Commit c694b233 authored by George Cherian's avatar George Cherian Committed by Herbert Xu

crypto: cavium - Add the Virtual Function driver for CPT

Enable the CPT VF driver. CPT is the cryptographic Acceleration Unit
in Octeon-tx series of processors.
Signed-off-by: default avatarGeorge Cherian <george.cherian@cavium.com>
Reviewed-by: default avatarDavid Daney <david.daney@cavium.com>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent 9e2c7d99
obj-$(CONFIG_CAVIUM_CPT) += cptpf.o
obj-$(CONFIG_CAVIUM_CPT) += cptpf.o cptvf.o
cptpf-objs := cptpf_main.o cptpf_mbox.o
cptvf-objs := cptvf_main.o cptvf_reqmanager.o cptvf_mbox.o cptvf_algs.o
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#ifndef __CPTVF_H
#define __CPTVF_H
#include <linux/list.h>
#include "cpt_common.h"
/* Default command queue length */
#define CPT_CMD_QLEN 2046
#define CPT_CMD_QCHUNK_SIZE 1023
/* Default command timeout in seconds */
#define CPT_COMMAND_TIMEOUT 4
#define CPT_TIMER_THOLD 0xFFFF
#define CPT_NUM_QS_PER_VF 1
#define CPT_INST_SIZE 64
#define CPT_NEXT_CHUNK_PTR_SIZE 8
#define CPT_VF_MSIX_VECTORS 2
#define CPT_VF_INTR_MBOX_MASK BIT(0)
#define CPT_VF_INTR_DOVF_MASK BIT(1)
#define CPT_VF_INTR_IRDE_MASK BIT(2)
#define CPT_VF_INTR_NWRP_MASK BIT(3)
#define CPT_VF_INTR_SERR_MASK BIT(4)
#define DMA_DIRECT_DIRECT 0 /* Input DIRECT, Output DIRECT */
#define DMA_GATHER_SCATTER 1
#define FROM_DPTR 1
/**
* Enumeration cpt_vf_int_vec_e
*
* CPT VF MSI-X Vector Enumeration
* Enumerates the MSI-X interrupt vectors.
*/
enum cpt_vf_int_vec_e {
CPT_VF_INT_VEC_E_MISC = 0x00,
CPT_VF_INT_VEC_E_DONE = 0x01
};
struct command_chunk {
u8 *head;
dma_addr_t dma_addr;
u32 size; /* Chunk size, max CPT_INST_CHUNK_MAX_SIZE */
struct hlist_node nextchunk;
};
struct command_queue {
spinlock_t lock; /* command queue lock */
u32 idx; /* Command queue host write idx */
u32 nchunks; /* Number of command chunks */
struct command_chunk *qhead; /* Command queue head, instructions
* are inserted here
*/
struct hlist_head chead;
};
struct command_qinfo {
u32 cmd_size;
u32 qchunksize; /* Command queue chunk size */
struct command_queue queue[CPT_NUM_QS_PER_VF];
};
struct pending_entry {
u8 busy; /* Entry status (free/busy) */
volatile u64 *completion_addr; /* Completion address */
void *post_arg;
void (*callback)(int, void *); /* Kernel ASYNC request callabck */
void *callback_arg; /* Kernel ASYNC request callabck arg */
};
struct pending_queue {
struct pending_entry *head; /* head of the queue */
u32 front; /* Process work from here */
u32 rear; /* Append new work here */
atomic64_t pending_count;
spinlock_t lock; /* Queue lock */
};
struct pending_qinfo {
u32 nr_queues; /* Number of queues supported */
u32 qlen; /* Queue length */
struct pending_queue queue[CPT_NUM_QS_PER_VF];
};
#define for_each_pending_queue(qinfo, q, i) \
for (i = 0, q = &qinfo->queue[i]; i < qinfo->nr_queues; i++, \
q = &qinfo->queue[i])
struct cpt_vf {
u16 flags; /* Flags to hold device status bits */
u8 vfid; /* Device Index 0...CPT_MAX_VF_NUM */
u8 vftype; /* VF type of SE_TYPE(1) or AE_TYPE(1) */
u8 vfgrp; /* VF group (0 - 8) */
u8 node; /* Operating node: Bits (46:44) in BAR0 address */
u8 priority; /* VF priority ring: 1-High proirity round
* robin ring;0-Low priority round robin ring;
*/
struct pci_dev *pdev; /* pci device handle */
void __iomem *reg_base; /* Register start address */
void *wqe_info; /* BH worker info */
/* MSI-X */
bool msix_enabled;
struct msix_entry msix_entries[CPT_VF_MSIX_VECTORS];
bool irq_allocated[CPT_VF_MSIX_VECTORS];
cpumask_var_t affinity_mask[CPT_VF_MSIX_VECTORS];
/* Command and Pending queues */
u32 qsize;
u32 nr_queues;
struct command_qinfo cqinfo; /* Command queue information */
struct pending_qinfo pqinfo; /* Pending queue information */
/* VF-PF mailbox communication */
bool pf_acked;
bool pf_nacked;
};
int cptvf_send_vf_up(struct cpt_vf *cptvf);
int cptvf_send_vf_down(struct cpt_vf *cptvf);
int cptvf_send_vf_to_grp_msg(struct cpt_vf *cptvf);
int cptvf_send_vf_priority_msg(struct cpt_vf *cptvf);
int cptvf_send_vq_size_msg(struct cpt_vf *cptvf);
int cptvf_check_pf_ready(struct cpt_vf *cptvf);
void cptvf_handle_mbox_intr(struct cpt_vf *cptvf);
void cvm_crypto_exit(void);
int cvm_crypto_init(struct cpt_vf *cptvf);
void vq_post_process(struct cpt_vf *cptvf, u32 qno);
void cptvf_write_vq_doorbell(struct cpt_vf *cptvf, u32 val);
#endif /* __CPTVF_H */
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/authenc.h>
#include <crypto/cryptd.h>
#include <crypto/crypto_wq.h>
#include <crypto/des.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/scatterlist.h>
#include "cptvf.h"
#include "cptvf_algs.h"
struct cpt_device_handle {
void *cdev[MAX_DEVICES];
u32 dev_count;
};
static struct cpt_device_handle dev_handle;
static void cvm_callback(u32 status, void *arg)
{
struct crypto_async_request *req = (struct crypto_async_request *)arg;
req->complete(req, !status);
}
static inline void update_input_iv(struct cpt_request_info *req_info,
u8 *iv, u32 enc_iv_len,
u32 *argcnt)
{
/* Setting the iv information */
req_info->in[*argcnt].vptr = (void *)iv;
req_info->in[*argcnt].size = enc_iv_len;
req_info->req.dlen += enc_iv_len;
++(*argcnt);
}
static inline void update_output_iv(struct cpt_request_info *req_info,
u8 *iv, u32 enc_iv_len,
u32 *argcnt)
{
/* Setting the iv information */
req_info->out[*argcnt].vptr = (void *)iv;
req_info->out[*argcnt].size = enc_iv_len;
req_info->rlen += enc_iv_len;
++(*argcnt);
}
static inline void update_input_data(struct cpt_request_info *req_info,
struct scatterlist *inp_sg,
u32 nbytes, u32 *argcnt)
{
req_info->req.dlen += nbytes;
while (nbytes) {
u32 len = min(nbytes, inp_sg->length);
u8 *ptr = sg_virt(inp_sg);
req_info->in[*argcnt].vptr = (void *)ptr;
req_info->in[*argcnt].size = len;
nbytes -= len;
++(*argcnt);
++inp_sg;
}
}
static inline void update_output_data(struct cpt_request_info *req_info,
struct scatterlist *outp_sg,
u32 nbytes, u32 *argcnt)
{
req_info->rlen += nbytes;
while (nbytes) {
u32 len = min(nbytes, outp_sg->length);
u8 *ptr = sg_virt(outp_sg);
req_info->out[*argcnt].vptr = (void *)ptr;
req_info->out[*argcnt].size = len;
nbytes -= len;
++(*argcnt);
++outp_sg;
}
}
static inline u32 create_ctx_hdr(struct ablkcipher_request *req, u32 enc,
u32 cipher_type, u32 aes_key_type,
u32 *argcnt)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct cvm_enc_ctx *ctx = crypto_ablkcipher_ctx(tfm);
struct cvm_req_ctx *rctx = ablkcipher_request_ctx(req);
struct fc_context *fctx = &rctx->fctx;
u64 *offset_control = &rctx->control_word;
u32 enc_iv_len = crypto_ablkcipher_ivsize(tfm);
struct cpt_request_info *req_info = &rctx->cpt_req;
u64 *ctrl_flags = NULL;
req_info->ctrl.s.grp = 0;
req_info->ctrl.s.dma_mode = DMA_GATHER_SCATTER;
req_info->ctrl.s.se_req = SE_CORE_REQ;
req_info->req.opcode.s.major = MAJOR_OP_FC |
DMA_MODE_FLAG(DMA_GATHER_SCATTER);
if (enc)
req_info->req.opcode.s.minor = 2;
else
req_info->req.opcode.s.minor = 3;
req_info->req.param1 = req->nbytes; /* Encryption Data length */
req_info->req.param2 = 0; /*Auth data length */
fctx->enc.enc_ctrl.e.enc_cipher = cipher_type;
fctx->enc.enc_ctrl.e.aes_key = aes_key_type;
fctx->enc.enc_ctrl.e.iv_source = FROM_DPTR;
if (cipher_type == AES_XTS)
memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2);
else
memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len);
ctrl_flags = (u64 *)&fctx->enc.enc_ctrl.flags;
*ctrl_flags = cpu_to_be64(*ctrl_flags);
*offset_control = cpu_to_be64(((u64)(enc_iv_len) << 16));
/* Storing Packet Data Information in offset
* Control Word First 8 bytes
*/
req_info->in[*argcnt].vptr = (u8 *)offset_control;
req_info->in[*argcnt].size = CONTROL_WORD_LEN;
req_info->req.dlen += CONTROL_WORD_LEN;
++(*argcnt);
req_info->in[*argcnt].vptr = (u8 *)fctx;
req_info->in[*argcnt].size = sizeof(struct fc_context);
req_info->req.dlen += sizeof(struct fc_context);
++(*argcnt);
return 0;
}
static inline u32 create_input_list(struct ablkcipher_request *req, u32 enc,
u32 cipher_type, u32 aes_key_type,
u32 enc_iv_len)
{
struct cvm_req_ctx *rctx = ablkcipher_request_ctx(req);
struct cpt_request_info *req_info = &rctx->cpt_req;
u32 argcnt = 0;
create_ctx_hdr(req, enc, cipher_type, aes_key_type, &argcnt);
update_input_iv(req_info, req->info, enc_iv_len, &argcnt);
update_input_data(req_info, req->src, req->nbytes, &argcnt);
req_info->incnt = argcnt;
return 0;
}
static inline void store_cb_info(struct ablkcipher_request *req,
struct cpt_request_info *req_info)
{
req_info->callback = (void *)cvm_callback;
req_info->callback_arg = (void *)&req->base;
}
static inline void create_output_list(struct ablkcipher_request *req,
u32 cipher_type,
u32 enc_iv_len)
{
struct cvm_req_ctx *rctx = ablkcipher_request_ctx(req);
struct cpt_request_info *req_info = &rctx->cpt_req;
u32 argcnt = 0;
/* OUTPUT Buffer Processing
* AES encryption/decryption output would be
* received in the following format
*
* ------IV--------|------ENCRYPTED/DECRYPTED DATA-----|
* [ 16 Bytes/ [ Request Enc/Dec/ DATA Len AES CBC ]
*/
/* Reading IV information */
update_output_iv(req_info, req->info, enc_iv_len, &argcnt);
update_output_data(req_info, req->dst, req->nbytes, &argcnt);
req_info->outcnt = argcnt;
}
static inline int cvm_enc_dec(struct ablkcipher_request *req, u32 enc,
u32 cipher_type)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct cvm_enc_ctx *ctx = crypto_ablkcipher_ctx(tfm);
u32 key_type = AES_128_BIT;
struct cvm_req_ctx *rctx = ablkcipher_request_ctx(req);
u32 enc_iv_len = crypto_ablkcipher_ivsize(tfm);
struct fc_context *fctx = &rctx->fctx;
struct cpt_request_info *req_info = &rctx->cpt_req;
void *cdev = NULL;
int status;
switch (ctx->key_len) {
case 16:
key_type = AES_128_BIT;
break;
case 24:
key_type = AES_192_BIT;
break;
case 32:
if (cipher_type == AES_XTS)
key_type = AES_128_BIT;
else
key_type = AES_256_BIT;
break;
case 64:
if (cipher_type == AES_XTS)
key_type = AES_256_BIT;
else
return -EINVAL;
break;
default:
return -EINVAL;
}
if (cipher_type == DES3_CBC)
key_type = 0;
memset(req_info, 0, sizeof(struct cpt_request_info));
memset(fctx, 0, sizeof(struct fc_context));
create_input_list(req, enc, cipher_type, key_type, enc_iv_len);
create_output_list(req, cipher_type, enc_iv_len);
store_cb_info(req, req_info);
cdev = dev_handle.cdev[smp_processor_id()];
status = cptvf_do_request(cdev, req_info);
/* We perform an asynchronous send and once
* the request is completed the driver would
* intimate through registered call back functions
*/
if (status)
return status;
else
return -EINPROGRESS;
}
int cvm_des3_encrypt_cbc(struct ablkcipher_request *req)
{
return cvm_enc_dec(req, true, DES3_CBC);
}
int cvm_des3_decrypt_cbc(struct ablkcipher_request *req)
{
return cvm_enc_dec(req, false, DES3_CBC);
}
int cvm_aes_encrypt_xts(struct ablkcipher_request *req)
{
return cvm_enc_dec(req, true, AES_XTS);
}
int cvm_aes_decrypt_xts(struct ablkcipher_request *req)
{
return cvm_enc_dec(req, false, AES_XTS);
}
int cvm_aes_encrypt_cbc(struct ablkcipher_request *req)
{
return cvm_enc_dec(req, true, AES_CBC);
}
int cvm_aes_decrypt_cbc(struct ablkcipher_request *req)
{
return cvm_enc_dec(req, false, AES_CBC);
}
int cvm_xts_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
u32 keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct cvm_enc_ctx *ctx = crypto_tfm_ctx(tfm);
int err;
const u8 *key1 = key;
const u8 *key2 = key + (keylen / 2);
err = xts_check_key(tfm, key, keylen);
if (err)
return err;
ctx->key_len = keylen;
memcpy(ctx->enc_key, key1, keylen / 2);
memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2);
return 0;
}
int cvm_enc_dec_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
u32 keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct cvm_enc_ctx *ctx = crypto_tfm_ctx(tfm);
if ((keylen == 16) || (keylen == 24) || (keylen == 32)) {
ctx->key_len = keylen;
memcpy(ctx->enc_key, key, keylen);
return 0;
}
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
int cvm_enc_dec_init(struct crypto_tfm *tfm)
{
struct cvm_enc_ctx *ctx = crypto_tfm_ctx(tfm);
memset(ctx, 0, sizeof(*ctx));
tfm->crt_ablkcipher.reqsize = sizeof(struct cvm_req_ctx) +
sizeof(struct ablkcipher_request);
/* Additional memory for ablkcipher_request is
* allocated since the cryptd daemon uses
* this memory for request_ctx information
*/
return 0;
}
struct crypto_alg algs[] = { {
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cvm_enc_ctx),
.cra_alignmask = 7,
.cra_priority = 4001,
.cra_name = "xts(aes)",
.cra_driver_name = "cavium-xts-aes",
.cra_type = &crypto_ablkcipher_type,
.cra_u = {
.ablkcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.setkey = cvm_xts_setkey,
.encrypt = cvm_aes_encrypt_xts,
.decrypt = cvm_aes_decrypt_xts,
},
},
.cra_init = cvm_enc_dec_init,
.cra_module = THIS_MODULE,
}, {
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cvm_enc_ctx),
.cra_alignmask = 7,
.cra_priority = 4001,
.cra_name = "cbc(aes)",
.cra_driver_name = "cavium-cbc-aes",
.cra_type = &crypto_ablkcipher_type,
.cra_u = {
.ablkcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = cvm_enc_dec_setkey,
.encrypt = cvm_aes_encrypt_cbc,
.decrypt = cvm_aes_decrypt_cbc,
},
},
.cra_init = cvm_enc_dec_init,
.cra_module = THIS_MODULE,
}, {
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct cvm_des3_ctx),
.cra_alignmask = 7,
.cra_priority = 4001,
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cavium-cbc-des3_ede",
.cra_type = &crypto_ablkcipher_type,
.cra_u = {
.ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = cvm_enc_dec_setkey,
.encrypt = cvm_des3_encrypt_cbc,
.decrypt = cvm_des3_decrypt_cbc,
},
},
.cra_init = cvm_enc_dec_init,
.cra_module = THIS_MODULE,
} };
static inline int cav_register_algs(void)
{
int err = 0;
err = crypto_register_algs(algs, ARRAY_SIZE(algs));
if (err)
return err;
return 0;
}
static inline void cav_unregister_algs(void)
{
crypto_unregister_algs(algs, ARRAY_SIZE(algs));
}
int cvm_crypto_init(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
u32 dev_count;
dev_count = dev_handle.dev_count;
dev_handle.cdev[dev_count] = cptvf;
dev_handle.dev_count++;
if (dev_count == 3) {
if (cav_register_algs()) {
dev_err(&pdev->dev, "Error in registering crypto algorithms\n");
return -EINVAL;
}
}
return 0;
}
void cvm_crypto_exit(void)
{
u32 dev_count;
dev_count = --dev_handle.dev_count;
if (!dev_count)
cav_unregister_algs();
}
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#ifndef _CPTVF_ALGS_H_
#define _CPTVF_ALGS_H_
#include "request_manager.h"
#define MAX_DEVICES 16
#define MAJOR_OP_FC 0x33
#define MAX_ENC_KEY_SIZE 32
#define MAX_HASH_KEY_SIZE 64
#define MAX_KEY_SIZE (MAX_ENC_KEY_SIZE + MAX_HASH_KEY_SIZE)
#define CONTROL_WORD_LEN 8
#define KEY2_OFFSET 48
#define DMA_MODE_FLAG(dma_mode) \
(((dma_mode) == DMA_GATHER_SCATTER) ? (1 << 7) : 0)
enum req_type {
AE_CORE_REQ,
SE_CORE_REQ,
};
enum cipher_type {
DES3_CBC = 0x1,
DES3_ECB = 0x2,
AES_CBC = 0x3,
AES_ECB = 0x4,
AES_CFB = 0x5,
AES_CTR = 0x6,
AES_GCM = 0x7,
AES_XTS = 0x8
};
enum aes_type {
AES_128_BIT = 0x1,
AES_192_BIT = 0x2,
AES_256_BIT = 0x3
};
union encr_ctrl {
u64 flags;
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u64 enc_cipher:4;
u64 reserved1:1;
u64 aes_key:2;
u64 iv_source:1;
u64 hash_type:4;
u64 reserved2:3;
u64 auth_input_type:1;
u64 mac_len:8;
u64 reserved3:8;
u64 encr_offset:16;
u64 iv_offset:8;
u64 auth_offset:8;
#else
u64 auth_offset:8;
u64 iv_offset:8;
u64 encr_offset:16;
u64 reserved3:8;
u64 mac_len:8;
u64 auth_input_type:1;
u64 reserved2:3;
u64 hash_type:4;
u64 iv_source:1;
u64 aes_key:2;
u64 reserved1:1;
u64 enc_cipher:4;
#endif
} e;
};
struct enc_context {
union encr_ctrl enc_ctrl;
u8 encr_key[32];
u8 encr_iv[16];
};
struct fchmac_context {
u8 ipad[64];
u8 opad[64]; /* or OPAD */
};
struct fc_context {
struct enc_context enc;
struct fchmac_context hmac;
};
struct cvm_enc_ctx {
u32 key_len;
u8 enc_key[MAX_KEY_SIZE];
};
struct cvm_des3_ctx {
u32 key_len;
u8 des3_key[MAX_KEY_SIZE];
};
struct cvm_req_ctx {
struct cpt_request_info cpt_req;
u64 control_word;
struct fc_context fctx;
};
int cptvf_do_request(void *cptvf, struct cpt_request_info *req);
#endif /*_CPTVF_ALGS_H_*/
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include "cptvf.h"
#define DRV_NAME "thunder-cptvf"
#define DRV_VERSION "1.0"
struct cptvf_wqe {
struct tasklet_struct twork;
void *cptvf;
u32 qno;
};
struct cptvf_wqe_info {
struct cptvf_wqe vq_wqe[CPT_NUM_QS_PER_VF];
};
static void vq_work_handler(unsigned long data)
{
struct cptvf_wqe_info *cwqe_info = (struct cptvf_wqe_info *)data;
struct cptvf_wqe *cwqe = &cwqe_info->vq_wqe[0];
vq_post_process(cwqe->cptvf, cwqe->qno);
}
static int init_worker_threads(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
struct cptvf_wqe_info *cwqe_info;
int i;
cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL);
if (!cwqe_info)
return -ENOMEM;
if (cptvf->nr_queues) {
dev_info(&pdev->dev, "Creating VQ worker threads (%d)\n",
cptvf->nr_queues);
}
for (i = 0; i < cptvf->nr_queues; i++) {
tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler,
(u64)cwqe_info);
cwqe_info->vq_wqe[i].qno = i;
cwqe_info->vq_wqe[i].cptvf = cptvf;
}
cptvf->wqe_info = cwqe_info;
return 0;
}
static void cleanup_worker_threads(struct cpt_vf *cptvf)
{
struct cptvf_wqe_info *cwqe_info;
struct pci_dev *pdev = cptvf->pdev;
int i;
cwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
if (!cwqe_info)
return;
if (cptvf->nr_queues) {
dev_info(&pdev->dev, "Cleaning VQ worker threads (%u)\n",
cptvf->nr_queues);
}
for (i = 0; i < cptvf->nr_queues; i++)
tasklet_kill(&cwqe_info->vq_wqe[i].twork);
kzfree(cwqe_info);
cptvf->wqe_info = NULL;
}
static void free_pending_queues(struct pending_qinfo *pqinfo)
{
int i;
struct pending_queue *queue;
for_each_pending_queue(pqinfo, queue, i) {
if (!queue->head)
continue;
/* free single queue */
kzfree((queue->head));
queue->front = 0;
queue->rear = 0;
return;
}
pqinfo->qlen = 0;
pqinfo->nr_queues = 0;
}
static int alloc_pending_queues(struct pending_qinfo *pqinfo, u32 qlen,
u32 nr_queues)
{
u32 i;
size_t size;
int ret;
struct pending_queue *queue = NULL;
pqinfo->nr_queues = nr_queues;
pqinfo->qlen = qlen;
size = (qlen * sizeof(struct pending_entry));
for_each_pending_queue(pqinfo, queue, i) {
queue->head = kzalloc((size), GFP_KERNEL);
if (!queue->head) {
ret = -ENOMEM;
goto pending_qfail;
}
queue->front = 0;
queue->rear = 0;
atomic64_set((&queue->pending_count), (0));
/* init queue spin lock */
spin_lock_init(&queue->lock);
}
return 0;
pending_qfail:
free_pending_queues(pqinfo);
return ret;
}
static int init_pending_queues(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
{
struct pci_dev *pdev = cptvf->pdev;
int ret;
if (!nr_queues)
return 0;
ret = alloc_pending_queues(&cptvf->pqinfo, qlen, nr_queues);
if (ret) {
dev_err(&pdev->dev, "failed to setup pending queues (%u)\n",
nr_queues);
return ret;
}
return 0;
}
static void cleanup_pending_queues(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
if (!cptvf->nr_queues)
return;
dev_info(&pdev->dev, "Cleaning VQ pending queue (%u)\n",
cptvf->nr_queues);
free_pending_queues(&cptvf->pqinfo);
}
static void free_command_queues(struct cpt_vf *cptvf,
struct command_qinfo *cqinfo)
{
int i;
struct command_queue *queue = NULL;
struct command_chunk *chunk = NULL;
struct pci_dev *pdev = cptvf->pdev;
struct hlist_node *node;
/* clean up for each queue */
for (i = 0; i < cptvf->nr_queues; i++) {
queue = &cqinfo->queue[i];
if (hlist_empty(&cqinfo->queue[i].chead))
continue;
hlist_for_each_entry_safe(chunk, node, &cqinfo->queue[i].chead,
nextchunk) {
dma_free_coherent(&pdev->dev, chunk->size,
chunk->head,
chunk->dma_addr);
chunk->head = NULL;
chunk->dma_addr = 0;
hlist_del(&chunk->nextchunk);
kzfree(chunk);
}
queue->nchunks = 0;
queue->idx = 0;
}
/* common cleanup */
cqinfo->cmd_size = 0;
}
static int alloc_command_queues(struct cpt_vf *cptvf,
struct command_qinfo *cqinfo, size_t cmd_size,
u32 qlen)
{
int i;
size_t q_size;
struct command_queue *queue = NULL;
struct pci_dev *pdev = cptvf->pdev;
/* common init */
cqinfo->cmd_size = cmd_size;
/* Qsize in dwords, needed for SADDR config, 1-next chunk pointer */
cptvf->qsize = min(qlen, cqinfo->qchunksize) *
CPT_NEXT_CHUNK_PTR_SIZE + 1;
/* Qsize in bytes to create space for alignment */
q_size = qlen * cqinfo->cmd_size;
/* per queue initialization */
for (i = 0; i < cptvf->nr_queues; i++) {
size_t c_size = 0;
size_t rem_q_size = q_size;
struct command_chunk *curr = NULL, *first = NULL, *last = NULL;
u32 qcsize_bytes = cqinfo->qchunksize * cqinfo->cmd_size;
queue = &cqinfo->queue[i];
INIT_HLIST_HEAD(&cqinfo->queue[i].chead);
do {
curr = kzalloc(sizeof(*curr), GFP_KERNEL);
if (!curr)
goto cmd_qfail;
c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes :
rem_q_size;
curr->head = (u8 *)dma_zalloc_coherent(&pdev->dev,
c_size + CPT_NEXT_CHUNK_PTR_SIZE,
&curr->dma_addr, GFP_KERNEL);
if (!curr->head) {
dev_err(&pdev->dev, "Command Q (%d) chunk (%d) allocation failed\n",
i, queue->nchunks);
goto cmd_qfail;
}
curr->size = c_size;
if (queue->nchunks == 0) {
hlist_add_head(&curr->nextchunk,
&cqinfo->queue[i].chead);
first = curr;
} else {
hlist_add_behind(&curr->nextchunk,
&last->nextchunk);
}
queue->nchunks++;
rem_q_size -= c_size;
if (last)
*((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
last = curr;
} while (rem_q_size);
/* Make the queue circular */
/* Tie back last chunk entry to head */
curr = first;
*((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
queue->qhead = curr;
spin_lock_init(&queue->lock);
}
return 0;
cmd_qfail:
free_command_queues(cptvf, cqinfo);
return -ENOMEM;
}
static int init_command_queues(struct cpt_vf *cptvf, u32 qlen)
{
struct pci_dev *pdev = cptvf->pdev;
int ret;
/* setup AE command queues */
ret = alloc_command_queues(cptvf, &cptvf->cqinfo, CPT_INST_SIZE,
qlen);
if (ret) {
dev_err(&pdev->dev, "failed to allocate AE command queues (%u)\n",
cptvf->nr_queues);
return ret;
}
return ret;
}
static void cleanup_command_queues(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
if (!cptvf->nr_queues)
return;
dev_info(&pdev->dev, "Cleaning VQ command queue (%u)\n",
cptvf->nr_queues);
free_command_queues(cptvf, &cptvf->cqinfo);
}
static void cptvf_sw_cleanup(struct cpt_vf *cptvf)
{
cleanup_worker_threads(cptvf);
cleanup_pending_queues(cptvf);
cleanup_command_queues(cptvf);
}
static int cptvf_sw_init(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
{
struct pci_dev *pdev = cptvf->pdev;
int ret = 0;
u32 max_dev_queues = 0;
max_dev_queues = CPT_NUM_QS_PER_VF;
/* possible cpus */
nr_queues = min_t(u32, nr_queues, max_dev_queues);
cptvf->nr_queues = nr_queues;
ret = init_command_queues(cptvf, qlen);
if (ret) {
dev_err(&pdev->dev, "Failed to setup command queues (%u)\n",
nr_queues);
return ret;
}
ret = init_pending_queues(cptvf, qlen, nr_queues);
if (ret) {
dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n",
nr_queues);
goto setup_pqfail;
}
/* Create worker threads for BH processing */
ret = init_worker_threads(cptvf);
if (ret) {
dev_err(&pdev->dev, "Failed to setup worker threads\n");
goto init_work_fail;
}
return 0;
init_work_fail:
cleanup_worker_threads(cptvf);
cleanup_pending_queues(cptvf);
setup_pqfail:
cleanup_command_queues(cptvf);
return ret;
}
static void cptvf_disable_msix(struct cpt_vf *cptvf)
{
if (cptvf->msix_enabled) {
pci_disable_msix(cptvf->pdev);
cptvf->msix_enabled = 0;
}
}
static int cptvf_enable_msix(struct cpt_vf *cptvf)
{
int i, ret;
for (i = 0; i < CPT_VF_MSIX_VECTORS; i++)
cptvf->msix_entries[i].entry = i;
ret = pci_enable_msix(cptvf->pdev, cptvf->msix_entries,
CPT_VF_MSIX_VECTORS);
if (ret) {
dev_err(&cptvf->pdev->dev, "Request for #%d msix vectors failed\n",
CPT_VF_MSIX_VECTORS);
return ret;
}
cptvf->msix_enabled = 1;
/* Mark MSIX enabled */
cptvf->flags |= CPT_FLAG_MSIX_ENABLED;
return 0;
}
static void cptvf_free_all_interrupts(struct cpt_vf *cptvf)
{
int irq;
for (irq = 0; irq < CPT_VF_MSIX_VECTORS; irq++) {
if (cptvf->irq_allocated[irq])
irq_set_affinity_hint(cptvf->msix_entries[irq].vector,
NULL);
free_cpumask_var(cptvf->affinity_mask[irq]);
free_irq(cptvf->msix_entries[irq].vector, cptvf);
cptvf->irq_allocated[irq] = false;
}
}
static void cptvf_write_vq_ctl(struct cpt_vf *cptvf, bool val)
{
union cptx_vqx_ctl vqx_ctl;
vqx_ctl.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0));
vqx_ctl.s.ena = val;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0), vqx_ctl.u);
}
void cptvf_write_vq_doorbell(struct cpt_vf *cptvf, u32 val)
{
union cptx_vqx_doorbell vqx_dbell;
vqx_dbell.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_DOORBELL(0, 0));
vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DOORBELL(0, 0),
vqx_dbell.u);
}
static void cptvf_write_vq_inprog(struct cpt_vf *cptvf, u8 val)
{
union cptx_vqx_inprog vqx_inprg;
vqx_inprg.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0));
vqx_inprg.s.inflight = val;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0), vqx_inprg.u);
}
static void cptvf_write_vq_done_numwait(struct cpt_vf *cptvf, u32 val)
{
union cptx_vqx_done_wait vqx_dwait;
vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_DONE_WAIT(0, 0));
vqx_dwait.s.num_wait = val;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
vqx_dwait.u);
}
static void cptvf_write_vq_done_timewait(struct cpt_vf *cptvf, u16 time)
{
union cptx_vqx_done_wait vqx_dwait;
vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_DONE_WAIT(0, 0));
vqx_dwait.s.time_wait = time;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
vqx_dwait.u);
}
static void cptvf_enable_swerr_interrupts(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_ena_w1s vqx_misc_ena;
vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_ENA_W1S(0, 0));
/* Set mbox(0) interupts for the requested vf */
vqx_misc_ena.s.swerr = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
vqx_misc_ena.u);
}
static void cptvf_enable_mbox_interrupts(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_ena_w1s vqx_misc_ena;
vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_ENA_W1S(0, 0));
/* Set mbox(0) interupts for the requested vf */
vqx_misc_ena.s.mbox = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
vqx_misc_ena.u);
}
static void cptvf_enable_done_interrupts(struct cpt_vf *cptvf)
{
union cptx_vqx_done_ena_w1s vqx_done_ena;
vqx_done_ena.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_DONE_ENA_W1S(0, 0));
/* Set DONE interrupt for the requested vf */
vqx_done_ena.s.done = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ENA_W1S(0, 0),
vqx_done_ena.u);
}
static void cptvf_clear_dovf_intr(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_int vqx_misc_int;
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.dovf = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
vqx_misc_int.u);
}
static void cptvf_clear_irde_intr(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_int vqx_misc_int;
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.irde = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
vqx_misc_int.u);
}
static void cptvf_clear_nwrp_intr(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_int vqx_misc_int;
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.nwrp = 1;
cpt_write_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
static void cptvf_clear_mbox_intr(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_int vqx_misc_int;
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.mbox = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
vqx_misc_int.u);
}
static void cptvf_clear_swerr_intr(struct cpt_vf *cptvf)
{
union cptx_vqx_misc_int vqx_misc_int;
vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.swerr = 1;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
vqx_misc_int.u);
}
static u64 cptvf_read_vf_misc_intr_status(struct cpt_vf *cptvf)
{
return cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0));
}
static irqreturn_t cptvf_misc_intr_handler(int irq, void *cptvf_irq)
{
struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
struct pci_dev *pdev = cptvf->pdev;
u64 intr;
intr = cptvf_read_vf_misc_intr_status(cptvf);
/*Check for MISC interrupt types*/
if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
dev_err(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n",
intr, cptvf->vfid);
cptvf_handle_mbox_intr(cptvf);
cptvf_clear_mbox_intr(cptvf);
} else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
cptvf_clear_dovf_intr(cptvf);
/*Clear doorbell count*/
cptvf_write_vq_doorbell(cptvf, 0);
dev_err(&pdev->dev, "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n",
intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
cptvf_clear_irde_intr(cptvf);
dev_err(&pdev->dev, "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n",
intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
cptvf_clear_nwrp_intr(cptvf);
dev_err(&pdev->dev, "NCB response write error interrupt 0x%llx on CPT VF %d\n",
intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_SERR_MASK)) {
cptvf_clear_swerr_intr(cptvf);
dev_err(&pdev->dev, "Software error interrupt 0x%llx on CPT VF %d\n",
intr, cptvf->vfid);
} else {
dev_err(&pdev->dev, "Unhandled interrupt in CPT VF %d\n",
cptvf->vfid);
}
return IRQ_HANDLED;
}
static inline struct cptvf_wqe *get_cptvf_vq_wqe(struct cpt_vf *cptvf,
int qno)
{
struct cptvf_wqe_info *nwqe_info;
if (unlikely(qno >= cptvf->nr_queues))
return NULL;
nwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
return &nwqe_info->vq_wqe[qno];
}
static inline u32 cptvf_read_vq_done_count(struct cpt_vf *cptvf)
{
union cptx_vqx_done vqx_done;
vqx_done.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE(0, 0));
return vqx_done.s.done;
}
static inline void cptvf_write_vq_done_ack(struct cpt_vf *cptvf,
u32 ackcnt)
{
union cptx_vqx_done_ack vqx_dack_cnt;
vqx_dack_cnt.u = cpt_read_csr64(cptvf->reg_base,
CPTX_VQX_DONE_ACK(0, 0));
vqx_dack_cnt.s.done_ack = ackcnt;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ACK(0, 0),
vqx_dack_cnt.u);
}
static irqreturn_t cptvf_done_intr_handler(int irq, void *cptvf_irq)
{
struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
struct pci_dev *pdev = cptvf->pdev;
/* Read the number of completions */
u32 intr = cptvf_read_vq_done_count(cptvf);
if (intr) {
struct cptvf_wqe *wqe;
/* Acknowledge the number of
* scheduled completions for processing
*/
cptvf_write_vq_done_ack(cptvf, intr);
wqe = get_cptvf_vq_wqe(cptvf, 0);
if (unlikely(!wqe)) {
dev_err(&pdev->dev, "No work to schedule for VF (%d)",
cptvf->vfid);
return IRQ_NONE;
}
tasklet_hi_schedule(&wqe->twork);
}
return IRQ_HANDLED;
}
static int cptvf_register_misc_intr(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
int ret;
/* Register misc interrupt handlers */
ret = request_irq(cptvf->msix_entries[CPT_VF_INT_VEC_E_MISC].vector,
cptvf_misc_intr_handler, 0, "CPT VF misc intr",
cptvf);
if (ret)
goto fail;
cptvf->irq_allocated[CPT_VF_INT_VEC_E_MISC] = true;
/* Enable mailbox interrupt */
cptvf_enable_mbox_interrupts(cptvf);
cptvf_enable_swerr_interrupts(cptvf);
return 0;
fail:
dev_err(&pdev->dev, "Request misc irq failed");
cptvf_free_all_interrupts(cptvf);
return ret;
}
static int cptvf_register_done_intr(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
int ret;
/* Register DONE interrupt handlers */
ret = request_irq(cptvf->msix_entries[CPT_VF_INT_VEC_E_DONE].vector,
cptvf_done_intr_handler, 0, "CPT VF done intr",
cptvf);
if (ret)
goto fail;
cptvf->irq_allocated[CPT_VF_INT_VEC_E_DONE] = true;
/* Enable mailbox interrupt */
cptvf_enable_done_interrupts(cptvf);
return 0;
fail:
dev_err(&pdev->dev, "Request done irq failed\n");
cptvf_free_all_interrupts(cptvf);
return ret;
}
static void cptvf_unregister_interrupts(struct cpt_vf *cptvf)
{
cptvf_free_all_interrupts(cptvf);
cptvf_disable_msix(cptvf);
}
static void cptvf_set_irq_affinity(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
int vec, cpu;
int irqnum;
for (vec = 0; vec < CPT_VF_MSIX_VECTORS; vec++) {
if (!cptvf->irq_allocated[vec])
continue;
if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec],
GFP_KERNEL)) {
dev_err(&pdev->dev, "Allocation failed for affinity_mask for VF %d",
cptvf->vfid);
return;
}
cpu = cptvf->vfid % num_online_cpus();
cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node),
cptvf->affinity_mask[vec]);
irqnum = cptvf->msix_entries[vec].vector;
irq_set_affinity_hint(irqnum, cptvf->affinity_mask[vec]);
}
}
static void cptvf_write_vq_saddr(struct cpt_vf *cptvf, u64 val)
{
union cptx_vqx_saddr vqx_saddr;
vqx_saddr.u = val;
cpt_write_csr64(cptvf->reg_base, CPTX_VQX_SADDR(0, 0), vqx_saddr.u);
}
void cptvf_device_init(struct cpt_vf *cptvf)
{
u64 base_addr = 0;
/* Disable the VQ */
cptvf_write_vq_ctl(cptvf, 0);
/* Reset the doorbell */
cptvf_write_vq_doorbell(cptvf, 0);
/* Clear inflight */
cptvf_write_vq_inprog(cptvf, 0);
/* Write VQ SADDR */
/* TODO: for now only one queue, so hard coded */
base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr);
cptvf_write_vq_saddr(cptvf, base_addr);
/* Configure timerhold / coalescence */
cptvf_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD);
cptvf_write_vq_done_numwait(cptvf, 1);
/* Enable the VQ */
cptvf_write_vq_ctl(cptvf, 1);
/* Flag the VF ready */
cptvf->flags |= CPT_FLAG_DEVICE_READY;
}
static int cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct cpt_vf *cptvf;
int err;
cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL);
if (!cptvf)
return -ENOMEM;
pci_set_drvdata(pdev, cptvf);
cptvf->pdev = pdev;
err = pci_enable_device(pdev);
if (err) {
dev_err(dev, "Failed to enable PCI device\n");
pci_set_drvdata(pdev, NULL);
return err;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(dev, "PCI request regions failed 0x%x\n", err);
goto cptvf_err_disable_device;
}
/* Mark as VF driver */
cptvf->flags |= CPT_FLAG_VF_DRIVER;
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "Unable to get usable DMA configuration\n");
goto cptvf_err_release_regions;
}
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n");
goto cptvf_err_release_regions;
}
/* MAP PF's configuration registers */
cptvf->reg_base = pcim_iomap(pdev, 0, 0);
if (!cptvf->reg_base) {
dev_err(dev, "Cannot map config register space, aborting\n");
err = -ENOMEM;
goto cptvf_err_release_regions;
}
cptvf->node = dev_to_node(&pdev->dev);
/* Enable MSI-X */
err = cptvf_enable_msix(cptvf);
if (err) {
dev_err(dev, "cptvf_enable_msix() failed");
goto cptvf_err_release_regions;
}
/* Register mailbox interrupts */
cptvf_register_misc_intr(cptvf);
/* Check ready with PF */
/* Gets chip ID / device Id from PF if ready */
err = cptvf_check_pf_ready(cptvf);
if (err) {
dev_err(dev, "PF not responding to READY msg");
goto cptvf_err_release_regions;
}
/* CPT VF software resources initialization */
cptvf->cqinfo.qchunksize = CPT_CMD_QCHUNK_SIZE;
err = cptvf_sw_init(cptvf, CPT_CMD_QLEN, CPT_NUM_QS_PER_VF);
if (err) {
dev_err(dev, "cptvf_sw_init() failed");
goto cptvf_err_release_regions;
}
/* Convey VQ LEN to PF */
err = cptvf_send_vq_size_msg(cptvf);
if (err) {
dev_err(dev, "PF not responding to QLEN msg");
goto cptvf_err_release_regions;
}
/* CPT VF device initialization */
cptvf_device_init(cptvf);
/* Send msg to PF to assign currnet Q to required group */
cptvf->vfgrp = 1;
err = cptvf_send_vf_to_grp_msg(cptvf);
if (err) {
dev_err(dev, "PF not responding to VF_GRP msg");
goto cptvf_err_release_regions;
}
cptvf->priority = 1;
err = cptvf_send_vf_priority_msg(cptvf);
if (err) {
dev_err(dev, "PF not responding to VF_PRIO msg");
goto cptvf_err_release_regions;
}
/* Register DONE interrupts */
err = cptvf_register_done_intr(cptvf);
if (err)
goto cptvf_err_release_regions;
/* Set irq affinity masks */
cptvf_set_irq_affinity(cptvf);
/* Convey UP to PF */
err = cptvf_send_vf_up(cptvf);
if (err) {
dev_err(dev, "PF not responding to UP msg");
goto cptvf_up_fail;
}
err = cvm_crypto_init(cptvf);
if (err) {
dev_err(dev, "Algorithm register failed\n");
goto cptvf_up_fail;
}
return 0;
cptvf_up_fail:
cptvf_unregister_interrupts(cptvf);
cptvf_err_release_regions:
pci_release_regions(pdev);
cptvf_err_disable_device:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void cptvf_remove(struct pci_dev *pdev)
{
struct cpt_vf *cptvf = pci_get_drvdata(pdev);
if (!cptvf)
dev_err(&pdev->dev, "Invalid CPT-VF device\n");
/* Convey DOWN to PF */
if (cptvf_send_vf_down(cptvf)) {
dev_err(&pdev->dev, "PF not responding to DOWN msg");
} else {
cptvf_unregister_interrupts(cptvf);
cptvf_sw_cleanup(cptvf);
pci_set_drvdata(pdev, NULL);
pci_release_regions(pdev);
pci_disable_device(pdev);
cvm_crypto_exit();
}
}
static void cptvf_shutdown(struct pci_dev *pdev)
{
cptvf_remove(pdev);
}
/* Supported devices */
static const struct pci_device_id cptvf_id_table[] = {
{PCI_VDEVICE(CAVIUM, CPT_81XX_PCI_VF_DEVICE_ID), 0},
{ 0, } /* end of table */
};
static struct pci_driver cptvf_pci_driver = {
.name = DRV_NAME,
.id_table = cptvf_id_table,
.probe = cptvf_probe,
.remove = cptvf_remove,
.shutdown = cptvf_shutdown,
};
module_pci_driver(cptvf_pci_driver);
MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>");
MODULE_DESCRIPTION("Cavium Thunder CPT Virtual Function Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, cptvf_id_table);
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include "cptvf.h"
static void cptvf_send_msg_to_pf(struct cpt_vf *cptvf, struct cpt_mbox *mbx)
{
/* Writing mbox(1) causes interrupt */
cpt_write_csr64(cptvf->reg_base, CPTX_VFX_PF_MBOXX(0, 0, 0),
mbx->msg);
cpt_write_csr64(cptvf->reg_base, CPTX_VFX_PF_MBOXX(0, 0, 1),
mbx->data);
}
/* ACKs PF's mailbox message
*/
void cptvf_mbox_send_ack(struct cpt_vf *cptvf, struct cpt_mbox *mbx)
{
mbx->msg = CPT_MBOX_MSG_TYPE_ACK;
cptvf_send_msg_to_pf(cptvf, mbx);
}
/* NACKs PF's mailbox message that VF is not able to
* complete the action
*/
void cptvf_mbox_send_nack(struct cpt_vf *cptvf, struct cpt_mbox *mbx)
{
mbx->msg = CPT_MBOX_MSG_TYPE_NACK;
cptvf_send_msg_to_pf(cptvf, mbx);
}
/* Interrupt handler to handle mailbox messages from VFs */
void cptvf_handle_mbox_intr(struct cpt_vf *cptvf)
{
struct cpt_mbox mbx = {};
/*
* MBOX[0] contains msg
* MBOX[1] contains data
*/
mbx.msg = cpt_read_csr64(cptvf->reg_base, CPTX_VFX_PF_MBOXX(0, 0, 0));
mbx.data = cpt_read_csr64(cptvf->reg_base, CPTX_VFX_PF_MBOXX(0, 0, 1));
dev_dbg(&cptvf->pdev->dev, "%s: Mailbox msg 0x%llx from PF\n",
__func__, mbx.msg);
switch (mbx.msg) {
case CPT_MSG_READY:
{
cptvf->pf_acked = true;
cptvf->vfid = mbx.data;
dev_dbg(&cptvf->pdev->dev, "Received VFID %d\n", cptvf->vfid);
break;
}
case CPT_MSG_QBIND_GRP:
cptvf->pf_acked = true;
cptvf->vftype = mbx.data;
dev_dbg(&cptvf->pdev->dev, "VF %d type %s group %d\n",
cptvf->vfid, ((mbx.data == SE_TYPES) ? "SE" : "AE"),
cptvf->vfgrp);
break;
case CPT_MBOX_MSG_TYPE_ACK:
cptvf->pf_acked = true;
break;
case CPT_MBOX_MSG_TYPE_NACK:
cptvf->pf_nacked = true;
break;
default:
dev_err(&cptvf->pdev->dev, "Invalid msg from PF, msg 0x%llx\n",
mbx.msg);
break;
}
}
static int cptvf_send_msg_to_pf_timeout(struct cpt_vf *cptvf,
struct cpt_mbox *mbx)
{
int timeout = CPT_MBOX_MSG_TIMEOUT;
int sleep = 10;
cptvf->pf_acked = false;
cptvf->pf_nacked = false;
cptvf_send_msg_to_pf(cptvf, mbx);
/* Wait for previous message to be acked, timeout 2sec */
while (!cptvf->pf_acked) {
if (cptvf->pf_nacked)
return -EINVAL;
msleep(sleep);
if (cptvf->pf_acked)
break;
timeout -= sleep;
if (!timeout) {
dev_err(&cptvf->pdev->dev, "PF didn't ack to mbox msg %llx from VF%u\n",
(mbx->msg & 0xFF), cptvf->vfid);
return -EBUSY;
}
}
return 0;
}
/*
* Checks if VF is able to comminicate with PF
* and also gets the CPT number this VF is associated to.
*/
int cptvf_check_pf_ready(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
struct cpt_mbox mbx = {};
mbx.msg = CPT_MSG_READY;
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
dev_err(&pdev->dev, "PF didn't respond to READY msg\n");
return -EBUSY;
}
return 0;
}
/*
* Communicate VQs size to PF to program CPT(0)_PF_Q(0-15)_CTL of the VF.
* Must be ACKed.
*/
int cptvf_send_vq_size_msg(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
struct cpt_mbox mbx = {};
mbx.msg = CPT_MSG_QLEN;
mbx.data = cptvf->qsize;
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
dev_err(&pdev->dev, "PF didn't respond to vq_size msg\n");
return -EBUSY;
}
return 0;
}
/*
* Communicate VF group required to PF and get the VQ binded to that group
*/
int cptvf_send_vf_to_grp_msg(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
struct cpt_mbox mbx = {};
mbx.msg = CPT_MSG_QBIND_GRP;
/* Convey group of the VF */
mbx.data = cptvf->vfgrp;
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
dev_err(&pdev->dev, "PF didn't respond to vf_type msg\n");
return -EBUSY;
}
return 0;
}
/*
* Communicate VF group required to PF and get the VQ binded to that group
*/
int cptvf_send_vf_priority_msg(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
struct cpt_mbox mbx = {};
mbx.msg = CPT_MSG_VQ_PRIORITY;
/* Convey group of the VF */
mbx.data = cptvf->priority;
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
dev_err(&pdev->dev, "PF didn't respond to vf_type msg\n");
return -EBUSY;
}
return 0;
}
/*
* Communicate to PF that VF is UP and running
*/
int cptvf_send_vf_up(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
struct cpt_mbox mbx = {};
mbx.msg = CPT_MSG_VF_UP;
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
dev_err(&pdev->dev, "PF didn't respond to UP msg\n");
return -EBUSY;
}
return 0;
}
/*
* Communicate to PF that VF is DOWN and running
*/
int cptvf_send_vf_down(struct cpt_vf *cptvf)
{
struct pci_dev *pdev = cptvf->pdev;
struct cpt_mbox mbx = {};
mbx.msg = CPT_MSG_VF_DOWN;
if (cptvf_send_msg_to_pf_timeout(cptvf, &mbx)) {
dev_err(&pdev->dev, "PF didn't respond to DOWN msg\n");
return -EBUSY;
}
return 0;
}
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include "cptvf.h"
#include "request_manager.h"
/**
* get_free_pending_entry - get free entry from pending queue
* @param pqinfo: pending_qinfo structure
* @param qno: queue number
*/
static struct pending_entry *get_free_pending_entry(struct pending_queue *q,
int qlen)
{
struct pending_entry *ent = NULL;
ent = &q->head[q->rear];
if (unlikely(ent->busy)) {
ent = NULL;
goto no_free_entry;
}
q->rear++;
if (unlikely(q->rear == qlen))
q->rear = 0;
no_free_entry:
return ent;
}
static inline void pending_queue_inc_front(struct pending_qinfo *pqinfo,
int qno)
{
struct pending_queue *queue = &pqinfo->queue[qno];
queue->front++;
if (unlikely(queue->front == pqinfo->qlen))
queue->front = 0;
}
static int setup_sgio_components(struct cpt_vf *cptvf, struct buf_ptr *list,
int buf_count, u8 *buffer)
{
int ret = 0, i, j;
int components;
struct sglist_component *sg_ptr = NULL;
struct pci_dev *pdev = cptvf->pdev;
if (unlikely(!list)) {
dev_err(&pdev->dev, "Input List pointer is NULL\n");
return -EFAULT;
}
for (i = 0; i < buf_count; i++) {
if (likely(list[i].vptr)) {
list[i].dma_addr = dma_map_single(&pdev->dev,
list[i].vptr,
list[i].size,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(&pdev->dev,
list[i].dma_addr))) {
dev_err(&pdev->dev, "DMA map kernel buffer failed for component: %d\n",
i);
ret = -EIO;
goto sg_cleanup;
}
}
}
components = buf_count / 4;
sg_ptr = (struct sglist_component *)buffer;
for (i = 0; i < components; i++) {
sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size);
sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr);
sg_ptr++;
}
components = buf_count % 4;
switch (components) {
case 3:
sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
/* Fall through */
case 2:
sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
/* Fall through */
case 1:
sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
break;
default:
break;
}
return ret;
sg_cleanup:
for (j = 0; j < i; j++) {
if (list[j].dma_addr) {
dma_unmap_single(&pdev->dev, list[i].dma_addr,
list[i].size, DMA_BIDIRECTIONAL);
}
list[j].dma_addr = 0;
}
return ret;
}
static inline int setup_sgio_list(struct cpt_vf *cptvf,
struct cpt_info_buffer *info,
struct cpt_request_info *req)
{
u16 g_sz_bytes = 0, s_sz_bytes = 0;
int ret = 0;
struct pci_dev *pdev = cptvf->pdev;
if (req->incnt > MAX_SG_IN_CNT || req->outcnt > MAX_SG_OUT_CNT) {
dev_err(&pdev->dev, "Request SG components are higher than supported\n");
ret = -EINVAL;
goto scatter_gather_clean;
}
/* Setup gather (input) components */
g_sz_bytes = ((req->incnt + 3) / 4) * sizeof(struct sglist_component);
info->gather_components = kzalloc(g_sz_bytes, GFP_KERNEL);
if (!info->gather_components) {
ret = -ENOMEM;
goto scatter_gather_clean;
}
ret = setup_sgio_components(cptvf, req->in,
req->incnt,
info->gather_components);
if (ret) {
dev_err(&pdev->dev, "Failed to setup gather list\n");
ret = -EFAULT;
goto scatter_gather_clean;
}
/* Setup scatter (output) components */
s_sz_bytes = ((req->outcnt + 3) / 4) * sizeof(struct sglist_component);
info->scatter_components = kzalloc(s_sz_bytes, GFP_KERNEL);
if (!info->scatter_components) {
ret = -ENOMEM;
goto scatter_gather_clean;
}
ret = setup_sgio_components(cptvf, req->out,
req->outcnt,
info->scatter_components);
if (ret) {
dev_err(&pdev->dev, "Failed to setup gather list\n");
ret = -EFAULT;
goto scatter_gather_clean;
}
/* Create and initialize DPTR */
info->dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE;
info->in_buffer = kzalloc(info->dlen, GFP_KERNEL);
if (!info->in_buffer) {
ret = -ENOMEM;
goto scatter_gather_clean;
}
((u16 *)info->in_buffer)[0] = req->outcnt;
((u16 *)info->in_buffer)[1] = req->incnt;
((u16 *)info->in_buffer)[2] = 0;
((u16 *)info->in_buffer)[3] = 0;
*(u64 *)info->in_buffer = cpu_to_be64p((u64 *)info->in_buffer);
memcpy(&info->in_buffer[8], info->gather_components,
g_sz_bytes);
memcpy(&info->in_buffer[8 + g_sz_bytes],
info->scatter_components, s_sz_bytes);
info->dptr_baddr = dma_map_single(&pdev->dev,
(void *)info->in_buffer,
info->dlen,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(&pdev->dev, info->dptr_baddr)) {
dev_err(&pdev->dev, "Mapping DPTR Failed %d\n", info->dlen);
ret = -EIO;
goto scatter_gather_clean;
}
/* Create and initialize RPTR */
info->out_buffer = kzalloc(COMPLETION_CODE_SIZE, GFP_KERNEL);
if (!info->out_buffer) {
ret = -ENOMEM;
goto scatter_gather_clean;
}
*((u64 *)info->out_buffer) = ~((u64)COMPLETION_CODE_INIT);
info->alternate_caddr = (u64 *)info->out_buffer;
info->rptr_baddr = dma_map_single(&pdev->dev,
(void *)info->out_buffer,
COMPLETION_CODE_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(&pdev->dev, info->rptr_baddr)) {
dev_err(&pdev->dev, "Mapping RPTR Failed %d\n",
COMPLETION_CODE_SIZE);
ret = -EIO;
goto scatter_gather_clean;
}
return 0;
scatter_gather_clean:
return ret;
}
int send_cpt_command(struct cpt_vf *cptvf, union cpt_inst_s *cmd,
u32 qno)
{
struct pci_dev *pdev = cptvf->pdev;
struct command_qinfo *qinfo = NULL;
struct command_queue *queue;
struct command_chunk *chunk;
u8 *ent;
int ret = 0;
if (unlikely(qno >= cptvf->nr_queues)) {
dev_err(&pdev->dev, "Invalid queue (qno: %d, nr_queues: %d)\n",
qno, cptvf->nr_queues);
return -EINVAL;
}
qinfo = &cptvf->cqinfo;
queue = &qinfo->queue[qno];
/* lock commad queue */
spin_lock(&queue->lock);
ent = &queue->qhead->head[queue->idx * qinfo->cmd_size];
memcpy(ent, (void *)cmd, qinfo->cmd_size);
if (++queue->idx >= queue->qhead->size / 64) {
struct hlist_node *node;
hlist_for_each(node, &queue->chead) {
chunk = hlist_entry(node, struct command_chunk,
nextchunk);
if (chunk == queue->qhead) {
continue;
} else {
queue->qhead = chunk;
break;
}
}
queue->idx = 0;
}
/* make sure all memory stores are done before ringing doorbell */
smp_wmb();
cptvf_write_vq_doorbell(cptvf, 1);
/* unlock command queue */
spin_unlock(&queue->lock);
return ret;
}
void do_request_cleanup(struct cpt_vf *cptvf,
struct cpt_info_buffer *info)
{
int i;
struct pci_dev *pdev = cptvf->pdev;
struct cpt_request_info *req;
if (info->dptr_baddr)
dma_unmap_single(&pdev->dev, info->dptr_baddr,
info->dlen, DMA_BIDIRECTIONAL);
if (info->rptr_baddr)
dma_unmap_single(&pdev->dev, info->rptr_baddr,
COMPLETION_CODE_SIZE, DMA_BIDIRECTIONAL);
if (info->comp_baddr)
dma_unmap_single(&pdev->dev, info->comp_baddr,
sizeof(union cpt_res_s), DMA_BIDIRECTIONAL);
if (info->req) {
req = info->req;
for (i = 0; i < req->outcnt; i++) {
if (req->out[i].dma_addr)
dma_unmap_single(&pdev->dev,
req->out[i].dma_addr,
req->out[i].size,
DMA_BIDIRECTIONAL);
}
for (i = 0; i < req->incnt; i++) {
if (req->in[i].dma_addr)
dma_unmap_single(&pdev->dev,
req->in[i].dma_addr,
req->in[i].size,
DMA_BIDIRECTIONAL);
}
}
if (info->scatter_components)
kzfree(info->scatter_components);
if (info->gather_components)
kzfree(info->gather_components);
if (info->out_buffer)
kzfree(info->out_buffer);
if (info->in_buffer)
kzfree(info->in_buffer);
if (info->completion_addr)
kzfree((void *)info->completion_addr);
kzfree(info);
}
void do_post_process(struct cpt_vf *cptvf, struct cpt_info_buffer *info)
{
struct pci_dev *pdev = cptvf->pdev;
if (!info || !cptvf) {
dev_err(&pdev->dev, "Input params are incorrect for post processing\n");
return;
}
do_request_cleanup(cptvf, info);
}
static inline void process_pending_queue(struct cpt_vf *cptvf,
struct pending_qinfo *pqinfo,
int qno)
{
struct pci_dev *pdev = cptvf->pdev;
struct pending_queue *pqueue = &pqinfo->queue[qno];
struct pending_entry *pentry = NULL;
struct cpt_info_buffer *info = NULL;
union cpt_res_s *status = NULL;
unsigned char ccode;
while (1) {
spin_lock_bh(&pqueue->lock);
pentry = &pqueue->head[pqueue->front];
if (unlikely(!pentry->busy)) {
spin_unlock_bh(&pqueue->lock);
break;
}
info = (struct cpt_info_buffer *)pentry->post_arg;
if (unlikely(!info)) {
dev_err(&pdev->dev, "Pending Entry post arg NULL\n");
pending_queue_inc_front(pqinfo, qno);
spin_unlock_bh(&pqueue->lock);
continue;
}
status = (union cpt_res_s *)pentry->completion_addr;
ccode = status->s.compcode;
if ((status->s.compcode == CPT_COMP_E_FAULT) ||
(status->s.compcode == CPT_COMP_E_SWERR)) {
dev_err(&pdev->dev, "Request failed with %s\n",
(status->s.compcode == CPT_COMP_E_FAULT) ?
"DMA Fault" : "Software error");
pentry->completion_addr = NULL;
pentry->busy = false;
atomic64_dec((&pqueue->pending_count));
pentry->post_arg = NULL;
pending_queue_inc_front(pqinfo, qno);
do_request_cleanup(cptvf, info);
spin_unlock_bh(&pqueue->lock);
break;
} else if (status->s.compcode == COMPLETION_CODE_INIT) {
/* check for timeout */
if (time_after_eq(jiffies,
(info->time_in +
(CPT_COMMAND_TIMEOUT * HZ)))) {
dev_err(&pdev->dev, "Request timed out");
pentry->completion_addr = NULL;
pentry->busy = false;
atomic64_dec((&pqueue->pending_count));
pentry->post_arg = NULL;
pending_queue_inc_front(pqinfo, qno);
do_request_cleanup(cptvf, info);
spin_unlock_bh(&pqueue->lock);
break;
} else if ((*info->alternate_caddr ==
(~COMPLETION_CODE_INIT)) &&
(info->extra_time < TIME_IN_RESET_COUNT)) {
info->time_in = jiffies;
info->extra_time++;
spin_unlock_bh(&pqueue->lock);
break;
}
}
pentry->completion_addr = NULL;
pentry->busy = false;
pentry->post_arg = NULL;
atomic64_dec((&pqueue->pending_count));
pending_queue_inc_front(pqinfo, qno);
spin_unlock_bh(&pqueue->lock);
do_post_process(info->cptvf, info);
/*
* Calling callback after we find
* that the request has been serviced
*/
pentry->callback(ccode, pentry->callback_arg);
}
}
int process_request(struct cpt_vf *cptvf, struct cpt_request_info *req)
{
int ret = 0, clear = 0, queue = 0;
struct cpt_info_buffer *info = NULL;
struct cptvf_request *cpt_req = NULL;
union ctrl_info *ctrl = NULL;
union cpt_res_s *result = NULL;
struct pending_entry *pentry = NULL;
struct pending_queue *pqueue = NULL;
struct pci_dev *pdev = cptvf->pdev;
u8 group = 0;
struct cpt_vq_command vq_cmd;
union cpt_inst_s cptinst;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (unlikely(!info)) {
dev_err(&pdev->dev, "Unable to allocate memory for info_buffer\n");
return -ENOMEM;
}
cpt_req = (struct cptvf_request *)&req->req;
ctrl = (union ctrl_info *)&req->ctrl;
info->cptvf = cptvf;
group = ctrl->s.grp;
ret = setup_sgio_list(cptvf, info, req);
if (ret) {
dev_err(&pdev->dev, "Setting up SG list failed");
goto request_cleanup;
}
cpt_req->dlen = info->dlen;
/*
* Get buffer for union cpt_res_s response
* structure and its physical address
*/
info->completion_addr = kzalloc(sizeof(union cpt_res_s), GFP_KERNEL);
if (unlikely(!info->completion_addr)) {
dev_err(&pdev->dev, "Unable to allocate memory for completion_addr\n");
return -ENOMEM;
}
result = (union cpt_res_s *)info->completion_addr;
result->s.compcode = COMPLETION_CODE_INIT;
info->comp_baddr = dma_map_single(&pdev->dev,
(void *)info->completion_addr,
sizeof(union cpt_res_s),
DMA_BIDIRECTIONAL);
if (dma_mapping_error(&pdev->dev, info->comp_baddr)) {
dev_err(&pdev->dev, "mapping compptr Failed %lu\n",
sizeof(union cpt_res_s));
ret = -EFAULT;
goto request_cleanup;
}
/* Fill the VQ command */
vq_cmd.cmd.u64 = 0;
vq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags);
vq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1);
vq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2);
vq_cmd.cmd.s.dlen = cpu_to_be16(cpt_req->dlen);
/* 64-bit swap for microcode data reads, not needed for addresses*/
vq_cmd.cmd.u64 = cpu_to_be64(vq_cmd.cmd.u64);
vq_cmd.dptr = info->dptr_baddr;
vq_cmd.rptr = info->rptr_baddr;
vq_cmd.cptr.u64 = 0;
vq_cmd.cptr.s.grp = group;
/* Get Pending Entry to submit command */
/* Always queue 0, because 1 queue per VF */
queue = 0;
pqueue = &cptvf->pqinfo.queue[queue];
if (atomic64_read(&pqueue->pending_count) > PENDING_THOLD) {
dev_err(&pdev->dev, "pending threshold reached\n");
process_pending_queue(cptvf, &cptvf->pqinfo, queue);
}
get_pending_entry:
spin_lock_bh(&pqueue->lock);
pentry = get_free_pending_entry(pqueue, cptvf->pqinfo.qlen);
if (unlikely(!pentry)) {
spin_unlock_bh(&pqueue->lock);
if (clear == 0) {
process_pending_queue(cptvf, &cptvf->pqinfo, queue);
clear = 1;
goto get_pending_entry;
}
dev_err(&pdev->dev, "Get free entry failed\n");
dev_err(&pdev->dev, "queue: %d, rear: %d, front: %d\n",
queue, pqueue->rear, pqueue->front);
ret = -EFAULT;
goto request_cleanup;
}
pentry->completion_addr = info->completion_addr;
pentry->post_arg = (void *)info;
pentry->callback = req->callback;
pentry->callback_arg = req->callback_arg;
info->pentry = pentry;
pentry->busy = true;
atomic64_inc(&pqueue->pending_count);
/* Send CPT command */
info->pentry = pentry;
info->time_in = jiffies;
info->req = req;
/* Create the CPT_INST_S type command for HW intrepretation */
cptinst.s.doneint = true;
cptinst.s.res_addr = (u64)info->comp_baddr;
cptinst.s.tag = 0;
cptinst.s.grp = 0;
cptinst.s.wq_ptr = 0;
cptinst.s.ei0 = vq_cmd.cmd.u64;
cptinst.s.ei1 = vq_cmd.dptr;
cptinst.s.ei2 = vq_cmd.rptr;
cptinst.s.ei3 = vq_cmd.cptr.u64;
ret = send_cpt_command(cptvf, &cptinst, queue);
spin_unlock_bh(&pqueue->lock);
if (unlikely(ret)) {
dev_err(&pdev->dev, "Send command failed for AE\n");
ret = -EFAULT;
goto request_cleanup;
}
return 0;
request_cleanup:
dev_dbg(&pdev->dev, "Failed to submit CPT command\n");
do_request_cleanup(cptvf, info);
return ret;
}
void vq_post_process(struct cpt_vf *cptvf, u32 qno)
{
struct pci_dev *pdev = cptvf->pdev;
if (unlikely(qno > cptvf->nr_queues)) {
dev_err(&pdev->dev, "Request for post processing on invalid pending queue: %u\n",
qno);
return;
}
process_pending_queue(cptvf, &cptvf->pqinfo, qno);
}
int cptvf_do_request(void *vfdev, struct cpt_request_info *req)
{
struct cpt_vf *cptvf = (struct cpt_vf *)vfdev;
struct pci_dev *pdev = cptvf->pdev;
if (!cpt_device_ready(cptvf)) {
dev_err(&pdev->dev, "CPT Device is not ready");
return -ENODEV;
}
if ((cptvf->vftype == SE_TYPES) && (!req->ctrl.s.se_req)) {
dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request",
cptvf->vfid);
return -EINVAL;
} else if ((cptvf->vftype == AE_TYPES) && (req->ctrl.s.se_req)) {
dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request",
cptvf->vfid);
return -EINVAL;
}
return process_request(cptvf, req);
}
/*
* Copyright (C) 2016 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#ifndef __REQUEST_MANAGER_H
#define __REQUEST_MANAGER_H
#include "cpt_common.h"
#define TIME_IN_RESET_COUNT 5
#define COMPLETION_CODE_SIZE 8
#define COMPLETION_CODE_INIT 0
#define PENDING_THOLD 100
#define MAX_SG_IN_CNT 12
#define MAX_SG_OUT_CNT 13
#define SG_LIST_HDR_SIZE 8
#define MAX_BUF_CNT 16
union ctrl_info {
u32 flags;
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u32 reserved0:26;
u32 grp:3; /* Group bits */
u32 dma_mode:2; /* DMA mode */
u32 se_req:1;/* To SE core */
#else
u32 se_req:1; /* To SE core */
u32 dma_mode:2; /* DMA mode */
u32 grp:3; /* Group bits */
u32 reserved0:26;
#endif
} s;
};
union opcode_info {
u16 flags;
struct {
u8 major;
u8 minor;
} s;
};
struct cptvf_request {
union opcode_info opcode;
u16 param1;
u16 param2;
u16 dlen;
};
struct buf_ptr {
u8 *vptr;
dma_addr_t dma_addr;
u16 size;
};
struct cpt_request_info {
u8 incnt; /* Number of input buffers */
u8 outcnt; /* Number of output buffers */
u16 rlen; /* Output length */
union ctrl_info ctrl; /* User control information */
struct cptvf_request req; /* Request Information (Core specific) */
struct buf_ptr in[MAX_BUF_CNT];
struct buf_ptr out[MAX_BUF_CNT];
void (*callback)(int, void *); /* Kernel ASYNC request callabck */
void *callback_arg; /* Kernel ASYNC request callabck arg */
};
struct sglist_component {
union {
u64 len;
struct {
u16 len0;
u16 len1;
u16 len2;
u16 len3;
} s;
} u;
u64 ptr0;
u64 ptr1;
u64 ptr2;
u64 ptr3;
};
struct cpt_info_buffer {
struct cpt_vf *cptvf;
unsigned long time_in;
u8 extra_time;
struct cpt_request_info *req;
dma_addr_t dptr_baddr;
u32 dlen;
dma_addr_t rptr_baddr;
dma_addr_t comp_baddr;
u8 *in_buffer;
u8 *out_buffer;
u8 *gather_components;
u8 *scatter_components;
struct pending_entry *pentry;
volatile u64 *completion_addr;
volatile u64 *alternate_caddr;
};
/*
* CPT_INST_S software command definitions
* Words EI (0-3)
*/
union vq_cmd_word0 {
u64 u64;
struct {
u16 opcode;
u16 param1;
u16 param2;
u16 dlen;
} s;
};
union vq_cmd_word3 {
u64 u64;
struct {
#if defined(__BIG_ENDIAN_BITFIELD)
u64 grp:3;
u64 cptr:61;
#else
u64 cptr:61;
u64 grp:3;
#endif
} s;
};
struct cpt_vq_command {
union vq_cmd_word0 cmd;
u64 dptr;
u64 rptr;
union vq_cmd_word3 cptr;
};
void vq_post_process(struct cpt_vf *cptvf, u32 qno);
int process_request(struct cpt_vf *cptvf, struct cpt_request_info *req);
#endif /* __REQUEST_MANAGER_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment