Commit c745b15c authored by Mark Brown's avatar Mark Brown Committed by Catalin Marinas

kselftest/arm64: Test that ptrace takes effect in the target process

While we have test coverage for the ptrace interface in our selftests
the current programs have a number of gaps. The testing is done per
regset so does not cover interactions and at no point do any of the
tests actually run the traced processes meaning that there is no
validation that anything we read or write corresponds to register values
the process actually sees. Let's add a new program which attempts to cover
these gaps.

Each test we do performs a single ptrace write. For each test we generate
some random initial register data in memory and then fork() and trace a
child. The child will load the generated data into the registers then
trigger a breakpoint. The parent waits for the breakpoint then reads the
entire child register state via ptrace, verifying that the values expected
were actually loaded by the child. It then does the write being tested
and resumes the child. Once resumed the child saves the register state
it sees to memory and executes another breakpoint. The parent uses
process_vm_readv() to get these values from the child and verifies that
the values were as expected before cleaning up the child.

We generate configurations with combinations of vector lengths and SVCR
values and then try every ptrace write which will implement the
transition we generated. In order to control execution time (especially
in emulation) we only cover the minimum and maximum VL for each of SVE
and SME, this will ensure we generate both increasing and decreasing
changes in vector length. In order to provide a baseline test we also
check the case where we resume the child without doing a ptrace write.

In order to simplify the generation of the test count for kselftest we
will report but skip a substantial number of tests that can't actually
be expressed via a single ptrace write, several times more than we
actually run. This is noisy and will add some overhead but is very much
simpler so is probably worth the tradeoff.
Signed-off-by: default avatarMark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20240122-arm64-test-ptrace-regs-v1-1-0897f822d73e@kernel.orgSigned-off-by: default avatarCatalin Marinas <catalin.marinas@arm.com>
parent 54be6c6c
fp-pidbench
fp-ptrace
fp-stress
fpsimd-test
rdvl-sme
......
......@@ -5,7 +5,9 @@ top_srcdir = $(realpath ../../../../../)
CFLAGS += $(KHDR_INCLUDES)
TEST_GEN_PROGS := fp-stress \
TEST_GEN_PROGS := \
fp-ptrace \
fp-stress \
sve-ptrace sve-probe-vls \
vec-syscfg \
za-fork za-ptrace
......@@ -24,6 +26,7 @@ EXTRA_CLEAN += $(OUTPUT)/asm-utils.o $(OUTPUT)/rdvl.o $(OUTPUT)/za-fork-asm.o
# Build with nolibc to avoid effects due to libc's clone() support
$(OUTPUT)/fp-pidbench: fp-pidbench.S $(OUTPUT)/asm-utils.o
$(CC) -nostdlib $^ -o $@
$(OUTPUT)/fp-ptrace: fp-ptrace.c fp-ptrace-asm.S
$(OUTPUT)/fpsimd-test: fpsimd-test.S $(OUTPUT)/asm-utils.o
$(CC) -nostdlib $^ -o $@
$(OUTPUT)/rdvl-sve: rdvl-sve.c $(OUTPUT)/rdvl.o
......
// SPDX-License-Identifier: GPL-2.0-only
// Copyright (C) 2021-3 ARM Limited.
//
// Assembly portion of the FP ptrace test
//
// Load values from memory into registers, break on a breakpoint, then
// break on a further breakpoint
//
#include "fp-ptrace.h"
#include "sme-inst.h"
.arch_extension sve
// Load and save register values with pauses for ptrace
//
// x0 - SVE in use
// x1 - SME in use
// x2 - SME2 in use
// x3 - FA64 supported
.globl load_and_save
load_and_save:
stp x11, x12, [sp, #-0x10]!
// This should be redundant in the SVE case
ldr x7, =v_in
ldp q0, q1, [x7]
ldp q2, q3, [x7, #16 * 2]
ldp q4, q5, [x7, #16 * 4]
ldp q6, q7, [x7, #16 * 6]
ldp q8, q9, [x7, #16 * 8]
ldp q10, q11, [x7, #16 * 10]
ldp q12, q13, [x7, #16 * 12]
ldp q14, q15, [x7, #16 * 14]
ldp q16, q17, [x7, #16 * 16]
ldp q18, q19, [x7, #16 * 18]
ldp q20, q21, [x7, #16 * 20]
ldp q22, q23, [x7, #16 * 22]
ldp q24, q25, [x7, #16 * 24]
ldp q26, q27, [x7, #16 * 26]
ldp q28, q29, [x7, #16 * 28]
ldp q30, q31, [x7, #16 * 30]
// SME?
cbz x1, check_sve_in
adrp x7, svcr_in
ldr x7, [x7, :lo12:svcr_in]
// SVCR is 0 by default, avoid triggering SME if not in use
cbz x7, check_sve_in
msr S3_3_C4_C2_2, x7
// ZA?
tbz x7, #SVCR_ZA_SHIFT, check_sm_in
rdsvl 11, 1
mov w12, #0
ldr x6, =za_in
1: _ldr_za 12, 6
add x6, x6, x11
add x12, x12, #1
cmp x11, x12
bne 1b
// ZT?
cbz x2, check_sm_in
adrp x6, zt_in
add x6, x6, :lo12:zt_in
_ldr_zt 6
// In streaming mode?
check_sm_in:
tbz x7, #SVCR_SM_SHIFT, check_sve_in
mov x4, x3 // Load FFR if we have FA64
b load_sve
// SVE?
check_sve_in:
cbz x0, wait_for_writes
mov x4, #1
load_sve:
ldr x7, =z_in
ldr z0, [x7, #0, MUL VL]
ldr z1, [x7, #1, MUL VL]
ldr z2, [x7, #2, MUL VL]
ldr z3, [x7, #3, MUL VL]
ldr z4, [x7, #4, MUL VL]
ldr z5, [x7, #5, MUL VL]
ldr z6, [x7, #6, MUL VL]
ldr z7, [x7, #7, MUL VL]
ldr z8, [x7, #8, MUL VL]
ldr z9, [x7, #9, MUL VL]
ldr z10, [x7, #10, MUL VL]
ldr z11, [x7, #11, MUL VL]
ldr z12, [x7, #12, MUL VL]
ldr z13, [x7, #13, MUL VL]
ldr z14, [x7, #14, MUL VL]
ldr z15, [x7, #15, MUL VL]
ldr z16, [x7, #16, MUL VL]
ldr z17, [x7, #17, MUL VL]
ldr z18, [x7, #18, MUL VL]
ldr z19, [x7, #19, MUL VL]
ldr z20, [x7, #20, MUL VL]
ldr z21, [x7, #21, MUL VL]
ldr z22, [x7, #22, MUL VL]
ldr z23, [x7, #23, MUL VL]
ldr z24, [x7, #24, MUL VL]
ldr z25, [x7, #25, MUL VL]
ldr z26, [x7, #26, MUL VL]
ldr z27, [x7, #27, MUL VL]
ldr z28, [x7, #28, MUL VL]
ldr z29, [x7, #29, MUL VL]
ldr z30, [x7, #30, MUL VL]
ldr z31, [x7, #31, MUL VL]
// FFR is not present in base SME
cbz x4, 1f
ldr x7, =ffr_in
ldr p0, [x7]
ldr x7, [x7, #0]
cbz x7, 1f
wrffr p0.b
1:
ldr x7, =p_in
ldr p0, [x7, #0, MUL VL]
ldr p1, [x7, #1, MUL VL]
ldr p2, [x7, #2, MUL VL]
ldr p3, [x7, #3, MUL VL]
ldr p4, [x7, #4, MUL VL]
ldr p5, [x7, #5, MUL VL]
ldr p6, [x7, #6, MUL VL]
ldr p7, [x7, #7, MUL VL]
ldr p8, [x7, #8, MUL VL]
ldr p9, [x7, #9, MUL VL]
ldr p10, [x7, #10, MUL VL]
ldr p11, [x7, #11, MUL VL]
ldr p12, [x7, #12, MUL VL]
ldr p13, [x7, #13, MUL VL]
ldr p14, [x7, #14, MUL VL]
ldr p15, [x7, #15, MUL VL]
wait_for_writes:
// Wait for the parent
brk #0
// Save values
ldr x7, =v_out
stp q0, q1, [x7]
stp q2, q3, [x7, #16 * 2]
stp q4, q5, [x7, #16 * 4]
stp q6, q7, [x7, #16 * 6]
stp q8, q9, [x7, #16 * 8]
stp q10, q11, [x7, #16 * 10]
stp q12, q13, [x7, #16 * 12]
stp q14, q15, [x7, #16 * 14]
stp q16, q17, [x7, #16 * 16]
stp q18, q19, [x7, #16 * 18]
stp q20, q21, [x7, #16 * 20]
stp q22, q23, [x7, #16 * 22]
stp q24, q25, [x7, #16 * 24]
stp q26, q27, [x7, #16 * 26]
stp q28, q29, [x7, #16 * 28]
stp q30, q31, [x7, #16 * 30]
// SME?
cbz x1, check_sve_out
rdsvl 11, 1
adrp x6, sme_vl_out
str x11, [x6, :lo12:sme_vl_out]
mrs x7, S3_3_C4_C2_2
adrp x6, svcr_out
str x7, [x6, :lo12:svcr_out]
// ZA?
tbz x7, #SVCR_ZA_SHIFT, check_sm_out
mov w12, #0
ldr x6, =za_out
1: _str_za 12, 6
add x6, x6, x11
add x12, x12, #1
cmp x11, x12
bne 1b
// ZT?
cbz x2, check_sm_out
adrp x6, zt_out
add x6, x6, :lo12:zt_out
_str_zt 6
// In streaming mode?
check_sm_out:
tbz x7, #SVCR_SM_SHIFT, check_sve_out
mov x4, x3 // FFR?
b read_sve
// SVE?
check_sve_out:
cbz x0, wait_for_reads
mov x4, #1
rdvl x7, #1
adrp x6, sve_vl_out
str x7, [x6, :lo12:sve_vl_out]
read_sve:
ldr x7, =z_out
str z0, [x7, #0, MUL VL]
str z1, [x7, #1, MUL VL]
str z2, [x7, #2, MUL VL]
str z3, [x7, #3, MUL VL]
str z4, [x7, #4, MUL VL]
str z5, [x7, #5, MUL VL]
str z6, [x7, #6, MUL VL]
str z7, [x7, #7, MUL VL]
str z8, [x7, #8, MUL VL]
str z9, [x7, #9, MUL VL]
str z10, [x7, #10, MUL VL]
str z11, [x7, #11, MUL VL]
str z12, [x7, #12, MUL VL]
str z13, [x7, #13, MUL VL]
str z14, [x7, #14, MUL VL]
str z15, [x7, #15, MUL VL]
str z16, [x7, #16, MUL VL]
str z17, [x7, #17, MUL VL]
str z18, [x7, #18, MUL VL]
str z19, [x7, #19, MUL VL]
str z20, [x7, #20, MUL VL]
str z21, [x7, #21, MUL VL]
str z22, [x7, #22, MUL VL]
str z23, [x7, #23, MUL VL]
str z24, [x7, #24, MUL VL]
str z25, [x7, #25, MUL VL]
str z26, [x7, #26, MUL VL]
str z27, [x7, #27, MUL VL]
str z28, [x7, #28, MUL VL]
str z29, [x7, #29, MUL VL]
str z30, [x7, #30, MUL VL]
str z31, [x7, #31, MUL VL]
ldr x7, =p_out
str p0, [x7, #0, MUL VL]
str p1, [x7, #1, MUL VL]
str p2, [x7, #2, MUL VL]
str p3, [x7, #3, MUL VL]
str p4, [x7, #4, MUL VL]
str p5, [x7, #5, MUL VL]
str p6, [x7, #6, MUL VL]
str p7, [x7, #7, MUL VL]
str p8, [x7, #8, MUL VL]
str p9, [x7, #9, MUL VL]
str p10, [x7, #10, MUL VL]
str p11, [x7, #11, MUL VL]
str p12, [x7, #12, MUL VL]
str p13, [x7, #13, MUL VL]
str p14, [x7, #14, MUL VL]
str p15, [x7, #15, MUL VL]
// Only save FFR if it exists
cbz x4, wait_for_reads
ldr x7, =ffr_out
rdffr p0.b
str p0, [x7]
wait_for_reads:
// Wait for the parent
brk #0
// Ensure we don't leave ourselves in streaming mode
cbz x1, out
msr S3_3_C4_C2_2, xzr
out:
ldp x11, x12, [sp, #-0x10]
ret
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2023 ARM Limited.
* Original author: Mark Brown <broonie@kernel.org>
*/
#define _GNU_SOURCE
#include <errno.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/auxv.h>
#include <sys/prctl.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <linux/kernel.h>
#include <asm/sigcontext.h>
#include <asm/sve_context.h>
#include <asm/ptrace.h>
#include "../../kselftest.h"
#include "fp-ptrace.h"
/* <linux/elf.h> and <sys/auxv.h> don't like each other, so: */
#ifndef NT_ARM_SVE
#define NT_ARM_SVE 0x405
#endif
#ifndef NT_ARM_SSVE
#define NT_ARM_SSVE 0x40b
#endif
#ifndef NT_ARM_ZA
#define NT_ARM_ZA 0x40c
#endif
#ifndef NT_ARM_ZT
#define NT_ARM_ZT 0x40d
#endif
#define ARCH_VQ_MAX 256
/* VL 128..2048 in powers of 2 */
#define MAX_NUM_VLS 5
#define NUM_FPR 32
__uint128_t v_in[NUM_FPR];
__uint128_t v_expected[NUM_FPR];
__uint128_t v_out[NUM_FPR];
char z_in[__SVE_ZREGS_SIZE(ARCH_VQ_MAX)];
char z_expected[__SVE_ZREGS_SIZE(ARCH_VQ_MAX)];
char z_out[__SVE_ZREGS_SIZE(ARCH_VQ_MAX)];
char p_in[__SVE_PREGS_SIZE(ARCH_VQ_MAX)];
char p_expected[__SVE_PREGS_SIZE(ARCH_VQ_MAX)];
char p_out[__SVE_PREGS_SIZE(ARCH_VQ_MAX)];
char ffr_in[__SVE_PREG_SIZE(ARCH_VQ_MAX)];
char ffr_expected[__SVE_PREG_SIZE(ARCH_VQ_MAX)];
char ffr_out[__SVE_PREG_SIZE(ARCH_VQ_MAX)];
char za_in[ZA_SIG_REGS_SIZE(ARCH_VQ_MAX)];
char za_expected[ZA_SIG_REGS_SIZE(ARCH_VQ_MAX)];
char za_out[ZA_SIG_REGS_SIZE(ARCH_VQ_MAX)];
char zt_in[ZT_SIG_REG_BYTES];
char zt_expected[ZT_SIG_REG_BYTES];
char zt_out[ZT_SIG_REG_BYTES];
uint64_t sve_vl_out;
uint64_t sme_vl_out;
uint64_t svcr_in, svcr_expected, svcr_out;
void load_and_save(int sve, int sme, int sme2, int fa64);
static bool got_alarm;
static void handle_alarm(int sig, siginfo_t *info, void *context)
{
got_alarm = true;
}
#ifdef CONFIG_CPU_BIG_ENDIAN
static __uint128_t arm64_cpu_to_le128(__uint128_t x)
{
u64 a = swab64(x);
u64 b = swab64(x >> 64);
return ((__uint128_t)a << 64) | b;
}
#else
static __uint128_t arm64_cpu_to_le128(__uint128_t x)
{
return x;
}
#endif
#define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
static bool sve_supported(void)
{
return getauxval(AT_HWCAP) & HWCAP_SVE;
}
static bool sme_supported(void)
{
return getauxval(AT_HWCAP2) & HWCAP2_SME;
}
static bool sme2_supported(void)
{
return getauxval(AT_HWCAP2) & HWCAP2_SME2;
}
static bool fa64_supported(void)
{
return getauxval(AT_HWCAP2) & HWCAP2_SME_FA64;
}
static bool compare_buffer(const char *name, void *out,
void *expected, size_t size)
{
void *tmp;
if (memcmp(out, expected, size) == 0)
return true;
ksft_print_msg("Mismatch in %s\n", name);
/* Did we just get zeros back? */
tmp = malloc(size);
if (!tmp) {
ksft_print_msg("OOM allocating %lu bytes for %s\n",
size, name);
ksft_exit_fail();
}
memset(tmp, 0, size);
if (memcmp(out, tmp, size) == 0)
ksft_print_msg("%s is zero\n", name);
free(tmp);
return false;
}
struct test_config {
int sve_vl_in;
int sve_vl_expected;
int sme_vl_in;
int sme_vl_expected;
int svcr_in;
int svcr_expected;
};
struct test_definition {
const char *name;
bool sve_vl_change;
bool (*supported)(struct test_config *config);
void (*set_expected_values)(struct test_config *config);
void (*modify_values)(pid_t child, struct test_config *test_config);
};
static int vl_in(struct test_config *config)
{
int vl;
if (config->svcr_in & SVCR_SM)
vl = config->sme_vl_in;
else
vl = config->sve_vl_in;
return vl;
}
static int vl_expected(struct test_config *config)
{
int vl;
if (config->svcr_expected & SVCR_SM)
vl = config->sme_vl_expected;
else
vl = config->sve_vl_expected;
return vl;
}
static void run_child(struct test_config *config)
{
int ret;
/* Let the parent attach to us */
ret = ptrace(PTRACE_TRACEME, 0, 0, 0);
if (ret < 0)
ksft_exit_fail_msg("PTRACE_TRACEME failed: %s (%d)\n",
strerror(errno), errno);
/* VL setup */
if (sve_supported()) {
ret = prctl(PR_SVE_SET_VL, config->sve_vl_in);
if (ret != config->sve_vl_in) {
ksft_print_msg("Failed to set SVE VL %d: %d\n",
config->sve_vl_in, ret);
}
}
if (sme_supported()) {
ret = prctl(PR_SME_SET_VL, config->sme_vl_in);
if (ret != config->sme_vl_in) {
ksft_print_msg("Failed to set SME VL %d: %d\n",
config->sme_vl_in, ret);
}
}
/* Load values and wait for the parent */
load_and_save(sve_supported(), sme_supported(),
sme2_supported(), fa64_supported());
exit(0);
}
static void read_one_child_regs(pid_t child, char *name,
struct iovec *iov_parent,
struct iovec *iov_child)
{
int len = iov_parent->iov_len;
int ret;
ret = process_vm_readv(child, iov_parent, 1, iov_child, 1, 0);
if (ret == -1)
ksft_print_msg("%s read failed: %s (%d)\n",
name, strerror(errno), errno);
else if (ret != len)
ksft_print_msg("Short read of %s: %d\n", name, ret);
}
static void read_child_regs(pid_t child)
{
struct iovec iov_parent, iov_child;
/*
* Since the child fork()ed from us the buffer addresses are
* the same in parent and child.
*/
iov_parent.iov_base = &v_out;
iov_parent.iov_len = sizeof(v_out);
iov_child.iov_base = &v_out;
iov_child.iov_len = sizeof(v_out);
read_one_child_regs(child, "FPSIMD", &iov_parent, &iov_child);
if (sve_supported() || sme_supported()) {
iov_parent.iov_base = &sve_vl_out;
iov_parent.iov_len = sizeof(sve_vl_out);
iov_child.iov_base = &sve_vl_out;
iov_child.iov_len = sizeof(sve_vl_out);
read_one_child_regs(child, "SVE VL", &iov_parent, &iov_child);
iov_parent.iov_base = &z_out;
iov_parent.iov_len = sizeof(z_out);
iov_child.iov_base = &z_out;
iov_child.iov_len = sizeof(z_out);
read_one_child_regs(child, "Z", &iov_parent, &iov_child);
iov_parent.iov_base = &p_out;
iov_parent.iov_len = sizeof(p_out);
iov_child.iov_base = &p_out;
iov_child.iov_len = sizeof(p_out);
read_one_child_regs(child, "P", &iov_parent, &iov_child);
iov_parent.iov_base = &ffr_out;
iov_parent.iov_len = sizeof(ffr_out);
iov_child.iov_base = &ffr_out;
iov_child.iov_len = sizeof(ffr_out);
read_one_child_regs(child, "FFR", &iov_parent, &iov_child);
}
if (sme_supported()) {
iov_parent.iov_base = &sme_vl_out;
iov_parent.iov_len = sizeof(sme_vl_out);
iov_child.iov_base = &sme_vl_out;
iov_child.iov_len = sizeof(sme_vl_out);
read_one_child_regs(child, "SME VL", &iov_parent, &iov_child);
iov_parent.iov_base = &svcr_out;
iov_parent.iov_len = sizeof(svcr_out);
iov_child.iov_base = &svcr_out;
iov_child.iov_len = sizeof(svcr_out);
read_one_child_regs(child, "SVCR", &iov_parent, &iov_child);
iov_parent.iov_base = &za_out;
iov_parent.iov_len = sizeof(za_out);
iov_child.iov_base = &za_out;
iov_child.iov_len = sizeof(za_out);
read_one_child_regs(child, "ZA", &iov_parent, &iov_child);
}
if (sme2_supported()) {
iov_parent.iov_base = &zt_out;
iov_parent.iov_len = sizeof(zt_out);
iov_child.iov_base = &zt_out;
iov_child.iov_len = sizeof(zt_out);
read_one_child_regs(child, "ZT", &iov_parent, &iov_child);
}
}
static bool continue_breakpoint(pid_t child,
enum __ptrace_request restart_type)
{
struct user_pt_regs pt_regs;
struct iovec iov;
int ret;
/* Get PC */
iov.iov_base = &pt_regs;
iov.iov_len = sizeof(pt_regs);
ret = ptrace(PTRACE_GETREGSET, child, NT_PRSTATUS, &iov);
if (ret < 0) {
ksft_print_msg("Failed to get PC: %s (%d)\n",
strerror(errno), errno);
return false;
}
/* Skip over the BRK */
pt_regs.pc += 4;
ret = ptrace(PTRACE_SETREGSET, child, NT_PRSTATUS, &iov);
if (ret < 0) {
ksft_print_msg("Failed to skip BRK: %s (%d)\n",
strerror(errno), errno);
return false;
}
/* Restart */
ret = ptrace(restart_type, child, 0, 0);
if (ret < 0) {
ksft_print_msg("Failed to restart child: %s (%d)\n",
strerror(errno), errno);
return false;
}
return true;
}
static bool check_ptrace_values_sve(pid_t child, struct test_config *config)
{
struct user_sve_header *sve;
struct user_fpsimd_state *fpsimd;
struct iovec iov;
int ret, vq;
bool pass = true;
if (!sve_supported())
return true;
vq = __sve_vq_from_vl(config->sve_vl_in);
iov.iov_len = SVE_PT_SVE_OFFSET + SVE_PT_SVE_SIZE(vq, SVE_PT_REGS_SVE);
iov.iov_base = malloc(iov.iov_len);
if (!iov.iov_base) {
ksft_print_msg("OOM allocating %lu byte SVE buffer\n",
iov.iov_len);
return false;
}
ret = ptrace(PTRACE_GETREGSET, child, NT_ARM_SVE, &iov);
if (ret != 0) {
ksft_print_msg("Failed to read initial SVE: %s (%d)\n",
strerror(errno), errno);
pass = false;
goto out;
}
sve = iov.iov_base;
if (sve->vl != config->sve_vl_in) {
ksft_print_msg("Mismatch in initial SVE VL: %d != %d\n",
sve->vl, config->sve_vl_in);
pass = false;
}
/* If we are in streaming mode we should just read FPSIMD */
if ((config->svcr_in & SVCR_SM) && (sve->flags & SVE_PT_REGS_SVE)) {
ksft_print_msg("NT_ARM_SVE reports SVE with PSTATE.SM\n");
pass = false;
}
if (sve->size != SVE_PT_SIZE(vq, sve->flags)) {
ksft_print_msg("Mismatch in SVE header size: %d != %lu\n",
sve->size, SVE_PT_SIZE(vq, sve->flags));
pass = false;
}
/* The registers might be in completely different formats! */
if (sve->flags & SVE_PT_REGS_SVE) {
if (!compare_buffer("initial SVE Z",
iov.iov_base + SVE_PT_SVE_ZREG_OFFSET(vq, 0),
z_in, SVE_PT_SVE_ZREGS_SIZE(vq)))
pass = false;
if (!compare_buffer("initial SVE P",
iov.iov_base + SVE_PT_SVE_PREG_OFFSET(vq, 0),
p_in, SVE_PT_SVE_PREGS_SIZE(vq)))
pass = false;
if (!compare_buffer("initial SVE FFR",
iov.iov_base + SVE_PT_SVE_FFR_OFFSET(vq),
ffr_in, SVE_PT_SVE_PREG_SIZE(vq)))
pass = false;
} else {
fpsimd = iov.iov_base + SVE_PT_FPSIMD_OFFSET;
if (!compare_buffer("initial V via SVE", &fpsimd->vregs[0],
v_in, sizeof(v_in)))
pass = false;
}
out:
free(iov.iov_base);
return pass;
}
static bool check_ptrace_values_ssve(pid_t child, struct test_config *config)
{
struct user_sve_header *sve;
struct user_fpsimd_state *fpsimd;
struct iovec iov;
int ret, vq;
bool pass = true;
if (!sme_supported())
return true;
vq = __sve_vq_from_vl(config->sme_vl_in);
iov.iov_len = SVE_PT_SVE_OFFSET + SVE_PT_SVE_SIZE(vq, SVE_PT_REGS_SVE);
iov.iov_base = malloc(iov.iov_len);
if (!iov.iov_base) {
ksft_print_msg("OOM allocating %lu byte SSVE buffer\n",
iov.iov_len);
return false;
}
ret = ptrace(PTRACE_GETREGSET, child, NT_ARM_SSVE, &iov);
if (ret != 0) {
ksft_print_msg("Failed to read initial SSVE: %s (%d)\n",
strerror(errno), errno);
pass = false;
goto out;
}
sve = iov.iov_base;
if (sve->vl != config->sme_vl_in) {
ksft_print_msg("Mismatch in initial SSVE VL: %d != %d\n",
sve->vl, config->sme_vl_in);
pass = false;
}
if ((config->svcr_in & SVCR_SM) && !(sve->flags & SVE_PT_REGS_SVE)) {
ksft_print_msg("NT_ARM_SSVE reports FPSIMD with PSTATE.SM\n");
pass = false;
}
if (sve->size != SVE_PT_SIZE(vq, sve->flags)) {
ksft_print_msg("Mismatch in SSVE header size: %d != %lu\n",
sve->size, SVE_PT_SIZE(vq, sve->flags));
pass = false;
}
/* The registers might be in completely different formats! */
if (sve->flags & SVE_PT_REGS_SVE) {
if (!compare_buffer("initial SSVE Z",
iov.iov_base + SVE_PT_SVE_ZREG_OFFSET(vq, 0),
z_in, SVE_PT_SVE_ZREGS_SIZE(vq)))
pass = false;
if (!compare_buffer("initial SSVE P",
iov.iov_base + SVE_PT_SVE_PREG_OFFSET(vq, 0),
p_in, SVE_PT_SVE_PREGS_SIZE(vq)))
pass = false;
if (!compare_buffer("initial SSVE FFR",
iov.iov_base + SVE_PT_SVE_FFR_OFFSET(vq),
ffr_in, SVE_PT_SVE_PREG_SIZE(vq)))
pass = false;
} else {
fpsimd = iov.iov_base + SVE_PT_FPSIMD_OFFSET;
if (!compare_buffer("initial V via SSVE",
&fpsimd->vregs[0], v_in, sizeof(v_in)))
pass = false;
}
out:
free(iov.iov_base);
return pass;
}
static bool check_ptrace_values_za(pid_t child, struct test_config *config)
{
struct user_za_header *za;
struct iovec iov;
int ret, vq;
bool pass = true;
if (!sme_supported())
return true;
vq = __sve_vq_from_vl(config->sme_vl_in);
iov.iov_len = ZA_SIG_CONTEXT_SIZE(vq);
iov.iov_base = malloc(iov.iov_len);
if (!iov.iov_base) {
ksft_print_msg("OOM allocating %lu byte ZA buffer\n",
iov.iov_len);
return false;
}
ret = ptrace(PTRACE_GETREGSET, child, NT_ARM_ZA, &iov);
if (ret != 0) {
ksft_print_msg("Failed to read initial ZA: %s (%d)\n",
strerror(errno), errno);
pass = false;
goto out;
}
za = iov.iov_base;
if (za->vl != config->sme_vl_in) {
ksft_print_msg("Mismatch in initial SME VL: %d != %d\n",
za->vl, config->sme_vl_in);
pass = false;
}
/* If PSTATE.ZA is not set we should just read the header */
if (config->svcr_in & SVCR_ZA) {
if (za->size != ZA_PT_SIZE(vq)) {
ksft_print_msg("Unexpected ZA ptrace read size: %d != %lu\n",
za->size, ZA_PT_SIZE(vq));
pass = false;
}
if (!compare_buffer("initial ZA",
iov.iov_base + ZA_PT_ZA_OFFSET,
za_in, ZA_PT_ZA_SIZE(vq)))
pass = false;
} else {
if (za->size != sizeof(*za)) {
ksft_print_msg("Unexpected ZA ptrace read size: %d != %lu\n",
za->size, sizeof(*za));
pass = false;
}
}
out:
free(iov.iov_base);
return pass;
}
static bool check_ptrace_values_zt(pid_t child, struct test_config *config)
{
uint8_t buf[512];
struct iovec iov;
int ret;
if (!sme2_supported())
return true;
iov.iov_base = &buf;
iov.iov_len = ZT_SIG_REG_BYTES;
ret = ptrace(PTRACE_GETREGSET, child, NT_ARM_ZT, &iov);
if (ret != 0) {
ksft_print_msg("Failed to read initial ZT: %s (%d)\n",
strerror(errno), errno);
return false;
}
return compare_buffer("initial ZT", buf, zt_in, ZT_SIG_REG_BYTES);
}
static bool check_ptrace_values(pid_t child, struct test_config *config)
{
bool pass = true;
struct user_fpsimd_state fpsimd;
struct iovec iov;
int ret;
iov.iov_base = &fpsimd;
iov.iov_len = sizeof(fpsimd);
ret = ptrace(PTRACE_GETREGSET, child, NT_PRFPREG, &iov);
if (ret == 0) {
if (!compare_buffer("initial V", &fpsimd.vregs, v_in,
sizeof(v_in))) {
pass = false;
}
} else {
ksft_print_msg("Failed to read initial V: %s (%d)\n",
strerror(errno), errno);
pass = false;
}
if (!check_ptrace_values_sve(child, config))
pass = false;
if (!check_ptrace_values_ssve(child, config))
pass = false;
if (!check_ptrace_values_za(child, config))
pass = false;
if (!check_ptrace_values_zt(child, config))
pass = false;
return pass;
}
static bool run_parent(pid_t child, struct test_definition *test,
struct test_config *config)
{
int wait_status, ret;
pid_t pid;
bool pass;
/* Initial attach */
while (1) {
pid = waitpid(child, &wait_status, 0);
if (pid < 0) {
if (errno == EINTR)
continue;
ksft_exit_fail_msg("waitpid() failed: %s (%d)\n",
strerror(errno), errno);
}
if (pid == child)
break;
}
if (WIFEXITED(wait_status)) {
ksft_print_msg("Child exited loading values with status %d\n",
WEXITSTATUS(wait_status));
pass = false;
goto out;
}
if (WIFSIGNALED(wait_status)) {
ksft_print_msg("Child died from signal %d loading values\n",
WTERMSIG(wait_status));
pass = false;
goto out;
}
/* Read initial values via ptrace */
pass = check_ptrace_values(child, config);
/* Do whatever writes we want to do */
if (test->modify_values)
test->modify_values(child, config);
if (!continue_breakpoint(child, PTRACE_CONT))
goto cleanup;
while (1) {
pid = waitpid(child, &wait_status, 0);
if (pid < 0) {
if (errno == EINTR)
continue;
ksft_exit_fail_msg("waitpid() failed: %s (%d)\n",
strerror(errno), errno);
}
if (pid == child)
break;
}
if (WIFEXITED(wait_status)) {
ksft_print_msg("Child exited saving values with status %d\n",
WEXITSTATUS(wait_status));
pass = false;
goto out;
}
if (WIFSIGNALED(wait_status)) {
ksft_print_msg("Child died from signal %d saving values\n",
WTERMSIG(wait_status));
pass = false;
goto out;
}
/* See what happened as a result */
read_child_regs(child);
if (!continue_breakpoint(child, PTRACE_DETACH))
goto cleanup;
/* The child should exit cleanly */
got_alarm = false;
alarm(1);
while (1) {
if (got_alarm) {
ksft_print_msg("Wait for child timed out\n");
goto cleanup;
}
pid = waitpid(child, &wait_status, 0);
if (pid < 0) {
if (errno == EINTR)
continue;
ksft_exit_fail_msg("waitpid() failed: %s (%d)\n",
strerror(errno), errno);
}
if (pid == child)
break;
}
alarm(0);
if (got_alarm) {
ksft_print_msg("Timed out waiting for child\n");
pass = false;
goto cleanup;
}
if (pid == child && WIFSIGNALED(wait_status)) {
ksft_print_msg("Child died from signal %d cleaning up\n",
WTERMSIG(wait_status));
pass = false;
goto out;
}
if (pid == child && WIFEXITED(wait_status)) {
if (WEXITSTATUS(wait_status) != 0) {
ksft_print_msg("Child exited with error %d\n",
WEXITSTATUS(wait_status));
pass = false;
}
} else {
ksft_print_msg("Child did not exit cleanly\n");
pass = false;
goto cleanup;
}
goto out;
cleanup:
ret = kill(child, SIGKILL);
if (ret != 0) {
ksft_print_msg("kill() failed: %s (%d)\n",
strerror(errno), errno);
return false;
}
while (1) {
pid = waitpid(child, &wait_status, 0);
if (pid < 0) {
if (errno == EINTR)
continue;
ksft_exit_fail_msg("waitpid() failed: %s (%d)\n",
strerror(errno), errno);
}
if (pid == child)
break;
}
out:
return pass;
}
static void fill_random(void *buf, size_t size)
{
int i;
uint32_t *lbuf = buf;
/* random() returns a 32 bit number regardless of the size of long */
for (i = 0; i < size / sizeof(uint32_t); i++)
lbuf[i] = random();
}
static void fill_random_ffr(void *buf, size_t vq)
{
uint8_t *lbuf = buf;
int bits, i;
/*
* Only values with a continuous set of 0..n bits set are
* valid for FFR, set all bits then clear a random number of
* high bits.
*/
memset(buf, 0, __SVE_FFR_SIZE(vq));
bits = random() % (__SVE_FFR_SIZE(vq) * 8);
for (i = 0; i < bits / 8; i++)
lbuf[i] = 0xff;
if (bits / 8 != __SVE_FFR_SIZE(vq))
lbuf[i] = (1 << (bits % 8)) - 1;
}
static void fpsimd_to_sve(__uint128_t *v, char *z, int vl)
{
int vq = __sve_vq_from_vl(vl);
int i;
__uint128_t *p;
if (!vl)
return;
for (i = 0; i < __SVE_NUM_ZREGS; i++) {
p = (__uint128_t *)&z[__SVE_ZREG_OFFSET(vq, i)];
*p = arm64_cpu_to_le128(v[i]);
}
}
static void set_initial_values(struct test_config *config)
{
int vq = __sve_vq_from_vl(vl_in(config));
int sme_vq = __sve_vq_from_vl(config->sme_vl_in);
svcr_in = config->svcr_in;
svcr_expected = config->svcr_expected;
svcr_out = 0;
fill_random(&v_in, sizeof(v_in));
memcpy(v_expected, v_in, sizeof(v_in));
memset(v_out, 0, sizeof(v_out));
/* Changes will be handled in the test case */
if (sve_supported() || (config->svcr_in & SVCR_SM)) {
/* The low 128 bits of Z are shared with the V registers */
fill_random(&z_in, __SVE_ZREGS_SIZE(vq));
fpsimd_to_sve(v_in, z_in, vl_in(config));
memcpy(z_expected, z_in, __SVE_ZREGS_SIZE(vq));
memset(z_out, 0, sizeof(z_out));
fill_random(&p_in, __SVE_PREGS_SIZE(vq));
memcpy(p_expected, p_in, __SVE_PREGS_SIZE(vq));
memset(p_out, 0, sizeof(p_out));
if ((config->svcr_in & SVCR_SM) && !fa64_supported())
memset(ffr_in, 0, __SVE_PREG_SIZE(vq));
else
fill_random_ffr(&ffr_in, vq);
memcpy(ffr_expected, ffr_in, __SVE_PREG_SIZE(vq));
memset(ffr_out, 0, __SVE_PREG_SIZE(vq));
}
if (config->svcr_in & SVCR_ZA)
fill_random(za_in, ZA_SIG_REGS_SIZE(sme_vq));
else
memset(za_in, 0, ZA_SIG_REGS_SIZE(sme_vq));
if (config->svcr_expected & SVCR_ZA)
memcpy(za_expected, za_in, ZA_SIG_REGS_SIZE(sme_vq));
else
memset(za_expected, 0, ZA_SIG_REGS_SIZE(sme_vq));
if (sme_supported())
memset(za_out, 0, sizeof(za_out));
if (sme2_supported()) {
if (config->svcr_in & SVCR_ZA)
fill_random(zt_in, ZT_SIG_REG_BYTES);
else
memset(zt_in, 0, ZT_SIG_REG_BYTES);
if (config->svcr_expected & SVCR_ZA)
memcpy(zt_expected, zt_in, ZT_SIG_REG_BYTES);
else
memset(zt_expected, 0, ZT_SIG_REG_BYTES);
memset(zt_out, 0, sizeof(zt_out));
}
}
static bool check_memory_values(struct test_config *config)
{
bool pass = true;
int vq, sme_vq;
if (!compare_buffer("saved V", v_out, v_expected, sizeof(v_out)))
pass = false;
vq = __sve_vq_from_vl(vl_expected(config));
sme_vq = __sve_vq_from_vl(config->sme_vl_expected);
if (svcr_out != svcr_expected) {
ksft_print_msg("Mismatch in saved SVCR %lx != %lx\n",
svcr_out, svcr_expected);
pass = false;
}
if (sve_vl_out != config->sve_vl_expected) {
ksft_print_msg("Mismatch in SVE VL: %ld != %d\n",
sve_vl_out, config->sve_vl_expected);
pass = false;
}
if (sme_vl_out != config->sme_vl_expected) {
ksft_print_msg("Mismatch in SME VL: %ld != %d\n",
sme_vl_out, config->sme_vl_expected);
pass = false;
}
if (!compare_buffer("saved Z", z_out, z_expected,
__SVE_ZREGS_SIZE(vq)))
pass = false;
if (!compare_buffer("saved P", p_out, p_expected,
__SVE_PREGS_SIZE(vq)))
pass = false;
if (!compare_buffer("saved FFR", ffr_out, ffr_expected,
__SVE_PREG_SIZE(vq)))
pass = false;
if (!compare_buffer("saved ZA", za_out, za_expected,
ZA_PT_ZA_SIZE(sme_vq)))
pass = false;
if (!compare_buffer("saved ZT", zt_out, zt_expected, ZT_SIG_REG_BYTES))
pass = false;
return pass;
}
static bool sve_sme_same(struct test_config *config)
{
if (config->sve_vl_in != config->sve_vl_expected)
return false;
if (config->sme_vl_in != config->sme_vl_expected)
return false;
if (config->svcr_in != config->svcr_expected)
return false;
return true;
}
static bool sve_write_supported(struct test_config *config)
{
if (!sve_supported() && !sme_supported())
return false;
if ((config->svcr_in & SVCR_ZA) != (config->svcr_expected & SVCR_ZA))
return false;
if (config->svcr_expected & SVCR_SM) {
if (config->sve_vl_in != config->sve_vl_expected) {
return false;
}
/* Changing the SME VL disables ZA */
if ((config->svcr_expected & SVCR_ZA) &&
(config->sme_vl_in != config->sme_vl_expected)) {
return false;
}
} else {
if (config->sme_vl_in != config->sme_vl_expected) {
return false;
}
}
return true;
}
static void fpsimd_write_expected(struct test_config *config)
{
int vl;
fill_random(&v_expected, sizeof(v_expected));
/* The SVE registers are flushed by a FPSIMD write */
vl = vl_expected(config);
memset(z_expected, 0, __SVE_ZREGS_SIZE(__sve_vq_from_vl(vl)));
memset(p_expected, 0, __SVE_PREGS_SIZE(__sve_vq_from_vl(vl)));
memset(ffr_expected, 0, __SVE_PREG_SIZE(__sve_vq_from_vl(vl)));
fpsimd_to_sve(v_expected, z_expected, vl);
}
static void fpsimd_write(pid_t child, struct test_config *test_config)
{
struct user_fpsimd_state fpsimd;
struct iovec iov;
int ret;
memset(&fpsimd, 0, sizeof(fpsimd));
memcpy(&fpsimd.vregs, v_expected, sizeof(v_expected));
iov.iov_base = &fpsimd;
iov.iov_len = sizeof(fpsimd);
ret = ptrace(PTRACE_SETREGSET, child, NT_PRFPREG, &iov);
if (ret == -1)
ksft_print_msg("FPSIMD set failed: (%s) %d\n",
strerror(errno), errno);
}
static void sve_write_expected(struct test_config *config)
{
int vl = vl_expected(config);
int sme_vq = __sve_vq_from_vl(config->sme_vl_expected);
fill_random(z_expected, __SVE_ZREGS_SIZE(__sve_vq_from_vl(vl)));
fill_random(p_expected, __SVE_PREGS_SIZE(__sve_vq_from_vl(vl)));
if ((svcr_expected & SVCR_SM) && !fa64_supported())
memset(ffr_expected, 0, __SVE_PREG_SIZE(sme_vq));
else
fill_random_ffr(ffr_expected, __sve_vq_from_vl(vl));
/* Share the low bits of Z with V */
fill_random(&v_expected, sizeof(v_expected));
fpsimd_to_sve(v_expected, z_expected, vl);
if (config->sme_vl_in != config->sme_vl_expected) {
memset(za_expected, 0, ZA_PT_ZA_SIZE(sme_vq));
memset(zt_expected, 0, sizeof(zt_expected));
}
}
static void sve_write(pid_t child, struct test_config *config)
{
struct user_sve_header *sve;
struct iovec iov;
int ret, vl, vq, regset;
vl = vl_expected(config);
vq = __sve_vq_from_vl(vl);
iov.iov_len = SVE_PT_SVE_OFFSET + SVE_PT_SVE_SIZE(vq, SVE_PT_REGS_SVE);
iov.iov_base = malloc(iov.iov_len);
if (!iov.iov_base) {
ksft_print_msg("Failed allocating %lu byte SVE write buffer\n",
iov.iov_len);
return;
}
memset(iov.iov_base, 0, iov.iov_len);
sve = iov.iov_base;
sve->size = iov.iov_len;
sve->flags = SVE_PT_REGS_SVE;
sve->vl = vl;
memcpy(iov.iov_base + SVE_PT_SVE_ZREG_OFFSET(vq, 0),
z_expected, SVE_PT_SVE_ZREGS_SIZE(vq));
memcpy(iov.iov_base + SVE_PT_SVE_PREG_OFFSET(vq, 0),
p_expected, SVE_PT_SVE_PREGS_SIZE(vq));
memcpy(iov.iov_base + SVE_PT_SVE_FFR_OFFSET(vq),
ffr_expected, SVE_PT_SVE_PREG_SIZE(vq));
if (svcr_expected & SVCR_SM)
regset = NT_ARM_SSVE;
else
regset = NT_ARM_SVE;
ret = ptrace(PTRACE_SETREGSET, child, regset, &iov);
if (ret != 0)
ksft_print_msg("Failed to write SVE: %s (%d)\n",
strerror(errno), errno);
free(iov.iov_base);
}
static bool za_write_supported(struct test_config *config)
{
if (config->svcr_expected & SVCR_SM) {
if (!(config->svcr_in & SVCR_SM))
return false;
/* Changing the SME VL exits streaming mode */
if (config->sme_vl_in != config->sme_vl_expected) {
return false;
}
}
/* Can't disable SM outside a VL change */
if ((config->svcr_in & SVCR_SM) &&
!(config->svcr_expected & SVCR_SM))
return false;
return true;
}
static void za_write_expected(struct test_config *config)
{
int sme_vq, sve_vq;
sme_vq = __sve_vq_from_vl(config->sme_vl_expected);
if (config->svcr_expected & SVCR_ZA) {
fill_random(za_expected, ZA_PT_ZA_SIZE(sme_vq));
} else {
memset(za_expected, 0, ZA_PT_ZA_SIZE(sme_vq));
memset(zt_expected, 0, sizeof(zt_expected));
}
/* Changing the SME VL flushes ZT, SVE state and exits SM */
if (config->sme_vl_in != config->sme_vl_expected) {
svcr_expected &= ~SVCR_SM;
sve_vq = __sve_vq_from_vl(vl_expected(config));
memset(z_expected, 0, __SVE_ZREGS_SIZE(sve_vq));
memset(p_expected, 0, __SVE_PREGS_SIZE(sve_vq));
memset(ffr_expected, 0, __SVE_PREG_SIZE(sve_vq));
memset(zt_expected, 0, sizeof(zt_expected));
fpsimd_to_sve(v_expected, z_expected, vl_expected(config));
}
}
static void za_write(pid_t child, struct test_config *config)
{
struct user_za_header *za;
struct iovec iov;
int ret, vq;
vq = __sve_vq_from_vl(config->sme_vl_expected);
if (config->svcr_expected & SVCR_ZA)
iov.iov_len = ZA_PT_SIZE(vq);
else
iov.iov_len = sizeof(*za);
iov.iov_base = malloc(iov.iov_len);
if (!iov.iov_base) {
ksft_print_msg("Failed allocating %lu byte ZA write buffer\n",
iov.iov_len);
return;
}
memset(iov.iov_base, 0, iov.iov_len);
za = iov.iov_base;
za->size = iov.iov_len;
za->vl = config->sme_vl_expected;
if (config->svcr_expected & SVCR_ZA)
memcpy(iov.iov_base + ZA_PT_ZA_OFFSET, za_expected,
ZA_PT_ZA_SIZE(vq));
ret = ptrace(PTRACE_SETREGSET, child, NT_ARM_ZA, &iov);
if (ret != 0)
ksft_print_msg("Failed to write ZA: %s (%d)\n",
strerror(errno), errno);
free(iov.iov_base);
}
static bool zt_write_supported(struct test_config *config)
{
if (!sme2_supported())
return false;
if (config->sme_vl_in != config->sme_vl_expected)
return false;
if (!(config->svcr_expected & SVCR_ZA))
return false;
if ((config->svcr_in & SVCR_SM) != (config->svcr_expected & SVCR_SM))
return false;
return true;
}
static void zt_write_expected(struct test_config *config)
{
int sme_vq;
sme_vq = __sve_vq_from_vl(config->sme_vl_expected);
if (config->svcr_expected & SVCR_ZA) {
fill_random(zt_expected, sizeof(zt_expected));
} else {
memset(za_expected, 0, ZA_PT_ZA_SIZE(sme_vq));
memset(zt_expected, 0, sizeof(zt_expected));
}
}
static void zt_write(pid_t child, struct test_config *config)
{
struct iovec iov;
int ret;
iov.iov_len = ZT_SIG_REG_BYTES;
iov.iov_base = zt_expected;
ret = ptrace(PTRACE_SETREGSET, child, NT_ARM_ZT, &iov);
if (ret != 0)
ksft_print_msg("Failed to write ZT: %s (%d)\n",
strerror(errno), errno);
}
/* Actually run a test */
static void run_test(struct test_definition *test, struct test_config *config)
{
pid_t child;
char name[1024];
bool pass;
if (sve_supported() && sme_supported())
snprintf(name, sizeof(name), "%s, SVE %d->%d, SME %d/%x->%d/%x",
test->name,
config->sve_vl_in, config->sve_vl_expected,
config->sme_vl_in, config->svcr_in,
config->sme_vl_expected, config->svcr_expected);
else if (sve_supported())
snprintf(name, sizeof(name), "%s, SVE %d->%d", test->name,
config->sve_vl_in, config->sve_vl_expected);
else if (sme_supported())
snprintf(name, sizeof(name), "%s, SME %d/%x->%d/%x",
test->name,
config->sme_vl_in, config->svcr_in,
config->sme_vl_expected, config->svcr_expected);
else
snprintf(name, sizeof(name), "%s", test->name);
if (test->supported && !test->supported(config)) {
ksft_test_result_skip("%s\n", name);
return;
}
set_initial_values(config);
if (test->set_expected_values)
test->set_expected_values(config);
child = fork();
if (child < 0)
ksft_exit_fail_msg("fork() failed: %s (%d)\n",
strerror(errno), errno);
/* run_child() never returns */
if (child == 0)
run_child(config);
pass = run_parent(child, test, config);
if (!check_memory_values(config))
pass = false;
ksft_test_result(pass, "%s\n", name);
}
static void run_tests(struct test_definition defs[], int count,
struct test_config *config)
{
int i;
for (i = 0; i < count; i++)
run_test(&defs[i], config);
}
static struct test_definition base_test_defs[] = {
{
.name = "No writes",
.supported = sve_sme_same,
},
{
.name = "FPSIMD write",
.supported = sve_sme_same,
.set_expected_values = fpsimd_write_expected,
.modify_values = fpsimd_write,
},
};
static struct test_definition sve_test_defs[] = {
{
.name = "SVE write",
.supported = sve_write_supported,
.set_expected_values = sve_write_expected,
.modify_values = sve_write,
},
};
static struct test_definition za_test_defs[] = {
{
.name = "ZA write",
.supported = za_write_supported,
.set_expected_values = za_write_expected,
.modify_values = za_write,
},
};
static struct test_definition zt_test_defs[] = {
{
.name = "ZT write",
.supported = zt_write_supported,
.set_expected_values = zt_write_expected,
.modify_values = zt_write,
},
};
static int sve_vls[MAX_NUM_VLS], sme_vls[MAX_NUM_VLS];
static int sve_vl_count, sme_vl_count;
static void probe_vls(const char *name, int vls[], int *vl_count, int set_vl)
{
unsigned int vq;
int vl;
*vl_count = 0;
for (vq = ARCH_VQ_MAX; vq > 0; vq /= 2) {
vl = prctl(set_vl, vq * 16);
if (vl == -1)
ksft_exit_fail_msg("SET_VL failed: %s (%d)\n",
strerror(errno), errno);
vl &= PR_SVE_VL_LEN_MASK;
if (*vl_count && (vl == vls[*vl_count - 1]))
break;
vq = sve_vq_from_vl(vl);
vls[*vl_count] = vl;
*vl_count += 1;
}
if (*vl_count > 2) {
/* Just use the minimum and maximum */
vls[1] = vls[*vl_count - 1];
ksft_print_msg("%d %s VLs, using %d and %d\n",
*vl_count, name, vls[0], vls[1]);
*vl_count = 2;
} else {
ksft_print_msg("%d %s VLs\n", *vl_count, name);
}
}
static struct {
int svcr_in, svcr_expected;
} svcr_combinations[] = {
{ .svcr_in = 0, .svcr_expected = 0, },
{ .svcr_in = 0, .svcr_expected = SVCR_SM, },
{ .svcr_in = 0, .svcr_expected = SVCR_ZA, },
/* Can't enable both SM and ZA with a single ptrace write */
{ .svcr_in = SVCR_SM, .svcr_expected = 0, },
{ .svcr_in = SVCR_SM, .svcr_expected = SVCR_SM, },
{ .svcr_in = SVCR_SM, .svcr_expected = SVCR_ZA, },
{ .svcr_in = SVCR_SM, .svcr_expected = SVCR_SM | SVCR_ZA, },
{ .svcr_in = SVCR_ZA, .svcr_expected = 0, },
{ .svcr_in = SVCR_ZA, .svcr_expected = SVCR_SM, },
{ .svcr_in = SVCR_ZA, .svcr_expected = SVCR_ZA, },
{ .svcr_in = SVCR_ZA, .svcr_expected = SVCR_SM | SVCR_ZA, },
{ .svcr_in = SVCR_SM | SVCR_ZA, .svcr_expected = 0, },
{ .svcr_in = SVCR_SM | SVCR_ZA, .svcr_expected = SVCR_SM, },
{ .svcr_in = SVCR_SM | SVCR_ZA, .svcr_expected = SVCR_ZA, },
{ .svcr_in = SVCR_SM | SVCR_ZA, .svcr_expected = SVCR_SM | SVCR_ZA, },
};
static void run_sve_tests(void)
{
struct test_config test_config;
int i, j;
if (!sve_supported())
return;
test_config.sme_vl_in = sme_vls[0];
test_config.sme_vl_expected = sme_vls[0];
test_config.svcr_in = 0;
test_config.svcr_expected = 0;
for (i = 0; i < sve_vl_count; i++) {
test_config.sve_vl_in = sve_vls[i];
for (j = 0; j < sve_vl_count; j++) {
test_config.sve_vl_expected = sve_vls[j];
run_tests(base_test_defs,
ARRAY_SIZE(base_test_defs),
&test_config);
if (sve_supported())
run_tests(sve_test_defs,
ARRAY_SIZE(sve_test_defs),
&test_config);
}
}
}
static void run_sme_tests(void)
{
struct test_config test_config;
int i, j, k;
if (!sme_supported())
return;
test_config.sve_vl_in = sve_vls[0];
test_config.sve_vl_expected = sve_vls[0];
/*
* Every SME VL/SVCR combination
*/
for (i = 0; i < sme_vl_count; i++) {
test_config.sme_vl_in = sme_vls[i];
for (j = 0; j < sme_vl_count; j++) {
test_config.sme_vl_expected = sme_vls[j];
for (k = 0; k < ARRAY_SIZE(svcr_combinations); k++) {
test_config.svcr_in = svcr_combinations[k].svcr_in;
test_config.svcr_expected = svcr_combinations[k].svcr_expected;
run_tests(base_test_defs,
ARRAY_SIZE(base_test_defs),
&test_config);
run_tests(sve_test_defs,
ARRAY_SIZE(sve_test_defs),
&test_config);
run_tests(za_test_defs,
ARRAY_SIZE(za_test_defs),
&test_config);
if (sme2_supported())
run_tests(zt_test_defs,
ARRAY_SIZE(zt_test_defs),
&test_config);
}
}
}
}
int main(void)
{
struct test_config test_config;
struct sigaction sa;
int tests, ret, tmp;
srandom(getpid());
ksft_print_header();
if (sve_supported()) {
probe_vls("SVE", sve_vls, &sve_vl_count, PR_SVE_SET_VL);
tests = ARRAY_SIZE(base_test_defs) +
ARRAY_SIZE(sve_test_defs);
tests *= sve_vl_count * sve_vl_count;
} else {
/* Only run the FPSIMD tests */
sve_vl_count = 1;
tests = ARRAY_SIZE(base_test_defs);
}
if (sme_supported()) {
probe_vls("SME", sme_vls, &sme_vl_count, PR_SME_SET_VL);
tmp = ARRAY_SIZE(base_test_defs) + ARRAY_SIZE(sve_test_defs)
+ ARRAY_SIZE(za_test_defs);
if (sme2_supported())
tmp += ARRAY_SIZE(zt_test_defs);
tmp *= sme_vl_count * sme_vl_count;
tmp *= ARRAY_SIZE(svcr_combinations);
tests += tmp;
} else {
sme_vl_count = 1;
}
if (sme2_supported())
ksft_print_msg("SME2 supported\n");
if (fa64_supported())
ksft_print_msg("FA64 supported\n");
ksft_set_plan(tests);
/* Get signal handers ready before we start any children */
memset(&sa, 0, sizeof(sa));
sa.sa_sigaction = handle_alarm;
sa.sa_flags = SA_RESTART | SA_SIGINFO;
sigemptyset(&sa.sa_mask);
ret = sigaction(SIGALRM, &sa, NULL);
if (ret < 0)
ksft_print_msg("Failed to install SIGALRM handler: %s (%d)\n",
strerror(errno), errno);
/*
* Run the test set if there is no SVE or SME, with those we
* have to pick a VL for each run.
*/
if (!sve_supported()) {
test_config.sve_vl_in = 0;
test_config.sve_vl_expected = 0;
test_config.sme_vl_in = 0;
test_config.sme_vl_expected = 0;
test_config.svcr_in = 0;
test_config.svcr_expected = 0;
run_tests(base_test_defs, ARRAY_SIZE(base_test_defs),
&test_config);
}
run_sve_tests();
run_sme_tests();
ksft_finished();
}
// SPDX-License-Identifier: GPL-2.0-only
// Copyright (C) 2021-3 ARM Limited.
#ifndef FP_PTRACE_H
#define FP_PTRACE_H
#define SVCR_SM_SHIFT 0
#define SVCR_ZA_SHIFT 1
#define SVCR_SM (1 << SVCR_SM_SHIFT)
#define SVCR_ZA (1 << SVCR_ZA_SHIFT)
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment