Commit c56d3406 authored by Ingo Molnar's avatar Ingo Molnar

Merge branch 'perf/uprobes' into perf/core

These bits from Oleg are fully cooked, ship them to Linus.
Signed-off-by: default avatarIngo Molnar <mingo@kernel.org>
parents b13fa914 a03b1e1c
...@@ -98,7 +98,6 @@ static inline int get_si_code(unsigned long condition) ...@@ -98,7 +98,6 @@ static inline int get_si_code(unsigned long condition)
extern int panic_on_unrecovered_nmi; extern int panic_on_unrecovered_nmi;
void math_error(struct pt_regs *, int, int);
void math_emulate(struct math_emu_info *); void math_emulate(struct math_emu_info *);
#ifndef CONFIG_X86_32 #ifndef CONFIG_X86_32
asmlinkage void smp_thermal_interrupt(void); asmlinkage void smp_thermal_interrupt(void);
......
...@@ -41,18 +41,18 @@ struct arch_uprobe { ...@@ -41,18 +41,18 @@ struct arch_uprobe {
u8 ixol[MAX_UINSN_BYTES]; u8 ixol[MAX_UINSN_BYTES];
}; };
u16 fixups;
const struct uprobe_xol_ops *ops; const struct uprobe_xol_ops *ops;
union { union {
#ifdef CONFIG_X86_64
unsigned long rip_rela_target_address;
#endif
struct { struct {
s32 offs; s32 offs;
u8 ilen; u8 ilen;
u8 opc1; u8 opc1;
} branch; } branch;
struct {
u8 fixups;
u8 ilen;
} def;
}; };
}; };
......
...@@ -413,12 +413,11 @@ void set_personality_ia32(bool x32) ...@@ -413,12 +413,11 @@ void set_personality_ia32(bool x32)
set_thread_flag(TIF_ADDR32); set_thread_flag(TIF_ADDR32);
/* Mark the associated mm as containing 32-bit tasks. */ /* Mark the associated mm as containing 32-bit tasks. */
if (current->mm)
current->mm->context.ia32_compat = 1;
if (x32) { if (x32) {
clear_thread_flag(TIF_IA32); clear_thread_flag(TIF_IA32);
set_thread_flag(TIF_X32); set_thread_flag(TIF_X32);
if (current->mm)
current->mm->context.ia32_compat = TIF_X32;
current->personality &= ~READ_IMPLIES_EXEC; current->personality &= ~READ_IMPLIES_EXEC;
/* is_compat_task() uses the presence of the x32 /* is_compat_task() uses the presence of the x32
syscall bit flag to determine compat status */ syscall bit flag to determine compat status */
...@@ -426,6 +425,8 @@ void set_personality_ia32(bool x32) ...@@ -426,6 +425,8 @@ void set_personality_ia32(bool x32)
} else { } else {
set_thread_flag(TIF_IA32); set_thread_flag(TIF_IA32);
clear_thread_flag(TIF_X32); clear_thread_flag(TIF_X32);
if (current->mm)
current->mm->context.ia32_compat = TIF_IA32;
current->personality |= force_personality32; current->personality |= force_personality32;
/* Prepare the first "return" to user space */ /* Prepare the first "return" to user space */
current_thread_info()->status |= TS_COMPAT; current_thread_info()->status |= TS_COMPAT;
......
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/ptrace.h> #include <linux/ptrace.h>
#include <linux/uprobes.h>
#include <linux/string.h> #include <linux/string.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/errno.h> #include <linux/errno.h>
...@@ -136,6 +137,37 @@ do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, ...@@ -136,6 +137,37 @@ do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
return -1; return -1;
} }
static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
siginfo_t *info)
{
unsigned long siaddr;
int sicode;
switch (trapnr) {
default:
return SEND_SIG_PRIV;
case X86_TRAP_DE:
sicode = FPE_INTDIV;
siaddr = uprobe_get_trap_addr(regs);
break;
case X86_TRAP_UD:
sicode = ILL_ILLOPN;
siaddr = uprobe_get_trap_addr(regs);
break;
case X86_TRAP_AC:
sicode = BUS_ADRALN;
siaddr = 0;
break;
}
info->si_signo = signr;
info->si_errno = 0;
info->si_code = sicode;
info->si_addr = (void __user *)siaddr;
return info;
}
static void __kprobes static void __kprobes
do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
long error_code, siginfo_t *info) long error_code, siginfo_t *info)
...@@ -168,60 +200,42 @@ do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, ...@@ -168,60 +200,42 @@ do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
} }
#endif #endif
if (info) force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
force_sig_info(signr, info, tsk);
else
force_sig(signr, tsk);
} }
#define DO_ERROR(trapnr, signr, str, name) \ static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ unsigned long trapnr, int signr)
{ \ {
enum ctx_state prev_state; \ enum ctx_state prev_state = exception_enter();
\ siginfo_t info;
prev_state = exception_enter(); \
if (notify_die(DIE_TRAP, str, regs, error_code, \ if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
trapnr, signr) == NOTIFY_STOP) { \ NOTIFY_STOP) {
exception_exit(prev_state); \ conditional_sti(regs);
return; \ do_trap(trapnr, signr, str, regs, error_code,
} \ fill_trap_info(regs, signr, trapnr, &info));
conditional_sti(regs); \ }
do_trap(trapnr, signr, str, regs, error_code, NULL); \
exception_exit(prev_state); \ exception_exit(prev_state);
} }
#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ #define DO_ERROR(trapnr, signr, str, name) \
dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
{ \ { \
siginfo_t info; \ do_error_trap(regs, error_code, str, trapnr, signr); \
enum ctx_state prev_state; \
\
info.si_signo = signr; \
info.si_errno = 0; \
info.si_code = sicode; \
info.si_addr = (void __user *)siaddr; \
prev_state = exception_enter(); \
if (notify_die(DIE_TRAP, str, regs, error_code, \
trapnr, signr) == NOTIFY_STOP) { \
exception_exit(prev_state); \
return; \
} \
conditional_sti(regs); \
do_trap(trapnr, signr, str, regs, error_code, &info); \
exception_exit(prev_state); \
} }
DO_ERROR_INFO(X86_TRAP_DE, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip ) DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
DO_ERROR (X86_TRAP_OF, SIGSEGV, "overflow", overflow ) DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
DO_ERROR (X86_TRAP_BR, SIGSEGV, "bounds", bounds ) DO_ERROR(X86_TRAP_BR, SIGSEGV, "bounds", bounds)
DO_ERROR_INFO(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip ) DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
DO_ERROR (X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun ) DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
DO_ERROR (X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS ) DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
DO_ERROR (X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present ) DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
#ifdef CONFIG_X86_32 #ifdef CONFIG_X86_32
DO_ERROR (X86_TRAP_SS, SIGBUS, "stack segment", stack_segment ) DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
#endif #endif
DO_ERROR_INFO(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0 ) DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
#ifdef CONFIG_X86_64 #ifdef CONFIG_X86_64
/* Runs on IST stack */ /* Runs on IST stack */
...@@ -305,7 +319,7 @@ do_general_protection(struct pt_regs *regs, long error_code) ...@@ -305,7 +319,7 @@ do_general_protection(struct pt_regs *regs, long error_code)
pr_cont("\n"); pr_cont("\n");
} }
force_sig(SIGSEGV, tsk); force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
exit: exit:
exception_exit(prev_state); exception_exit(prev_state);
} }
...@@ -488,7 +502,7 @@ dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code) ...@@ -488,7 +502,7 @@ dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
* the correct behaviour even in the presence of the asynchronous * the correct behaviour even in the presence of the asynchronous
* IRQ13 behaviour * IRQ13 behaviour
*/ */
void math_error(struct pt_regs *regs, int error_code, int trapnr) static void math_error(struct pt_regs *regs, int error_code, int trapnr)
{ {
struct task_struct *task = current; struct task_struct *task = current;
siginfo_t info; siginfo_t info;
...@@ -518,7 +532,7 @@ void math_error(struct pt_regs *regs, int error_code, int trapnr) ...@@ -518,7 +532,7 @@ void math_error(struct pt_regs *regs, int error_code, int trapnr)
task->thread.error_code = error_code; task->thread.error_code = error_code;
info.si_signo = SIGFPE; info.si_signo = SIGFPE;
info.si_errno = 0; info.si_errno = 0;
info.si_addr = (void __user *)regs->ip; info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
if (trapnr == X86_TRAP_MF) { if (trapnr == X86_TRAP_MF) {
unsigned short cwd, swd; unsigned short cwd, swd;
/* /*
...@@ -645,7 +659,7 @@ void math_state_restore(void) ...@@ -645,7 +659,7 @@ void math_state_restore(void)
*/ */
if (unlikely(restore_fpu_checking(tsk))) { if (unlikely(restore_fpu_checking(tsk))) {
drop_init_fpu(tsk); drop_init_fpu(tsk);
force_sig(SIGSEGV, tsk); force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
return; return;
} }
......
...@@ -32,20 +32,20 @@ ...@@ -32,20 +32,20 @@
/* Post-execution fixups. */ /* Post-execution fixups. */
/* No fixup needed */
#define UPROBE_FIX_NONE 0x0
/* Adjust IP back to vicinity of actual insn */ /* Adjust IP back to vicinity of actual insn */
#define UPROBE_FIX_IP 0x1 #define UPROBE_FIX_IP 0x01
/* Adjust the return address of a call insn */ /* Adjust the return address of a call insn */
#define UPROBE_FIX_CALL 0x2 #define UPROBE_FIX_CALL 0x02
/* Instruction will modify TF, don't change it */ /* Instruction will modify TF, don't change it */
#define UPROBE_FIX_SETF 0x4 #define UPROBE_FIX_SETF 0x04
#define UPROBE_FIX_RIP_AX 0x8000 #define UPROBE_FIX_RIP_SI 0x08
#define UPROBE_FIX_RIP_CX 0x4000 #define UPROBE_FIX_RIP_DI 0x10
#define UPROBE_FIX_RIP_BX 0x20
#define UPROBE_FIX_RIP_MASK \
(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
#define UPROBE_TRAP_NR UINT_MAX #define UPROBE_TRAP_NR UINT_MAX
...@@ -67,6 +67,7 @@ ...@@ -67,6 +67,7 @@
* to keep gcc from statically optimizing it out, as variable_test_bit makes * to keep gcc from statically optimizing it out, as variable_test_bit makes
* some versions of gcc to think only *(unsigned long*) is used. * some versions of gcc to think only *(unsigned long*) is used.
*/ */
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
static volatile u32 good_insns_32[256 / 32] = { static volatile u32 good_insns_32[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */ /* ---------------------------------------------- */
...@@ -89,33 +90,12 @@ static volatile u32 good_insns_32[256 / 32] = { ...@@ -89,33 +90,12 @@ static volatile u32 good_insns_32[256 / 32] = {
/* ---------------------------------------------- */ /* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
}; };
#else
#define good_insns_32 NULL
#endif
/* Using this for both 64-bit and 32-bit apps */
static volatile u32 good_2byte_insns[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
/* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#ifdef CONFIG_X86_64
/* Good-instruction tables for 64-bit apps */ /* Good-instruction tables for 64-bit apps */
#if defined(CONFIG_X86_64)
static volatile u32 good_insns_64[256 / 32] = { static volatile u32 good_insns_64[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */ /* ---------------------------------------------- */
...@@ -138,7 +118,33 @@ static volatile u32 good_insns_64[256 / 32] = { ...@@ -138,7 +118,33 @@ static volatile u32 good_insns_64[256 / 32] = {
/* ---------------------------------------------- */ /* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
}; };
#else
#define good_insns_64 NULL
#endif #endif
/* Using this for both 64-bit and 32-bit apps */
static volatile u32 good_2byte_insns[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
/* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#undef W #undef W
/* /*
...@@ -209,16 +215,25 @@ static bool is_prefix_bad(struct insn *insn) ...@@ -209,16 +215,25 @@ static bool is_prefix_bad(struct insn *insn)
return false; return false;
} }
static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn) static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
{ {
insn_init(insn, auprobe->insn, false); u32 volatile *good_insns;
insn_init(insn, auprobe->insn, x86_64);
/* has the side-effect of processing the entire instruction */
insn_get_length(insn);
if (WARN_ON_ONCE(!insn_complete(insn)))
return -ENOEXEC;
/* Skip good instruction prefixes; reject "bad" ones. */
insn_get_opcode(insn);
if (is_prefix_bad(insn)) if (is_prefix_bad(insn))
return -ENOTSUPP; return -ENOTSUPP;
if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32)) if (x86_64)
good_insns = good_insns_64;
else
good_insns = good_insns_32;
if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
return 0; return 0;
if (insn->opcode.nbytes == 2) { if (insn->opcode.nbytes == 2) {
...@@ -230,14 +245,18 @@ static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn) ...@@ -230,14 +245,18 @@ static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
} }
#ifdef CONFIG_X86_64 #ifdef CONFIG_X86_64
static inline bool is_64bit_mm(struct mm_struct *mm)
{
return !config_enabled(CONFIG_IA32_EMULATION) ||
!(mm->context.ia32_compat == TIF_IA32);
}
/* /*
* If arch_uprobe->insn doesn't use rip-relative addressing, return * If arch_uprobe->insn doesn't use rip-relative addressing, return
* immediately. Otherwise, rewrite the instruction so that it accesses * immediately. Otherwise, rewrite the instruction so that it accesses
* its memory operand indirectly through a scratch register. Set * its memory operand indirectly through a scratch register. Set
* arch_uprobe->fixups and arch_uprobe->rip_rela_target_address * def->fixups accordingly. (The contents of the scratch register
* accordingly. (The contents of the scratch register will be saved * will be saved before we single-step the modified instruction,
* before we single-step the modified instruction, and restored * and restored afterward).
* afterward.)
* *
* We do this because a rip-relative instruction can access only a * We do this because a rip-relative instruction can access only a
* relatively small area (+/- 2 GB from the instruction), and the XOL * relatively small area (+/- 2 GB from the instruction), and the XOL
...@@ -248,164 +267,192 @@ static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn) ...@@ -248,164 +267,192 @@ static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
* *
* Some useful facts about rip-relative instructions: * Some useful facts about rip-relative instructions:
* *
* - There's always a modrm byte. * - There's always a modrm byte with bit layout "00 reg 101".
* - There's never a SIB byte. * - There's never a SIB byte.
* - The displacement is always 4 bytes. * - The displacement is always 4 bytes.
* - REX.B=1 bit in REX prefix, which normally extends r/m field,
* has no effect on rip-relative mode. It doesn't make modrm byte
* with r/m=101 refer to register 1101 = R13.
*/ */
static void static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
{ {
u8 *cursor; u8 *cursor;
u8 reg; u8 reg;
u8 reg2;
if (!insn_rip_relative(insn)) if (!insn_rip_relative(insn))
return; return;
/* /*
* insn_rip_relative() would have decoded rex_prefix, modrm. * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
* Clear REX.b bit (extension of MODRM.rm field): * Clear REX.b bit (extension of MODRM.rm field):
* we want to encode rax/rcx, not r8/r9. * we want to encode low numbered reg, not r8+.
*/ */
if (insn->rex_prefix.nbytes) { if (insn->rex_prefix.nbytes) {
cursor = auprobe->insn + insn_offset_rex_prefix(insn); cursor = auprobe->insn + insn_offset_rex_prefix(insn);
*cursor &= 0xfe; /* Clearing REX.B bit */ /* REX byte has 0100wrxb layout, clearing REX.b bit */
*cursor &= 0xfe;
}
/*
* Similar treatment for VEX3 prefix.
* TODO: add XOP/EVEX treatment when insn decoder supports them
*/
if (insn->vex_prefix.nbytes == 3) {
/*
* vex2: c5 rvvvvLpp (has no b bit)
* vex3/xop: c4/8f rxbmmmmm wvvvvLpp
* evex: 62 rxbR00mm wvvvv1pp zllBVaaa
* (evex will need setting of both b and x since
* in non-sib encoding evex.x is 4th bit of MODRM.rm)
* Setting VEX3.b (setting because it has inverted meaning):
*/
cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
*cursor |= 0x20;
} }
/* /*
* Point cursor at the modrm byte. The next 4 bytes are the * Convert from rip-relative addressing to register-relative addressing
* displacement. Beyond the displacement, for some instructions, * via a scratch register.
* is the immediate operand. *
* This is tricky since there are insns with modrm byte
* which also use registers not encoded in modrm byte:
* [i]div/[i]mul: implicitly use dx:ax
* shift ops: implicitly use cx
* cmpxchg: implicitly uses ax
* cmpxchg8/16b: implicitly uses dx:ax and bx:cx
* Encoding: 0f c7/1 modrm
* The code below thinks that reg=1 (cx), chooses si as scratch.
* mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
* First appeared in Haswell (BMI2 insn). It is vex-encoded.
* Example where none of bx,cx,dx can be used as scratch reg:
* c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
* [v]pcmpistri: implicitly uses cx, xmm0
* [v]pcmpistrm: implicitly uses xmm0
* [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
* [v]pcmpestrm: implicitly uses ax, dx, xmm0
* Evil SSE4.2 string comparison ops from hell.
* maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
* Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
* Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
* AMD says it has no 3-operand form (vex.vvvv must be 1111)
* and that it can have only register operands, not mem
* (its modrm byte must have mode=11).
* If these restrictions will ever be lifted,
* we'll need code to prevent selection of di as scratch reg!
*
* Summary: I don't know any insns with modrm byte which
* use SI register implicitly. DI register is used only
* by one insn (maskmovq) and BX register is used
* only by one too (cmpxchg8b).
* BP is stack-segment based (may be a problem?).
* AX, DX, CX are off-limits (many implicit users).
* SP is unusable (it's stack pointer - think about "pop mem";
* also, rsp+disp32 needs sib encoding -> insn length change).
*/ */
cursor = auprobe->insn + insn_offset_modrm(insn);
insn_get_length(insn);
reg = MODRM_REG(insn); /* Fetch modrm.reg */
reg2 = 0xff; /* Fetch vex.vvvv */
if (insn->vex_prefix.nbytes == 2)
reg2 = insn->vex_prefix.bytes[1];
else if (insn->vex_prefix.nbytes == 3)
reg2 = insn->vex_prefix.bytes[2];
/* /*
* Convert from rip-relative addressing to indirect addressing * TODO: add XOP, EXEV vvvv reading.
* via a scratch register. Change the r/m field from 0x5 (%rip) *
* to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field. * vex.vvvv field is in bits 6-3, bits are inverted.
* But in 32-bit mode, high-order bit may be ignored.
* Therefore, let's consider only 3 low-order bits.
*/ */
reg = MODRM_REG(insn); reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
if (reg == 0) {
/* /*
* The register operand (if any) is either the A register * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
* (%rax, %eax, etc.) or (if the 0x4 bit is set in the *
* REX prefix) %r8. In any case, we know the C register * Choose scratch reg. Order is important: must not select bx
* is NOT the register operand, so we use %rcx (register * if we can use si (cmpxchg8b case!)
* #1) for the scratch register.
*/ */
auprobe->fixups = UPROBE_FIX_RIP_CX; if (reg != 6 && reg2 != 6) {
/* Change modrm from 00 000 101 to 00 000 001. */ reg2 = 6;
*cursor = 0x1; auprobe->def.fixups |= UPROBE_FIX_RIP_SI;
} else if (reg != 7 && reg2 != 7) {
reg2 = 7;
auprobe->def.fixups |= UPROBE_FIX_RIP_DI;
/* TODO (paranoia): force maskmovq to not use di */
} else { } else {
/* Use %rax (register #0) for the scratch register. */ reg2 = 3;
auprobe->fixups = UPROBE_FIX_RIP_AX; auprobe->def.fixups |= UPROBE_FIX_RIP_BX;
/* Change modrm from 00 xxx 101 to 00 xxx 000 */
*cursor = (reg << 3);
} }
/*
* Point cursor at the modrm byte. The next 4 bytes are the
* displacement. Beyond the displacement, for some instructions,
* is the immediate operand.
*/
cursor = auprobe->insn + insn_offset_modrm(insn);
/*
* Change modrm from "00 reg 101" to "10 reg reg2". Example:
* 89 05 disp32 mov %eax,disp32(%rip) becomes
* 89 86 disp32 mov %eax,disp32(%rsi)
*/
*cursor = 0x80 | (reg << 3) | reg2;
}
/* Target address = address of next instruction + (signed) offset */ static inline unsigned long *
auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value; scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
/* Displacement field is gone; slide immediate field (if any) over. */ if (auprobe->def.fixups & UPROBE_FIX_RIP_SI)
if (insn->immediate.nbytes) { return &regs->si;
cursor++; if (auprobe->def.fixups & UPROBE_FIX_RIP_DI)
memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes); return &regs->di;
} return &regs->bx;
} }
/* /*
* If we're emulating a rip-relative instruction, save the contents * If we're emulating a rip-relative instruction, save the contents
* of the scratch register and store the target address in that register. * of the scratch register and store the target address in that register.
*/ */
static void static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
struct arch_uprobe_task *autask)
{
if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
autask->saved_scratch_register = regs->ax;
regs->ax = current->utask->vaddr;
regs->ax += auprobe->rip_rela_target_address;
} else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
autask->saved_scratch_register = regs->cx;
regs->cx = current->utask->vaddr;
regs->cx += auprobe->rip_rela_target_address;
}
}
static void
handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
{ {
if (auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) { if (auprobe->def.fixups & UPROBE_FIX_RIP_MASK) {
struct arch_uprobe_task *autask; struct uprobe_task *utask = current->utask;
unsigned long *sr = scratch_reg(auprobe, regs);
autask = &current->utask->autask;
if (auprobe->fixups & UPROBE_FIX_RIP_AX)
regs->ax = autask->saved_scratch_register;
else
regs->cx = autask->saved_scratch_register;
/* utask->autask.saved_scratch_register = *sr;
* The original instruction includes a displacement, and so *sr = utask->vaddr + auprobe->def.ilen;
* is 4 bytes longer than what we've just single-stepped.
* Caller may need to apply other fixups to handle stuff
* like "jmpq *...(%rip)" and "callq *...(%rip)".
*/
if (correction)
*correction += 4;
} }
} }
static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn) static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{ {
insn_init(insn, auprobe->insn, true); if (auprobe->def.fixups & UPROBE_FIX_RIP_MASK) {
struct uprobe_task *utask = current->utask;
/* Skip good instruction prefixes; reject "bad" ones. */ unsigned long *sr = scratch_reg(auprobe, regs);
insn_get_opcode(insn);
if (is_prefix_bad(insn))
return -ENOTSUPP;
if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
return 0;
if (insn->opcode.nbytes == 2) { *sr = utask->autask.saved_scratch_register;
if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
return 0;
} }
return -ENOTSUPP;
} }
#else /* 32-bit: */
static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) static inline bool is_64bit_mm(struct mm_struct *mm)
{ {
if (mm->context.ia32_compat) return false;
return validate_insn_32bits(auprobe, insn);
return validate_insn_64bits(auprobe, insn);
} }
#else /* 32-bit: */
/* /*
* No RIP-relative addressing on 32-bit * No RIP-relative addressing on 32-bit
*/ */
static void handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn) static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
{ {
} }
static void pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs, static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
struct arch_uprobe_task *autask)
{ {
} }
static void handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
long *correction)
{ {
} }
static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
{
return validate_insn_32bits(auprobe, insn);
}
#endif /* CONFIG_X86_64 */ #endif /* CONFIG_X86_64 */
struct uprobe_xol_ops { struct uprobe_xol_ops {
bool (*emulate)(struct arch_uprobe *, struct pt_regs *); bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
int (*pre_xol)(struct arch_uprobe *, struct pt_regs *); int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
int (*post_xol)(struct arch_uprobe *, struct pt_regs *); int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
void (*abort)(struct arch_uprobe *, struct pt_regs *);
}; };
static inline int sizeof_long(void) static inline int sizeof_long(void)
...@@ -415,50 +462,67 @@ static inline int sizeof_long(void) ...@@ -415,50 +462,67 @@ static inline int sizeof_long(void)
static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{ {
pre_xol_rip_insn(auprobe, regs, &current->utask->autask); riprel_pre_xol(auprobe, regs);
return 0; return 0;
} }
/* static int push_ret_address(struct pt_regs *regs, unsigned long ip)
* Adjust the return address pushed by a call insn executed out of line.
*/
static int adjust_ret_addr(unsigned long sp, long correction)
{ {
int rasize = sizeof_long(); unsigned long new_sp = regs->sp - sizeof_long();
long ra;
if (copy_from_user(&ra, (void __user *)sp, rasize))
return -EFAULT;
ra += correction; if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
if (copy_to_user((void __user *)sp, &ra, rasize))
return -EFAULT; return -EFAULT;
regs->sp = new_sp;
return 0; return 0;
} }
/*
* We have to fix things up as follows:
*
* Typically, the new ip is relative to the copied instruction. We need
* to make it relative to the original instruction (FIX_IP). Exceptions
* are return instructions and absolute or indirect jump or call instructions.
*
* If the single-stepped instruction was a call, the return address that
* is atop the stack is the address following the copied instruction. We
* need to make it the address following the original instruction (FIX_CALL).
*
* If the original instruction was a rip-relative instruction such as
* "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
* instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
* We need to restore the contents of the scratch register
* (FIX_RIP_reg).
*/
static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{ {
struct uprobe_task *utask = current->utask; struct uprobe_task *utask = current->utask;
long correction = (long)(utask->vaddr - utask->xol_vaddr);
handle_riprel_post_xol(auprobe, regs, &correction); riprel_post_xol(auprobe, regs);
if (auprobe->fixups & UPROBE_FIX_IP) if (auprobe->def.fixups & UPROBE_FIX_IP) {
long correction = utask->vaddr - utask->xol_vaddr;
regs->ip += correction; regs->ip += correction;
} else if (auprobe->def.fixups & UPROBE_FIX_CALL) {
if (auprobe->fixups & UPROBE_FIX_CALL) {
if (adjust_ret_addr(regs->sp, correction)) {
regs->sp += sizeof_long(); regs->sp += sizeof_long();
if (push_ret_address(regs, utask->vaddr + auprobe->def.ilen))
return -ERESTART; return -ERESTART;
} }
} /* popf; tell the caller to not touch TF */
if (auprobe->def.fixups & UPROBE_FIX_SETF)
utask->autask.saved_tf = true;
return 0; return 0;
} }
static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
riprel_post_xol(auprobe, regs);
}
static struct uprobe_xol_ops default_xol_ops = { static struct uprobe_xol_ops default_xol_ops = {
.pre_xol = default_pre_xol_op, .pre_xol = default_pre_xol_op,
.post_xol = default_post_xol_op, .post_xol = default_post_xol_op,
.abort = default_abort_op,
}; };
static bool branch_is_call(struct arch_uprobe *auprobe) static bool branch_is_call(struct arch_uprobe *auprobe)
...@@ -520,7 +584,6 @@ static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) ...@@ -520,7 +584,6 @@ static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
unsigned long offs = (long)auprobe->branch.offs; unsigned long offs = (long)auprobe->branch.offs;
if (branch_is_call(auprobe)) { if (branch_is_call(auprobe)) {
unsigned long new_sp = regs->sp - sizeof_long();
/* /*
* If it fails we execute this (mangled, see the comment in * If it fails we execute this (mangled, see the comment in
* branch_clear_offset) insn out-of-line. In the likely case * branch_clear_offset) insn out-of-line. In the likely case
...@@ -530,9 +593,8 @@ static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) ...@@ -530,9 +593,8 @@ static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
* *
* But there is corner case, see the comment in ->post_xol(). * But there is corner case, see the comment in ->post_xol().
*/ */
if (copy_to_user((void __user *)new_sp, &new_ip, sizeof_long())) if (push_ret_address(regs, new_ip))
return false; return false;
regs->sp = new_sp;
} else if (!check_jmp_cond(auprobe, regs)) { } else if (!check_jmp_cond(auprobe, regs)) {
offs = 0; offs = 0;
} }
...@@ -583,11 +645,7 @@ static struct uprobe_xol_ops branch_xol_ops = { ...@@ -583,11 +645,7 @@ static struct uprobe_xol_ops branch_xol_ops = {
static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
{ {
u8 opc1 = OPCODE1(insn); u8 opc1 = OPCODE1(insn);
int i;
/* has the side-effect of processing the entire instruction */
insn_get_length(insn);
if (WARN_ON_ONCE(!insn_complete(insn)))
return -ENOEXEC;
switch (opc1) { switch (opc1) {
case 0xeb: /* jmp 8 */ case 0xeb: /* jmp 8 */
...@@ -612,6 +670,16 @@ static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) ...@@ -612,6 +670,16 @@ static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
return -ENOSYS; return -ENOSYS;
} }
/*
* 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
* Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
* No one uses these insns, reject any branch insns with such prefix.
*/
for (i = 0; i < insn->prefixes.nbytes; i++) {
if (insn->prefixes.bytes[i] == 0x66)
return -ENOTSUPP;
}
auprobe->branch.opc1 = opc1; auprobe->branch.opc1 = opc1;
auprobe->branch.ilen = insn->length; auprobe->branch.ilen = insn->length;
auprobe->branch.offs = insn->immediate.value; auprobe->branch.offs = insn->immediate.value;
...@@ -630,10 +698,10 @@ static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) ...@@ -630,10 +698,10 @@ static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr) int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
{ {
struct insn insn; struct insn insn;
bool fix_ip = true, fix_call = false; u8 fix_ip_or_call = UPROBE_FIX_IP;
int ret; int ret;
ret = validate_insn_bits(auprobe, mm, &insn); ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
if (ret) if (ret)
return ret; return ret;
...@@ -642,44 +710,40 @@ int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, ...@@ -642,44 +710,40 @@ int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm,
return ret; return ret;
/* /*
* Figure out which fixups arch_uprobe_post_xol() will need to perform, * Figure out which fixups default_post_xol_op() will need to perform,
* and annotate arch_uprobe->fixups accordingly. To start with, ->fixups * and annotate def->fixups accordingly. To start with, ->fixups is
* is either zero or it reflects rip-related fixups. * either zero or it reflects rip-related fixups.
*/ */
switch (OPCODE1(&insn)) { switch (OPCODE1(&insn)) {
case 0x9d: /* popf */ case 0x9d: /* popf */
auprobe->fixups |= UPROBE_FIX_SETF; auprobe->def.fixups |= UPROBE_FIX_SETF;
break; break;
case 0xc3: /* ret or lret -- ip is correct */ case 0xc3: /* ret or lret -- ip is correct */
case 0xcb: case 0xcb:
case 0xc2: case 0xc2:
case 0xca: case 0xca:
fix_ip = false; case 0xea: /* jmp absolute -- ip is correct */
fix_ip_or_call = 0;
break; break;
case 0x9a: /* call absolute - Fix return addr, not ip */ case 0x9a: /* call absolute - Fix return addr, not ip */
fix_call = true; fix_ip_or_call = UPROBE_FIX_CALL;
fix_ip = false;
break;
case 0xea: /* jmp absolute -- ip is correct */
fix_ip = false;
break; break;
case 0xff: case 0xff:
insn_get_modrm(&insn);
switch (MODRM_REG(&insn)) { switch (MODRM_REG(&insn)) {
case 2: case 3: /* call or lcall, indirect */ case 2: case 3: /* call or lcall, indirect */
fix_call = true; fix_ip_or_call = UPROBE_FIX_CALL;
break;
case 4: case 5: /* jmp or ljmp, indirect */ case 4: case 5: /* jmp or ljmp, indirect */
fix_ip = false; fix_ip_or_call = 0;
break;
} }
/* fall through */ /* fall through */
default: default:
handle_riprel_insn(auprobe, &insn); riprel_analyze(auprobe, &insn);
} }
if (fix_ip) auprobe->def.ilen = insn.length;
auprobe->fixups |= UPROBE_FIX_IP; auprobe->def.fixups |= fix_ip_or_call;
if (fix_call)
auprobe->fixups |= UPROBE_FIX_CALL;
auprobe->ops = &default_xol_ops; auprobe->ops = &default_xol_ops;
return 0; return 0;
...@@ -694,6 +758,12 @@ int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) ...@@ -694,6 +758,12 @@ int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{ {
struct uprobe_task *utask = current->utask; struct uprobe_task *utask = current->utask;
if (auprobe->ops->pre_xol) {
int err = auprobe->ops->pre_xol(auprobe, regs);
if (err)
return err;
}
regs->ip = utask->xol_vaddr; regs->ip = utask->xol_vaddr;
utask->autask.saved_trap_nr = current->thread.trap_nr; utask->autask.saved_trap_nr = current->thread.trap_nr;
current->thread.trap_nr = UPROBE_TRAP_NR; current->thread.trap_nr = UPROBE_TRAP_NR;
...@@ -703,8 +773,6 @@ int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) ...@@ -703,8 +773,6 @@ int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
if (test_tsk_thread_flag(current, TIF_BLOCKSTEP)) if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
set_task_blockstep(current, false); set_task_blockstep(current, false);
if (auprobe->ops->pre_xol)
return auprobe->ops->pre_xol(auprobe, regs);
return 0; return 0;
} }
...@@ -732,56 +800,42 @@ bool arch_uprobe_xol_was_trapped(struct task_struct *t) ...@@ -732,56 +800,42 @@ bool arch_uprobe_xol_was_trapped(struct task_struct *t)
* single-step, we single-stepped a copy of the instruction. * single-step, we single-stepped a copy of the instruction.
* *
* This function prepares to resume execution after the single-step. * This function prepares to resume execution after the single-step.
* We have to fix things up as follows:
*
* Typically, the new ip is relative to the copied instruction. We need
* to make it relative to the original instruction (FIX_IP). Exceptions
* are return instructions and absolute or indirect jump or call instructions.
*
* If the single-stepped instruction was a call, the return address that
* is atop the stack is the address following the copied instruction. We
* need to make it the address following the original instruction (FIX_CALL).
*
* If the original instruction was a rip-relative instruction such as
* "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
* instruction using a scratch register -- e.g., "movl %edx,(%rax)".
* We need to restore the contents of the scratch register and adjust
* the ip, keeping in mind that the instruction we executed is 4 bytes
* shorter than the original instruction (since we squeezed out the offset
* field). (FIX_RIP_AX or FIX_RIP_CX)
*/ */
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{ {
struct uprobe_task *utask = current->utask; struct uprobe_task *utask = current->utask;
bool send_sigtrap = utask->autask.saved_tf;
int err = 0;
WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR); WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
current->thread.trap_nr = utask->autask.saved_trap_nr;
if (auprobe->ops->post_xol) { if (auprobe->ops->post_xol) {
int err = auprobe->ops->post_xol(auprobe, regs); err = auprobe->ops->post_xol(auprobe, regs);
if (err) { if (err) {
arch_uprobe_abort_xol(auprobe, regs);
/* /*
* Restart the probed insn. ->post_xol() must ensure * Restore ->ip for restart or post mortem analysis.
* this is really possible if it returns -ERESTART. * ->post_xol() must not return -ERESTART unless this
* is really possible.
*/ */
regs->ip = utask->vaddr;
if (err == -ERESTART) if (err == -ERESTART)
return 0; err = 0;
return err; send_sigtrap = false;
} }
} }
current->thread.trap_nr = utask->autask.saved_trap_nr;
/* /*
* arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
* so we can get an extra SIGTRAP if we do not clear TF. We need * so we can get an extra SIGTRAP if we do not clear TF. We need
* to examine the opcode to make it right. * to examine the opcode to make it right.
*/ */
if (utask->autask.saved_tf) if (send_sigtrap)
send_sig(SIGTRAP, current, 0); send_sig(SIGTRAP, current, 0);
else if (!(auprobe->fixups & UPROBE_FIX_SETF))
if (!utask->autask.saved_tf)
regs->flags &= ~X86_EFLAGS_TF; regs->flags &= ~X86_EFLAGS_TF;
return 0; return err;
} }
/* callback routine for handling exceptions. */ /* callback routine for handling exceptions. */
...@@ -815,18 +869,18 @@ int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, ...@@ -815,18 +869,18 @@ int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val,
/* /*
* This function gets called when XOL instruction either gets trapped or * This function gets called when XOL instruction either gets trapped or
* the thread has a fatal signal, or if arch_uprobe_post_xol() failed. * the thread has a fatal signal. Reset the instruction pointer to its
* Reset the instruction pointer to its probed address for the potential * probed address for the potential restart or for post mortem analysis.
* restart or for post mortem analysis.
*/ */
void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{ {
struct uprobe_task *utask = current->utask; struct uprobe_task *utask = current->utask;
current->thread.trap_nr = utask->autask.saved_trap_nr; if (auprobe->ops->abort)
handle_riprel_post_xol(auprobe, regs, NULL); auprobe->ops->abort(auprobe, regs);
instruction_pointer_set(regs, utask->vaddr);
current->thread.trap_nr = utask->autask.saved_trap_nr;
regs->ip = utask->vaddr;
/* clear TF if it was set by us in arch_uprobe_pre_xol() */ /* clear TF if it was set by us in arch_uprobe_pre_xol() */
if (!utask->autask.saved_tf) if (!utask->autask.saved_tf)
regs->flags &= ~X86_EFLAGS_TF; regs->flags &= ~X86_EFLAGS_TF;
......
...@@ -102,6 +102,7 @@ extern int __weak set_orig_insn(struct arch_uprobe *aup, struct mm_struct *mm, u ...@@ -102,6 +102,7 @@ extern int __weak set_orig_insn(struct arch_uprobe *aup, struct mm_struct *mm, u
extern bool __weak is_swbp_insn(uprobe_opcode_t *insn); extern bool __weak is_swbp_insn(uprobe_opcode_t *insn);
extern bool __weak is_trap_insn(uprobe_opcode_t *insn); extern bool __weak is_trap_insn(uprobe_opcode_t *insn);
extern unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs); extern unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs);
extern unsigned long uprobe_get_trap_addr(struct pt_regs *regs);
extern int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t); extern int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t);
extern int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc); extern int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc);
extern int uprobe_apply(struct inode *inode, loff_t offset, struct uprobe_consumer *uc, bool); extern int uprobe_apply(struct inode *inode, loff_t offset, struct uprobe_consumer *uc, bool);
...@@ -130,6 +131,9 @@ extern bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *r ...@@ -130,6 +131,9 @@ extern bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *r
#else /* !CONFIG_UPROBES */ #else /* !CONFIG_UPROBES */
struct uprobes_state { struct uprobes_state {
}; };
#define uprobe_get_trap_addr(regs) instruction_pointer(regs)
static inline int static inline int
uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
{ {
......
...@@ -127,7 +127,7 @@ struct xol_area { ...@@ -127,7 +127,7 @@ struct xol_area {
*/ */
static bool valid_vma(struct vm_area_struct *vma, bool is_register) static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{ {
vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED; vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
if (is_register) if (is_register)
flags |= VM_WRITE; flags |= VM_WRITE;
...@@ -279,18 +279,13 @@ static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t ...@@ -279,18 +279,13 @@ static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t
* supported by that architecture then we need to modify is_trap_at_addr and * supported by that architecture then we need to modify is_trap_at_addr and
* uprobe_write_opcode accordingly. This would never be a problem for archs * uprobe_write_opcode accordingly. This would never be a problem for archs
* that have fixed length instructions. * that have fixed length instructions.
*/ *
/*
* uprobe_write_opcode - write the opcode at a given virtual address. * uprobe_write_opcode - write the opcode at a given virtual address.
* @mm: the probed process address space. * @mm: the probed process address space.
* @vaddr: the virtual address to store the opcode. * @vaddr: the virtual address to store the opcode.
* @opcode: opcode to be written at @vaddr. * @opcode: opcode to be written at @vaddr.
* *
* Called with mm->mmap_sem held (for read and with a reference to * Called with mm->mmap_sem held for write.
* mm).
*
* For mm @mm, write the opcode at @vaddr.
* Return 0 (success) or a negative errno. * Return 0 (success) or a negative errno.
*/ */
int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
...@@ -310,21 +305,25 @@ int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, ...@@ -310,21 +305,25 @@ int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
if (ret <= 0) if (ret <= 0)
goto put_old; goto put_old;
ret = anon_vma_prepare(vma);
if (ret)
goto put_old;
ret = -ENOMEM; ret = -ENOMEM;
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
if (!new_page) if (!new_page)
goto put_old; goto put_old;
__SetPageUptodate(new_page); if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
goto put_new;
__SetPageUptodate(new_page);
copy_highpage(new_page, old_page); copy_highpage(new_page, old_page);
copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
ret = anon_vma_prepare(vma);
if (ret)
goto put_new;
ret = __replace_page(vma, vaddr, old_page, new_page); ret = __replace_page(vma, vaddr, old_page, new_page);
if (ret)
mem_cgroup_uncharge_page(new_page);
put_new: put_new:
page_cache_release(new_page); page_cache_release(new_page);
...@@ -1352,6 +1351,16 @@ unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) ...@@ -1352,6 +1351,16 @@ unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
} }
unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
{
struct uprobe_task *utask = current->utask;
if (unlikely(utask && utask->active_uprobe))
return utask->vaddr;
return instruction_pointer(regs);
}
/* /*
* Called with no locks held. * Called with no locks held.
* Called in context of a exiting or a exec-ing thread. * Called in context of a exiting or a exec-ing thread.
......
...@@ -1009,56 +1009,60 @@ uprobe_filter_event(struct trace_uprobe *tu, struct perf_event *event) ...@@ -1009,56 +1009,60 @@ uprobe_filter_event(struct trace_uprobe *tu, struct perf_event *event)
return __uprobe_perf_filter(&tu->filter, event->hw.tp_target->mm); return __uprobe_perf_filter(&tu->filter, event->hw.tp_target->mm);
} }
static int uprobe_perf_open(struct trace_uprobe *tu, struct perf_event *event) static int uprobe_perf_close(struct trace_uprobe *tu, struct perf_event *event)
{ {
bool done; bool done;
write_lock(&tu->filter.rwlock); write_lock(&tu->filter.rwlock);
if (event->hw.tp_target) { if (event->hw.tp_target) {
/* list_del(&event->hw.tp_list);
* event->parent != NULL means copy_process(), we can avoid
* uprobe_apply(). current->mm must be probed and we can rely
* on dup_mmap() which preserves the already installed bp's.
*
* attr.enable_on_exec means that exec/mmap will install the
* breakpoints we need.
*/
done = tu->filter.nr_systemwide || done = tu->filter.nr_systemwide ||
event->parent || event->attr.enable_on_exec || (event->hw.tp_target->flags & PF_EXITING) ||
uprobe_filter_event(tu, event); uprobe_filter_event(tu, event);
list_add(&event->hw.tp_list, &tu->filter.perf_events);
} else { } else {
tu->filter.nr_systemwide--;
done = tu->filter.nr_systemwide; done = tu->filter.nr_systemwide;
tu->filter.nr_systemwide++;
} }
write_unlock(&tu->filter.rwlock); write_unlock(&tu->filter.rwlock);
if (!done) if (!done)
uprobe_apply(tu->inode, tu->offset, &tu->consumer, true); return uprobe_apply(tu->inode, tu->offset, &tu->consumer, false);
return 0; return 0;
} }
static int uprobe_perf_close(struct trace_uprobe *tu, struct perf_event *event) static int uprobe_perf_open(struct trace_uprobe *tu, struct perf_event *event)
{ {
bool done; bool done;
int err;
write_lock(&tu->filter.rwlock); write_lock(&tu->filter.rwlock);
if (event->hw.tp_target) { if (event->hw.tp_target) {
list_del(&event->hw.tp_list); /*
* event->parent != NULL means copy_process(), we can avoid
* uprobe_apply(). current->mm must be probed and we can rely
* on dup_mmap() which preserves the already installed bp's.
*
* attr.enable_on_exec means that exec/mmap will install the
* breakpoints we need.
*/
done = tu->filter.nr_systemwide || done = tu->filter.nr_systemwide ||
(event->hw.tp_target->flags & PF_EXITING) || event->parent || event->attr.enable_on_exec ||
uprobe_filter_event(tu, event); uprobe_filter_event(tu, event);
list_add(&event->hw.tp_list, &tu->filter.perf_events);
} else { } else {
tu->filter.nr_systemwide--;
done = tu->filter.nr_systemwide; done = tu->filter.nr_systemwide;
tu->filter.nr_systemwide++;
} }
write_unlock(&tu->filter.rwlock); write_unlock(&tu->filter.rwlock);
if (!done) err = 0;
uprobe_apply(tu->inode, tu->offset, &tu->consumer, false); if (!done) {
err = uprobe_apply(tu->inode, tu->offset, &tu->consumer, true);
return 0; if (err)
uprobe_perf_close(tu, event);
}
return err;
} }
static bool uprobe_perf_filter(struct uprobe_consumer *uc, static bool uprobe_perf_filter(struct uprobe_consumer *uc,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment