Commit cc9a6c87 authored by Mel Gorman's avatar Mel Gorman Committed by Linus Torvalds

cpuset: mm: reduce large amounts of memory barrier related damage v3

Commit c0ff7453 ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.

[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths.  This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32.  The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.

For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.

This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side.  This is much cheaper on some architectures, including x86.  The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.

While updating the nodemask, a check is made to see if a false failure
is a risk.  If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.

In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%.  The
actual results were

                             3.3.0-rc3          3.3.0-rc3
                             rc3-vanilla        nobarrier-v2r1
    Clients   1 UserTime       0.07 (  0.00%)   0.08 (-14.19%)
    Clients   2 UserTime       0.07 (  0.00%)   0.07 (  2.72%)
    Clients   4 UserTime       0.08 (  0.00%)   0.07 (  3.29%)
    Clients   1 SysTime        0.70 (  0.00%)   0.65 (  6.65%)
    Clients   2 SysTime        0.85 (  0.00%)   0.82 (  3.65%)
    Clients   4 SysTime        1.41 (  0.00%)   1.41 (  0.32%)
    Clients   1 WallTime       0.77 (  0.00%)   0.74 (  4.19%)
    Clients   2 WallTime       0.47 (  0.00%)   0.45 (  3.73%)
    Clients   4 WallTime       0.38 (  0.00%)   0.37 (  1.58%)
    Clients   1 Flt/sec/cpu  497620.28 (  0.00%) 520294.53 (  4.56%)
    Clients   2 Flt/sec/cpu  414639.05 (  0.00%) 429882.01 (  3.68%)
    Clients   4 Flt/sec/cpu  257959.16 (  0.00%) 258761.48 (  0.31%)
    Clients   1 Flt/sec      495161.39 (  0.00%) 517292.87 (  4.47%)
    Clients   2 Flt/sec      820325.95 (  0.00%) 850289.77 (  3.65%)
    Clients   4 Flt/sec      1020068.93 (  0.00%) 1022674.06 (  0.26%)
    MMTests Statistics: duration
    Sys Time Running Test (seconds)             135.68    132.17
    User+Sys Time Running Test (seconds)         164.2    160.13
    Total Elapsed Time (seconds)                123.46    120.87

The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected).  The
actual number of page faults is noticeably improved.

For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.

To test the actual bug the commit fixed I opened two terminals.  The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data.  In a second window, the nodemask of the
cpuset was continually randomised in a loop.

Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.
Signed-off-by: default avatarMel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent e845e199
...@@ -89,42 +89,33 @@ extern void rebuild_sched_domains(void); ...@@ -89,42 +89,33 @@ extern void rebuild_sched_domains(void);
extern void cpuset_print_task_mems_allowed(struct task_struct *p); extern void cpuset_print_task_mems_allowed(struct task_struct *p);
/* /*
* reading current mems_allowed and mempolicy in the fastpath must protected * get_mems_allowed is required when making decisions involving mems_allowed
* by get_mems_allowed() * such as during page allocation. mems_allowed can be updated in parallel
* and depending on the new value an operation can fail potentially causing
* process failure. A retry loop with get_mems_allowed and put_mems_allowed
* prevents these artificial failures.
*/ */
static inline void get_mems_allowed(void) static inline unsigned int get_mems_allowed(void)
{ {
current->mems_allowed_change_disable++; return read_seqcount_begin(&current->mems_allowed_seq);
/*
* ensure that reading mems_allowed and mempolicy happens after the
* update of ->mems_allowed_change_disable.
*
* the write-side task finds ->mems_allowed_change_disable is not 0,
* and knows the read-side task is reading mems_allowed or mempolicy,
* so it will clear old bits lazily.
*/
smp_mb();
} }
static inline void put_mems_allowed(void) /*
{ * If this returns false, the operation that took place after get_mems_allowed
/* * may have failed. It is up to the caller to retry the operation if
* ensure that reading mems_allowed and mempolicy before reducing * appropriate.
* mems_allowed_change_disable.
*
* the write-side task will know that the read-side task is still
* reading mems_allowed or mempolicy, don't clears old bits in the
* nodemask.
*/ */
smp_mb(); static inline bool put_mems_allowed(unsigned int seq)
--ACCESS_ONCE(current->mems_allowed_change_disable); {
return !read_seqcount_retry(&current->mems_allowed_seq, seq);
} }
static inline void set_mems_allowed(nodemask_t nodemask) static inline void set_mems_allowed(nodemask_t nodemask)
{ {
task_lock(current); task_lock(current);
write_seqcount_begin(&current->mems_allowed_seq);
current->mems_allowed = nodemask; current->mems_allowed = nodemask;
write_seqcount_end(&current->mems_allowed_seq);
task_unlock(current); task_unlock(current);
} }
...@@ -234,12 +225,14 @@ static inline void set_mems_allowed(nodemask_t nodemask) ...@@ -234,12 +225,14 @@ static inline void set_mems_allowed(nodemask_t nodemask)
{ {
} }
static inline void get_mems_allowed(void) static inline unsigned int get_mems_allowed(void)
{ {
return 0;
} }
static inline void put_mems_allowed(void) static inline bool put_mems_allowed(unsigned int seq)
{ {
return true;
} }
#endif /* !CONFIG_CPUSETS */ #endif /* !CONFIG_CPUSETS */
......
...@@ -29,6 +29,13 @@ extern struct fs_struct init_fs; ...@@ -29,6 +29,13 @@ extern struct fs_struct init_fs;
#define INIT_GROUP_RWSEM(sig) #define INIT_GROUP_RWSEM(sig)
#endif #endif
#ifdef CONFIG_CPUSETS
#define INIT_CPUSET_SEQ \
.mems_allowed_seq = SEQCNT_ZERO,
#else
#define INIT_CPUSET_SEQ
#endif
#define INIT_SIGNALS(sig) { \ #define INIT_SIGNALS(sig) { \
.nr_threads = 1, \ .nr_threads = 1, \
.wait_chldexit = __WAIT_QUEUE_HEAD_INITIALIZER(sig.wait_chldexit),\ .wait_chldexit = __WAIT_QUEUE_HEAD_INITIALIZER(sig.wait_chldexit),\
...@@ -192,6 +199,7 @@ extern struct cred init_cred; ...@@ -192,6 +199,7 @@ extern struct cred init_cred;
INIT_FTRACE_GRAPH \ INIT_FTRACE_GRAPH \
INIT_TRACE_RECURSION \ INIT_TRACE_RECURSION \
INIT_TASK_RCU_PREEMPT(tsk) \ INIT_TASK_RCU_PREEMPT(tsk) \
INIT_CPUSET_SEQ \
} }
......
...@@ -1514,7 +1514,7 @@ struct task_struct { ...@@ -1514,7 +1514,7 @@ struct task_struct {
#endif #endif
#ifdef CONFIG_CPUSETS #ifdef CONFIG_CPUSETS
nodemask_t mems_allowed; /* Protected by alloc_lock */ nodemask_t mems_allowed; /* Protected by alloc_lock */
int mems_allowed_change_disable; seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
int cpuset_mem_spread_rotor; int cpuset_mem_spread_rotor;
int cpuset_slab_spread_rotor; int cpuset_slab_spread_rotor;
#endif #endif
......
...@@ -964,7 +964,6 @@ static void cpuset_change_task_nodemask(struct task_struct *tsk, ...@@ -964,7 +964,6 @@ static void cpuset_change_task_nodemask(struct task_struct *tsk,
{ {
bool need_loop; bool need_loop;
repeat:
/* /*
* Allow tasks that have access to memory reserves because they have * Allow tasks that have access to memory reserves because they have
* been OOM killed to get memory anywhere. * been OOM killed to get memory anywhere.
...@@ -983,45 +982,19 @@ static void cpuset_change_task_nodemask(struct task_struct *tsk, ...@@ -983,45 +982,19 @@ static void cpuset_change_task_nodemask(struct task_struct *tsk,
*/ */
need_loop = task_has_mempolicy(tsk) || need_loop = task_has_mempolicy(tsk) ||
!nodes_intersects(*newmems, tsk->mems_allowed); !nodes_intersects(*newmems, tsk->mems_allowed);
nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
/* if (need_loop)
* ensure checking ->mems_allowed_change_disable after setting all new write_seqcount_begin(&tsk->mems_allowed_seq);
* allowed nodes.
*
* the read-side task can see an nodemask with new allowed nodes and
* old allowed nodes. and if it allocates page when cpuset clears newly
* disallowed ones continuous, it can see the new allowed bits.
*
* And if setting all new allowed nodes is after the checking, setting
* all new allowed nodes and clearing newly disallowed ones will be done
* continuous, and the read-side task may find no node to alloc page.
*/
smp_mb();
/*
* Allocation of memory is very fast, we needn't sleep when waiting
* for the read-side.
*/
while (need_loop && ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
task_unlock(tsk);
if (!task_curr(tsk))
yield();
goto repeat;
}
/* nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
* ensure checking ->mems_allowed_change_disable before clearing all new mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
* disallowed nodes.
*
* if clearing newly disallowed bits before the checking, the read-side
* task may find no node to alloc page.
*/
smp_mb();
mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
tsk->mems_allowed = *newmems; tsk->mems_allowed = *newmems;
if (need_loop)
write_seqcount_end(&tsk->mems_allowed_seq);
task_unlock(tsk); task_unlock(tsk);
} }
......
...@@ -1237,6 +1237,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, ...@@ -1237,6 +1237,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
#ifdef CONFIG_CPUSETS #ifdef CONFIG_CPUSETS
p->cpuset_mem_spread_rotor = NUMA_NO_NODE; p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
p->cpuset_slab_spread_rotor = NUMA_NO_NODE; p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
seqcount_init(&p->mems_allowed_seq);
#endif #endif
#ifdef CONFIG_TRACE_IRQFLAGS #ifdef CONFIG_TRACE_IRQFLAGS
p->irq_events = 0; p->irq_events = 0;
......
...@@ -499,10 +499,13 @@ struct page *__page_cache_alloc(gfp_t gfp) ...@@ -499,10 +499,13 @@ struct page *__page_cache_alloc(gfp_t gfp)
struct page *page; struct page *page;
if (cpuset_do_page_mem_spread()) { if (cpuset_do_page_mem_spread()) {
get_mems_allowed(); unsigned int cpuset_mems_cookie;
do {
cpuset_mems_cookie = get_mems_allowed();
n = cpuset_mem_spread_node(); n = cpuset_mem_spread_node();
page = alloc_pages_exact_node(n, gfp, 0); page = alloc_pages_exact_node(n, gfp, 0);
put_mems_allowed(); } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
return page; return page;
} }
return alloc_pages(gfp, 0); return alloc_pages(gfp, 0);
......
...@@ -454,14 +454,16 @@ static struct page *dequeue_huge_page_vma(struct hstate *h, ...@@ -454,14 +454,16 @@ static struct page *dequeue_huge_page_vma(struct hstate *h,
struct vm_area_struct *vma, struct vm_area_struct *vma,
unsigned long address, int avoid_reserve) unsigned long address, int avoid_reserve)
{ {
struct page *page = NULL; struct page *page;
struct mempolicy *mpol; struct mempolicy *mpol;
nodemask_t *nodemask; nodemask_t *nodemask;
struct zonelist *zonelist; struct zonelist *zonelist;
struct zone *zone; struct zone *zone;
struct zoneref *z; struct zoneref *z;
unsigned int cpuset_mems_cookie;
get_mems_allowed(); retry_cpuset:
cpuset_mems_cookie = get_mems_allowed();
zonelist = huge_zonelist(vma, address, zonelist = huge_zonelist(vma, address,
htlb_alloc_mask, &mpol, &nodemask); htlb_alloc_mask, &mpol, &nodemask);
/* /*
...@@ -488,10 +490,15 @@ static struct page *dequeue_huge_page_vma(struct hstate *h, ...@@ -488,10 +490,15 @@ static struct page *dequeue_huge_page_vma(struct hstate *h,
} }
} }
} }
err:
mpol_cond_put(mpol); mpol_cond_put(mpol);
put_mems_allowed(); if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
goto retry_cpuset;
return page; return page;
err:
mpol_cond_put(mpol);
return NULL;
} }
static void update_and_free_page(struct hstate *h, struct page *page) static void update_and_free_page(struct hstate *h, struct page *page)
......
...@@ -1850,18 +1850,24 @@ struct page * ...@@ -1850,18 +1850,24 @@ struct page *
alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
unsigned long addr, int node) unsigned long addr, int node)
{ {
struct mempolicy *pol = get_vma_policy(current, vma, addr); struct mempolicy *pol;
struct zonelist *zl; struct zonelist *zl;
struct page *page; struct page *page;
unsigned int cpuset_mems_cookie;
retry_cpuset:
pol = get_vma_policy(current, vma, addr);
cpuset_mems_cookie = get_mems_allowed();
get_mems_allowed();
if (unlikely(pol->mode == MPOL_INTERLEAVE)) { if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
unsigned nid; unsigned nid;
nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
mpol_cond_put(pol); mpol_cond_put(pol);
page = alloc_page_interleave(gfp, order, nid); page = alloc_page_interleave(gfp, order, nid);
put_mems_allowed(); if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
goto retry_cpuset;
return page; return page;
} }
zl = policy_zonelist(gfp, pol, node); zl = policy_zonelist(gfp, pol, node);
...@@ -1872,7 +1878,8 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, ...@@ -1872,7 +1878,8 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
struct page *page = __alloc_pages_nodemask(gfp, order, struct page *page = __alloc_pages_nodemask(gfp, order,
zl, policy_nodemask(gfp, pol)); zl, policy_nodemask(gfp, pol));
__mpol_put(pol); __mpol_put(pol);
put_mems_allowed(); if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
goto retry_cpuset;
return page; return page;
} }
/* /*
...@@ -1880,7 +1887,8 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, ...@@ -1880,7 +1887,8 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
*/ */
page = __alloc_pages_nodemask(gfp, order, zl, page = __alloc_pages_nodemask(gfp, order, zl,
policy_nodemask(gfp, pol)); policy_nodemask(gfp, pol));
put_mems_allowed(); if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
goto retry_cpuset;
return page; return page;
} }
...@@ -1907,11 +1915,14 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order) ...@@ -1907,11 +1915,14 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order)
{ {
struct mempolicy *pol = current->mempolicy; struct mempolicy *pol = current->mempolicy;
struct page *page; struct page *page;
unsigned int cpuset_mems_cookie;
if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
pol = &default_policy; pol = &default_policy;
get_mems_allowed(); retry_cpuset:
cpuset_mems_cookie = get_mems_allowed();
/* /*
* No reference counting needed for current->mempolicy * No reference counting needed for current->mempolicy
* nor system default_policy * nor system default_policy
...@@ -1922,7 +1933,10 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order) ...@@ -1922,7 +1933,10 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order)
page = __alloc_pages_nodemask(gfp, order, page = __alloc_pages_nodemask(gfp, order,
policy_zonelist(gfp, pol, numa_node_id()), policy_zonelist(gfp, pol, numa_node_id()),
policy_nodemask(gfp, pol)); policy_nodemask(gfp, pol));
put_mems_allowed();
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
goto retry_cpuset;
return page; return page;
} }
EXPORT_SYMBOL(alloc_pages_current); EXPORT_SYMBOL(alloc_pages_current);
......
...@@ -2380,8 +2380,9 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, ...@@ -2380,8 +2380,9 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
{ {
enum zone_type high_zoneidx = gfp_zone(gfp_mask); enum zone_type high_zoneidx = gfp_zone(gfp_mask);
struct zone *preferred_zone; struct zone *preferred_zone;
struct page *page; struct page *page = NULL;
int migratetype = allocflags_to_migratetype(gfp_mask); int migratetype = allocflags_to_migratetype(gfp_mask);
unsigned int cpuset_mems_cookie;
gfp_mask &= gfp_allowed_mask; gfp_mask &= gfp_allowed_mask;
...@@ -2400,15 +2401,15 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, ...@@ -2400,15 +2401,15 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
if (unlikely(!zonelist->_zonerefs->zone)) if (unlikely(!zonelist->_zonerefs->zone))
return NULL; return NULL;
get_mems_allowed(); retry_cpuset:
cpuset_mems_cookie = get_mems_allowed();
/* The preferred zone is used for statistics later */ /* The preferred zone is used for statistics later */
first_zones_zonelist(zonelist, high_zoneidx, first_zones_zonelist(zonelist, high_zoneidx,
nodemask ? : &cpuset_current_mems_allowed, nodemask ? : &cpuset_current_mems_allowed,
&preferred_zone); &preferred_zone);
if (!preferred_zone) { if (!preferred_zone)
put_mems_allowed(); goto out;
return NULL;
}
/* First allocation attempt */ /* First allocation attempt */
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
...@@ -2418,9 +2419,19 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, ...@@ -2418,9 +2419,19 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
page = __alloc_pages_slowpath(gfp_mask, order, page = __alloc_pages_slowpath(gfp_mask, order,
zonelist, high_zoneidx, nodemask, zonelist, high_zoneidx, nodemask,
preferred_zone, migratetype); preferred_zone, migratetype);
put_mems_allowed();
trace_mm_page_alloc(page, order, gfp_mask, migratetype); trace_mm_page_alloc(page, order, gfp_mask, migratetype);
out:
/*
* When updating a task's mems_allowed, it is possible to race with
* parallel threads in such a way that an allocation can fail while
* the mask is being updated. If a page allocation is about to fail,
* check if the cpuset changed during allocation and if so, retry.
*/
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
goto retry_cpuset;
return page; return page;
} }
EXPORT_SYMBOL(__alloc_pages_nodemask); EXPORT_SYMBOL(__alloc_pages_nodemask);
...@@ -2634,13 +2645,15 @@ void si_meminfo_node(struct sysinfo *val, int nid) ...@@ -2634,13 +2645,15 @@ void si_meminfo_node(struct sysinfo *val, int nid)
bool skip_free_areas_node(unsigned int flags, int nid) bool skip_free_areas_node(unsigned int flags, int nid)
{ {
bool ret = false; bool ret = false;
unsigned int cpuset_mems_cookie;
if (!(flags & SHOW_MEM_FILTER_NODES)) if (!(flags & SHOW_MEM_FILTER_NODES))
goto out; goto out;
get_mems_allowed(); do {
cpuset_mems_cookie = get_mems_allowed();
ret = !node_isset(nid, cpuset_current_mems_allowed); ret = !node_isset(nid, cpuset_current_mems_allowed);
put_mems_allowed(); } while (!put_mems_allowed(cpuset_mems_cookie));
out: out:
return ret; return ret;
} }
......
...@@ -3284,12 +3284,10 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) ...@@ -3284,12 +3284,10 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
if (in_interrupt() || (flags & __GFP_THISNODE)) if (in_interrupt() || (flags & __GFP_THISNODE))
return NULL; return NULL;
nid_alloc = nid_here = numa_mem_id(); nid_alloc = nid_here = numa_mem_id();
get_mems_allowed();
if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
nid_alloc = cpuset_slab_spread_node(); nid_alloc = cpuset_slab_spread_node();
else if (current->mempolicy) else if (current->mempolicy)
nid_alloc = slab_node(current->mempolicy); nid_alloc = slab_node(current->mempolicy);
put_mems_allowed();
if (nid_alloc != nid_here) if (nid_alloc != nid_here)
return ____cache_alloc_node(cachep, flags, nid_alloc); return ____cache_alloc_node(cachep, flags, nid_alloc);
return NULL; return NULL;
...@@ -3312,14 +3310,17 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) ...@@ -3312,14 +3310,17 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
enum zone_type high_zoneidx = gfp_zone(flags); enum zone_type high_zoneidx = gfp_zone(flags);
void *obj = NULL; void *obj = NULL;
int nid; int nid;
unsigned int cpuset_mems_cookie;
if (flags & __GFP_THISNODE) if (flags & __GFP_THISNODE)
return NULL; return NULL;
get_mems_allowed();
zonelist = node_zonelist(slab_node(current->mempolicy), flags);
local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
retry_cpuset:
cpuset_mems_cookie = get_mems_allowed();
zonelist = node_zonelist(slab_node(current->mempolicy), flags);
retry: retry:
/* /*
* Look through allowed nodes for objects available * Look through allowed nodes for objects available
...@@ -3372,7 +3373,9 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) ...@@ -3372,7 +3373,9 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
} }
} }
} }
put_mems_allowed();
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
goto retry_cpuset;
return obj; return obj;
} }
......
...@@ -1581,6 +1581,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags, ...@@ -1581,6 +1581,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
struct zone *zone; struct zone *zone;
enum zone_type high_zoneidx = gfp_zone(flags); enum zone_type high_zoneidx = gfp_zone(flags);
void *object; void *object;
unsigned int cpuset_mems_cookie;
/* /*
* The defrag ratio allows a configuration of the tradeoffs between * The defrag ratio allows a configuration of the tradeoffs between
...@@ -1604,7 +1605,8 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags, ...@@ -1604,7 +1605,8 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
get_cycles() % 1024 > s->remote_node_defrag_ratio) get_cycles() % 1024 > s->remote_node_defrag_ratio)
return NULL; return NULL;
get_mems_allowed(); do {
cpuset_mems_cookie = get_mems_allowed();
zonelist = node_zonelist(slab_node(current->mempolicy), flags); zonelist = node_zonelist(slab_node(current->mempolicy), flags);
for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
struct kmem_cache_node *n; struct kmem_cache_node *n;
...@@ -1615,12 +1617,20 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags, ...@@ -1615,12 +1617,20 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
n->nr_partial > s->min_partial) { n->nr_partial > s->min_partial) {
object = get_partial_node(s, n, c); object = get_partial_node(s, n, c);
if (object) { if (object) {
put_mems_allowed(); /*
* Return the object even if
* put_mems_allowed indicated that
* the cpuset mems_allowed was
* updated in parallel. It's a
* harmless race between the alloc
* and the cpuset update.
*/
put_mems_allowed(cpuset_mems_cookie);
return object; return object;
} }
} }
} }
put_mems_allowed(); } while (!put_mems_allowed(cpuset_mems_cookie));
#endif #endif
return NULL; return NULL;
} }
......
...@@ -2343,7 +2343,6 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, ...@@ -2343,7 +2343,6 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
unsigned long writeback_threshold; unsigned long writeback_threshold;
bool aborted_reclaim; bool aborted_reclaim;
get_mems_allowed();
delayacct_freepages_start(); delayacct_freepages_start();
if (global_reclaim(sc)) if (global_reclaim(sc))
...@@ -2407,7 +2406,6 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, ...@@ -2407,7 +2406,6 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
out: out:
delayacct_freepages_end(); delayacct_freepages_end();
put_mems_allowed();
if (sc->nr_reclaimed) if (sc->nr_reclaimed)
return sc->nr_reclaimed; return sc->nr_reclaimed;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment