmfr0_el1 },
{ SYS_DESC(SYS_ID_MMFR1_EL1), NULL, get_id_mmfr1_el1 },
{ SYS_DESC(SYS_ID_MMFR2_EL1), NULL, get_id_mmfr2_el1 },
{ SYS_DESC(SYS_ID_MMFR3_EL1), NULL, get_id_mmfr3_el1 },
{ SYS_DESC(SYS_ID_ISAR0_EL1), NULL, get_id_isar0_el1 },
{ SYS_DESC(SYS_ID_ISAR1_EL1), NULL, get_id_isar1_el1 },
{ SYS_DESC(SYS_ID_ISAR2_EL1), NULL, get_id_isar2_el1 },
{ SYS_DESC(SYS_ID_ISAR3_EL1), NULL, get_id_isar3_el1 },
{ SYS_DESC(SYS_ID_ISAR4_EL1), NULL, get_id_isar4_el1 },
{ SYS_DESC(SYS_ID_ISAR5_EL1), NULL, get_id_isar5_el1 },
{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
};
static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
......
......@@ -83,24 +83,6 @@ static inline bool read_zero(struct kvm_vcpu *vcpu,
return true;
}
static inline bool write_to_read_only(struct kvm_vcpu *vcpu,
const struct sys_reg_params *params)
{
kvm_debug("sys_reg write to read-only register at: %lx\n",
*vcpu_pc(vcpu));
print_sys_reg_instr(params);
return false;
}
static inline bool read_from_write_only(struct kvm_vcpu *vcpu,
const struct sys_reg_params *params)
{
kvm_debug("sys_reg read to write-only register at: %lx\n",
*vcpu_pc(vcpu));
print_sys_reg_instr(params);
return false;
}
/* Reset functions */
static inline void reset_unknown(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *r)
......@@ -147,4 +129,9 @@ const struct sys_reg_desc *find_reg_by_id(u64 id,
#define CRm(_x) .CRm = _x
#define Op2(_x) .Op2 = _x
#define SYS_DESC(reg) \
Op0(sys_reg_Op0(reg)), Op1(sys_reg_Op1(reg)), \
CRn(sys_reg_CRn(reg)), CRm(sys_reg_CRm(reg)), \
Op2(sys_reg_Op2(reg))
#endif /* __ARM64_KVM_SYS_REGS_LOCAL_H__ */
......@@ -52,9 +52,7 @@ static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
* Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
*/
static const struct sys_reg_desc genericv8_sys_regs[] = {
/* ACTLR_EL1 */
{ Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b001),
access_actlr, reset_actlr, ACTLR_EL1 },
{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
};
static const struct sys_reg_desc genericv8_cp15_regs[] = {
......
......@@ -63,6 +63,8 @@ int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu);
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu);
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu);
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu);
void kvm_timer_update_run(struct kvm_vcpu *vcpu);
void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu);
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *, u64 regid);
......
......@@ -50,6 +50,8 @@ void kvm_pmu_enable_counter(struct kvm_vcpu *vcpu, u64 val);
void kvm_pmu_overflow_set(struct kvm_vcpu *vcpu, u64 val);
void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu);
void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu);
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu);
void kvm_pmu_update_run(struct kvm_vcpu *vcpu);
void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val);
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val);
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
......@@ -85,6 +87,11 @@ static inline void kvm_pmu_enable_counter(struct kvm_vcpu *vcpu, u64 val) {}
static inline void kvm_pmu_overflow_set(struct kvm_vcpu *vcpu, u64 val) {}
static inline void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu) {}
static inline void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu) {}
static inline bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
{
return false;
}
static inline void kvm_pmu_update_run(struct kvm_vcpu *vcpu) {}
static inline void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val) {}
static inline void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val) {}
static inline void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu,
......
......@@ -225,8 +225,6 @@ struct vgic_dist {
struct vgic_v2_cpu_if {
u32 vgic_hcr;
u32 vgic_vmcr;
u32 vgic_misr; /* Saved only */
u64 vgic_eisr; /* Saved only */
u64 vgic_elrsr; /* Saved only */
u32 vgic_apr;
u32 vgic_lr[VGIC_V2_MAX_LRS];
......@@ -236,8 +234,6 @@ struct vgic_v3_cpu_if {
u32 vgic_hcr;
u32 vgic_vmcr;
u32 vgic_sre; /* Restored only, change ignored */
u32 vgic_misr; /* Saved only */
u32 vgic_eisr; /* Saved only */
u32 vgic_elrsr; /* Saved only */
u32 vgic_ap0r[4];
u32 vgic_ap1r[4];
......@@ -264,8 +260,6 @@ struct vgic_cpu {
*/
struct list_head ap_list_head;
u64 live_lrs;
/*
* Members below are used with GICv3 emulation only and represent
* parts of the redistributor.
......@@ -306,6 +300,9 @@ bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int virt_irq);
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu);
void kvm_vgic_load(struct kvm_vcpu *vcpu);
void kvm_vgic_put(struct kvm_vcpu *vcpu);
#define irqchip_in_kernel(k) (!!((k)->arch.vgic.in_kernel))
#define vgic_initialized(k) ((k)->arch.vgic.initialized)
#define vgic_ready(k) ((k)->arch.vgic.ready)
......
......@@ -894,6 +894,7 @@ struct kvm_ppc_resize_hpt {
#define KVM_CAP_S390_AIS 141
#define KVM_CAP_SPAPR_TCE_VFIO 142
#define KVM_CAP_X86_GUEST_MWAIT 143
#define KVM_CAP_ARM_USER_IRQ 144
#ifdef KVM_CAP_IRQ_ROUTING
......@@ -1371,4 +1372,11 @@ struct kvm_assigned_msix_entry {
#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
/* Available with KVM_CAP_ARM_USER_IRQ */
/* Bits for run->s.regs.device_irq_level */
#define KVM_ARM_DEV_EL1_VTIMER (1 << 0)
#define KVM_ARM_DEV_EL1_PTIMER (1 << 1)
#define KVM_ARM_DEV_PMU (1 << 2)
#endif /* __LINUX_KVM_H */
......@@ -184,28 +184,47 @@ bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
return cval <= now;
}
/*
* Reflect the timer output level into the kvm_run structure
*/
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
/* Populate the device bitmap with the timer states */
regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
KVM_ARM_DEV_EL1_PTIMER);
if (vtimer->irq.level)
regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
if (ptimer->irq.level)
regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
struct arch_timer_context *timer_ctx)
{
int ret;
BUG_ON(!vgic_initialized(vcpu->kvm));
timer_ctx->active_cleared_last = false;
timer_ctx->irq.level = new_level;
trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
timer_ctx->irq.level);
ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, timer_ctx->irq.irq,
if (likely(irqchip_in_kernel(vcpu->kvm))) {
ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
timer_ctx->irq.irq,
timer_ctx->irq.level);
WARN_ON(ret);
}
}
/*
* Check if there was a change in the timer state (should we raise or lower
* the line level to the GIC).
*/
static int kvm_timer_update_state(struct kvm_vcpu *vcpu)
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
......@@ -217,16 +236,14 @@ static int kvm_timer_update_state(struct kvm_vcpu *vcpu)
* because the guest would never see the interrupt. Instead wait
* until we call this function from kvm_timer_flush_hwstate.
*/
if (!vgic_initialized(vcpu->kvm) || !timer->enabled)
return -ENODEV;
if (unlikely(!timer->enabled))
return;
if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
return 0;
}
/* Schedule the background timer for the emulated timer. */
......@@ -286,25 +303,12 @@ void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
timer_disarm(timer);
}
/**
* kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
* @vcpu: The vcpu pointer
*
* Check if the virtual timer has expired while we were running in the host,
* and inject an interrupt if that was the case.
*/
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
static void kvm_timer_flush_hwstate_vgic(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
bool phys_active;
int ret;
if (kvm_timer_update_state(vcpu))
return;
/* Set the background timer for the physical timer emulation. */
kvm_timer_emulate(vcpu, vcpu_ptimer(vcpu));
/*
* If we enter the guest with the virtual input level to the VGIC
* asserted, then we have already told the VGIC what we need to, and
......@@ -356,11 +360,72 @@ void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
vtimer->active_cleared_last = !phys_active;
}
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
bool vlevel, plevel;
if (likely(irqchip_in_kernel(vcpu->kvm)))
return false;
vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
return vtimer->irq.level != vlevel ||
ptimer->irq.level != plevel;
}
static void kvm_timer_flush_hwstate_user(struct kvm_vcpu *vcpu)
{
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
/*
* To prevent continuously exiting from the guest, we mask the
* physical interrupt such that the guest can make forward progress.
* Once we detect the output level being deasserted, we unmask the
* interrupt again so that we exit from the guest when the timer
* fires.
*/
if (vtimer->irq.level)
disable_percpu_irq(host_vtimer_irq);
else
enable_percpu_irq(host_vtimer_irq, 0);
}
/**
* kvm_timer_flush_hwstate - prepare timers before running the vcpu
* @vcpu: The vcpu pointer
*
* Check if the virtual timer has expired while we were running in the host,
* and inject an interrupt if that was the case, making sure the timer is
* masked or disabled on the host so that we keep executing. Also schedule a
* software timer for the physical timer if it is enabled.
*/
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
if (unlikely(!timer->enabled))
return;
kvm_timer_update_state(vcpu);
/* Set the background timer for the physical timer emulation. */
kvm_timer_emulate(vcpu, vcpu_ptimer(vcpu));
if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
kvm_timer_flush_hwstate_user(vcpu);
else
kvm_timer_flush_hwstate_vgic(vcpu);
}
/**
* kvm_timer_sync_hwstate - sync timer state from cpu
* @vcpu: The vcpu pointer
*
* Check if the virtual timer has expired while we were running in the guest,
* Check if any of the timers have expired while we were running in the guest,
* and inject an interrupt if that was the case.
*/
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
......@@ -560,6 +625,13 @@ int kvm_timer_enable(struct kvm_vcpu *vcpu)
if (timer->enabled)
return 0;
/* Without a VGIC we do not map virtual IRQs to physical IRQs */
if (!irqchip_in_kernel(vcpu->kvm))
goto no_vgic;
if (!vgic_initialized(vcpu->kvm))
return -ENODEV;
/*
* Find the physical IRQ number corresponding to the host_vtimer_irq
*/
......@@ -583,8 +655,8 @@ int kvm_timer_enable(struct kvm_vcpu *vcpu)
if (ret)
return ret;
no_vgic:
timer->enabled = 1;
return 0;
}
......
......@@ -22,49 +22,6 @@
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
static void __hyp_text save_maint_int_state(struct kvm_vcpu *vcpu,
void __iomem *base)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
int nr_lr = (kern_hyp_va(&kvm_vgic_global_state))->nr_lr;
u32 eisr0, eisr1;
int i;
bool expect_mi;
expect_mi = !!(cpu_if->vgic_hcr & GICH_HCR_UIE);
for (i = 0; i < nr_lr; i++) {
if (!(vcpu->arch.vgic_cpu.live_lrs & (1UL << i)))
continue;
expect_mi |= (!(cpu_if->vgic_lr[i] & GICH_LR_HW) &&
(cpu_if->vgic_lr[i] & GICH_LR_EOI));
}
if (expect_mi) {
cpu_if->vgic_misr = readl_relaxed(base + GICH_MISR);
if (cpu_if->vgic_misr & GICH_MISR_EOI) {
eisr0 = readl_relaxed(base + GICH_EISR0);
if (unlikely(nr_lr > 32))
eisr1 = readl_relaxed(base + GICH_EISR1);
else
eisr1 = 0;
} else {
eisr0 = eisr1 = 0;
}
} else {
cpu_if->vgic_misr = 0;
eisr0 = eisr1 = 0;
}
#ifdef CONFIG_CPU_BIG_ENDIAN
cpu_if->vgic_eisr = ((u64)eisr0 << 32) | eisr1;
#else
cpu_if->vgic_eisr = ((u64)eisr1 << 32) | eisr0;
#endif
}
static void __hyp_text save_elrsr(struct kvm_vcpu *vcpu, void __iomem *base)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
......@@ -87,13 +44,10 @@ static void __hyp_text save_elrsr(struct kvm_vcpu *vcpu, void __iomem *base)
static void __hyp_text save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
int nr_lr = (kern_hyp_va(&kvm_vgic_global_state))->nr_lr;
int i;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
for (i = 0; i < nr_lr; i++) {
if (!(vcpu->arch.vgic_cpu.live_lrs & (1UL << i)))
continue;
for (i = 0; i < used_lrs; i++) {
if (cpu_if->vgic_elrsr & (1UL << i))
cpu_if->vgic_lr[i] &= ~GICH_LR_STATE;
else
......@@ -110,26 +64,20 @@ void __hyp_text __vgic_v2_save_state(struct kvm_vcpu *vcpu)
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
struct vgic_dist *vgic = &kvm->arch.vgic;
void __iomem *base = kern_hyp_va(vgic->vctrl_base);
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
if (!base)
return;
cpu_if->vgic_vmcr = readl_relaxed(base + GICH_VMCR);
if (vcpu->arch.vgic_cpu.live_lrs) {
if (used_lrs) {
cpu_if->vgic_apr = readl_relaxed(base + GICH_APR);
save_maint_int_state(vcpu, base);
save_elrsr(vcpu, base);
save_lrs(vcpu, base);
writel_relaxed(0, base + GICH_HCR);
vcpu->arch.vgic_cpu.live_lrs = 0;
} else {
cpu_if->vgic_eisr = 0;
cpu_if->vgic_elrsr = ~0UL;
cpu_if->vgic_misr = 0;
cpu_if->vgic_apr = 0;
}
}
......@@ -141,32 +89,20 @@ void __hyp_text __vgic_v2_restore_state(struct kvm_vcpu *vcpu)
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
struct vgic_dist *vgic = &kvm->arch.vgic;
void __iomem *base = kern_hyp_va(vgic->vctrl_base);
int nr_lr = (kern_hyp_va(&kvm_vgic_global_state))->nr_lr;
int i;
u64 live_lrs = 0;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
if (!base)
return;
for (i = 0; i < nr_lr; i++)
if (cpu_if->vgic_lr[i] & GICH_LR_STATE)
live_lrs |= 1UL << i;
if (live_lrs) {
if (used_lrs) {
writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR);
writel_relaxed(cpu_if->vgic_apr, base + GICH_APR);
for (i = 0; i < nr_lr; i++) {
if (!(live_lrs & (1UL << i)))
continue;
for (i = 0; i < used_lrs; i++) {
writel_relaxed(cpu_if->vgic_lr[i],
base + GICH_LR0 + (i * 4));
}
}
writel_relaxed(cpu_if->vgic_vmcr, base + GICH_VMCR);
vcpu->arch.vgic_cpu.live_lrs = live_lrs;
}
#ifdef CONFIG_ARM64
......
......@@ -118,66 +118,32 @@ static void __hyp_text __gic_v3_set_lr(u64 val, int lr)
}
}
static void __hyp_text save_maint_int_state(struct kvm_vcpu *vcpu, int nr_lr)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
int i;
bool expect_mi;
expect_mi = !!(cpu_if->vgic_hcr & ICH_HCR_UIE);
for (i = 0; i < nr_lr; i++) {
if (!(vcpu->arch.vgic_cpu.live_lrs & (1UL << i)))
continue;
expect_mi |= (!(cpu_if->vgic_lr[i] & ICH_LR_HW) &&
(cpu_if->vgic_lr[i] & ICH_LR_EOI));
}
if (expect_mi) {
cpu_if->vgic_misr = read_gicreg(ICH_MISR_EL2);
if (cpu_if->vgic_misr & ICH_MISR_EOI)
cpu_if->vgic_eisr = read_gicreg(ICH_EISR_EL2);
else
cpu_if->vgic_eisr = 0;
} else {
cpu_if->vgic_misr = 0;
cpu_if->vgic_eisr = 0;
}
}
void __hyp_text __vgic_v3_save_state(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
u64 val;
/*
* Make sure stores to the GIC via the memory mapped interface
* are now visible to the system register interface.
*/
if (!cpu_if->vgic_sre)
if (!cpu_if->vgic_sre) {
dsb(st);
cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
}
if (vcpu->arch.vgic_cpu.live_lrs) {
if (used_lrs) {
int i;
u32 max_lr_idx, nr_pri_bits;
u32 nr_pri_bits;
cpu_if->vgic_elrsr = read_gicreg(ICH_ELSR_EL2);
write_gicreg(0, ICH_HCR_EL2);
val = read_gicreg(ICH_VTR_EL2);
max_lr_idx = vtr_to_max_lr_idx(val);
nr_pri_bits = vtr_to_nr_pri_bits(val);
save_maint_int_state(vcpu, max_lr_idx + 1);
for (i = 0; i <= max_lr_idx; i++) {
if (!(vcpu->arch.vgic_cpu.live_lrs & (1UL << i)))
continue;
for (i = 0; i < used_lrs; i++) {
if (cpu_if->vgic_elrsr & (1 << i))
cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
else
......@@ -205,11 +171,7 @@ void __hyp_text __vgic_v3_save_state(struct kvm_vcpu *vcpu)
default:
cpu_if->vgic_ap1r[0] = read_gicreg(ICH_AP1R0_EL2);
}
vcpu->arch.vgic_cpu.live_lrs = 0;
} else {
cpu_if->vgic_misr = 0;
cpu_if->vgic_eisr = 0;
cpu_if->vgic_elrsr = 0xffff;
cpu_if->vgic_ap0r[0] = 0;
cpu_if->vgic_ap0r[1] = 0;
......@@ -234,9 +196,9 @@ void __hyp_text __vgic_v3_save_state(struct kvm_vcpu *vcpu)
void __hyp_text __vgic_v3_restore_state(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u64 used_lrs = vcpu->arch.vgic_cpu.used_lrs;
u64 val;
u32 max_lr_idx, nr_pri_bits;
u16 live_lrs = 0;
u32 nr_pri_bits;
int i;
/*
......@@ -245,25 +207,19 @@ void __hyp_text __vgic_v3_restore_state(struct kvm_vcpu *vcpu)
* delivered as a FIQ to the guest, with potentially fatal
* consequences. So we must make sure that ICC_SRE_EL1 has
* been actually programmed with the value we want before
* starting to mess with the rest of the GIC.
* starting to mess with the rest of the GIC, and VMCR_EL2 in
* particular.
*/
if (!cpu_if->vgic_sre) {
write_gicreg(0, ICC_SRE_EL1);
isb();
write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
}
val = read_gicreg(ICH_VTR_EL2);
max_lr_idx = vtr_to_max_lr_idx(val);
nr_pri_bits = vtr_to_nr_pri_bits(val);
for (i = 0; i <= max_lr_idx; i++) {
if (cpu_if->vgic_lr[i] & ICH_LR_STATE)
live_lrs |= (1 << i);
}
write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
if (live_lrs) {
if (used_lrs) {
write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
switch (nr_pri_bits) {
......@@ -286,13 +242,9 @@ void __hyp_text __vgic_v3_restore_state(struct kvm_vcpu *vcpu)
write_gicreg(cpu_if->vgic_ap1r[0], ICH_AP1R0_EL2);
}
for (i = 0; i <= max_lr_idx; i++) {
if (!(live_lrs & (1 << i)))
continue;
for (i = 0; i < used_lrs; i++)
__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
}
}
/*
* Ensures that the above will have reached the
......@@ -303,7 +255,6 @@ void __hyp_text __vgic_v3_restore_state(struct kvm_vcpu *vcpu)
isb();
dsb(sy);
}
vcpu->arch.vgic_cpu.live_lrs = live_lrs;
/*
* Prevent the guest from touching the GIC system registers if
......@@ -326,3 +277,13 @@ u64 __hyp_text __vgic_v3_get_ich_vtr_el2(void)
{
return read_gicreg(ICH_VTR_EL2);
}
u64 __hyp_text __vgic_v3_read_vmcr(void)
{
return read_gicreg(ICH_VMCR_EL2);
}
void __hyp_text __vgic_v3_write_vmcr(u32 vmcr)
{
write_gicreg(vmcr, ICH_VMCR_EL2);
}
......@@ -230,13 +230,44 @@ static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
return;
overflow = !!kvm_pmu_overflow_status(vcpu);
if (pmu->irq_level != overflow) {
if (pmu->irq_level == overflow)
return;
pmu->irq_level = overflow;
kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
if (likely(irqchip_in_kernel(vcpu->kvm))) {
int ret;
ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
pmu->irq_num, overflow);
WARN_ON(ret);
}
}
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = &vcpu->arch.pmu;
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
if (likely(irqchip_in_kernel(vcpu->kvm)))
return false;
return pmu->irq_level != run_level;
}
/*
* Reflect the PMU overflow interrupt output level into the kvm_run structure
*/
void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
{
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
/* Populate the timer bitmap for user space */
regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
if (vcpu->arch.pmu.irq_level)
regs->device_irq_level |= KVM_ARM_DEV_PMU;
}
/**
* kvm_pmu_flush_hwstate - flush pmu state to cpu
* @vcpu: The vcpu pointer
......
......@@ -24,7 +24,12 @@
/*
* Initialization rules: there are multiple stages to the vgic
* initialization, both for the distributor and the CPU interfaces.
* initialization, both for the distributor and the CPU interfaces. The basic
* idea is that even though the VGIC is not functional or not requested from
* user space, the critical path of the run loop can still call VGIC functions
* that just won't do anything, without them having to check additional
* initialization flags to ensure they don't look at uninitialized data
* structures.
*
* Distributor:
*
......@@ -39,23 +44,67 @@
*
* CPU Interface:
*
* - kvm_vgic_cpu_early_init(): initialization of static data that
* - kvm_vgic_vcpu_early_init(): initialization of static data that
* doesn't depend on any sizing information or emulation type. No
* allocation is allowed there.
*/
/* EARLY INIT */
/*
* Those 2 functions should not be needed anymore but they
* still are called from arm.c
/**
* kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
* @kvm: The VM whose VGIC districutor should be initialized
*
* Only do initialization of static structures that don't require any
* allocation or sizing information from userspace. vgic_init() called
* kvm_vgic_dist_init() which takes care of the rest.
*/
void kvm_vgic_early_init(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
INIT_LIST_HEAD(&dist->lpi_list_head);
spin_lock_init(&dist->lpi_list_lock);
}
/**
* kvm_vgic_vcpu_early_init() - Initialize static VGIC VCPU data structures
* @vcpu: The VCPU whose VGIC data structures whould be initialized
*
* Only do initialization, but do not actually enable the VGIC CPU interface
* yet.
*/
void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
int i;
INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
spin_lock_init(&vgic_cpu->ap_list_lock);
/*
* Enable and configure all SGIs to be edge-triggered and
* configure all PPIs as level-triggered.
*/
for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
INIT_LIST_HEAD(&irq->ap_list);
spin_lock_init(&irq->irq_lock);
irq->intid = i;
irq->vcpu = NULL;
irq->target_vcpu = vcpu;
irq->targets = 1U << vcpu->vcpu_id;
kref_init(&irq->refcount);
if (vgic_irq_is_sgi(i)) {
/* SGIs */
irq->enabled = 1;
irq->config = VGIC_CONFIG_EDGE;
} else {
/* PPIs */
irq->config = VGIC_CONFIG_LEVEL;
}
}
}
/* CREATION */
......@@ -148,9 +197,6 @@ static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
int i;
INIT_LIST_HEAD(&dist->lpi_list_head);
spin_lock_init(&dist->lpi_list_lock);
dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL);
if (!dist->spis)
return -ENOMEM;
......@@ -181,41 +227,11 @@ static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
}
/**
* kvm_vgic_vcpu_init: initialize the vcpu data structures and
* enable the VCPU interface
* @vcpu: the VCPU which's VGIC should be initialized
* kvm_vgic_vcpu_init() - Enable the VCPU interface
* @vcpu: the VCPU which's VGIC should be enabled
*/
static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
int i;
INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
spin_lock_init(&vgic_cpu->ap_list_lock);
/*
* Enable and configure all SGIs to be edge-triggered and
* configure all PPIs as level-triggered.
*/
for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
INIT_LIST_HEAD(&irq->ap_list);
spin_lock_init(&irq->irq_lock);
irq->intid = i;
irq->vcpu = NULL;
irq->target_vcpu = vcpu;
irq->targets = 1U << vcpu->vcpu_id;
kref_init(&irq->refcount);
if (vgic_irq_is_sgi(i)) {
/* SGIs */
irq->enabled = 1;
irq->config = VGIC_CONFIG_EDGE;
} else {
/* PPIs */
irq->config = VGIC_CONFIG_LEVEL;
}
}
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_enable(vcpu);
else
......@@ -262,6 +278,18 @@ int vgic_init(struct kvm *kvm)
vgic_debug_init(kvm);
dist->initialized = true;
/*
* If we're initializing GICv2 on-demand when first running the VCPU
* then we need to load the VGIC state onto the CPU. We can detect
* this easily by checking if we are in between vcpu_load and vcpu_put
* when we just initialized the VGIC.
*/
preempt_disable();
vcpu = kvm_arm_get_running_vcpu();
if (vcpu)
kvm_vgic_load(vcpu);
preempt_enable();
out:
return ret;
}
......
......@@ -22,59 +22,17 @@
#include "vgic.h"
/*
* Call this function to convert a u64 value to an unsigned long * bitmask
* in a way that works on both 32-bit and 64-bit LE and BE platforms.
*
* Warning: Calling this function may modify *val.
*/
static unsigned long *u64_to_bitmask(u64 *val)
{
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
*val = (*val >> 32) | (*val << 32);
#endif
return (unsigned long *)val;
}
void vgic_v2_process_maintenance(struct kvm_vcpu *vcpu)
void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
if (cpuif->vgic_misr & GICH_MISR_EOI) {
u64 eisr = cpuif->vgic_eisr;
unsigned long *eisr_bmap = u64_to_bitmask(&eisr);
int lr;
for_each_set_bit(lr, eisr_bmap, kvm_vgic_global_state.nr_lr) {
u32 intid = cpuif->vgic_lr[lr] & GICH_LR_VIRTUALID;
WARN_ON(cpuif->vgic_lr[lr] & GICH_LR_STATE);
/* Only SPIs require notification */
if (vgic_valid_spi(vcpu->kvm, intid))
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
}
}
/* check and disable underflow maintenance IRQ */
cpuif->vgic_hcr &= ~GICH_HCR_UIE;
/*
* In the next iterations of the vcpu loop, if we sync the
* vgic state after flushing it, but before entering the guest
* (this happens for pending signals and vmid rollovers), then
* make sure we don't pick up any old maintenance interrupts
* here.
*/
cpuif->vgic_eisr = 0;
cpuif->vgic_hcr |= GICH_HCR_UIE;
}
void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
static bool lr_signals_eoi_mi(u32 lr_val)
{
struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
cpuif->vgic_hcr |= GICH_HCR_UIE;
return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) &&
!(lr_val & GICH_LR_HW);
}
/*
......@@ -86,14 +44,22 @@ void vgic_v2_set_underflow(struct kvm_vcpu *vcpu)
*/
void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2;
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2;
int lr;
for (lr = 0; lr < vcpu->arch.vgic_cpu.used_lrs; lr++) {
cpuif->vgic_hcr &= ~GICH_HCR_UIE;
for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
u32 val = cpuif->vgic_lr[lr];
u32 intid = val & GICH_LR_VIRTUALID;
struct vgic_irq *irq;
/* Notify fds when the guest EOI'ed a level-triggered SPI */
if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
spin_lock(&irq->irq_lock);
......@@ -126,6 +92,8 @@ void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
}
vgic_cpu->used_lrs = 0;
}
/*
......@@ -184,6 +152,7 @@ void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr)
void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
u32 vmcr;
vmcr = (vmcrp->ctlr << GICH_VMCR_CTRL_SHIFT) & GICH_VMCR_CTRL_MASK;
......@@ -194,12 +163,15 @@ void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
vmcr |= (vmcrp->pmr << GICH_VMCR_PRIMASK_SHIFT) &
GICH_VMCR_PRIMASK_MASK;
vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = vmcr;
cpu_if->vgic_vmcr = vmcr;
}
void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
u32 vmcr = vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr;
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
u32 vmcr;
vmcr = cpu_if->vgic_vmcr;
vmcrp->ctlr = (vmcr & GICH_VMCR_CTRL_MASK) >>
GICH_VMCR_CTRL_SHIFT;
......@@ -375,3 +347,19 @@ int vgic_v2_probe(const struct gic_kvm_info *info)
return ret;
}
void vgic_v2_load(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
writel_relaxed(cpu_if->vgic_vmcr, vgic->vctrl_base + GICH_VMCR);
}
void vgic_v2_put(struct kvm_vcpu *vcpu)
{
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
cpu_if->vgic_vmcr = readl_relaxed(vgic->vctrl_base + GICH_VMCR);
}
......@@ -21,59 +21,29 @@
#include "vgic.h"
void vgic_v3_process_maintenance(struct kvm_vcpu *vcpu)
void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
if (cpuif->vgic_misr & ICH_MISR_EOI) {
unsigned long eisr_bmap = cpuif->vgic_eisr;
int lr;
for_each_set_bit(lr, &eisr_bmap, kvm_vgic_global_state.nr_lr) {
u32 intid;
u64 val = cpuif->vgic_lr[lr];
if (model == KVM_DEV_TYPE_ARM_VGIC_V3)
intid = val & ICH_LR_VIRTUAL_ID_MASK;
else
intid = val & GICH_LR_VIRTUALID;
WARN_ON(cpuif->vgic_lr[lr] & ICH_LR_STATE);
/* Only SPIs require notification */
if (vgic_valid_spi(vcpu->kvm, intid))
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
}
/*
* In the next iterations of the vcpu loop, if we sync
* the vgic state after flushing it, but before
* entering the guest (this happens for pending
* signals and vmid rollovers), then make sure we
* don't pick up any old maintenance interrupts here.
*/
cpuif->vgic_eisr = 0;
}
cpuif->vgic_hcr &= ~ICH_HCR_UIE;
cpuif->vgic_hcr |= ICH_HCR_UIE;
}
void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
static bool lr_signals_eoi_mi(u64 lr_val)
{
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
cpuif->vgic_hcr |= ICH_HCR_UIE;
return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
!(lr_val & ICH_LR_HW);
}
void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
int lr;
for (lr = 0; lr < vcpu->arch.vgic_cpu.used_lrs; lr++) {
cpuif->vgic_hcr &= ~ICH_HCR_UIE;
for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
u64 val = cpuif->vgic_lr[lr];
u32 intid;
struct vgic_irq *irq;
......@@ -82,6 +52,12 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
intid = val & ICH_LR_VIRTUAL_ID_MASK;
else
intid = val & GICH_LR_VIRTUALID;
/* Notify fds when the guest EOI'ed a level-triggered IRQ */
if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
if (!irq) /* An LPI could have been unmapped. */
continue;
......@@ -117,6 +93,8 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
}
vgic_cpu->used_lrs = 0;
}
/* Requires the irq to be locked already */
......@@ -173,6 +151,7 @@ void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 vmcr;
/*
......@@ -188,12 +167,15 @@ void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
vcpu->arch.vgic_cpu.vgic_v3.vgic_vmcr = vmcr;
cpu_if->vgic_vmcr = vmcr;
}
void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
u32 vmcr = vcpu->arch.vgic_cpu.vgic_v3.vgic_vmcr;
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 vmcr;
vmcr = cpu_if->vgic_vmcr;
/*
* Ignore the FIQen bit, because GIC emulation always implies
......@@ -386,3 +368,24 @@ int vgic_v3_probe(const struct gic_kvm_info *info)
return 0;
}
void vgic_v3_load(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
* is dependent on ICC_SRE_EL1.SRE, and we have to perform the
* VMCR_EL2 save/restore in the world switch.
*/
if (likely(cpu_if->vgic_sre))
kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
}
void vgic_v3_put(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
if (likely(cpu_if->vgic_sre))
cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr);
}
......@@ -527,14 +527,6 @@ static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
spin_unlock(&vgic_cpu->ap_list_lock);
}
static inline void vgic_process_maintenance_interrupt(struct kvm_vcpu *vcpu)
{
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_process_maintenance(vcpu);
else
vgic_v3_process_maintenance(vcpu);
}
static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
{
if (kvm_vgic_global_state.type == VGIC_V2)
......@@ -601,10 +593,8 @@ static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
if (compute_ap_list_depth(vcpu) > kvm_vgic_global_state.nr_lr) {
vgic_set_underflow(vcpu);
if (compute_ap_list_depth(vcpu) > kvm_vgic_global_state.nr_lr)
vgic_sort_ap_list(vcpu);
}
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
spin_lock(&irq->irq_lock);
......@@ -623,9 +613,13 @@ static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
next:
spin_unlock(&irq->irq_lock);
if (count == kvm_vgic_global_state.nr_lr)
if (count == kvm_vgic_global_state.nr_lr) {
if (!list_is_last(&irq->ap_list,
&vgic_cpu->ap_list_head))
vgic_set_underflow(vcpu);
break;
}
}
vcpu->arch.vgic_cpu.used_lrs = count;
......@@ -637,10 +631,13 @@ static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
/* Sync back the hardware VGIC state into our emulation after a guest's run. */
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
if (unlikely(!vgic_initialized(vcpu->kvm)))
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
/* An empty ap_list_head implies used_lrs == 0 */
if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
return;
vgic_process_maintenance_interrupt(vcpu);
if (vgic_cpu->used_lrs)
vgic_fold_lr_state(vcpu);
vgic_prune_ap_list(vcpu);
}
......@@ -648,7 +645,16 @@ void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
/* Flush our emulation state into the GIC hardware before entering the guest. */
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
if (unlikely(!vgic_initialized(vcpu->kvm)))
/*
* If there are no virtual interrupts active or pending for this
* VCPU, then there is no work to do and we can bail out without
* taking any lock. There is a potential race with someone injecting
* interrupts to the VCPU, but it is a benign race as the VCPU will
* either observe the new interrupt before or after doing this check,
* and introducing additional synchronization mechanism doesn't change
* this.
*/
if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
return;
spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
......@@ -656,6 +662,28 @@ void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
}
void kvm_vgic_load(struct kvm_vcpu *vcpu)
{
if (unlikely(!vgic_initialized(vcpu->kvm)))
return;
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_load(vcpu);
else
vgic_v3_load(vcpu);
}
void kvm_vgic_put(struct kvm_vcpu *vcpu)
{
if (unlikely(!vgic_initialized(vcpu->kvm)))
return;
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_put(vcpu);
else
vgic_v3_put(vcpu);
}
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
......
......@@ -112,7 +112,6 @@ void vgic_kick_vcpus(struct kvm *kvm);
int vgic_check_ioaddr(struct kvm *kvm, phys_addr_t *ioaddr,
phys_addr_t addr, phys_addr_t alignment);
void vgic_v2_process_maintenance(struct kvm_vcpu *vcpu);
void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu);
void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr);
void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr);
......@@ -130,6 +129,9 @@ int vgic_v2_map_resources(struct kvm *kvm);
int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
enum vgic_type);
void vgic_v2_load(struct kvm_vcpu *vcpu);
void vgic_v2_put(struct kvm_vcpu *vcpu);
static inline void vgic_get_irq_kref(struct vgic_irq *irq)
{
if (irq->intid < VGIC_MIN_LPI)
......@@ -138,7 +140,6 @@ static inline void vgic_get_irq_kref(struct vgic_irq *irq)
kref_get(&irq->refcount);
}
void vgic_v3_process_maintenance(struct kvm_vcpu *vcpu);
void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu);
void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr);
void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr);
......@@ -150,6 +151,9 @@ int vgic_v3_probe(const struct gic_kvm_info *info);
int vgic_v3_map_resources(struct kvm *kvm);
int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t dist_base_address);
void vgic_v3_load(struct kvm_vcpu *vcpu);
void vgic_v3_put(struct kvm_vcpu *vcpu);
int vgic_register_its_iodevs(struct kvm *kvm);
bool vgic_has_its(struct kvm *kvm);
int kvm_vgic_register_its_device(void);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment