Commit c91c43bf authored by Jeff Garzik's avatar Jeff Garzik

Merge pobox.com:/garz/repo/netdev-2.6/misc

into pobox.com:/garz/repo/net-drivers-2.6
parents b99e712b adf8db03
......@@ -64,7 +64,6 @@
#include <linux/udp.h>
#include <net/pkt_sched.h>
#include <linux/list.h>
#include <linux/rtnetlink.h>
#include <linux/reboot.h>
#ifdef NETIF_F_TSO
#include <net/checksum.h>
......@@ -73,7 +72,6 @@
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/moduleparam.h>
#define BAR_0 0
#define BAR_1 1
......
......@@ -249,7 +249,8 @@ e1000_set_pauseparam(struct net_device *netdev,
e1000_reset(adapter);
}
else
return e1000_force_mac_fc(hw);
return ((hw->media_type == e1000_media_type_fiber) ?
e1000_setup_link(hw) : e1000_force_mac_fc(hw));
return 0;
}
......@@ -592,6 +593,9 @@ e1000_set_ringparam(struct net_device *netdev,
tx_old = adapter->tx_ring;
rx_old = adapter->rx_ring;
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
return -EINVAL;
if(netif_running(adapter->netdev))
e1000_down(adapter);
......@@ -637,7 +641,6 @@ e1000_set_ringparam(struct net_device *netdev,
return err;
}
#define REG_PATTERN_TEST(R, M, W) \
{ \
uint32_t pat, value; \
......@@ -1442,6 +1445,8 @@ e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
case E1000_DEV_ID_82543GC_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
case E1000_DEV_ID_82545EM_COPPER:
wol->supported = 0;
wol->wolopts = 0;
return;
......
......@@ -65,6 +65,7 @@ static void e1000_release_eeprom(struct e1000_hw *hw);
static void e1000_standby_eeprom(struct e1000_hw *hw);
static int32_t e1000_id_led_init(struct e1000_hw * hw);
static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
/* IGP cable length table */
......@@ -1594,6 +1595,15 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if(ret_val)
return ret_val;
if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
(!hw->autoneg) &&
(hw->forced_speed_duplex == e1000_10_full ||
hw->forced_speed_duplex == e1000_10_half)) {
ret_val = e1000_polarity_reversal_workaround(hw);
if(ret_val)
return ret_val;
}
}
return E1000_SUCCESS;
}
......@@ -1983,6 +1993,7 @@ e1000_check_for_link(struct e1000_hw *hw)
uint32_t ctrl;
uint32_t status;
uint32_t rctl;
uint32_t icr;
uint32_t signal = 0;
int32_t ret_val;
uint16_t phy_data;
......@@ -2032,6 +2043,25 @@ e1000_check_for_link(struct e1000_hw *hw)
* link-up */
e1000_check_downshift(hw);
/* If we are on 82544 or 82543 silicon and speed/duplex
* are forced to 10H or 10F, then we will implement the polarity
* reversal workaround. We disable interrupts first, and upon
* returning, place the devices interrupt state to its previous
* value except for the link status change interrupt which will
* happen due to the execution of this workaround.
*/
if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
(!hw->autoneg) &&
(hw->forced_speed_duplex == e1000_10_full ||
hw->forced_speed_duplex == e1000_10_half)) {
E1000_WRITE_REG(hw, IMC, 0xffffffff);
ret_val = e1000_polarity_reversal_workaround(hw);
icr = E1000_READ_REG(hw, ICR);
E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
}
} else {
/* No link detected */
e1000_config_dsp_after_link_change(hw, FALSE);
......@@ -5191,28 +5221,88 @@ e1000_set_vco_speed(struct e1000_hw *hw)
return E1000_SUCCESS;
}
/******************************************************************************
* Verifies the hardware needs to allow ARPs to be processed by the host
*
* hw - Struct containing variables accessed by shared code
*
* returns: - TRUE/FALSE
*
*****************************************************************************/
uint32_t
e1000_enable_mng_pass_thru(struct e1000_hw *hw)
static int32_t
e1000_polarity_reversal_workaround(struct e1000_hw *hw)
{
uint32_t manc;
int32_t ret_val;
uint16_t mii_status_reg;
uint16_t i;
if (hw->asf_firmware_present) {
manc = E1000_READ_REG(hw, MANC);
/* Polarity reversal workaround for forced 10F/10H links. */
if (!(manc & E1000_MANC_RCV_TCO_EN) ||
!(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
return FALSE;
if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
return TRUE;
/* Disable the transmitter on the PHY */
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
if(ret_val)
return ret_val;
/* This loop will early-out if the NO link condition has been met. */
for(i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be clear.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
msec_delay_irq(100);
}
return FALSE;
/* Recommended delay time after link has been lost */
msec_delay_irq(1000);
/* Now we will re-enable th transmitter on the PHY */
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
if(ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
if(ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
if(ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
if(ret_val)
return ret_val;
/* This loop will early-out if the link condition has been met. */
for(i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be set.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
if(mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay_irq(100);
}
return E1000_SUCCESS;
}
......@@ -48,7 +48,7 @@ char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
#else
#define DRIVERNAPI "-NAPI"
#endif
char e1000_driver_version[] = "5.3.19-k2"DRIVERNAPI;
char e1000_driver_version[] = "5.5.4-k2"DRIVERNAPI;
char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
/* e1000_pci_tbl - PCI Device ID Table
......@@ -311,7 +311,8 @@ e1000_down(struct e1000_adapter *adapter)
void
e1000_reset(struct e1000_adapter *adapter)
{
uint32_t pba, manc;
uint32_t pba;
/* Repartition Pba for greater than 9k mtu
* To take effect CTRL.RST is required.
*/
......@@ -354,12 +355,6 @@ e1000_reset(struct e1000_adapter *adapter)
e1000_reset_adaptive(&adapter->hw);
e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
if(adapter->en_mng_pt) {
manc = E1000_READ_REG(&adapter->hw, MANC);
manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
E1000_WRITE_REG(&adapter->hw, MANC, manc);
}
}
/**
......@@ -422,11 +417,6 @@ e1000_probe(struct pci_dev *pdev,
adapter->hw.back = adapter;
adapter->msg_enable = (1 << debug) - 1;
rtnl_lock();
/* we need to set the name early for the DPRINTK macro */
if(dev_alloc_name(netdev, netdev->name) < 0)
goto err_free_unlock;
mmio_start = pci_resource_start(pdev, BAR_0);
mmio_len = pci_resource_len(pdev, BAR_0);
......@@ -466,6 +456,7 @@ e1000_probe(struct pci_dev *pdev,
#ifdef CONFIG_NET_POLL_CONTROLLER
netdev->poll_controller = e1000_netpoll;
#endif
strcpy(netdev->name, pci_name(pdev));
netdev->mem_start = mmio_start;
netdev->mem_end = mmio_start + mmio_len;
......@@ -502,8 +493,6 @@ e1000_probe(struct pci_dev *pdev,
/* hard_start_xmit is safe against parallel locking */
netdev->features |= NETIF_F_LLTX;
adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
/* before reading the EEPROM, reset the controller to
* put the device in a known good starting state */
......@@ -553,7 +542,6 @@ e1000_probe(struct pci_dev *pdev,
netif_carrier_off(netdev);
netif_stop_queue(netdev);
DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
e1000_check_options(adapter);
/* Initial Wake on LAN setting
......@@ -586,12 +574,13 @@ e1000_probe(struct pci_dev *pdev,
/* reset the hardware with the new settings */
e1000_reset(adapter);
/* We're already holding the rtnl lock; call the no-lock version */
if((err = register_netdevice(netdev)))
strcpy(netdev->name, "eth%d");
if((err = register_netdev(netdev)))
goto err_register;
DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
cards_found++;
rtnl_unlock();
return 0;
err_register:
......@@ -599,8 +588,6 @@ e1000_probe(struct pci_dev *pdev,
err_eeprom:
iounmap(adapter->hw.hw_addr);
err_ioremap:
err_free_unlock:
rtnl_unlock();
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
......@@ -2337,8 +2324,8 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
if(unlikely(adapter->vlgrp &&
(rx_desc->status & E1000_RXD_STAT_VP))) {
vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
le16_to_cpu(rx_desc->special &
E1000_RXD_SPC_VLAN_MASK));
le16_to_cpu(rx_desc->special) &
E1000_RXD_SPC_VLAN_MASK);
} else {
netif_receive_skb(skb);
}
......@@ -2346,8 +2333,8 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
if(unlikely(adapter->vlgrp &&
(rx_desc->status & E1000_RXD_STAT_VP))) {
vlan_hwaccel_rx(skb, adapter->vlgrp,
le16_to_cpu(rx_desc->special &
E1000_RXD_SPC_VLAN_MASK));
le16_to_cpu(rx_desc->special) &
E1000_RXD_SPC_VLAN_MASK);
} else {
netif_rx(skb);
}
......@@ -2896,9 +2883,9 @@ e1000_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev->priv;
uint32_t manc;
uint32_t manc, ret;
pci_enable_device(pdev);
ret = pci_enable_device(pdev);
pci_set_power_state(pdev, 0);
pci_restore_state(pdev);
......
......@@ -49,6 +49,12 @@
set_current_state(TASK_UNINTERRUPTIBLE); \
schedule_timeout((x * HZ)/1000 + 2); \
} } while(0)
/* Some workarounds require millisecond delays and are run during interrupt
* context. Most notably, when establishing link, the phy may need tweaking
* but cannot process phy register reads/writes faster than millisecond
* intervals...and we establish link due to a "link status change" interrupt.
*/
#define msec_delay_irq(x) mdelay(x)
#endif
#define PCI_COMMAND_REGISTER PCI_COMMAND
......
......@@ -38,27 +38,17 @@
#define OPTION_DISABLED 0
#define OPTION_ENABLED 1
/* Module Parameters are always initialized to -1, so that the driver
* can tell the difference between no user specified value or the
* user asking for the default value.
* The true default values are loaded in when e1000_check_options is called.
*
* This is a GCC extension to ANSI C.
* See the item "Labeled Elements in Initializers" in the section
* "Extensions to the C Language Family" of the GCC documentation.
*/
#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
/* All parameters are treated the same, as an integer array of values.
* This macro just reduces the need to repeat the same declaration code
* over and over (plus this helps to avoid typo bugs).
*/
#define E1000_PARAM(X, S) \
static const int __devinitdata X[E1000_MAX_NIC + 1] = E1000_PARAM_INIT; \
MODULE_PARM(X, "1-" __MODULE_STRING(E1000_MAX_NIC) "i"); \
MODULE_PARM_DESC(X, S);
#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
#define E1000_PARAM(X, desc) \
static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
static int num_##X = 0; \
module_param_array(X, int, &num_##X, 0); \
MODULE_PARM_DESC(X, desc);
/* Transmit Descriptor Count
*
......@@ -305,7 +295,6 @@ e1000_check_options(struct e1000_adapter *adapter)
DPRINTK(PROBE, NOTICE,
"Warning: no configuration for board #%i\n", bd);
DPRINTK(PROBE, NOTICE, "Using defaults for all values\n");
bd = E1000_MAX_NIC;
}
{ /* Transmit Descriptor Count */
......@@ -322,9 +311,14 @@ e1000_check_options(struct e1000_adapter *adapter)
opt.arg.r.max = mac_type < e1000_82544 ?
E1000_MAX_TXD : E1000_MAX_82544_TXD;
if (num_TxDescriptors > bd) {
tx_ring->count = TxDescriptors[bd];
e1000_validate_option(&tx_ring->count, &opt, adapter);
E1000_ROUNDUP(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
E1000_ROUNDUP(tx_ring->count,
REQ_TX_DESCRIPTOR_MULTIPLE);
} else {
tx_ring->count = opt.def;
}
}
{ /* Receive Descriptor Count */
struct e1000_option opt = {
......@@ -340,9 +334,14 @@ e1000_check_options(struct e1000_adapter *adapter)
opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD :
E1000_MAX_82544_RXD;
if (num_RxDescriptors > bd) {
rx_ring->count = RxDescriptors[bd];
e1000_validate_option(&rx_ring->count, &opt, adapter);
E1000_ROUNDUP(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
E1000_ROUNDUP(rx_ring->count,
REQ_RX_DESCRIPTOR_MULTIPLE);
} else {
rx_ring->count = opt.def;
}
}
{ /* Checksum Offload Enable/Disable */
struct e1000_option opt = {
......@@ -352,9 +351,13 @@ e1000_check_options(struct e1000_adapter *adapter)
.def = OPTION_ENABLED
};
if (num_XsumRX > bd) {
int rx_csum = XsumRX[bd];
e1000_validate_option(&rx_csum, &opt, adapter);
adapter->rx_csum = rx_csum;
} else {
adapter->rx_csum = opt.def;
}
}
{ /* Flow Control */
......@@ -374,9 +377,13 @@ e1000_check_options(struct e1000_adapter *adapter)
.p = fc_list }}
};
if (num_FlowControl > bd) {
int fc = FlowControl[bd];
e1000_validate_option(&fc, &opt, adapter);
adapter->hw.fc = adapter->hw.original_fc = fc;
} else {
adapter->hw.fc = opt.def;
}
}
{ /* Transmit Interrupt Delay */
struct e1000_option opt = {
......@@ -388,8 +395,13 @@ e1000_check_options(struct e1000_adapter *adapter)
.max = MAX_TXDELAY }}
};
if (num_TxIntDelay > bd) {
adapter->tx_int_delay = TxIntDelay[bd];
e1000_validate_option(&adapter->tx_int_delay, &opt, adapter);
e1000_validate_option(&adapter->tx_int_delay, &opt,
adapter);
} else {
adapter->tx_int_delay = opt.def;
}
}
{ /* Transmit Absolute Interrupt Delay */
struct e1000_option opt = {
......@@ -401,8 +413,13 @@ e1000_check_options(struct e1000_adapter *adapter)
.max = MAX_TXABSDELAY }}
};
if (num_TxAbsIntDelay > bd) {
adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
e1000_validate_option(&adapter->tx_abs_int_delay, &opt, adapter);
e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
adapter);
} else {
adapter->tx_abs_int_delay = opt.def;
}
}
{ /* Receive Interrupt Delay */
struct e1000_option opt = {
......@@ -414,8 +431,13 @@ e1000_check_options(struct e1000_adapter *adapter)
.max = MAX_RXDELAY }}
};
if (num_RxIntDelay > bd) {
adapter->rx_int_delay = RxIntDelay[bd];
e1000_validate_option(&adapter->rx_int_delay, &opt, adapter);
e1000_validate_option(&adapter->rx_int_delay, &opt,
adapter);
} else {
adapter->rx_int_delay = opt.def;
}
}
{ /* Receive Absolute Interrupt Delay */
struct e1000_option opt = {
......@@ -427,8 +449,13 @@ e1000_check_options(struct e1000_adapter *adapter)
.max = MAX_RXABSDELAY }}
};
if (num_RxAbsIntDelay > bd) {
adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
e1000_validate_option(&adapter->rx_abs_int_delay, &opt, adapter);
e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
adapter);
} else {
adapter->rx_abs_int_delay = opt.def;
}
}
{ /* Interrupt Throttling Rate */
struct e1000_option opt = {
......@@ -440,21 +467,28 @@ e1000_check_options(struct e1000_adapter *adapter)
.max = MAX_ITR }}
};
if (num_InterruptThrottleRate > bd) {
adapter->itr = InterruptThrottleRate[bd];
switch(adapter->itr) {
case -1:
adapter->itr = 1;
break;
case 0:
DPRINTK(PROBE, INFO, "%s turned off\n", opt.name);
DPRINTK(PROBE, INFO, "%s turned off\n",
opt.name);
break;
case 1:
DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", opt.name);
DPRINTK(PROBE, INFO, "%s set to dynamic mode\n",
opt.name);
break;
default:
e1000_validate_option(&adapter->itr, &opt, adapter);
e1000_validate_option(&adapter->itr, &opt,
adapter);
break;
}
} else {
adapter->itr = 1;
}
}
switch(adapter->hw.media_type) {
......@@ -481,17 +515,17 @@ static void __devinit
e1000_check_fiber_options(struct e1000_adapter *adapter)
{
int bd = adapter->bd_number;
bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd;
if((Speed[bd] != OPTION_UNSET)) {
if(num_Speed > bd) {
DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, "
"parameter ignored\n");
}
if((Duplex[bd] != OPTION_UNSET)) {
if(num_Duplex > bd) {
DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, "
"parameter ignored\n");
}
if((AutoNeg[bd] != OPTION_UNSET) && (AutoNeg[bd] != 0x20)) {
if((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) {
DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is "
"not valid for fiber adapters, "
"parameter ignored\n");
......@@ -510,7 +544,6 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
{
int speed, dplx;
int bd = adapter->bd_number;
bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd;
{ /* Speed */
struct e1000_opt_list speed_list[] = {{ 0, "" },
......@@ -527,8 +560,12 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
.p = speed_list }}
};
if (num_Speed > bd) {
speed = Speed[bd];
e1000_validate_option(&speed, &opt, adapter);
} else {
speed = opt.def;
}
}
{ /* Duplex */
struct e1000_opt_list dplx_list[] = {{ 0, "" },
......@@ -544,11 +581,15 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
.p = dplx_list }}
};
if (num_Duplex > bd) {
dplx = Duplex[bd];
e1000_validate_option(&dplx, &opt, adapter);
} else {
dplx = opt.def;
}
}
if(AutoNeg[bd] != OPTION_UNSET && (speed != 0 || dplx != 0)) {
if((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) {
DPRINTK(PROBE, INFO,
"AutoNeg specified along with Speed or Duplex, "
"parameter ignored\n");
......@@ -605,7 +646,7 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
switch (speed + dplx) {
case 0:
adapter->hw.autoneg = adapter->fc_autoneg = 1;
if(Speed[bd] != OPTION_UNSET || Duplex[bd] != OPTION_UNSET)
if((num_Speed > bd) && (speed != 0 || dplx != 0))
DPRINTK(PROBE, INFO,
"Speed and duplex autonegotiation enabled\n");
break;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment