Commit c979aaea authored by Martin Schwidefsky's avatar Martin Schwidefsky Committed by Linus Torvalds

[PATCH] cleanup: time.h, times.h, timex.h and jiffies.h

This patch moves some definitions among time.h, times.h, timex.h and
jiffies.h.  The purpose is to sort all jiffies related functions to
jiffies.h, to get rid of the cyclic dependency between time.h & timex.h and
to move all #include lines to the start of the header files.
Signed-off-by: default avatarMartin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent 53ba6ce9
......@@ -5,6 +5,7 @@
#include <linux/init.h>
#include <linux/timex.h>
#include <linux/errno.h>
#include <linux/jiffies.h>
#include <asm/io.h>
#include <asm/timer.h>
......
......@@ -40,6 +40,7 @@
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/seqlock.h>
#include <linux/jiffies.h>
#include <asm/vsyscall.h>
#include <asm/pgtable.h>
......
......@@ -3,10 +3,72 @@
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/seqlock.h>
#include <asm/system.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <asm/param.h> /* for HZ */
#include <asm/div64.h>
#ifndef div_long_long_rem
#define div_long_long_rem(dividend,divisor,remainder) \
({ \
u64 result = dividend; \
*remainder = do_div(result,divisor); \
result; \
})
#endif
/*
* The following defines establish the engineering parameters of the PLL
* model. The HZ variable establishes the timer interrupt frequency, 100 Hz
* for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
* OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
* nearest power of two in order to avoid hardware multiply operations.
*/
#if HZ >= 12 && HZ < 24
# define SHIFT_HZ 4
#elif HZ >= 24 && HZ < 48
# define SHIFT_HZ 5
#elif HZ >= 48 && HZ < 96
# define SHIFT_HZ 6
#elif HZ >= 96 && HZ < 192
# define SHIFT_HZ 7
#elif HZ >= 192 && HZ < 384
# define SHIFT_HZ 8
#elif HZ >= 384 && HZ < 768
# define SHIFT_HZ 9
#elif HZ >= 768 && HZ < 1536
# define SHIFT_HZ 10
#else
# error You lose.
#endif
/* LATCH is used in the interval timer and ftape setup. */
#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
/* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can
* improve accuracy by shifting LSH bits, hence calculating:
* (NOM << LSH) / DEN
* This however means trouble for large NOM, because (NOM << LSH) may no
* longer fit in 32 bits. The following way of calculating this gives us
* some slack, under the following conditions:
* - (NOM / DEN) fits in (32 - LSH) bits.
* - (NOM % DEN) fits in (32 - LSH) bits.
*/
#define SH_DIV(NOM,DEN,LSH) ( ((NOM / DEN) << LSH) \
+ (((NOM % DEN) << LSH) + DEN / 2) / DEN)
/* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
#define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))
/* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
#define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
/* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and */
/* a value TUSEC for TICK_USEC (can be set bij adjtimex) */
#define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))
/*
* The 64-bit value is not volatile - you MUST NOT read it
......@@ -50,4 +112,320 @@ static inline u64 get_jiffies_64(void)
((long)(a) - (long)(b) >= 0))
#define time_before_eq(a,b) time_after_eq(b,a)
/*
* Have the 32 bit jiffies value wrap 5 minutes after boot
* so jiffies wrap bugs show up earlier.
*/
#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
/*
* Change timeval to jiffies, trying to avoid the
* most obvious overflows..
*
* And some not so obvious.
*
* Note that we don't want to return MAX_LONG, because
* for various timeout reasons we often end up having
* to wait "jiffies+1" in order to guarantee that we wait
* at _least_ "jiffies" - so "jiffies+1" had better still
* be positive.
*/
#define MAX_JIFFY_OFFSET ((~0UL >> 1)-1)
/*
* We want to do realistic conversions of time so we need to use the same
* values the update wall clock code uses as the jiffies size. This value
* is: TICK_NSEC (which is defined in timex.h). This
* is a constant and is in nanoseconds. We will used scaled math
* with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
* NSEC_JIFFIE_SC. Note that these defines contain nothing but
* constants and so are computed at compile time. SHIFT_HZ (computed in
* timex.h) adjusts the scaling for different HZ values.
* Scaled math??? What is that?
*
* Scaled math is a way to do integer math on values that would,
* otherwise, either overflow, underflow, or cause undesired div
* instructions to appear in the execution path. In short, we "scale"
* up the operands so they take more bits (more precision, less
* underflow), do the desired operation and then "scale" the result back
* by the same amount. If we do the scaling by shifting we avoid the
* costly mpy and the dastardly div instructions.
* Suppose, for example, we want to convert from seconds to jiffies
* where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
* simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
* observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
* might calculate at compile time, however, the result will only have
* about 3-4 bits of precision (less for smaller values of HZ).
*
* So, we scale as follows:
* jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
* jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
* Then we make SCALE a power of two so:
* jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
* Now we define:
* #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
* jiff = (sec * SEC_CONV) >> SCALE;
*
* Often the math we use will expand beyond 32-bits so we tell C how to
* do this and pass the 64-bit result of the mpy through the ">> SCALE"
* which should take the result back to 32-bits. We want this expansion
* to capture as much precision as possible. At the same time we don't
* want to overflow so we pick the SCALE to avoid this. In this file,
* that means using a different scale for each range of HZ values (as
* defined in timex.h).
*
* For those who want to know, gcc will give a 64-bit result from a "*"
* operator if the result is a long long AND at least one of the
* operands is cast to long long (usually just prior to the "*" so as
* not to confuse it into thinking it really has a 64-bit operand,
* which, buy the way, it can do, but it take more code and at least 2
* mpys).
* We also need to be aware that one second in nanoseconds is only a
* couple of bits away from overflowing a 32-bit word, so we MUST use
* 64-bits to get the full range time in nanoseconds.
*/
/*
* Here are the scales we will use. One for seconds, nanoseconds and
* microseconds.
*
* Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
* check if the sign bit is set. If not, we bump the shift count by 1.
* (Gets an extra bit of precision where we can use it.)
* We know it is set for HZ = 1024 and HZ = 100 not for 1000.
* Haven't tested others.
* Limits of cpp (for #if expressions) only long (no long long), but
* then we only need the most signicant bit.
*/
#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
#undef SEC_JIFFIE_SC
#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
#endif
#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
TICK_NSEC -1) / (u64)TICK_NSEC))
#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
TICK_NSEC -1) / (u64)TICK_NSEC))
#define USEC_CONVERSION \
((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
TICK_NSEC -1) / (u64)TICK_NSEC))
/*
* USEC_ROUND is used in the timeval to jiffie conversion. See there
* for more details. It is the scaled resolution rounding value. Note
* that it is a 64-bit value. Since, when it is applied, we are already
* in jiffies (albit scaled), it is nothing but the bits we will shift
* off.
*/
#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
/*
* The maximum jiffie value is (MAX_INT >> 1). Here we translate that
* into seconds. The 64-bit case will overflow if we are not careful,
* so use the messy SH_DIV macro to do it. Still all constants.
*/
#if BITS_PER_LONG < 64
# define MAX_SEC_IN_JIFFIES \
(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
#else /* take care of overflow on 64 bits machines */
# define MAX_SEC_IN_JIFFIES \
(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
#endif
/*
* Convert jiffies to milliseconds and back.
*
* Avoid unnecessary multiplications/divisions in the
* two most common HZ cases:
*/
static inline unsigned int jiffies_to_msecs(const unsigned long j)
{
#if HZ <= 1000 && !(1000 % HZ)
return (1000 / HZ) * j;
#elif HZ > 1000 && !(HZ % 1000)
return (j + (HZ / 1000) - 1)/(HZ / 1000);
#else
return (j * 1000) / HZ;
#endif
}
static inline unsigned int jiffies_to_usecs(const unsigned long j)
{
#if HZ <= 1000 && !(1000 % HZ)
return (1000000 / HZ) * j;
#elif HZ > 1000 && !(HZ % 1000)
return (j*1000 + (HZ - 1000))/(HZ / 1000);
#else
return (j * 1000000) / HZ;
#endif
}
static inline unsigned long msecs_to_jiffies(const unsigned int m)
{
if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
return MAX_JIFFY_OFFSET;
#if HZ <= 1000 && !(1000 % HZ)
return (m + (1000 / HZ) - 1) / (1000 / HZ);
#elif HZ > 1000 && !(HZ % 1000)
return m * (HZ / 1000);
#else
return (m * HZ + 999) / 1000;
#endif
}
/*
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
* that a remainder subtract here would not do the right thing as the
* resolution values don't fall on second boundries. I.e. the line:
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
*
* Rather, we just shift the bits off the right.
*
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
* value to a scaled second value.
*/
static __inline__ unsigned long
timespec_to_jiffies(const struct timespec *value)
{
unsigned long sec = value->tv_sec;
long nsec = value->tv_nsec + TICK_NSEC - 1;
if (sec >= MAX_SEC_IN_JIFFIES){
sec = MAX_SEC_IN_JIFFIES;
nsec = 0;
}
return (((u64)sec * SEC_CONVERSION) +
(((u64)nsec * NSEC_CONVERSION) >>
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
static __inline__ void
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
{
/*
* Convert jiffies to nanoseconds and separate with
* one divide.
*/
u64 nsec = (u64)jiffies * TICK_NSEC;
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
}
/* Same for "timeval"
*
* Well, almost. The problem here is that the real system resolution is
* in nanoseconds and the value being converted is in micro seconds.
* Also for some machines (those that use HZ = 1024, in-particular),
* there is a LARGE error in the tick size in microseconds.
* The solution we use is to do the rounding AFTER we convert the
* microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
* Instruction wise, this should cost only an additional add with carry
* instruction above the way it was done above.
*/
static __inline__ unsigned long
timeval_to_jiffies(const struct timeval *value)
{
unsigned long sec = value->tv_sec;
long usec = value->tv_usec;
if (sec >= MAX_SEC_IN_JIFFIES){
sec = MAX_SEC_IN_JIFFIES;
usec = 0;
}
return (((u64)sec * SEC_CONVERSION) +
(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
(USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
static __inline__ void
jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
/*
* Convert jiffies to nanoseconds and separate with
* one divide.
*/
u64 nsec = (u64)jiffies * TICK_NSEC;
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_usec);
value->tv_usec /= NSEC_PER_USEC;
}
/*
* Convert jiffies/jiffies_64 to clock_t and back.
*/
static inline clock_t jiffies_to_clock_t(long x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
return x / (HZ / USER_HZ);
#else
u64 tmp = (u64)x * TICK_NSEC;
do_div(tmp, (NSEC_PER_SEC / USER_HZ));
return (long)tmp;
#endif
}
static inline unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
if (x >= ~0UL / (HZ / USER_HZ))
return ~0UL;
return x * (HZ / USER_HZ);
#else
u64 jif;
/* Don't worry about loss of precision here .. */
if (x >= ~0UL / HZ * USER_HZ)
return ~0UL;
/* .. but do try to contain it here */
jif = x * (u64) HZ;
do_div(jif, USER_HZ);
return jif;
#endif
}
static inline u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
do_div(x, HZ / USER_HZ);
#else
/*
* There are better ways that don't overflow early,
* but even this doesn't overflow in hundreds of years
* in 64 bits, so..
*/
x *= TICK_NSEC;
do_div(x, (NSEC_PER_SEC / USER_HZ));
#endif
return x;
}
static inline u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
do_div(x, (NSEC_PER_SEC / USER_HZ));
#elif (USER_HZ % 512) == 0
x *= USER_HZ/512;
do_div(x, (NSEC_PER_SEC / 512));
#else
/*
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
* overflow after 64.99 years.
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
*/
x *= 9;
do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2))
/ USER_HZ));
#endif
return x;
}
#endif
#ifndef _LINUX_TIME_H
#define _LINUX_TIME_H
#include <asm/param.h>
#include <linux/types.h>
#ifdef __KERNEL__
#include <linux/seqlock.h>
#endif
#ifndef _STRUCT_TIMESPEC
#define _STRUCT_TIMESPEC
struct timespec {
......@@ -24,39 +27,6 @@ struct timezone {
#ifdef __KERNEL__
#include <linux/spinlock.h>
#include <linux/seqlock.h>
#include <linux/timex.h>
#include <asm/div64.h>
#ifndef div_long_long_rem
#define div_long_long_rem(dividend,divisor,remainder) ({ \
u64 result = dividend; \
*remainder = do_div(result,divisor); \
result; })
#endif
/*
* Have the 32 bit jiffies value wrap 5 minutes after boot
* so jiffies wrap bugs show up earlier.
*/
#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
/*
* Change timeval to jiffies, trying to avoid the
* most obvious overflows..
*
* And some not so obvious.
*
* Note that we don't want to return MAX_LONG, because
* for various timeout reasons we often end up having
* to wait "jiffies+1" in order to guarantee that we wait
* at _least_ "jiffies" - so "jiffies+1" had better still
* be positive.
*/
#define MAX_JIFFY_OFFSET ((~0UL >> 1)-1)
/* Parameters used to convert the timespec values */
#ifndef USEC_PER_SEC
#define USEC_PER_SEC (1000000L)
......@@ -70,232 +40,6 @@ struct timezone {
#define NSEC_PER_USEC (1000L)
#endif
/*
* We want to do realistic conversions of time so we need to use the same
* values the update wall clock code uses as the jiffies size. This value
* is: TICK_NSEC (which is defined in timex.h). This
* is a constant and is in nanoseconds. We will used scaled math
* with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
* NSEC_JIFFIE_SC. Note that these defines contain nothing but
* constants and so are computed at compile time. SHIFT_HZ (computed in
* timex.h) adjusts the scaling for different HZ values.
* Scaled math??? What is that?
*
* Scaled math is a way to do integer math on values that would,
* otherwise, either overflow, underflow, or cause undesired div
* instructions to appear in the execution path. In short, we "scale"
* up the operands so they take more bits (more precision, less
* underflow), do the desired operation and then "scale" the result back
* by the same amount. If we do the scaling by shifting we avoid the
* costly mpy and the dastardly div instructions.
* Suppose, for example, we want to convert from seconds to jiffies
* where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
* simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
* observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
* might calculate at compile time, however, the result will only have
* about 3-4 bits of precision (less for smaller values of HZ).
*
* So, we scale as follows:
* jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
* jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
* Then we make SCALE a power of two so:
* jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
* Now we define:
* #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
* jiff = (sec * SEC_CONV) >> SCALE;
*
* Often the math we use will expand beyond 32-bits so we tell C how to
* do this and pass the 64-bit result of the mpy through the ">> SCALE"
* which should take the result back to 32-bits. We want this expansion
* to capture as much precision as possible. At the same time we don't
* want to overflow so we pick the SCALE to avoid this. In this file,
* that means using a different scale for each range of HZ values (as
* defined in timex.h).
*
* For those who want to know, gcc will give a 64-bit result from a "*"
* operator if the result is a long long AND at least one of the
* operands is cast to long long (usually just prior to the "*" so as
* not to confuse it into thinking it really has a 64-bit operand,
* which, buy the way, it can do, but it take more code and at least 2
* mpys).
* We also need to be aware that one second in nanoseconds is only a
* couple of bits away from overflowing a 32-bit word, so we MUST use
* 64-bits to get the full range time in nanoseconds.
*/
/*
* Here are the scales we will use. One for seconds, nanoseconds and
* microseconds.
*
* Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
* check if the sign bit is set. If not, we bump the shift count by 1.
* (Gets an extra bit of precision where we can use it.)
* We know it is set for HZ = 1024 and HZ = 100 not for 1000.
* Haven't tested others.
* Limits of cpp (for #if expressions) only long (no long long), but
* then we only need the most signicant bit.
*/
#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
#undef SEC_JIFFIE_SC
#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
#endif
#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
TICK_NSEC -1) / (u64)TICK_NSEC))
#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
TICK_NSEC -1) / (u64)TICK_NSEC))
#define USEC_CONVERSION \
((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
TICK_NSEC -1) / (u64)TICK_NSEC))
/*
* USEC_ROUND is used in the timeval to jiffie conversion. See there
* for more details. It is the scaled resolution rounding value. Note
* that it is a 64-bit value. Since, when it is applied, we are already
* in jiffies (albit scaled), it is nothing but the bits we will shift
* off.
*/
#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
/*
* The maximum jiffie value is (MAX_INT >> 1). Here we translate that
* into seconds. The 64-bit case will overflow if we are not careful,
* so use the messy SH_DIV macro to do it. Still all constants.
*/
#if BITS_PER_LONG < 64
# define MAX_SEC_IN_JIFFIES \
(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
#else /* take care of overflow on 64 bits machines */
# define MAX_SEC_IN_JIFFIES \
(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
#endif
/*
* Convert jiffies to milliseconds and back.
*
* Avoid unnecessary multiplications/divisions in the
* two most common HZ cases:
*/
static inline unsigned int jiffies_to_msecs(const unsigned long j)
{
#if HZ <= 1000 && !(1000 % HZ)
return (1000 / HZ) * j;
#elif HZ > 1000 && !(HZ % 1000)
return (j + (HZ / 1000) - 1)/(HZ / 1000);
#else
return (j * 1000) / HZ;
#endif
}
static inline unsigned int jiffies_to_usecs(const unsigned long j)
{
#if HZ <= 1000 && !(1000 % HZ)
return (1000000 / HZ) * j;
#elif HZ > 1000 && !(HZ % 1000)
return (j*1000 + (HZ - 1000))/(HZ / 1000);
#else
return (j * 1000000) / HZ;
#endif
}
static inline unsigned long msecs_to_jiffies(const unsigned int m)
{
if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
return MAX_JIFFY_OFFSET;
#if HZ <= 1000 && !(1000 % HZ)
return (m + (1000 / HZ) - 1) / (1000 / HZ);
#elif HZ > 1000 && !(HZ % 1000)
return m * (HZ / 1000);
#else
return (m * HZ + 999) / 1000;
#endif
}
/*
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
* that a remainder subtract here would not do the right thing as the
* resolution values don't fall on second boundries. I.e. the line:
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
*
* Rather, we just shift the bits off the right.
*
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
* value to a scaled second value.
*/
static __inline__ unsigned long
timespec_to_jiffies(const struct timespec *value)
{
unsigned long sec = value->tv_sec;
long nsec = value->tv_nsec + TICK_NSEC - 1;
if (sec >= MAX_SEC_IN_JIFFIES){
sec = MAX_SEC_IN_JIFFIES;
nsec = 0;
}
return (((u64)sec * SEC_CONVERSION) +
(((u64)nsec * NSEC_CONVERSION) >>
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
static __inline__ void
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
{
/*
* Convert jiffies to nanoseconds and separate with
* one divide.
*/
u64 nsec = (u64)jiffies * TICK_NSEC;
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
}
/* Same for "timeval"
*
* Well, almost. The problem here is that the real system resolution is
* in nanoseconds and the value being converted is in micro seconds.
* Also for some machines (those that use HZ = 1024, in-particular),
* there is a LARGE error in the tick size in microseconds.
* The solution we use is to do the rounding AFTER we convert the
* microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
* Instruction wise, this should cost only an additional add with carry
* instruction above the way it was done above.
*/
static __inline__ unsigned long
timeval_to_jiffies(const struct timeval *value)
{
unsigned long sec = value->tv_sec;
long usec = value->tv_usec;
if (sec >= MAX_SEC_IN_JIFFIES){
sec = MAX_SEC_IN_JIFFIES;
usec = 0;
}
return (((u64)sec * SEC_CONVERSION) +
(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
(USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
static __inline__ void
jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
/*
* Convert jiffies to nanoseconds and separate with
* one divide.
*/
u64 nsec = (u64)jiffies * TICK_NSEC;
value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_usec);
value->tv_usec /= NSEC_PER_USEC;
}
static __inline__ int timespec_equal(struct timespec *a, struct timespec *b)
{
return (a->tv_sec == b->tv_sec) && (a->tv_nsec == b->tv_nsec);
......@@ -347,11 +91,6 @@ struct timespec current_kernel_time(void);
#define CURRENT_TIME (current_kernel_time())
#endif /* __KERNEL__ */
#define NFDBITS __NFDBITS
#ifdef __KERNEL__
extern void do_gettimeofday(struct timeval *tv);
extern int do_settimeofday(struct timespec *tv);
extern int do_sys_settimeofday(struct timespec *tv, struct timezone *tz);
......@@ -378,7 +117,10 @@ set_normalized_timespec (struct timespec *ts, time_t sec, long nsec)
ts->tv_sec = sec;
ts->tv_nsec = nsec;
}
#endif
#endif /* __KERNEL__ */
#define NFDBITS __NFDBITS
#define FD_SETSIZE __FD_SETSIZE
#define FD_SET(fd,fdsetp) __FD_SET(fd,fdsetp)
......
#ifndef _LINUX_TIMES_H
#define _LINUX_TIMES_H
#ifdef __KERNEL__
#include <linux/timex.h>
#include <asm/div64.h>
#include <asm/types.h>
#include <asm/param.h>
static inline clock_t jiffies_to_clock_t(long x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
return x / (HZ / USER_HZ);
#else
u64 tmp = (u64)x * TICK_NSEC;
do_div(tmp, (NSEC_PER_SEC / USER_HZ));
return (long)tmp;
#endif
}
static inline unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
if (x >= ~0UL / (HZ / USER_HZ))
return ~0UL;
return x * (HZ / USER_HZ);
#else
u64 jif;
/* Don't worry about loss of precision here .. */
if (x >= ~0UL / HZ * USER_HZ)
return ~0UL;
/* .. but do try to contain it here */
jif = x * (u64) HZ;
do_div(jif, USER_HZ);
return jif;
#endif
}
static inline u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
do_div(x, HZ / USER_HZ);
#else
/*
* There are better ways that don't overflow early,
* but even this doesn't overflow in hundreds of years
* in 64 bits, so..
*/
x *= TICK_NSEC;
do_div(x, (NSEC_PER_SEC / USER_HZ));
#endif
return x;
}
#endif
static inline u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
do_div(x, (NSEC_PER_SEC / USER_HZ));
#elif (USER_HZ % 512) == 0
x *= USER_HZ/512;
do_div(x, (NSEC_PER_SEC / 512));
#else
/*
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
* overflow after 64.99 years.
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
*/
x *= 9;
do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2))
/ USER_HZ));
#endif
return x;
}
#include <linux/types.h>
struct tms {
clock_t tms_utime;
......
......@@ -55,33 +55,10 @@
#include <linux/config.h>
#include <linux/compiler.h>
#include <linux/time.h>
#include <asm/param.h>
/*
* The following defines establish the engineering parameters of the PLL
* model. The HZ variable establishes the timer interrupt frequency, 100 Hz
* for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
* OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
* nearest power of two in order to avoid hardware multiply operations.
*/
#if HZ >= 12 && HZ < 24
# define SHIFT_HZ 4
#elif HZ >= 24 && HZ < 48
# define SHIFT_HZ 5
#elif HZ >= 48 && HZ < 96
# define SHIFT_HZ 6
#elif HZ >= 96 && HZ < 192
# define SHIFT_HZ 7
#elif HZ >= 192 && HZ < 384
# define SHIFT_HZ 8
#elif HZ >= 384 && HZ < 768
# define SHIFT_HZ 9
#elif HZ >= 768 && HZ < 1536
# define SHIFT_HZ 10
#else
# error You lose.
#endif
#include <asm/timex.h>
/*
* SHIFT_KG and SHIFT_KF establish the damping of the PLL and are chosen
......@@ -151,41 +128,6 @@
#define PPS_VALID 120 /* pps signal watchdog max (s) */
#define MAXGLITCH 30 /* pps signal glitch max (s) */
/*
* Pick up the architecture specific timex specifications
*/
#include <asm/timex.h>
/* LATCH is used in the interval timer and ftape setup. */
#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
/* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can
* improve accuracy by shifting LSH bits, hence calculating:
* (NOM << LSH) / DEN
* This however means trouble for large NOM, because (NOM << LSH) may no
* longer fit in 32 bits. The following way of calculating this gives us
* some slack, under the following conditions:
* - (NOM / DEN) fits in (32 - LSH) bits.
* - (NOM % DEN) fits in (32 - LSH) bits.
*/
#define SH_DIV(NOM,DEN,LSH) ( ((NOM / DEN) << LSH) \
+ (((NOM % DEN) << LSH) + DEN / 2) / DEN)
/* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
#define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))
/* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
#define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
/* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and */
/* a value TUSEC for TICK_USEC (can be set bij adjtimex) */
#define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))
#include <linux/time.h>
/*
* syscall interface - used (mainly by NTP daemon)
* to discipline kernel clock oscillator
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment