Commit c2e86691 authored by Tristram Ha's avatar Tristram Ha Committed by David S. Miller

net: dsa: microchip: break KSZ9477 DSA driver into two files

Break KSZ9477 DSA driver into two files in preparation to add more KSZ
switch drivers.
Add common functions in ksz_common.h so that other KSZ switch drivers
can access code in ksz_common.c.
Add ksz_spi.h for common functions used by KSZ switch SPI drivers.
Signed-off-by: default avatarTristram Ha <Tristram.Ha@microchip.com>
Reviewed-by: default avatarWoojung Huh <Woojung.Huh@microchip.com>
Reviewed-by: default avatarPavel Machek <pavel@ucw.cz>
Reviewed-by: default avatarFlorian Fainelli <f.fainelli@gmail.com>
Reviewed-by: default avatarAndrew Lunn <andrew@lunn.ch>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 74a7194f
config NET_DSA_MICROCHIP_KSZ_COMMON
tristate
menuconfig NET_DSA_MICROCHIP_KSZ9477
tristate "Microchip KSZ9477 series switch support"
depends on NET_DSA
select NET_DSA_TAG_KSZ
select NET_DSA_MICROCHIP_KSZ_COMMON
help
This driver adds support for Microchip KSZ9477 switch chips.
......
obj-$(CONFIG_NET_DSA_MICROCHIP_KSZ9477) += ksz_common.o
obj-$(CONFIG_NET_DSA_MICROCHIP_KSZ_COMMON) += ksz_common.o
obj-$(CONFIG_NET_DSA_MICROCHIP_KSZ9477) += ksz9477.o
obj-$(CONFIG_NET_DSA_MICROCHIP_KSZ9477_SPI) += ksz9477_spi.o
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip KSZ9477 switch driver main logic
*
* Copyright (C) 2017-2018 Microchip Technology Inc.
*/
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include "ksz_priv.h"
#include "ksz_common.h"
#include "ksz_9477_reg.h"
static const struct {
int index;
char string[ETH_GSTRING_LEN];
} ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
{ 0x00, "rx_hi" },
{ 0x01, "rx_undersize" },
{ 0x02, "rx_fragments" },
{ 0x03, "rx_oversize" },
{ 0x04, "rx_jabbers" },
{ 0x05, "rx_symbol_err" },
{ 0x06, "rx_crc_err" },
{ 0x07, "rx_align_err" },
{ 0x08, "rx_mac_ctrl" },
{ 0x09, "rx_pause" },
{ 0x0A, "rx_bcast" },
{ 0x0B, "rx_mcast" },
{ 0x0C, "rx_ucast" },
{ 0x0D, "rx_64_or_less" },
{ 0x0E, "rx_65_127" },
{ 0x0F, "rx_128_255" },
{ 0x10, "rx_256_511" },
{ 0x11, "rx_512_1023" },
{ 0x12, "rx_1024_1522" },
{ 0x13, "rx_1523_2000" },
{ 0x14, "rx_2001" },
{ 0x15, "tx_hi" },
{ 0x16, "tx_late_col" },
{ 0x17, "tx_pause" },
{ 0x18, "tx_bcast" },
{ 0x19, "tx_mcast" },
{ 0x1A, "tx_ucast" },
{ 0x1B, "tx_deferred" },
{ 0x1C, "tx_total_col" },
{ 0x1D, "tx_exc_col" },
{ 0x1E, "tx_single_col" },
{ 0x1F, "tx_mult_col" },
{ 0x80, "rx_total" },
{ 0x81, "tx_total" },
{ 0x82, "rx_discards" },
{ 0x83, "tx_discards" },
};
static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
u32 data;
ksz_read32(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write32(dev, addr, data);
}
static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
u32 bits, bool set)
{
u32 addr;
u32 data;
addr = PORT_CTRL_ADDR(port, offset);
ksz_read32(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write32(dev, addr, data);
}
static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton,
int timeout)
{
u8 data;
do {
ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
if (!(data & waiton))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (timeout <= 0)
return -ETIMEDOUT;
return 0;
}
static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
u32 *vlan_table)
{
int ret;
mutex_lock(&dev->vlan_mutex);
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
/* wait to be cleared */
ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read vlan table\n");
goto exit;
}
ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
exit:
mutex_unlock(&dev->vlan_mutex);
return ret;
}
static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
u32 *vlan_table)
{
int ret;
mutex_lock(&dev->vlan_mutex);
ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
/* wait to be cleared */
ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to write vlan table\n");
goto exit;
}
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
/* update vlan cache table */
dev->vlan_cache[vid].table[0] = vlan_table[0];
dev->vlan_cache[vid].table[1] = vlan_table[1];
dev->vlan_cache[vid].table[2] = vlan_table[2];
exit:
mutex_unlock(&dev->vlan_mutex);
return ret;
}
static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
{
ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}
static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
{
ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}
static int ksz9477_wait_alu_ready(struct ksz_device *dev, u32 waiton,
int timeout)
{
u32 data;
do {
ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
if (!(data & waiton))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (timeout <= 0)
return -ETIMEDOUT;
return 0;
}
static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev, u32 waiton,
int timeout)
{
u32 data;
do {
ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
if (!(data & waiton))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (timeout <= 0)
return -ETIMEDOUT;
return 0;
}
static int ksz9477_reset_switch(struct ksz_device *dev)
{
u8 data8;
u16 data16;
u32 data32;
/* reset switch */
ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
/* turn off SPI DO Edge select */
ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
data8 &= ~SPI_AUTO_EDGE_DETECTION;
ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
/* default configuration */
ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
/* disable interrupts */
ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
/* set broadcast storm protection 10% rate */
ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
data16 &= ~BROADCAST_STORM_RATE;
data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
return 0;
}
static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
int port)
{
return DSA_TAG_PROTO_KSZ;
}
static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
{
struct ksz_device *dev = ds->priv;
u16 val = 0xffff;
/* No real PHY after this. Simulate the PHY.
* A fixed PHY can be setup in the device tree, but this function is
* still called for that port during initialization.
* For RGMII PHY there is no way to access it so the fixed PHY should
* be used. For SGMII PHY the supporting code will be added later.
*/
if (addr >= dev->phy_port_cnt) {
struct ksz_port *p = &dev->ports[addr];
switch (reg) {
case MII_BMCR:
val = 0x1140;
break;
case MII_BMSR:
val = 0x796d;
break;
case MII_PHYSID1:
val = 0x0022;
break;
case MII_PHYSID2:
val = 0x1631;
break;
case MII_ADVERTISE:
val = 0x05e1;
break;
case MII_LPA:
val = 0xc5e1;
break;
case MII_CTRL1000:
val = 0x0700;
break;
case MII_STAT1000:
if (p->phydev.speed == SPEED_1000)
val = 0x3800;
else
val = 0;
break;
}
} else {
ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
}
return val;
}
static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
u16 val)
{
struct ksz_device *dev = ds->priv;
/* No real PHY after this. */
if (addr >= dev->phy_port_cnt)
return 0;
ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
return 0;
}
static void ksz9477_get_strings(struct dsa_switch *ds, int port,
u32 stringset, uint8_t *buf)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
ETH_GSTRING_LEN);
}
}
static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *buf)
{
struct ksz_device *dev = ds->priv;
int i;
u32 data;
int timeout;
mutex_lock(&dev->stats_mutex);
for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
data = MIB_COUNTER_READ;
data |= ((ksz9477_mib_names[i].index & 0xFF) <<
MIB_COUNTER_INDEX_S);
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
timeout = 1000;
do {
ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
&data);
usleep_range(1, 10);
if (!(data & MIB_COUNTER_READ))
break;
} while (timeout-- > 0);
/* failed to read MIB. get out of loop */
if (!timeout) {
dev_dbg(dev->dev, "Failed to get MIB\n");
break;
}
/* count resets upon read */
ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
dev->mib_value[i] += (uint64_t)data;
buf[i] = dev->mib_value[i];
}
mutex_unlock(&dev->stats_mutex);
}
static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
u8 member)
{
ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
dev->ports[port].member = member;
}
static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p = &dev->ports[port];
u8 data;
int member = -1;
ksz_pread8(dev, port, P_STP_CTRL, &data);
data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
switch (state) {
case BR_STATE_DISABLED:
data |= PORT_LEARN_DISABLE;
if (port != dev->cpu_port)
member = 0;
break;
case BR_STATE_LISTENING:
data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
if (port != dev->cpu_port &&
p->stp_state == BR_STATE_DISABLED)
member = dev->host_mask | p->vid_member;
break;
case BR_STATE_LEARNING:
data |= PORT_RX_ENABLE;
break;
case BR_STATE_FORWARDING:
data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
/* This function is also used internally. */
if (port == dev->cpu_port)
break;
member = dev->host_mask | p->vid_member;
/* Port is a member of a bridge. */
if (dev->br_member & (1 << port)) {
dev->member |= (1 << port);
member = dev->member;
}
break;
case BR_STATE_BLOCKING:
data |= PORT_LEARN_DISABLE;
if (port != dev->cpu_port &&
p->stp_state == BR_STATE_DISABLED)
member = dev->host_mask | p->vid_member;
break;
default:
dev_err(ds->dev, "invalid STP state: %d\n", state);
return;
}
ksz_pwrite8(dev, port, P_STP_CTRL, data);
p->stp_state = state;
if (data & PORT_RX_ENABLE)
dev->rx_ports |= (1 << port);
else
dev->rx_ports &= ~(1 << port);
if (data & PORT_TX_ENABLE)
dev->tx_ports |= (1 << port);
else
dev->tx_ports &= ~(1 << port);
/* Port membership may share register with STP state. */
if (member >= 0 && member != p->member)
ksz9477_cfg_port_member(dev, port, (u8)member);
/* Check if forwarding needs to be updated. */
if (state != BR_STATE_FORWARDING) {
if (dev->br_member & (1 << port))
dev->member &= ~(1 << port);
}
/* When topology has changed the function ksz_update_port_member
* should be called to modify port forwarding behavior. However
* as the offload_fwd_mark indication cannot be reported here
* the switch forwarding function is not enabled.
*/
}
static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
{
u8 data;
ksz_read8(dev, REG_SW_LUE_CTRL_2, &data);
data &= ~(SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S);
data |= (SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
ksz_write8(dev, REG_SW_LUE_CTRL_2, data);
if (port < dev->mib_port_cnt) {
/* flush individual port */
ksz_pread8(dev, port, P_STP_CTRL, &data);
if (!(data & PORT_LEARN_DISABLE))
ksz_pwrite8(dev, port, P_STP_CTRL,
data | PORT_LEARN_DISABLE);
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
ksz_pwrite8(dev, port, P_STP_CTRL, data);
} else {
/* flush all */
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
}
}
static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
bool flag)
{
struct ksz_device *dev = ds->priv;
if (flag) {
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
PORT_VLAN_LOOKUP_VID_0, true);
ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
true);
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
} else {
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
false);
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
PORT_VLAN_LOOKUP_VID_0, false);
}
return 0;
}
static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct ksz_device *dev = ds->priv;
u32 vlan_table[3];
u16 vid;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to get vlan table\n");
return;
}
vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
if (untagged)
vlan_table[1] |= BIT(port);
else
vlan_table[1] &= ~BIT(port);
vlan_table[1] &= ~(BIT(dev->cpu_port));
vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to set vlan table\n");
return;
}
/* change PVID */
if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
}
}
static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct ksz_device *dev = ds->priv;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
u32 vlan_table[3];
u16 vid;
u16 pvid;
ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
pvid = pvid & 0xFFF;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to get vlan table\n");
return -ETIMEDOUT;
}
vlan_table[2] &= ~BIT(port);
if (pvid == vid)
pvid = 1;
if (untagged)
vlan_table[1] &= ~BIT(port);
if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to set vlan table\n");
return -ETIMEDOUT;
}
}
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
return 0;
}
static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct ksz_device *dev = ds->priv;
u32 alu_table[4];
u32 data;
int ret = 0;
mutex_lock(&dev->alu_mutex);
/* find any entry with mac & vid */
data = vid << ALU_FID_INDEX_S;
data |= ((addr[0] << 8) | addr[1]);
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
data = ((addr[2] << 24) | (addr[3] << 16));
data |= ((addr[4] << 8) | addr[5]);
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
/* start read operation */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read ALU\n");
goto exit;
}
/* read ALU entry */
ksz9477_read_table(dev, alu_table);
/* update ALU entry */
alu_table[0] = ALU_V_STATIC_VALID;
alu_table[1] |= BIT(port);
if (vid)
alu_table[1] |= ALU_V_USE_FID;
alu_table[2] = (vid << ALU_V_FID_S);
alu_table[2] |= ((addr[0] << 8) | addr[1]);
alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
alu_table[3] |= ((addr[4] << 8) | addr[5]);
ksz9477_write_table(dev, alu_table);
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0)
dev_dbg(dev->dev, "Failed to write ALU\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct ksz_device *dev = ds->priv;
u32 alu_table[4];
u32 data;
int ret = 0;
mutex_lock(&dev->alu_mutex);
/* read any entry with mac & vid */
data = vid << ALU_FID_INDEX_S;
data |= ((addr[0] << 8) | addr[1]);
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
data = ((addr[2] << 24) | (addr[3] << 16));
data |= ((addr[4] << 8) | addr[5]);
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
/* start read operation */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read ALU\n");
goto exit;
}
ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
if (alu_table[0] & ALU_V_STATIC_VALID) {
ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
/* clear forwarding port */
alu_table[2] &= ~BIT(port);
/* if there is no port to forward, clear table */
if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
alu_table[0] = 0;
alu_table[1] = 0;
alu_table[2] = 0;
alu_table[3] = 0;
}
} else {
alu_table[0] = 0;
alu_table[1] = 0;
alu_table[2] = 0;
alu_table[3] = 0;
}
ksz9477_write_table(dev, alu_table);
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0)
dev_dbg(dev->dev, "Failed to write ALU\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
{
alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
ALU_V_PRIO_AGE_CNT_M;
alu->mstp = alu_table[0] & ALU_V_MSTP_M;
alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
alu->mac[1] = alu_table[2] & 0xFF;
alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
alu->mac[5] = alu_table[3] & 0xFF;
}
static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct ksz_device *dev = ds->priv;
int ret = 0;
u32 ksz_data;
u32 alu_table[4];
struct alu_struct alu;
int timeout;
mutex_lock(&dev->alu_mutex);
/* start ALU search */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
do {
timeout = 1000;
do {
ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (!timeout) {
dev_dbg(dev->dev, "Failed to search ALU\n");
ret = -ETIMEDOUT;
goto exit;
}
/* read ALU table */
ksz9477_read_table(dev, alu_table);
ksz9477_convert_alu(&alu, alu_table);
if (alu.port_forward & BIT(port)) {
ret = cb(alu.mac, alu.fid, alu.is_static, data);
if (ret)
goto exit;
}
} while (ksz_data & ALU_START);
exit:
/* stop ALU search */
ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
mutex_unlock(&dev->alu_mutex);
return ret;
}
static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct ksz_device *dev = ds->priv;
u32 static_table[4];
u32 data;
int index;
u32 mac_hi, mac_lo;
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
mutex_lock(&dev->alu_mutex);
for (index = 0; index < dev->num_statics; index++) {
/* find empty slot first */
data = (index << ALU_STAT_INDEX_S) |
ALU_STAT_READ | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
goto exit;
}
/* read ALU static table */
ksz9477_read_table(dev, static_table);
if (static_table[0] & ALU_V_STATIC_VALID) {
/* check this has same vid & mac address */
if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
static_table[3] == mac_lo) {
/* found matching one */
break;
}
} else {
/* found empty one */
break;
}
}
/* no available entry */
if (index == dev->num_statics)
goto exit;
/* add entry */
static_table[0] = ALU_V_STATIC_VALID;
static_table[1] |= BIT(port);
if (mdb->vid)
static_table[1] |= ALU_V_USE_FID;
static_table[2] = (mdb->vid << ALU_V_FID_S);
static_table[2] |= mac_hi;
static_table[3] = mac_lo;
ksz9477_write_table(dev, static_table);
data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
exit:
mutex_unlock(&dev->alu_mutex);
}
static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct ksz_device *dev = ds->priv;
u32 static_table[4];
u32 data;
int index;
int ret = 0;
u32 mac_hi, mac_lo;
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
mutex_lock(&dev->alu_mutex);
for (index = 0; index < dev->num_statics; index++) {
/* find empty slot first */
data = (index << ALU_STAT_INDEX_S) |
ALU_STAT_READ | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
goto exit;
}
/* read ALU static table */
ksz9477_read_table(dev, static_table);
if (static_table[0] & ALU_V_STATIC_VALID) {
/* check this has same vid & mac address */
if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
static_table[3] == mac_lo) {
/* found matching one */
break;
}
}
}
/* no available entry */
if (index == dev->num_statics)
goto exit;
/* clear port */
static_table[1] &= ~BIT(port);
if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
/* delete entry */
static_table[0] = 0;
static_table[1] = 0;
static_table[2] = 0;
static_table[3] = 0;
}
ksz9477_write_table(dev, static_table);
data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
if (ret < 0)
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress)
{
struct ksz_device *dev = ds->priv;
if (ingress)
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
else
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
/* configure mirror port */
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, true);
ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
return 0;
}
static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
struct ksz_device *dev = ds->priv;
u8 data;
if (mirror->ingress)
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
else
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, false);
}
static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
u8 data8;
u8 member;
u16 data16;
struct ksz_port *p = &dev->ports[port];
/* enable tag tail for host port */
if (cpu_port)
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
true);
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
/* set back pressure */
ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
/* enable broadcast storm limit */
ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
/* disable DiffServ priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
/* replace priority */
ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
false);
ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
MTI_PVID_REPLACE, false);
/* enable 802.1p priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
if (port < dev->phy_port_cnt) {
/* do not force flow control */
ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
false);
} else {
/* force flow control */
ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
true);
/* configure MAC to 1G & RGMII mode */
ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
data8 &= ~PORT_MII_NOT_1GBIT;
data8 &= ~PORT_MII_SEL_M;
switch (dev->interface) {
case PHY_INTERFACE_MODE_MII:
data8 |= PORT_MII_NOT_1GBIT;
data8 |= PORT_MII_SEL;
p->phydev.speed = SPEED_100;
break;
case PHY_INTERFACE_MODE_RMII:
data8 |= PORT_MII_NOT_1GBIT;
data8 |= PORT_RMII_SEL;
p->phydev.speed = SPEED_100;
break;
case PHY_INTERFACE_MODE_GMII:
data8 |= PORT_GMII_SEL;
p->phydev.speed = SPEED_1000;
break;
default:
data8 &= ~PORT_RGMII_ID_IG_ENABLE;
data8 &= ~PORT_RGMII_ID_EG_ENABLE;
if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
data8 |= PORT_RGMII_ID_IG_ENABLE;
if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
data8 |= PORT_RGMII_ID_EG_ENABLE;
data8 |= PORT_RGMII_SEL;
p->phydev.speed = SPEED_1000;
break;
}
ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
p->phydev.duplex = 1;
}
if (cpu_port) {
member = dev->port_mask;
dev->on_ports = dev->host_mask;
dev->live_ports = dev->host_mask;
} else {
member = dev->host_mask | p->vid_member;
dev->on_ports |= (1 << port);
/* Link was detected before port is enabled. */
if (p->phydev.link)
dev->live_ports |= (1 << port);
}
ksz9477_cfg_port_member(dev, port, member);
/* clear pending interrupts */
if (port < dev->phy_port_cnt)
ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}
static void ksz9477_config_cpu_port(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p;
int i;
ds->num_ports = dev->port_cnt;
for (i = 0; i < dev->port_cnt; i++) {
if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
dev->cpu_port = i;
dev->host_mask = (1 << dev->cpu_port);
dev->port_mask |= dev->host_mask;
/* enable cpu port */
ksz9477_port_setup(dev, i, true);
p = &dev->ports[dev->cpu_port];
p->vid_member = dev->port_mask;
p->on = 1;
}
}
dev->member = dev->host_mask;
for (i = 0; i < dev->mib_port_cnt; i++) {
if (i == dev->cpu_port)
continue;
p = &dev->ports[i];
/* Initialize to non-zero so that ksz_cfg_port_member() will
* be called.
*/
p->vid_member = (1 << i);
p->member = dev->port_mask;
ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
p->on = 1;
if (i < dev->phy_port_cnt)
p->phy = 1;
if (dev->chip_id == 0x00947700 && i == 6) {
p->sgmii = 1;
/* SGMII PHY detection code is not implemented yet. */
p->phy = 0;
}
}
}
static int ksz9477_setup(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
int ret = 0;
dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
dev->num_vlans, GFP_KERNEL);
if (!dev->vlan_cache)
return -ENOMEM;
ret = ksz9477_reset_switch(dev);
if (ret) {
dev_err(ds->dev, "failed to reset switch\n");
return ret;
}
/* accept packet up to 2000bytes */
ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
ksz9477_config_cpu_port(ds);
ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
/* queue based egress rate limit */
ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
/* start switch */
ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
return 0;
}
static const struct dsa_switch_ops ksz9477_switch_ops = {
.get_tag_protocol = ksz9477_get_tag_protocol,
.setup = ksz9477_setup,
.phy_read = ksz9477_phy_read16,
.phy_write = ksz9477_phy_write16,
.port_enable = ksz_enable_port,
.port_disable = ksz_disable_port,
.get_strings = ksz9477_get_strings,
.get_ethtool_stats = ksz_get_ethtool_stats,
.get_sset_count = ksz_sset_count,
.port_bridge_join = ksz_port_bridge_join,
.port_bridge_leave = ksz_port_bridge_leave,
.port_stp_state_set = ksz9477_port_stp_state_set,
.port_fast_age = ksz_port_fast_age,
.port_vlan_filtering = ksz9477_port_vlan_filtering,
.port_vlan_prepare = ksz_port_vlan_prepare,
.port_vlan_add = ksz9477_port_vlan_add,
.port_vlan_del = ksz9477_port_vlan_del,
.port_fdb_dump = ksz9477_port_fdb_dump,
.port_fdb_add = ksz9477_port_fdb_add,
.port_fdb_del = ksz9477_port_fdb_del,
.port_mdb_prepare = ksz_port_mdb_prepare,
.port_mdb_add = ksz9477_port_mdb_add,
.port_mdb_del = ksz9477_port_mdb_del,
.port_mirror_add = ksz9477_port_mirror_add,
.port_mirror_del = ksz9477_port_mirror_del,
};
static u32 ksz9477_get_port_addr(int port, int offset)
{
return PORT_CTRL_ADDR(port, offset);
}
static int ksz9477_switch_detect(struct ksz_device *dev)
{
u8 data8;
u32 id32;
int ret;
/* turn off SPI DO Edge select */
ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
if (ret)
return ret;
data8 &= ~SPI_AUTO_EDGE_DETECTION;
ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
if (ret)
return ret;
/* read chip id */
ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
if (ret)
return ret;
/* Number of ports can be reduced depending on chip. */
dev->mib_port_cnt = TOTAL_PORT_NUM;
dev->phy_port_cnt = 5;
dev->chip_id = id32;
return 0;
}
struct ksz_chip_data {
u32 chip_id;
const char *dev_name;
int num_vlans;
int num_alus;
int num_statics;
int cpu_ports;
int port_cnt;
};
static const struct ksz_chip_data ksz9477_switch_chips[] = {
{
.chip_id = 0x00947700,
.dev_name = "KSZ9477",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
},
{
.chip_id = 0x00989700,
.dev_name = "KSZ9897",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
},
};
static int ksz9477_switch_init(struct ksz_device *dev)
{
int i;
dev->ds->ops = &ksz9477_switch_ops;
for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
if (dev->chip_id == chip->chip_id) {
dev->name = chip->dev_name;
dev->num_vlans = chip->num_vlans;
dev->num_alus = chip->num_alus;
dev->num_statics = chip->num_statics;
dev->port_cnt = chip->port_cnt;
dev->cpu_ports = chip->cpu_ports;
break;
}
}
/* no switch found */
if (!dev->port_cnt)
return -ENODEV;
dev->port_mask = (1 << dev->port_cnt) - 1;
dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
i = dev->mib_port_cnt;
dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
GFP_KERNEL);
if (!dev->ports)
return -ENOMEM;
for (i = 0; i < dev->mib_port_cnt; i++) {
dev->ports[i].mib.counters =
devm_kzalloc(dev->dev,
sizeof(u64) *
(TOTAL_SWITCH_COUNTER_NUM + 1),
GFP_KERNEL);
if (!dev->ports[i].mib.counters)
return -ENOMEM;
}
dev->interface = PHY_INTERFACE_MODE_RGMII_TXID;
return 0;
}
static void ksz9477_switch_exit(struct ksz_device *dev)
{
ksz9477_reset_switch(dev);
}
static const struct ksz_dev_ops ksz9477_dev_ops = {
.get_port_addr = ksz9477_get_port_addr,
.cfg_port_member = ksz9477_cfg_port_member,
.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
.port_setup = ksz9477_port_setup,
.shutdown = ksz9477_reset_switch,
.detect = ksz9477_switch_detect,
.init = ksz9477_switch_init,
.exit = ksz9477_switch_exit,
};
int ksz9477_switch_register(struct ksz_device *dev)
{
return ksz_switch_register(dev, &ksz9477_dev_ops);
}
EXPORT_SYMBOL(ksz9477_switch_register);
MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip KSZ series register access through SPI
* Microchip KSZ9477 series register access through SPI
*
* Copyright (C) 2017-2018 Microchip Technology Inc.
*/
......@@ -13,6 +13,7 @@
#include <linux/spi/spi.h>
#include "ksz_priv.h"
#include "ksz_spi.h"
/* SPI frame opcodes */
#define KS_SPIOP_RD 3
......@@ -22,8 +23,11 @@
#define SPI_ADDR_MASK (BIT(SPI_ADDR_SHIFT) - 1)
#define SPI_TURNAROUND_SHIFT 5
static int ksz_spi_read_reg(struct spi_device *spi, u32 reg, u8 *val,
unsigned int len)
/* Enough to read all switch port registers. */
#define SPI_TX_BUF_LEN 0x100
static int ksz9477_spi_read_reg(struct spi_device *spi, u32 reg, u8 *val,
unsigned int len)
{
u32 txbuf;
int ret;
......@@ -37,27 +41,36 @@ static int ksz_spi_read_reg(struct spi_device *spi, u32 reg, u8 *val,
return ret;
}
static int ksz_spi_read(struct ksz_device *dev, u32 reg, u8 *data,
unsigned int len)
static int ksz9477_spi_write_reg(struct spi_device *spi, u32 reg, u8 *val,
unsigned int len)
{
struct spi_device *spi = dev->priv;
u32 *txbuf = (u32 *)val;
return ksz_spi_read_reg(spi, reg, data, len);
*txbuf = reg & SPI_ADDR_MASK;
*txbuf |= (KS_SPIOP_WR << SPI_ADDR_SHIFT);
*txbuf <<= SPI_TURNAROUND_SHIFT;
*txbuf = cpu_to_be32(*txbuf);
return spi_write(spi, txbuf, 4 + len);
}
static int ksz_spi_read8(struct ksz_device *dev, u32 reg, u8 *val)
static int ksz_spi_read(struct ksz_device *dev, u32 reg, u8 *data,
unsigned int len)
{
return ksz_spi_read(dev, reg, val, 1);
struct spi_device *spi = dev->priv;
return ksz9477_spi_read_reg(spi, reg, data, len);
}
static int ksz_spi_read16(struct ksz_device *dev, u32 reg, u16 *val)
static int ksz_spi_write(struct ksz_device *dev, u32 reg, void *data,
unsigned int len)
{
int ret = ksz_spi_read(dev, reg, (u8 *)val, 2);
if (!ret)
*val = be16_to_cpu(*val);
struct spi_device *spi = dev->priv;
return ret;
if (len > SPI_TX_BUF_LEN)
len = SPI_TX_BUF_LEN;
memcpy(&dev->txbuf[4], data, len);
return ksz9477_spi_write_reg(spi, reg, dev->txbuf, len);
}
static int ksz_spi_read24(struct ksz_device *dev, u32 reg, u32 *val)
......@@ -75,72 +88,15 @@ static int ksz_spi_read24(struct ksz_device *dev, u32 reg, u32 *val)
return ret;
}
static int ksz_spi_read32(struct ksz_device *dev, u32 reg, u32 *val)
{
int ret = ksz_spi_read(dev, reg, (u8 *)val, 4);
if (!ret)
*val = be32_to_cpu(*val);
return ret;
}
static int ksz_spi_write_reg(struct spi_device *spi, u32 reg, u8 *val,
unsigned int len)
{
u32 txbuf;
u8 data[12];
int i;
txbuf = reg & SPI_ADDR_MASK;
txbuf |= (KS_SPIOP_WR << SPI_ADDR_SHIFT);
txbuf <<= SPI_TURNAROUND_SHIFT;
txbuf = cpu_to_be32(txbuf);
data[0] = txbuf & 0xFF;
data[1] = (txbuf & 0xFF00) >> 8;
data[2] = (txbuf & 0xFF0000) >> 16;
data[3] = (txbuf & 0xFF000000) >> 24;
for (i = 0; i < len; i++)
data[i + 4] = val[i];
return spi_write(spi, &data, 4 + len);
}
static int ksz_spi_write8(struct ksz_device *dev, u32 reg, u8 value)
{
struct spi_device *spi = dev->priv;
return ksz_spi_write_reg(spi, reg, &value, 1);
}
static int ksz_spi_write16(struct ksz_device *dev, u32 reg, u16 value)
{
struct spi_device *spi = dev->priv;
value = cpu_to_be16(value);
return ksz_spi_write_reg(spi, reg, (u8 *)&value, 2);
}
static int ksz_spi_write24(struct ksz_device *dev, u32 reg, u32 value)
{
struct spi_device *spi = dev->priv;
/* make it to big endian 24bit from MSB */
value <<= 8;
value = cpu_to_be32(value);
return ksz_spi_write_reg(spi, reg, (u8 *)&value, 3);
return ksz_spi_write(dev, reg, &value, 3);
}
static int ksz_spi_write32(struct ksz_device *dev, u32 reg, u32 value)
{
struct spi_device *spi = dev->priv;
value = cpu_to_be32(value);
return ksz_spi_write_reg(spi, reg, (u8 *)&value, 4);
}
static const struct ksz_io_ops ksz_spi_ops = {
static const struct ksz_io_ops ksz9477_spi_ops = {
.read8 = ksz_spi_read8,
.read16 = ksz_spi_read16,
.read24 = ksz_spi_read24,
......@@ -149,21 +105,27 @@ static const struct ksz_io_ops ksz_spi_ops = {
.write16 = ksz_spi_write16,
.write24 = ksz_spi_write24,
.write32 = ksz_spi_write32,
.get = ksz_spi_get,
.set = ksz_spi_set,
};
static int ksz_spi_probe(struct spi_device *spi)
static int ksz9477_spi_probe(struct spi_device *spi)
{
struct ksz_device *dev;
int ret;
dev = ksz_switch_alloc(&spi->dev, &ksz_spi_ops, spi);
dev = ksz_switch_alloc(&spi->dev, &ksz9477_spi_ops, spi);
if (!dev)
return -ENOMEM;
if (spi->dev.platform_data)
dev->pdata = spi->dev.platform_data;
ret = ksz_switch_register(dev);
dev->txbuf = devm_kzalloc(dev->dev, 4 + SPI_TX_BUF_LEN, GFP_KERNEL);
ret = ksz9477_switch_register(dev);
/* Main DSA driver may not be started yet. */
if (ret)
return ret;
......@@ -172,7 +134,7 @@ static int ksz_spi_probe(struct spi_device *spi)
return 0;
}
static int ksz_spi_remove(struct spi_device *spi)
static int ksz9477_spi_remove(struct spi_device *spi)
{
struct ksz_device *dev = spi_get_drvdata(spi);
......@@ -182,25 +144,34 @@ static int ksz_spi_remove(struct spi_device *spi)
return 0;
}
static const struct of_device_id ksz_dt_ids[] = {
static void ksz9477_spi_shutdown(struct spi_device *spi)
{
struct ksz_device *dev = spi_get_drvdata(spi);
if (dev && dev->dev_ops->shutdown)
dev->dev_ops->shutdown(dev);
}
static const struct of_device_id ksz9477_dt_ids[] = {
{ .compatible = "microchip,ksz9477" },
{ .compatible = "microchip,ksz9897" },
{},
};
MODULE_DEVICE_TABLE(of, ksz_dt_ids);
MODULE_DEVICE_TABLE(of, ksz9477_dt_ids);
static struct spi_driver ksz_spi_driver = {
static struct spi_driver ksz9477_spi_driver = {
.driver = {
.name = "ksz9477-switch",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(ksz_dt_ids),
.of_match_table = of_match_ptr(ksz9477_dt_ids),
},
.probe = ksz_spi_probe,
.remove = ksz_spi_remove,
.probe = ksz9477_spi_probe,
.remove = ksz9477_spi_remove,
.shutdown = ksz9477_spi_shutdown,
};
module_spi_driver(ksz_spi_driver);
module_spi_driver(ksz9477_spi_driver);
MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ Series Switch SPI access Driver");
MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch SPI access Driver");
MODULE_LICENSE("GPL");
......@@ -14,1123 +14,251 @@
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/of_net.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include "ksz_priv.h"
static const struct {
int index;
char string[ETH_GSTRING_LEN];
} mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
{ 0x00, "rx_hi" },
{ 0x01, "rx_undersize" },
{ 0x02, "rx_fragments" },
{ 0x03, "rx_oversize" },
{ 0x04, "rx_jabbers" },
{ 0x05, "rx_symbol_err" },
{ 0x06, "rx_crc_err" },
{ 0x07, "rx_align_err" },
{ 0x08, "rx_mac_ctrl" },
{ 0x09, "rx_pause" },
{ 0x0A, "rx_bcast" },
{ 0x0B, "rx_mcast" },
{ 0x0C, "rx_ucast" },
{ 0x0D, "rx_64_or_less" },
{ 0x0E, "rx_65_127" },
{ 0x0F, "rx_128_255" },
{ 0x10, "rx_256_511" },
{ 0x11, "rx_512_1023" },
{ 0x12, "rx_1024_1522" },
{ 0x13, "rx_1523_2000" },
{ 0x14, "rx_2001" },
{ 0x15, "tx_hi" },
{ 0x16, "tx_late_col" },
{ 0x17, "tx_pause" },
{ 0x18, "tx_bcast" },
{ 0x19, "tx_mcast" },
{ 0x1A, "tx_ucast" },
{ 0x1B, "tx_deferred" },
{ 0x1C, "tx_total_col" },
{ 0x1D, "tx_exc_col" },
{ 0x1E, "tx_single_col" },
{ 0x1F, "tx_mult_col" },
{ 0x80, "rx_total" },
{ 0x81, "tx_total" },
{ 0x82, "rx_discards" },
{ 0x83, "tx_discards" },
};
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
u8 data;
ksz_read8(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write8(dev, addr, data);
}
static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
u32 data;
ksz_read32(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write32(dev, addr, data);
}
static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
bool set)
{
u32 addr;
u8 data;
addr = PORT_CTRL_ADDR(port, offset);
ksz_read8(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write8(dev, addr, data);
}
static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
u32 bits, bool set)
{
u32 addr;
u32 data;
addr = PORT_CTRL_ADDR(port, offset);
ksz_read32(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write32(dev, addr, data);
}
static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
u8 data;
do {
ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
if (!(data & waiton))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (timeout <= 0)
return -ETIMEDOUT;
return 0;
}
static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
{
struct ksz_device *dev = ds->priv;
int ret;
mutex_lock(&dev->vlan_mutex);
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
/* wait to be cleared */
ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read vlan table\n");
goto exit;
}
ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
exit:
mutex_unlock(&dev->vlan_mutex);
return ret;
}
static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
{
struct ksz_device *dev = ds->priv;
int ret;
mutex_lock(&dev->vlan_mutex);
ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
/* wait to be cleared */
ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to write vlan table\n");
goto exit;
}
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
/* update vlan cache table */
dev->vlan_cache[vid].table[0] = vlan_table[0];
dev->vlan_cache[vid].table[1] = vlan_table[1];
dev->vlan_cache[vid].table[2] = vlan_table[2];
exit:
mutex_unlock(&dev->vlan_mutex);
return ret;
}
static void read_table(struct dsa_switch *ds, u32 *table)
{
struct ksz_device *dev = ds->priv;
ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}
static void write_table(struct dsa_switch *ds, u32 *table)
{
struct ksz_device *dev = ds->priv;
ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}
static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
u32 data;
do {
ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
if (!(data & waiton))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (timeout <= 0)
return -ETIMEDOUT;
return 0;
}
static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
{
u32 data;
do {
ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
if (!(data & waiton))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (timeout <= 0)
return -ETIMEDOUT;
return 0;
}
static int ksz9477_reset_switch(struct ksz_device *dev)
{
u8 data8;
u16 data16;
u32 data32;
/* reset switch */
ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
/* turn off SPI DO Edge select */
ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
data8 &= ~SPI_AUTO_EDGE_DETECTION;
ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
/* default configuration */
ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
/* disable interrupts */
ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
/* set broadcast storm protection 10% rate */
ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
data16 &= ~BROADCAST_STORM_RATE;
data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
return 0;
}
static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
u8 data8;
u16 data16;
/* enable tag tail for host port */
if (cpu_port)
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
true);
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
/* set back pressure */
ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
/* set flow control */
ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
/* enable broadcast storm limit */
ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
/* disable DiffServ priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
/* replace priority */
ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
false);
ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
MTI_PVID_REPLACE, false);
/* enable 802.1p priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
/* configure MAC to 1G & RGMII mode */
ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
data8 |= PORT_RGMII_ID_EG_ENABLE;
data8 &= ~PORT_MII_NOT_1GBIT;
data8 &= ~PORT_MII_SEL_M;
data8 |= PORT_RGMII_SEL;
ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
/* clear pending interrupts */
ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}
static void ksz9477_config_cpu_port(struct dsa_switch *ds)
void ksz_update_port_member(struct ksz_device *dev, int port)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p;
int i;
ds->num_ports = dev->port_cnt;
for (i = 0; i < ds->num_ports; i++) {
if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
dev->cpu_port = i;
/* enable cpu port */
ksz9477_port_setup(dev, i, true);
}
for (i = 0; i < dev->port_cnt; i++) {
if (i == port || i == dev->cpu_port)
continue;
p = &dev->ports[i];
if (!(dev->member & (1 << i)))
continue;
/* Port is a member of the bridge and is forwarding. */
if (p->stp_state == BR_STATE_FORWARDING &&
p->member != dev->member)
dev->dev_ops->cfg_port_member(dev, i, dev->member);
}
}
EXPORT_SYMBOL_GPL(ksz_update_port_member);
static int ksz9477_setup(struct dsa_switch *ds)
int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
{
struct ksz_device *dev = ds->priv;
int ret = 0;
dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
dev->num_vlans, GFP_KERNEL);
if (!dev->vlan_cache)
return -ENOMEM;
ret = ksz9477_reset_switch(dev);
if (ret) {
dev_err(ds->dev, "failed to reset switch\n");
return ret;
}
/* accept packet up to 2000bytes */
ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
ksz9477_config_cpu_port(ds);
ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
/* queue based egress rate limit */
ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
u16 val = 0xffff;
/* start switch */
ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
return 0;
}
static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
int port)
{
return DSA_TAG_PROTO_KSZ;
}
static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
{
struct ksz_device *dev = ds->priv;
u16 val = 0;
ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
dev->dev_ops->r_phy(dev, addr, reg, &val);
return val;
}
EXPORT_SYMBOL_GPL(ksz_phy_read16);
static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
u16 val)
{
struct ksz_device *dev = ds->priv;
ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
return 0;
}
static int ksz_enable_port(struct dsa_switch *ds, int port,
struct phy_device *phy)
int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
{
struct ksz_device *dev = ds->priv;
/* setup slave port */
ksz9477_port_setup(dev, port, false);
dev->dev_ops->w_phy(dev, addr, reg, val);
return 0;
}
EXPORT_SYMBOL_GPL(ksz_phy_write16);
static void ksz_disable_port(struct dsa_switch *ds, int port,
struct phy_device *phy)
int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
{
struct ksz_device *dev = ds->priv;
/* there is no port disable */
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
}
static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return TOTAL_SWITCH_COUNTER_NUM;
return dev->mib_cnt;
}
EXPORT_SYMBOL_GPL(ksz_sset_count);
static void ksz9477_get_strings(struct dsa_switch *ds, int port,
u32 stringset, uint8_t *buf)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
ETH_GSTRING_LEN);
}
}
static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *buf)
int ksz_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *br)
{
struct ksz_device *dev = ds->priv;
int i;
u32 data;
int timeout;
mutex_lock(&dev->stats_mutex);
dev->br_member |= (1 << port);
for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
data = MIB_COUNTER_READ;
data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
/* port_stp_state_set() will be called after to put the port in
* appropriate state so there is no need to do anything.
*/
timeout = 1000;
do {
ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
&data);
usleep_range(1, 10);
if (!(data & MIB_COUNTER_READ))
break;
} while (timeout-- > 0);
/* failed to read MIB. get out of loop */
if (!timeout) {
dev_dbg(dev->dev, "Failed to get MIB\n");
break;
}
/* count resets upon read */
ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
dev->mib_value[i] += (uint64_t)data;
buf[i] = dev->mib_value[i];
}
mutex_unlock(&dev->stats_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(ksz_port_bridge_join);
static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
struct net_device *br)
{
struct ksz_device *dev = ds->priv;
u8 data;
ksz_pread8(dev, port, P_STP_CTRL, &data);
data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
dev->br_member &= ~(1 << port);
dev->member &= ~(1 << port);
switch (state) {
case BR_STATE_DISABLED:
data |= PORT_LEARN_DISABLE;
break;
case BR_STATE_LISTENING:
data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
break;
case BR_STATE_LEARNING:
data |= PORT_RX_ENABLE;
break;
case BR_STATE_FORWARDING:
data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
break;
case BR_STATE_BLOCKING:
data |= PORT_LEARN_DISABLE;
break;
default:
dev_err(ds->dev, "invalid STP state: %d\n", state);
return;
}
ksz_pwrite8(dev, port, P_STP_CTRL, data);
/* port_stp_state_set() will be called after to put the port in
* forwarding state so there is no need to do anything.
*/
}
EXPORT_SYMBOL_GPL(ksz_port_bridge_leave);
static void ksz_port_fast_age(struct dsa_switch *ds, int port)
void ksz_port_fast_age(struct dsa_switch *ds, int port)
{
struct ksz_device *dev = ds->priv;
u8 data8;
ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
data8 |= SW_FAST_AGING;
ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
data8 &= ~SW_FAST_AGING;
ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
dev->dev_ops->flush_dyn_mac_table(dev, port);
}
EXPORT_SYMBOL_GPL(ksz_port_fast_age);
static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
bool flag)
{
struct ksz_device *dev = ds->priv;
if (flag) {
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
PORT_VLAN_LOOKUP_VID_0, true);
ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
} else {
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
PORT_VLAN_LOOKUP_VID_0, false);
}
return 0;
}
static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
/* nothing needed */
return 0;
}
EXPORT_SYMBOL_GPL(ksz_port_vlan_prepare);
static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct ksz_device *dev = ds->priv;
u32 vlan_table[3];
u16 vid;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
if (get_vlan_table(ds, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to get vlan table\n");
return;
}
vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
if (untagged)
vlan_table[1] |= BIT(port);
else
vlan_table[1] &= ~BIT(port);
vlan_table[1] &= ~(BIT(dev->cpu_port));
vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
if (set_vlan_table(ds, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to set vlan table\n");
return;
}
/* change PVID */
if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
}
}
static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct ksz_device *dev = ds->priv;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
u32 vlan_table[3];
u16 vid;
u16 pvid;
ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
pvid = pvid & 0xFFF;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
if (get_vlan_table(ds, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to get vlan table\n");
return -ETIMEDOUT;
}
vlan_table[2] &= ~BIT(port);
if (pvid == vid)
pvid = 1;
if (untagged)
vlan_table[1] &= ~BIT(port);
if (set_vlan_table(ds, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to set vlan table\n");
return -ETIMEDOUT;
}
}
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
return 0;
}
struct alu_struct {
/* entry 1 */
u8 is_static:1;
u8 is_src_filter:1;
u8 is_dst_filter:1;
u8 prio_age:3;
u32 _reserv_0_1:23;
u8 mstp:3;
/* entry 2 */
u8 is_override:1;
u8 is_use_fid:1;
u32 _reserv_1_1:23;
u8 port_forward:7;
/* entry 3 & 4*/
u32 _reserv_2_1:9;
u8 fid:7;
u8 mac[ETH_ALEN];
};
static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
int ksz_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb,
void *data)
{
struct ksz_device *dev = ds->priv;
u32 alu_table[4];
u32 data;
int ret = 0;
mutex_lock(&dev->alu_mutex);
/* find any entry with mac & vid */
data = vid << ALU_FID_INDEX_S;
data |= ((addr[0] << 8) | addr[1]);
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
data = ((addr[2] << 24) | (addr[3] << 16));
data |= ((addr[4] << 8) | addr[5]);
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
/* start read operation */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
/* wait to be finished */
ret = wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read ALU\n");
goto exit;
}
/* read ALU entry */
read_table(ds, alu_table);
/* update ALU entry */
alu_table[0] = ALU_V_STATIC_VALID;
alu_table[1] |= BIT(port);
if (vid)
alu_table[1] |= ALU_V_USE_FID;
alu_table[2] = (vid << ALU_V_FID_S);
alu_table[2] |= ((addr[0] << 8) | addr[1]);
alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
alu_table[3] |= ((addr[4] << 8) | addr[5]);
write_table(ds, alu_table);
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
/* wait to be finished */
ret = wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0)
dev_dbg(dev->dev, "Failed to write ALU\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct ksz_device *dev = ds->priv;
u32 alu_table[4];
u32 data;
int ret = 0;
mutex_lock(&dev->alu_mutex);
/* read any entry with mac & vid */
data = vid << ALU_FID_INDEX_S;
data |= ((addr[0] << 8) | addr[1]);
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
data = ((addr[2] << 24) | (addr[3] << 16));
data |= ((addr[4] << 8) | addr[5]);
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
/* start read operation */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
/* wait to be finished */
ret = wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read ALU\n");
goto exit;
}
ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
if (alu_table[0] & ALU_V_STATIC_VALID) {
ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
/* clear forwarding port */
alu_table[2] &= ~BIT(port);
/* if there is no port to forward, clear table */
if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
alu_table[0] = 0;
alu_table[1] = 0;
alu_table[2] = 0;
alu_table[3] = 0;
}
} else {
alu_table[0] = 0;
alu_table[1] = 0;
alu_table[2] = 0;
alu_table[3] = 0;
}
write_table(ds, alu_table);
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
/* wait to be finished */
ret = wait_alu_ready(dev, ALU_START, 1000);
if (ret < 0)
dev_dbg(dev->dev, "Failed to write ALU\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static void convert_alu(struct alu_struct *alu, u32 *alu_table)
{
alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
ALU_V_PRIO_AGE_CNT_M;
alu->mstp = alu_table[0] & ALU_V_MSTP_M;
alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
alu->mac[1] = alu_table[2] & 0xFF;
alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
alu->mac[5] = alu_table[3] & 0xFF;
}
static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct ksz_device *dev = ds->priv;
int ret = 0;
u32 ksz_data;
u32 alu_table[4];
u16 i = 0;
u16 entries = 0;
u8 timestamp = 0;
u8 fid;
u8 member;
struct alu_struct alu;
int timeout;
mutex_lock(&dev->alu_mutex);
/* start ALU search */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
do {
timeout = 1000;
do {
ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (!timeout) {
dev_dbg(dev->dev, "Failed to search ALU\n");
ret = -ETIMEDOUT;
goto exit;
}
/* read ALU table */
read_table(ds, alu_table);
convert_alu(&alu, alu_table);
if (alu.port_forward & BIT(port)) {
alu.is_static = false;
ret = dev->dev_ops->r_dyn_mac_table(dev, i, alu.mac, &fid,
&member, &timestamp,
&entries);
if (!ret && (member & BIT(port))) {
ret = cb(alu.mac, alu.fid, alu.is_static, data);
if (ret)
goto exit;
break;
}
} while (ksz_data & ALU_START);
exit:
/* stop ALU search */
ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
mutex_unlock(&dev->alu_mutex);
i++;
} while (i < entries);
if (i >= entries)
ret = 0;
return ret;
}
EXPORT_SYMBOL_GPL(ksz_port_fdb_dump);
static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
/* nothing to do */
return 0;
}
EXPORT_SYMBOL_GPL(ksz_port_mdb_prepare);
static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
void ksz_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct ksz_device *dev = ds->priv;
u32 static_table[4];
u32 data;
struct alu_struct alu;
int index;
u32 mac_hi, mac_lo;
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
mutex_lock(&dev->alu_mutex);
int empty = 0;
alu.port_forward = 0;
for (index = 0; index < dev->num_statics; index++) {
/* find empty slot first */
data = (index << ALU_STAT_INDEX_S) |
ALU_STAT_READ | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
goto exit;
}
/* read ALU static table */
read_table(ds, static_table);
if (static_table[0] & ALU_V_STATIC_VALID) {
/* check this has same vid & mac address */
if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
static_table[3] == mac_lo) {
/* found matching one */
if (!dev->dev_ops->r_sta_mac_table(dev, index, &alu)) {
/* Found one already in static MAC table. */
if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
alu.fid == mdb->vid)
break;
}
} else {
/* found empty one */
break;
/* Remember the first empty entry. */
} else if (!empty) {
empty = index + 1;
}
}
/* no available entry */
if (index == dev->num_statics)
goto exit;
if (index == dev->num_statics && !empty)
return;
/* add entry */
static_table[0] = ALU_V_STATIC_VALID;
static_table[1] |= BIT(port);
if (mdb->vid)
static_table[1] |= ALU_V_USE_FID;
static_table[2] = (mdb->vid << ALU_V_FID_S);
static_table[2] |= mac_hi;
static_table[3] = mac_lo;
write_table(ds, static_table);
data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
if (index == dev->num_statics) {
index = empty - 1;
memset(&alu, 0, sizeof(alu));
memcpy(alu.mac, mdb->addr, ETH_ALEN);
alu.is_static = true;
}
alu.port_forward |= BIT(port);
if (mdb->vid) {
alu.is_use_fid = true;
exit:
mutex_unlock(&dev->alu_mutex);
/* Need a way to map VID to FID. */
alu.fid = mdb->vid;
}
dev->dev_ops->w_sta_mac_table(dev, index, &alu);
}
EXPORT_SYMBOL_GPL(ksz_port_mdb_add);
static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
int ksz_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct ksz_device *dev = ds->priv;
u32 static_table[4];
u32 data;
struct alu_struct alu;
int index;
int ret = 0;
u32 mac_hi, mac_lo;
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
mutex_lock(&dev->alu_mutex);
for (index = 0; index < dev->num_statics; index++) {
/* find empty slot first */
data = (index << ALU_STAT_INDEX_S) |
ALU_STAT_READ | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
if (ret < 0) {
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
goto exit;
}
/* read ALU static table */
read_table(ds, static_table);
if (static_table[0] & ALU_V_STATIC_VALID) {
/* check this has same vid & mac address */
if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
static_table[3] == mac_lo) {
/* found matching one */
if (!dev->dev_ops->r_sta_mac_table(dev, index, &alu)) {
/* Found one already in static MAC table. */
if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
alu.fid == mdb->vid)
break;
}
}
}
/* no available entry */
if (index == dev->num_statics) {
ret = -EINVAL;
if (index == dev->num_statics)
goto exit;
}
/* clear port */
static_table[1] &= ~BIT(port);
if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
/* delete entry */
static_table[0] = 0;
static_table[1] = 0;
static_table[2] = 0;
static_table[3] = 0;
}
write_table(ds, static_table);
data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
if (ret < 0)
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
alu.port_forward &= ~BIT(port);
if (!alu.port_forward)
alu.is_static = false;
dev->dev_ops->w_sta_mac_table(dev, index, &alu);
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(ksz_port_mdb_del);
static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress)
int ksz_enable_port(struct dsa_switch *ds, int port, struct phy_device *phy)
{
struct ksz_device *dev = ds->priv;
if (ingress)
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
else
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
/* configure mirror port */
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, true);
/* setup slave port */
dev->dev_ops->port_setup(dev, port, false);
ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
/* port_stp_state_set() will be called after to enable the port so
* there is no need to do anything.
*/
return 0;
}
EXPORT_SYMBOL_GPL(ksz_enable_port);
static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
void ksz_disable_port(struct dsa_switch *ds, int port, struct phy_device *phy)
{
struct ksz_device *dev = ds->priv;
u8 data;
if (mirror->ingress)
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
else
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, false);
}
static const struct dsa_switch_ops ksz_switch_ops = {
.get_tag_protocol = ksz9477_get_tag_protocol,
.setup = ksz9477_setup,
.phy_read = ksz9477_phy_read16,
.phy_write = ksz9477_phy_write16,
.port_enable = ksz_enable_port,
.port_disable = ksz_disable_port,
.get_strings = ksz9477_get_strings,
.get_ethtool_stats = ksz_get_ethtool_stats,
.get_sset_count = ksz_sset_count,
.port_stp_state_set = ksz9477_port_stp_state_set,
.port_fast_age = ksz_port_fast_age,
.port_vlan_filtering = ksz9477_port_vlan_filtering,
.port_vlan_prepare = ksz_port_vlan_prepare,
.port_vlan_add = ksz9477_port_vlan_add,
.port_vlan_del = ksz9477_port_vlan_del,
.port_fdb_dump = ksz9477_port_fdb_dump,
.port_fdb_add = ksz9477_port_fdb_add,
.port_fdb_del = ksz9477_port_fdb_del,
.port_mdb_prepare = ksz_port_mdb_prepare,
.port_mdb_add = ksz9477_port_mdb_add,
.port_mdb_del = ksz9477_port_mdb_del,
.port_mirror_add = ksz9477_port_mirror_add,
.port_mirror_del = ksz9477_port_mirror_del,
};
struct ksz_chip_data {
u32 chip_id;
const char *dev_name;
int num_vlans;
int num_alus;
int num_statics;
int cpu_ports;
int port_cnt;
};
static const struct ksz_chip_data ksz9477_switch_chips[] = {
{
.chip_id = 0x00947700,
.dev_name = "KSZ9477",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
},
{
.chip_id = 0x00989700,
.dev_name = "KSZ9897",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
},
};
static int ksz9477_switch_init(struct ksz_device *dev)
{
int i;
dev->ds->ops = &ksz_switch_ops;
for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
if (dev->chip_id == chip->chip_id) {
dev->name = chip->dev_name;
dev->num_vlans = chip->num_vlans;
dev->num_alus = chip->num_alus;
dev->num_statics = chip->num_statics;
dev->port_cnt = chip->port_cnt;
dev->cpu_ports = chip->cpu_ports;
break;
}
}
dev->on_ports &= ~(1 << port);
dev->live_ports &= ~(1 << port);
/* no switch found */
if (!dev->port_cnt)
return -ENODEV;
return 0;
/* port_stp_state_set() will be called after to disable the port so
* there is no need to do anything.
*/
}
EXPORT_SYMBOL_GPL(ksz_disable_port);
struct ksz_device *ksz_switch_alloc(struct device *base,
const struct ksz_io_ops *ops,
......@@ -1158,34 +286,8 @@ struct ksz_device *ksz_switch_alloc(struct device *base,
}
EXPORT_SYMBOL(ksz_switch_alloc);
int ksz_switch_detect(struct ksz_device *dev)
{
u8 data8;
u32 id32;
int ret;
/* turn off SPI DO Edge select */
ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
if (ret)
return ret;
data8 &= ~SPI_AUTO_EDGE_DETECTION;
ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
if (ret)
return ret;
/* read chip id */
ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
if (ret)
return ret;
dev->chip_id = id32;
return 0;
}
EXPORT_SYMBOL(ksz_switch_detect);
int ksz_switch_register(struct ksz_device *dev)
int ksz_switch_register(struct ksz_device *dev,
const struct ksz_dev_ops *ops)
{
int ret;
......@@ -1197,19 +299,35 @@ int ksz_switch_register(struct ksz_device *dev)
mutex_init(&dev->alu_mutex);
mutex_init(&dev->vlan_mutex);
if (ksz_switch_detect(dev))
dev->dev_ops = ops;
if (dev->dev_ops->detect(dev))
return -EINVAL;
ret = ksz9477_switch_init(dev);
ret = dev->dev_ops->init(dev);
if (ret)
return ret;
return dsa_register_switch(dev->ds);
dev->interface = PHY_INTERFACE_MODE_MII;
if (dev->dev->of_node) {
ret = of_get_phy_mode(dev->dev->of_node);
if (ret >= 0)
dev->interface = ret;
}
ret = dsa_register_switch(dev->ds);
if (ret) {
dev->dev_ops->exit(dev);
return ret;
}
return 0;
}
EXPORT_SYMBOL(ksz_switch_register);
void ksz_switch_remove(struct ksz_device *dev)
{
dev->dev_ops->exit(dev);
dsa_unregister_switch(dev->ds);
}
EXPORT_SYMBOL(ksz_switch_remove);
......
/* SPDX-License-Identifier: GPL-2.0
* Microchip switch driver common header
*
* Copyright (C) 2017-2018 Microchip Technology Inc.
*/
#ifndef __KSZ_COMMON_H
#define __KSZ_COMMON_H
void ksz_update_port_member(struct ksz_device *dev, int port);
/* Common DSA access functions */
int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg);
int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val);
int ksz_sset_count(struct dsa_switch *ds, int port, int sset);
int ksz_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *br);
void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
struct net_device *br);
void ksz_port_fast_age(struct dsa_switch *ds, int port);
int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan);
int ksz_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb,
void *data);
int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb);
void ksz_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb);
int ksz_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb);
int ksz_enable_port(struct dsa_switch *ds, int port, struct phy_device *phy);
void ksz_disable_port(struct dsa_switch *ds, int port, struct phy_device *phy);
/* Common register access functions */
static inline int ksz_read8(struct ksz_device *dev, u32 reg, u8 *val)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->read8(dev, reg, val);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_read16(struct ksz_device *dev, u32 reg, u16 *val)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->read16(dev, reg, val);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_read24(struct ksz_device *dev, u32 reg, u32 *val)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->read24(dev, reg, val);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_read32(struct ksz_device *dev, u32 reg, u32 *val)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->read32(dev, reg, val);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_write8(struct ksz_device *dev, u32 reg, u8 value)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->write8(dev, reg, value);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_write16(struct ksz_device *dev, u32 reg, u16 value)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->write16(dev, reg, value);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_write24(struct ksz_device *dev, u32 reg, u32 value)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->write24(dev, reg, value);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_write32(struct ksz_device *dev, u32 reg, u32 value)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->write32(dev, reg, value);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_get(struct ksz_device *dev, u32 reg, void *data,
size_t len)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->get(dev, reg, data, len);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_set(struct ksz_device *dev, u32 reg, void *data,
size_t len)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->set(dev, reg, data, len);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline void ksz_pread8(struct ksz_device *dev, int port, int offset,
u8 *data)
{
ksz_read8(dev, dev->dev_ops->get_port_addr(port, offset), data);
}
static inline void ksz_pread16(struct ksz_device *dev, int port, int offset,
u16 *data)
{
ksz_read16(dev, dev->dev_ops->get_port_addr(port, offset), data);
}
static inline void ksz_pread32(struct ksz_device *dev, int port, int offset,
u32 *data)
{
ksz_read32(dev, dev->dev_ops->get_port_addr(port, offset), data);
}
static inline void ksz_pwrite8(struct ksz_device *dev, int port, int offset,
u8 data)
{
ksz_write8(dev, dev->dev_ops->get_port_addr(port, offset), data);
}
static inline void ksz_pwrite16(struct ksz_device *dev, int port, int offset,
u16 data)
{
ksz_write16(dev, dev->dev_ops->get_port_addr(port, offset), data);
}
static inline void ksz_pwrite32(struct ksz_device *dev, int port, int offset,
u32 data)
{
ksz_write32(dev, dev->dev_ops->get_port_addr(port, offset), data);
}
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
u8 data;
ksz_read8(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write8(dev, addr, data);
}
static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
bool set)
{
u32 addr;
u8 data;
addr = dev->dev_ops->get_port_addr(port, offset);
ksz_read8(dev, addr, &data);
if (set)
data |= bits;
else
data &= ~bits;
ksz_write8(dev, addr, data);
}
#endif
......@@ -22,6 +22,27 @@ struct vlan_table {
u32 table[3];
};
struct ksz_port_mib {
u8 cnt_ptr;
u64 *counters;
};
struct ksz_port {
u16 member;
u16 vid_member;
int stp_state;
struct phy_device phydev;
u32 on:1; /* port is not disabled by hardware */
u32 phy:1; /* port has a PHY */
u32 fiber:1; /* port is fiber */
u32 sgmii:1; /* port is SGMII */
u32 force:1;
u32 link_just_down:1; /* link just goes down */
struct ksz_port_mib mib;
};
struct ksz_device {
struct dsa_switch *ds;
struct ksz_platform_data *pdata;
......@@ -32,6 +53,7 @@ struct ksz_device {
struct mutex alu_mutex; /* ALU access */
struct mutex vlan_mutex; /* vlan access */
const struct ksz_io_ops *ops;
const struct ksz_dev_ops *dev_ops;
struct device *dev;
......@@ -44,11 +66,37 @@ struct ksz_device {
int num_statics;
int cpu_port; /* port connected to CPU */
int cpu_ports; /* port bitmap can be cpu port */
int phy_port_cnt;
int port_cnt;
int reg_mib_cnt;
int mib_cnt;
int mib_port_cnt;
int last_port; /* ports after that not used */
phy_interface_t interface;
u32 regs_size;
struct vlan_table *vlan_cache;
u64 mib_value[TOTAL_SWITCH_COUNTER_NUM];
u8 *txbuf;
struct ksz_port *ports;
struct timer_list mib_read_timer;
struct work_struct mib_read;
unsigned long mib_read_interval;
u16 br_member;
u16 member;
u16 live_ports;
u16 on_ports; /* ports enabled by DSA */
u16 rx_ports;
u16 tx_ports;
u16 mirror_rx;
u16 mirror_tx;
u32 features; /* chip specific features */
u32 overrides; /* chip functions set by user */
u16 host_mask;
u16 port_mask;
};
struct ksz_io_ops {
......@@ -60,140 +108,60 @@ struct ksz_io_ops {
int (*write16)(struct ksz_device *dev, u32 reg, u16 value);
int (*write24)(struct ksz_device *dev, u32 reg, u32 value);
int (*write32)(struct ksz_device *dev, u32 reg, u32 value);
int (*phy_read16)(struct ksz_device *dev, int addr, int reg,
u16 *value);
int (*phy_write16)(struct ksz_device *dev, int addr, int reg,
u16 value);
int (*get)(struct ksz_device *dev, u32 reg, void *data, size_t len);
int (*set)(struct ksz_device *dev, u32 reg, void *data, size_t len);
};
struct alu_struct {
/* entry 1 */
u8 is_static:1;
u8 is_src_filter:1;
u8 is_dst_filter:1;
u8 prio_age:3;
u32 _reserv_0_1:23;
u8 mstp:3;
/* entry 2 */
u8 is_override:1;
u8 is_use_fid:1;
u32 _reserv_1_1:23;
u8 port_forward:7;
/* entry 3 & 4*/
u32 _reserv_2_1:9;
u8 fid:7;
u8 mac[ETH_ALEN];
};
struct ksz_dev_ops {
u32 (*get_port_addr)(int port, int offset);
void (*cfg_port_member)(struct ksz_device *dev, int port, u8 member);
void (*flush_dyn_mac_table)(struct ksz_device *dev, int port);
void (*port_setup)(struct ksz_device *dev, int port, bool cpu_port);
void (*r_phy)(struct ksz_device *dev, u16 phy, u16 reg, u16 *val);
void (*w_phy)(struct ksz_device *dev, u16 phy, u16 reg, u16 val);
int (*r_dyn_mac_table)(struct ksz_device *dev, u16 addr, u8 *mac_addr,
u8 *fid, u8 *src_port, u8 *timestamp,
u16 *entries);
int (*r_sta_mac_table)(struct ksz_device *dev, u16 addr,
struct alu_struct *alu);
void (*w_sta_mac_table)(struct ksz_device *dev, u16 addr,
struct alu_struct *alu);
void (*r_mib_cnt)(struct ksz_device *dev, int port, u16 addr,
u64 *cnt);
void (*r_mib_pkt)(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt);
void (*port_init_cnt)(struct ksz_device *dev, int port);
int (*shutdown)(struct ksz_device *dev);
int (*detect)(struct ksz_device *dev);
int (*init)(struct ksz_device *dev);
void (*exit)(struct ksz_device *dev);
};
struct ksz_device *ksz_switch_alloc(struct device *base,
const struct ksz_io_ops *ops, void *priv);
int ksz_switch_detect(struct ksz_device *dev);
int ksz_switch_register(struct ksz_device *dev);
int ksz_switch_register(struct ksz_device *dev,
const struct ksz_dev_ops *ops);
void ksz_switch_remove(struct ksz_device *dev);
static inline int ksz_read8(struct ksz_device *dev, u32 reg, u8 *val)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->read8(dev, reg, val);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_read16(struct ksz_device *dev, u32 reg, u16 *val)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->read16(dev, reg, val);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_read24(struct ksz_device *dev, u32 reg, u32 *val)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->read24(dev, reg, val);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_read32(struct ksz_device *dev, u32 reg, u32 *val)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->read32(dev, reg, val);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_write8(struct ksz_device *dev, u32 reg, u8 value)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->write8(dev, reg, value);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_write16(struct ksz_device *dev, u32 reg, u16 value)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->write16(dev, reg, value);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_write24(struct ksz_device *dev, u32 reg, u32 value)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->write24(dev, reg, value);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline int ksz_write32(struct ksz_device *dev, u32 reg, u32 value)
{
int ret;
mutex_lock(&dev->reg_mutex);
ret = dev->ops->write32(dev, reg, value);
mutex_unlock(&dev->reg_mutex);
return ret;
}
static inline void ksz_pread8(struct ksz_device *dev, int port, int offset,
u8 *data)
{
ksz_read8(dev, PORT_CTRL_ADDR(port, offset), data);
}
static inline void ksz_pread16(struct ksz_device *dev, int port, int offset,
u16 *data)
{
ksz_read16(dev, PORT_CTRL_ADDR(port, offset), data);
}
static inline void ksz_pread32(struct ksz_device *dev, int port, int offset,
u32 *data)
{
ksz_read32(dev, PORT_CTRL_ADDR(port, offset), data);
}
static inline void ksz_pwrite8(struct ksz_device *dev, int port, int offset,
u8 data)
{
ksz_write8(dev, PORT_CTRL_ADDR(port, offset), data);
}
static inline void ksz_pwrite16(struct ksz_device *dev, int port, int offset,
u16 data)
{
ksz_write16(dev, PORT_CTRL_ADDR(port, offset), data);
}
static inline void ksz_pwrite32(struct ksz_device *dev, int port, int offset,
u32 data)
{
ksz_write32(dev, PORT_CTRL_ADDR(port, offset), data);
}
int ksz9477_switch_register(struct ksz_device *dev);
#endif
/* SPDX-License-Identifier: GPL-2.0
* Microchip KSZ series SPI access common header
*
* Copyright (C) 2017-2018 Microchip Technology Inc.
* Tristram Ha <Tristram.Ha@microchip.com>
*/
#ifndef __KSZ_SPI_H
#define __KSZ_SPI_H
/* Chip dependent SPI access */
static int ksz_spi_read(struct ksz_device *dev, u32 reg, u8 *data,
unsigned int len);
static int ksz_spi_write(struct ksz_device *dev, u32 reg, void *data,
unsigned int len);
static int ksz_spi_read8(struct ksz_device *dev, u32 reg, u8 *val)
{
return ksz_spi_read(dev, reg, val, 1);
}
static int ksz_spi_read16(struct ksz_device *dev, u32 reg, u16 *val)
{
int ret = ksz_spi_read(dev, reg, (u8 *)val, 2);
if (!ret)
*val = be16_to_cpu(*val);
return ret;
}
static int ksz_spi_read32(struct ksz_device *dev, u32 reg, u32 *val)
{
int ret = ksz_spi_read(dev, reg, (u8 *)val, 4);
if (!ret)
*val = be32_to_cpu(*val);
return ret;
}
static int ksz_spi_write8(struct ksz_device *dev, u32 reg, u8 value)
{
return ksz_spi_write(dev, reg, &value, 1);
}
static int ksz_spi_write16(struct ksz_device *dev, u32 reg, u16 value)
{
value = cpu_to_be16(value);
return ksz_spi_write(dev, reg, &value, 2);
}
static int ksz_spi_write32(struct ksz_device *dev, u32 reg, u32 value)
{
value = cpu_to_be32(value);
return ksz_spi_write(dev, reg, &value, 4);
}
static int ksz_spi_get(struct ksz_device *dev, u32 reg, void *data, size_t len)
{
return ksz_spi_read(dev, reg, data, len);
}
static int ksz_spi_set(struct ksz_device *dev, u32 reg, void *data, size_t len)
{
return ksz_spi_write(dev, reg, data, len);
}
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment