Commit db7da7aa authored by Rex Zhu's avatar Rex Zhu Committed by Alex Deucher

drm/amd/powerplay: delete dpm code for Cz/St.

The powerplay implementation has been the default for a
while now.
Signed-off-by: default avatarRex Zhu <Rex.Zhu@amd.com>
Reviewed-by: default avatarAlex Deucher <alexander.deucher@amd.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent 634a24d8
...@@ -52,8 +52,7 @@ amdgpu-y += \ ...@@ -52,8 +52,7 @@ amdgpu-y += \
# add SMC block # add SMC block
amdgpu-y += \ amdgpu-y += \
amdgpu_dpm.o \ amdgpu_dpm.o \
amdgpu_powerplay.o \ amdgpu_powerplay.o
cz_smc.o cz_dpm.o
# add DCE block # add DCE block
amdgpu-y += \ amdgpu-y += \
......
...@@ -78,10 +78,6 @@ static int amdgpu_powerplay_init(struct amdgpu_device *adev) ...@@ -78,10 +78,6 @@ static int amdgpu_powerplay_init(struct amdgpu_device *adev)
amd_pp->ip_funcs = &kv_dpm_ip_funcs; amd_pp->ip_funcs = &kv_dpm_ip_funcs;
break; break;
#endif #endif
case CHIP_CARRIZO:
case CHIP_STONEY:
amd_pp->ip_funcs = &cz_dpm_ip_funcs;
break;
default: default:
ret = -EINVAL; ret = -EINVAL;
break; break;
...@@ -102,11 +98,9 @@ static int amdgpu_pp_early_init(void *handle) ...@@ -102,11 +98,9 @@ static int amdgpu_pp_early_init(void *handle)
case CHIP_TONGA: case CHIP_TONGA:
case CHIP_FIJI: case CHIP_FIJI:
case CHIP_TOPAZ: case CHIP_TOPAZ:
adev->pp_enabled = true;
break;
case CHIP_CARRIZO: case CHIP_CARRIZO:
case CHIP_STONEY: case CHIP_STONEY:
adev->pp_enabled = (amdgpu_powerplay == 0) ? false : true; adev->pp_enabled = true;
break; break;
/* These chips don't have powerplay implemenations */ /* These chips don't have powerplay implemenations */
case CHIP_BONAIRE: case CHIP_BONAIRE:
......
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include <linux/seq_file.h>
#include "drmP.h"
#include "amdgpu.h"
#include "amdgpu_pm.h"
#include "amdgpu_atombios.h"
#include "vid.h"
#include "vi_dpm.h"
#include "amdgpu_dpm.h"
#include "cz_dpm.h"
#include "cz_ppsmc.h"
#include "atom.h"
#include "smu/smu_8_0_d.h"
#include "smu/smu_8_0_sh_mask.h"
#include "gca/gfx_8_0_d.h"
#include "gca/gfx_8_0_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "bif/bif_5_1_d.h"
#include "gfx_v8_0.h"
static void cz_dpm_powergate_uvd(struct amdgpu_device *adev, bool gate);
static void cz_dpm_powergate_vce(struct amdgpu_device *adev, bool gate);
static void cz_dpm_fini(struct amdgpu_device *adev);
static struct cz_ps *cz_get_ps(struct amdgpu_ps *rps)
{
struct cz_ps *ps = rps->ps_priv;
return ps;
}
static struct cz_power_info *cz_get_pi(struct amdgpu_device *adev)
{
struct cz_power_info *pi = adev->pm.dpm.priv;
return pi;
}
static uint16_t cz_convert_8bit_index_to_voltage(struct amdgpu_device *adev,
uint16_t voltage)
{
uint16_t tmp = 6200 - voltage * 25;
return tmp;
}
static void cz_construct_max_power_limits_table(struct amdgpu_device *adev,
struct amdgpu_clock_and_voltage_limits *table)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *dep_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
if (dep_table->count > 0) {
table->sclk = dep_table->entries[dep_table->count - 1].clk;
table->vddc = cz_convert_8bit_index_to_voltage(adev,
dep_table->entries[dep_table->count - 1].v);
}
table->mclk = pi->sys_info.nbp_memory_clock[0];
}
union igp_info {
struct _ATOM_INTEGRATED_SYSTEM_INFO info;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_9 info_9;
};
static int cz_parse_sys_info_table(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
union igp_info *igp_info;
u8 frev, crev;
u16 data_offset;
int i = 0;
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
igp_info = (union igp_info *)(mode_info->atom_context->bios +
data_offset);
if (crev != 9) {
DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
return -EINVAL;
}
pi->sys_info.bootup_sclk =
le32_to_cpu(igp_info->info_9.ulBootUpEngineClock);
pi->sys_info.bootup_uma_clk =
le32_to_cpu(igp_info->info_9.ulBootUpUMAClock);
pi->sys_info.dentist_vco_freq =
le32_to_cpu(igp_info->info_9.ulDentistVCOFreq);
pi->sys_info.bootup_nb_voltage_index =
le16_to_cpu(igp_info->info_9.usBootUpNBVoltage);
if (igp_info->info_9.ucHtcTmpLmt == 0)
pi->sys_info.htc_tmp_lmt = 203;
else
pi->sys_info.htc_tmp_lmt = igp_info->info_9.ucHtcTmpLmt;
if (igp_info->info_9.ucHtcHystLmt == 0)
pi->sys_info.htc_hyst_lmt = 5;
else
pi->sys_info.htc_hyst_lmt = igp_info->info_9.ucHtcHystLmt;
if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
return -EINVAL;
}
if (le32_to_cpu(igp_info->info_9.ulSystemConfig) & (1 << 3) &&
pi->enable_nb_ps_policy)
pi->sys_info.nb_dpm_enable = true;
else
pi->sys_info.nb_dpm_enable = false;
for (i = 0; i < CZ_NUM_NBPSTATES; i++) {
if (i < CZ_NUM_NBPMEMORY_CLOCK)
pi->sys_info.nbp_memory_clock[i] =
le32_to_cpu(igp_info->info_9.ulNbpStateMemclkFreq[i]);
pi->sys_info.nbp_n_clock[i] =
le32_to_cpu(igp_info->info_9.ulNbpStateNClkFreq[i]);
}
for (i = 0; i < CZ_MAX_DISPLAY_CLOCK_LEVEL; i++)
pi->sys_info.display_clock[i] =
le32_to_cpu(igp_info->info_9.sDispClkVoltageMapping[i].ulMaximumSupportedCLK);
for (i = 0; i < CZ_NUM_NBPSTATES; i++)
pi->sys_info.nbp_voltage_index[i] =
le32_to_cpu(igp_info->info_9.usNBPStateVoltage[i]);
if (le32_to_cpu(igp_info->info_9.ulGPUCapInfo) &
SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
pi->caps_enable_dfs_bypass = true;
pi->sys_info.uma_channel_number =
igp_info->info_9.ucUMAChannelNumber;
cz_construct_max_power_limits_table(adev,
&adev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
}
return 0;
}
static void cz_patch_voltage_values(struct amdgpu_device *adev)
{
int i;
struct amdgpu_uvd_clock_voltage_dependency_table *uvd_table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
struct amdgpu_vce_clock_voltage_dependency_table *vce_table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
struct amdgpu_clock_voltage_dependency_table *acp_table =
&adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
if (uvd_table->count) {
for (i = 0; i < uvd_table->count; i++)
uvd_table->entries[i].v =
cz_convert_8bit_index_to_voltage(adev,
uvd_table->entries[i].v);
}
if (vce_table->count) {
for (i = 0; i < vce_table->count; i++)
vce_table->entries[i].v =
cz_convert_8bit_index_to_voltage(adev,
vce_table->entries[i].v);
}
if (acp_table->count) {
for (i = 0; i < acp_table->count; i++)
acp_table->entries[i].v =
cz_convert_8bit_index_to_voltage(adev,
acp_table->entries[i].v);
}
}
static void cz_construct_boot_state(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
pi->boot_pl.ds_divider_index = 0;
pi->boot_pl.ss_divider_index = 0;
pi->boot_pl.allow_gnb_slow = 1;
pi->boot_pl.force_nbp_state = 0;
pi->boot_pl.display_wm = 0;
pi->boot_pl.vce_wm = 0;
}
static void cz_patch_boot_state(struct amdgpu_device *adev,
struct cz_ps *ps)
{
struct cz_power_info *pi = cz_get_pi(adev);
ps->num_levels = 1;
ps->levels[0] = pi->boot_pl;
}
union pplib_clock_info {
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
struct _ATOM_PPLIB_CZ_CLOCK_INFO carrizo;
};
static void cz_parse_pplib_clock_info(struct amdgpu_device *adev,
struct amdgpu_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct cz_ps *ps = cz_get_ps(rps);
struct cz_pl *pl = &ps->levels[index];
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
pl->sclk = table->entries[clock_info->carrizo.index].clk;
pl->vddc_index = table->entries[clock_info->carrizo.index].v;
ps->num_levels = index + 1;
if (pi->caps_sclk_ds) {
pl->ds_divider_index = 5;
pl->ss_divider_index = 5;
}
}
static void cz_parse_pplib_non_clock_info(struct amdgpu_device *adev,
struct amdgpu_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
u8 table_rev)
{
struct cz_ps *ps = cz_get_ps(rps);
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
adev->pm.dpm.boot_ps = rps;
cz_patch_boot_state(adev, ps);
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
adev->pm.dpm.uvd_ps = rps;
}
union power_info {
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4;
struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static int cz_parse_power_table(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j, k, non_clock_array_index, clock_array_index;
union pplib_clock_info *clock_info;
struct _StateArray *state_array;
struct _ClockInfoArray *clock_info_array;
struct _NonClockInfoArray *non_clock_info_array;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
u8 *power_state_offset;
struct cz_ps *ps;
if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
state_array = (struct _StateArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset));
clock_info_array = (struct _ClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
non_clock_info_array = (struct _NonClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
adev->pm.dpm.ps = kzalloc(sizeof(struct amdgpu_ps) *
state_array->ucNumEntries, GFP_KERNEL);
if (!adev->pm.dpm.ps)
return -ENOMEM;
power_state_offset = (u8 *)state_array->states;
adev->pm.dpm.platform_caps =
le32_to_cpu(power_info->pplib.ulPlatformCaps);
adev->pm.dpm.backbias_response_time =
le16_to_cpu(power_info->pplib.usBackbiasTime);
adev->pm.dpm.voltage_response_time =
le16_to_cpu(power_info->pplib.usVoltageTime);
for (i = 0; i < state_array->ucNumEntries; i++) {
power_state = (union pplib_power_state *)power_state_offset;
non_clock_array_index = power_state->v2.nonClockInfoIndex;
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
&non_clock_info_array->nonClockInfo[non_clock_array_index];
ps = kzalloc(sizeof(struct cz_ps), GFP_KERNEL);
if (ps == NULL) {
for (j = 0; j < i; j++)
kfree(adev->pm.dpm.ps[j].ps_priv);
kfree(adev->pm.dpm.ps);
return -ENOMEM;
}
adev->pm.dpm.ps[i].ps_priv = ps;
k = 0;
for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
clock_array_index = power_state->v2.clockInfoIndex[j];
if (clock_array_index >= clock_info_array->ucNumEntries)
continue;
if (k >= CZ_MAX_HARDWARE_POWERLEVELS)
break;
clock_info = (union pplib_clock_info *)
&clock_info_array->clockInfo[clock_array_index *
clock_info_array->ucEntrySize];
cz_parse_pplib_clock_info(adev, &adev->pm.dpm.ps[i],
k, clock_info);
k++;
}
cz_parse_pplib_non_clock_info(adev, &adev->pm.dpm.ps[i],
non_clock_info,
non_clock_info_array->ucEntrySize);
power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
}
adev->pm.dpm.num_ps = state_array->ucNumEntries;
return 0;
}
static int cz_process_firmware_header(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
u32 tmp;
int ret;
ret = cz_read_smc_sram_dword(adev, SMU8_FIRMWARE_HEADER_LOCATION +
offsetof(struct SMU8_Firmware_Header,
DpmTable),
&tmp, pi->sram_end);
if (ret == 0)
pi->dpm_table_start = tmp;
return ret;
}
static int cz_dpm_init(struct amdgpu_device *adev)
{
struct cz_power_info *pi;
int ret, i;
pi = kzalloc(sizeof(struct cz_power_info), GFP_KERNEL);
if (NULL == pi)
return -ENOMEM;
adev->pm.dpm.priv = pi;
ret = amdgpu_get_platform_caps(adev);
if (ret)
goto err;
ret = amdgpu_parse_extended_power_table(adev);
if (ret)
goto err;
pi->sram_end = SMC_RAM_END;
/* set up DPM defaults */
for (i = 0; i < CZ_MAX_HARDWARE_POWERLEVELS; i++)
pi->active_target[i] = CZ_AT_DFLT;
pi->mgcg_cgtt_local0 = 0x0;
pi->mgcg_cgtt_local1 = 0x0;
pi->clock_slow_down_step = 25000;
pi->skip_clock_slow_down = 1;
pi->enable_nb_ps_policy = false;
pi->caps_power_containment = true;
pi->caps_cac = true;
pi->didt_enabled = false;
if (pi->didt_enabled) {
pi->caps_sq_ramping = true;
pi->caps_db_ramping = true;
pi->caps_td_ramping = true;
pi->caps_tcp_ramping = true;
}
if (amdgpu_pp_feature_mask & SCLK_DEEP_SLEEP_MASK)
pi->caps_sclk_ds = true;
else
pi->caps_sclk_ds = false;
pi->voting_clients = 0x00c00033;
pi->auto_thermal_throttling_enabled = true;
pi->bapm_enabled = false;
pi->disable_nb_ps3_in_battery = false;
pi->voltage_drop_threshold = 0;
pi->caps_sclk_throttle_low_notification = false;
pi->gfx_pg_threshold = 500;
pi->caps_fps = true;
/* uvd */
pi->caps_uvd_pg = (adev->pg_flags & AMD_PG_SUPPORT_UVD) ? true : false;
pi->caps_uvd_dpm = true;
/* vce */
pi->caps_vce_pg = (adev->pg_flags & AMD_PG_SUPPORT_VCE) ? true : false;
pi->caps_vce_dpm = true;
/* acp */
pi->caps_acp_pg = (adev->pg_flags & AMD_PG_SUPPORT_ACP) ? true : false;
pi->caps_acp_dpm = true;
pi->caps_stable_power_state = false;
pi->nb_dpm_enabled_by_driver = true;
pi->nb_dpm_enabled = false;
pi->caps_voltage_island = false;
/* flags which indicate need to upload pptable */
pi->need_pptable_upload = true;
ret = cz_parse_sys_info_table(adev);
if (ret)
goto err;
cz_patch_voltage_values(adev);
cz_construct_boot_state(adev);
ret = cz_parse_power_table(adev);
if (ret)
goto err;
ret = cz_process_firmware_header(adev);
if (ret)
goto err;
pi->dpm_enabled = true;
pi->uvd_dynamic_pg = false;
return 0;
err:
cz_dpm_fini(adev);
return ret;
}
static void cz_dpm_fini(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->pm.dpm.num_ps; i++)
kfree(adev->pm.dpm.ps[i].ps_priv);
kfree(adev->pm.dpm.ps);
kfree(adev->pm.dpm.priv);
amdgpu_free_extended_power_table(adev);
}
#define ixSMUSVI_NB_CURRENTVID 0xD8230044
#define CURRENT_NB_VID_MASK 0xff000000
#define CURRENT_NB_VID__SHIFT 24
#define ixSMUSVI_GFX_CURRENTVID 0xD8230048
#define CURRENT_GFX_VID_MASK 0xff000000
#define CURRENT_GFX_VID__SHIFT 24
static void
cz_dpm_debugfs_print_current_performance_level(struct amdgpu_device *adev,
struct seq_file *m)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
struct amdgpu_uvd_clock_voltage_dependency_table *uvd_table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
struct amdgpu_vce_clock_voltage_dependency_table *vce_table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
u32 sclk_index = REG_GET_FIELD(RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX),
TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX);
u32 uvd_index = REG_GET_FIELD(RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX_2),
TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_UVD_INDEX);
u32 vce_index = REG_GET_FIELD(RREG32_SMC(ixTARGET_AND_CURRENT_PROFILE_INDEX_2),
TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_VCE_INDEX);
u32 sclk, vclk, dclk, ecclk, tmp;
u16 vddnb, vddgfx;
if (sclk_index >= NUM_SCLK_LEVELS) {
seq_printf(m, "invalid sclk dpm profile %d\n", sclk_index);
} else {
sclk = table->entries[sclk_index].clk;
seq_printf(m, "%u sclk: %u\n", sclk_index, sclk);
}
tmp = (RREG32_SMC(ixSMUSVI_NB_CURRENTVID) &
CURRENT_NB_VID_MASK) >> CURRENT_NB_VID__SHIFT;
vddnb = cz_convert_8bit_index_to_voltage(adev, (u16)tmp);
tmp = (RREG32_SMC(ixSMUSVI_GFX_CURRENTVID) &
CURRENT_GFX_VID_MASK) >> CURRENT_GFX_VID__SHIFT;
vddgfx = cz_convert_8bit_index_to_voltage(adev, (u16)tmp);
seq_printf(m, "vddnb: %u vddgfx: %u\n", vddnb, vddgfx);
seq_printf(m, "uvd %sabled\n", pi->uvd_power_gated ? "dis" : "en");
if (!pi->uvd_power_gated) {
if (uvd_index >= CZ_MAX_HARDWARE_POWERLEVELS) {
seq_printf(m, "invalid uvd dpm level %d\n", uvd_index);
} else {
vclk = uvd_table->entries[uvd_index].vclk;
dclk = uvd_table->entries[uvd_index].dclk;
seq_printf(m, "%u uvd vclk: %u dclk: %u\n", uvd_index, vclk, dclk);
}
}
seq_printf(m, "vce %sabled\n", pi->vce_power_gated ? "dis" : "en");
if (!pi->vce_power_gated) {
if (vce_index >= CZ_MAX_HARDWARE_POWERLEVELS) {
seq_printf(m, "invalid vce dpm level %d\n", vce_index);
} else {
ecclk = vce_table->entries[vce_index].ecclk;
seq_printf(m, "%u vce ecclk: %u\n", vce_index, ecclk);
}
}
}
static void cz_dpm_print_power_state(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
int i;
struct cz_ps *ps = cz_get_ps(rps);
amdgpu_dpm_print_class_info(rps->class, rps->class2);
amdgpu_dpm_print_cap_info(rps->caps);
DRM_INFO("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
for (i = 0; i < ps->num_levels; i++) {
struct cz_pl *pl = &ps->levels[i];
DRM_INFO("\t\tpower level %d sclk: %u vddc: %u\n",
i, pl->sclk,
cz_convert_8bit_index_to_voltage(adev, pl->vddc_index));
}
amdgpu_dpm_print_ps_status(adev, rps);
}
static void cz_dpm_set_funcs(struct amdgpu_device *adev);
static int cz_dpm_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
cz_dpm_set_funcs(adev);
return 0;
}
static int cz_dpm_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (amdgpu_dpm) {
int ret;
/* init the sysfs and debugfs files late */
ret = amdgpu_pm_sysfs_init(adev);
if (ret)
return ret;
/* powerdown unused blocks for now */
cz_dpm_powergate_uvd(adev, true);
cz_dpm_powergate_vce(adev, true);
}
return 0;
}
static int cz_dpm_sw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int ret = 0;
/* fix me to add thermal support TODO */
/* default to balanced state */
adev->pm.dpm.state = POWER_STATE_TYPE_BALANCED;
adev->pm.dpm.user_state = POWER_STATE_TYPE_BALANCED;
adev->pm.dpm.forced_level = AMDGPU_DPM_FORCED_LEVEL_AUTO;
adev->pm.default_sclk = adev->clock.default_sclk;
adev->pm.default_mclk = adev->clock.default_mclk;
adev->pm.current_sclk = adev->clock.default_sclk;
adev->pm.current_mclk = adev->clock.default_mclk;
adev->pm.int_thermal_type = THERMAL_TYPE_NONE;
if (amdgpu_dpm == 0)
return 0;
mutex_lock(&adev->pm.mutex);
ret = cz_dpm_init(adev);
if (ret)
goto dpm_init_failed;
adev->pm.dpm.current_ps = adev->pm.dpm.requested_ps = adev->pm.dpm.boot_ps;
if (amdgpu_dpm == 1)
amdgpu_pm_print_power_states(adev);
mutex_unlock(&adev->pm.mutex);
DRM_INFO("amdgpu: dpm initialized\n");
return 0;
dpm_init_failed:
cz_dpm_fini(adev);
mutex_unlock(&adev->pm.mutex);
DRM_ERROR("amdgpu: dpm initialization failed\n");
return ret;
}
static int cz_dpm_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
mutex_lock(&adev->pm.mutex);
amdgpu_pm_sysfs_fini(adev);
cz_dpm_fini(adev);
mutex_unlock(&adev->pm.mutex);
return 0;
}
static void cz_reset_ap_mask(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
pi->active_process_mask = 0;
}
static int cz_dpm_download_pptable_from_smu(struct amdgpu_device *adev,
void **table)
{
return cz_smu_download_pptable(adev, table);
}
static int cz_dpm_upload_pptable_to_smu(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct SMU8_Fusion_ClkTable *clock_table;
struct atom_clock_dividers dividers;
void *table = NULL;
uint8_t i = 0;
int ret = 0;
struct amdgpu_clock_voltage_dependency_table *vddc_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
struct amdgpu_clock_voltage_dependency_table *vddgfx_table =
&adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk;
struct amdgpu_uvd_clock_voltage_dependency_table *uvd_table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
struct amdgpu_vce_clock_voltage_dependency_table *vce_table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
struct amdgpu_clock_voltage_dependency_table *acp_table =
&adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
if (!pi->need_pptable_upload)
return 0;
ret = cz_dpm_download_pptable_from_smu(adev, &table);
if (ret) {
DRM_ERROR("amdgpu: Failed to get power play table from SMU!\n");
return -EINVAL;
}
clock_table = (struct SMU8_Fusion_ClkTable *)table;
/* patch clock table */
if (vddc_table->count > CZ_MAX_HARDWARE_POWERLEVELS ||
vddgfx_table->count > CZ_MAX_HARDWARE_POWERLEVELS ||
uvd_table->count > CZ_MAX_HARDWARE_POWERLEVELS ||
vce_table->count > CZ_MAX_HARDWARE_POWERLEVELS ||
acp_table->count > CZ_MAX_HARDWARE_POWERLEVELS) {
DRM_ERROR("amdgpu: Invalid Clock Voltage Dependency Table!\n");
return -EINVAL;
}
for (i = 0; i < CZ_MAX_HARDWARE_POWERLEVELS; i++) {
/* vddc sclk */
clock_table->SclkBreakdownTable.ClkLevel[i].GnbVid =
(i < vddc_table->count) ? (uint8_t)vddc_table->entries[i].v : 0;
clock_table->SclkBreakdownTable.ClkLevel[i].Frequency =
(i < vddc_table->count) ? vddc_table->entries[i].clk : 0;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
clock_table->SclkBreakdownTable.ClkLevel[i].Frequency,
false, &dividers);
if (ret)
return ret;
clock_table->SclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.post_divider;
/* vddgfx sclk */
clock_table->SclkBreakdownTable.ClkLevel[i].GfxVid =
(i < vddgfx_table->count) ? (uint8_t)vddgfx_table->entries[i].v : 0;
/* acp breakdown */
clock_table->AclkBreakdownTable.ClkLevel[i].GfxVid =
(i < acp_table->count) ? (uint8_t)acp_table->entries[i].v : 0;
clock_table->AclkBreakdownTable.ClkLevel[i].Frequency =
(i < acp_table->count) ? acp_table->entries[i].clk : 0;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
clock_table->SclkBreakdownTable.ClkLevel[i].Frequency,
false, &dividers);
if (ret)
return ret;
clock_table->AclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.post_divider;
/* uvd breakdown */
clock_table->VclkBreakdownTable.ClkLevel[i].GfxVid =
(i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0;
clock_table->VclkBreakdownTable.ClkLevel[i].Frequency =
(i < uvd_table->count) ? uvd_table->entries[i].vclk : 0;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
clock_table->VclkBreakdownTable.ClkLevel[i].Frequency,
false, &dividers);
if (ret)
return ret;
clock_table->VclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.post_divider;
clock_table->DclkBreakdownTable.ClkLevel[i].GfxVid =
(i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0;
clock_table->DclkBreakdownTable.ClkLevel[i].Frequency =
(i < uvd_table->count) ? uvd_table->entries[i].dclk : 0;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
clock_table->DclkBreakdownTable.ClkLevel[i].Frequency,
false, &dividers);
if (ret)
return ret;
clock_table->DclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.post_divider;
/* vce breakdown */
clock_table->EclkBreakdownTable.ClkLevel[i].GfxVid =
(i < vce_table->count) ? (uint8_t)vce_table->entries[i].v : 0;
clock_table->EclkBreakdownTable.ClkLevel[i].Frequency =
(i < vce_table->count) ? vce_table->entries[i].ecclk : 0;
ret = amdgpu_atombios_get_clock_dividers(adev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
clock_table->EclkBreakdownTable.ClkLevel[i].Frequency,
false, &dividers);
if (ret)
return ret;
clock_table->EclkBreakdownTable.ClkLevel[i].DfsDid =
(uint8_t)dividers.post_divider;
}
/* its time to upload to SMU */
ret = cz_smu_upload_pptable(adev);
if (ret) {
DRM_ERROR("amdgpu: Failed to put power play table to SMU!\n");
return ret;
}
return 0;
}
static void cz_init_sclk_limit(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
uint32_t clock = 0, level;
if (!table || !table->count) {
DRM_ERROR("Invalid Voltage Dependency table.\n");
return;
}
pi->sclk_dpm.soft_min_clk = 0;
pi->sclk_dpm.hard_min_clk = 0;
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxSclkLevel);
level = cz_get_argument(adev);
if (level < table->count) {
clock = table->entries[level].clk;
} else {
DRM_ERROR("Invalid SLCK Voltage Dependency table entry.\n");
clock = table->entries[table->count - 1].clk;
}
pi->sclk_dpm.soft_max_clk = clock;
pi->sclk_dpm.hard_max_clk = clock;
}
static void cz_init_uvd_limit(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_uvd_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
uint32_t clock = 0, level;
if (!table || !table->count) {
DRM_ERROR("Invalid Voltage Dependency table.\n");
return;
}
pi->uvd_dpm.soft_min_clk = 0;
pi->uvd_dpm.hard_min_clk = 0;
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxUvdLevel);
level = cz_get_argument(adev);
if (level < table->count) {
clock = table->entries[level].vclk;
} else {
DRM_ERROR("Invalid UVD Voltage Dependency table entry.\n");
clock = table->entries[table->count - 1].vclk;
}
pi->uvd_dpm.soft_max_clk = clock;
pi->uvd_dpm.hard_max_clk = clock;
}
static void cz_init_vce_limit(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_vce_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
uint32_t clock = 0, level;
if (!table || !table->count) {
DRM_ERROR("Invalid Voltage Dependency table.\n");
return;
}
pi->vce_dpm.soft_min_clk = table->entries[0].ecclk;
pi->vce_dpm.hard_min_clk = table->entries[0].ecclk;
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxEclkLevel);
level = cz_get_argument(adev);
if (level < table->count) {
clock = table->entries[level].ecclk;
} else {
/* future BIOS would fix this error */
DRM_ERROR("Invalid VCE Voltage Dependency table entry.\n");
clock = table->entries[table->count - 1].ecclk;
}
pi->vce_dpm.soft_max_clk = clock;
pi->vce_dpm.hard_max_clk = clock;
}
static void cz_init_acp_limit(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
uint32_t clock = 0, level;
if (!table || !table->count) {
DRM_ERROR("Invalid Voltage Dependency table.\n");
return;
}
pi->acp_dpm.soft_min_clk = 0;
pi->acp_dpm.hard_min_clk = 0;
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxAclkLevel);
level = cz_get_argument(adev);
if (level < table->count) {
clock = table->entries[level].clk;
} else {
DRM_ERROR("Invalid ACP Voltage Dependency table entry.\n");
clock = table->entries[table->count - 1].clk;
}
pi->acp_dpm.soft_max_clk = clock;
pi->acp_dpm.hard_max_clk = clock;
}
static void cz_init_pg_state(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
pi->uvd_power_gated = false;
pi->vce_power_gated = false;
pi->acp_power_gated = false;
}
static void cz_init_sclk_threshold(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
pi->low_sclk_interrupt_threshold = 0;
}
static void cz_dpm_setup_asic(struct amdgpu_device *adev)
{
cz_reset_ap_mask(adev);
cz_dpm_upload_pptable_to_smu(adev);
cz_init_sclk_limit(adev);
cz_init_uvd_limit(adev);
cz_init_vce_limit(adev);
cz_init_acp_limit(adev);
cz_init_pg_state(adev);
cz_init_sclk_threshold(adev);
}
static bool cz_check_smu_feature(struct amdgpu_device *adev,
uint32_t feature)
{
uint32_t smu_feature = 0;
int ret;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_GetFeatureStatus, 0);
if (ret) {
DRM_ERROR("Failed to get SMU features from SMC.\n");
return false;
} else {
smu_feature = cz_get_argument(adev);
if (feature & smu_feature)
return true;
}
return false;
}
static bool cz_check_for_dpm_enabled(struct amdgpu_device *adev)
{
if (cz_check_smu_feature(adev,
SMU_EnabledFeatureScoreboard_SclkDpmOn))
return true;
return false;
}
static void cz_program_voting_clients(struct amdgpu_device *adev)
{
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, PPCZ_VOTINGRIGHTSCLIENTS_DFLT0);
}
static void cz_clear_voting_clients(struct amdgpu_device *adev)
{
WREG32_SMC(ixCG_FREQ_TRAN_VOTING_0, 0);
}
static int cz_start_dpm(struct amdgpu_device *adev)
{
int ret = 0;
if (amdgpu_dpm) {
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_EnableAllSmuFeatures, SCLK_DPM_MASK);
if (ret) {
DRM_ERROR("SMU feature: SCLK_DPM enable failed\n");
return -EINVAL;
}
}
return 0;
}
static int cz_stop_dpm(struct amdgpu_device *adev)
{
int ret = 0;
if (amdgpu_dpm && adev->pm.dpm_enabled) {
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_DisableAllSmuFeatures, SCLK_DPM_MASK);
if (ret) {
DRM_ERROR("SMU feature: SCLK_DPM disable failed\n");
return -EINVAL;
}
}
return 0;
}
static uint32_t cz_get_sclk_level(struct amdgpu_device *adev,
uint32_t clock, uint16_t msg)
{
int i = 0;
struct amdgpu_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
switch (msg) {
case PPSMC_MSG_SetSclkSoftMin:
case PPSMC_MSG_SetSclkHardMin:
for (i = 0; i < table->count; i++)
if (clock <= table->entries[i].clk)
break;
if (i == table->count)
i = table->count - 1;
break;
case PPSMC_MSG_SetSclkSoftMax:
case PPSMC_MSG_SetSclkHardMax:
for (i = table->count - 1; i >= 0; i--)
if (clock >= table->entries[i].clk)
break;
if (i < 0)
i = 0;
break;
default:
break;
}
return i;
}
static uint32_t cz_get_eclk_level(struct amdgpu_device *adev,
uint32_t clock, uint16_t msg)
{
int i = 0;
struct amdgpu_vce_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
if (table->count == 0)
return 0;
switch (msg) {
case PPSMC_MSG_SetEclkSoftMin:
case PPSMC_MSG_SetEclkHardMin:
for (i = 0; i < table->count-1; i++)
if (clock <= table->entries[i].ecclk)
break;
break;
case PPSMC_MSG_SetEclkSoftMax:
case PPSMC_MSG_SetEclkHardMax:
for (i = table->count - 1; i > 0; i--)
if (clock >= table->entries[i].ecclk)
break;
break;
default:
break;
}
return i;
}
static uint32_t cz_get_uvd_level(struct amdgpu_device *adev,
uint32_t clock, uint16_t msg)
{
int i = 0;
struct amdgpu_uvd_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
switch (msg) {
case PPSMC_MSG_SetUvdSoftMin:
case PPSMC_MSG_SetUvdHardMin:
for (i = 0; i < table->count; i++)
if (clock <= table->entries[i].vclk)
break;
if (i == table->count)
i = table->count - 1;
break;
case PPSMC_MSG_SetUvdSoftMax:
case PPSMC_MSG_SetUvdHardMax:
for (i = table->count - 1; i >= 0; i--)
if (clock >= table->entries[i].vclk)
break;
if (i < 0)
i = 0;
break;
default:
break;
}
return i;
}
static int cz_program_bootup_state(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
uint32_t soft_min_clk = 0;
uint32_t soft_max_clk = 0;
int ret = 0;
pi->sclk_dpm.soft_min_clk = pi->sys_info.bootup_sclk;
pi->sclk_dpm.soft_max_clk = pi->sys_info.bootup_sclk;
soft_min_clk = cz_get_sclk_level(adev,
pi->sclk_dpm.soft_min_clk,
PPSMC_MSG_SetSclkSoftMin);
soft_max_clk = cz_get_sclk_level(adev,
pi->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax);
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMin, soft_min_clk);
if (ret)
return -EINVAL;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMax, soft_max_clk);
if (ret)
return -EINVAL;
return 0;
}
/* TODO */
static int cz_disable_cgpg(struct amdgpu_device *adev)
{
return 0;
}
/* TODO */
static int cz_enable_cgpg(struct amdgpu_device *adev)
{
return 0;
}
/* TODO */
static int cz_program_pt_config_registers(struct amdgpu_device *adev)
{
return 0;
}
static void cz_do_enable_didt(struct amdgpu_device *adev, bool enable)
{
struct cz_power_info *pi = cz_get_pi(adev);
uint32_t reg = 0;
if (pi->caps_sq_ramping) {
reg = RREG32_DIDT(ixDIDT_SQ_CTRL0);
if (enable)
reg = REG_SET_FIELD(reg, DIDT_SQ_CTRL0, DIDT_CTRL_EN, 1);
else
reg = REG_SET_FIELD(reg, DIDT_SQ_CTRL0, DIDT_CTRL_EN, 0);
WREG32_DIDT(ixDIDT_SQ_CTRL0, reg);
}
if (pi->caps_db_ramping) {
reg = RREG32_DIDT(ixDIDT_DB_CTRL0);
if (enable)
reg = REG_SET_FIELD(reg, DIDT_DB_CTRL0, DIDT_CTRL_EN, 1);
else
reg = REG_SET_FIELD(reg, DIDT_DB_CTRL0, DIDT_CTRL_EN, 0);
WREG32_DIDT(ixDIDT_DB_CTRL0, reg);
}
if (pi->caps_td_ramping) {
reg = RREG32_DIDT(ixDIDT_TD_CTRL0);
if (enable)
reg = REG_SET_FIELD(reg, DIDT_TD_CTRL0, DIDT_CTRL_EN, 1);
else
reg = REG_SET_FIELD(reg, DIDT_TD_CTRL0, DIDT_CTRL_EN, 0);
WREG32_DIDT(ixDIDT_TD_CTRL0, reg);
}
if (pi->caps_tcp_ramping) {
reg = RREG32_DIDT(ixDIDT_TCP_CTRL0);
if (enable)
reg = REG_SET_FIELD(reg, DIDT_SQ_CTRL0, DIDT_CTRL_EN, 1);
else
reg = REG_SET_FIELD(reg, DIDT_SQ_CTRL0, DIDT_CTRL_EN, 0);
WREG32_DIDT(ixDIDT_TCP_CTRL0, reg);
}
}
static int cz_enable_didt(struct amdgpu_device *adev, bool enable)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret;
if (pi->caps_sq_ramping || pi->caps_db_ramping ||
pi->caps_td_ramping || pi->caps_tcp_ramping) {
if (adev->gfx.gfx_current_status != AMDGPU_GFX_SAFE_MODE) {
ret = cz_disable_cgpg(adev);
if (ret) {
DRM_ERROR("Pre Di/Dt disable cg/pg failed\n");
return -EINVAL;
}
adev->gfx.gfx_current_status = AMDGPU_GFX_SAFE_MODE;
}
ret = cz_program_pt_config_registers(adev);
if (ret) {
DRM_ERROR("Di/Dt config failed\n");
return -EINVAL;
}
cz_do_enable_didt(adev, enable);
if (adev->gfx.gfx_current_status == AMDGPU_GFX_SAFE_MODE) {
ret = cz_enable_cgpg(adev);
if (ret) {
DRM_ERROR("Post Di/Dt enable cg/pg failed\n");
return -EINVAL;
}
adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE;
}
}
return 0;
}
/* TODO */
static void cz_reset_acp_boot_level(struct amdgpu_device *adev)
{
}
static void cz_update_current_ps(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct cz_ps *ps = cz_get_ps(rps);
pi->current_ps = *ps;
pi->current_rps = *rps;
pi->current_rps.ps_priv = &pi->current_ps;
adev->pm.dpm.current_ps = &pi->current_rps;
}
static void cz_update_requested_ps(struct amdgpu_device *adev,
struct amdgpu_ps *rps)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct cz_ps *ps = cz_get_ps(rps);
pi->requested_ps = *ps;
pi->requested_rps = *rps;
pi->requested_rps.ps_priv = &pi->requested_ps;
adev->pm.dpm.requested_ps = &pi->requested_rps;
}
/* PP arbiter support needed TODO */
static void cz_apply_state_adjust_rules(struct amdgpu_device *adev,
struct amdgpu_ps *new_rps,
struct amdgpu_ps *old_rps)
{
struct cz_ps *ps = cz_get_ps(new_rps);
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_and_voltage_limits *limits =
&adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
/* 10kHz memory clock */
uint32_t mclk = 0;
ps->force_high = false;
ps->need_dfs_bypass = true;
pi->video_start = new_rps->dclk || new_rps->vclk ||
new_rps->evclk || new_rps->ecclk;
if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
pi->battery_state = true;
else
pi->battery_state = false;
if (pi->caps_stable_power_state)
mclk = limits->mclk;
if (mclk > pi->sys_info.nbp_memory_clock[CZ_NUM_NBPMEMORY_CLOCK - 1])
ps->force_high = true;
}
static int cz_dpm_enable(struct amdgpu_device *adev)
{
const char *chip_name;
int ret = 0;
/* renable will hang up SMU, so check first */
if (cz_check_for_dpm_enabled(adev))
return -EINVAL;
cz_program_voting_clients(adev);
switch (adev->asic_type) {
case CHIP_CARRIZO:
chip_name = "carrizo";
break;
case CHIP_STONEY:
chip_name = "stoney";
break;
default:
BUG();
}
ret = cz_start_dpm(adev);
if (ret) {
DRM_ERROR("%s DPM enable failed\n", chip_name);
return -EINVAL;
}
ret = cz_program_bootup_state(adev);
if (ret) {
DRM_ERROR("%s bootup state program failed\n", chip_name);
return -EINVAL;
}
ret = cz_enable_didt(adev, true);
if (ret) {
DRM_ERROR("%s enable di/dt failed\n", chip_name);
return -EINVAL;
}
cz_reset_acp_boot_level(adev);
cz_update_current_ps(adev, adev->pm.dpm.boot_ps);
return 0;
}
static int cz_dpm_hw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int ret = 0;
mutex_lock(&adev->pm.mutex);
/* smu init only needs to be called at startup, not resume.
* It should be in sw_init, but requires the fw info gathered
* in sw_init from other IP modules.
*/
ret = cz_smu_init(adev);
if (ret) {
DRM_ERROR("amdgpu: smc initialization failed\n");
mutex_unlock(&adev->pm.mutex);
return ret;
}
/* do the actual fw loading */
ret = cz_smu_start(adev);
if (ret) {
DRM_ERROR("amdgpu: smc start failed\n");
mutex_unlock(&adev->pm.mutex);
return ret;
}
if (!amdgpu_dpm) {
adev->pm.dpm_enabled = false;
mutex_unlock(&adev->pm.mutex);
return ret;
}
/* cz dpm setup asic */
cz_dpm_setup_asic(adev);
/* cz dpm enable */
ret = cz_dpm_enable(adev);
if (ret)
adev->pm.dpm_enabled = false;
else
adev->pm.dpm_enabled = true;
mutex_unlock(&adev->pm.mutex);
return 0;
}
static int cz_dpm_disable(struct amdgpu_device *adev)
{
int ret = 0;
if (!cz_check_for_dpm_enabled(adev))
return -EINVAL;
ret = cz_enable_didt(adev, false);
if (ret) {
DRM_ERROR("disable di/dt failed\n");
return -EINVAL;
}
/* powerup blocks */
cz_dpm_powergate_uvd(adev, false);
cz_dpm_powergate_vce(adev, false);
cz_clear_voting_clients(adev);
cz_stop_dpm(adev);
cz_update_current_ps(adev, adev->pm.dpm.boot_ps);
return 0;
}
static int cz_dpm_hw_fini(void *handle)
{
int ret = 0;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
mutex_lock(&adev->pm.mutex);
/* smu fini only needs to be called at teardown, not suspend.
* It should be in sw_fini, but we put it here for symmetry
* with smu init.
*/
cz_smu_fini(adev);
if (adev->pm.dpm_enabled) {
ret = cz_dpm_disable(adev);
adev->pm.dpm.current_ps =
adev->pm.dpm.requested_ps =
adev->pm.dpm.boot_ps;
}
adev->pm.dpm_enabled = false;
mutex_unlock(&adev->pm.mutex);
return ret;
}
static int cz_dpm_suspend(void *handle)
{
int ret = 0;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (adev->pm.dpm_enabled) {
mutex_lock(&adev->pm.mutex);
ret = cz_dpm_disable(adev);
adev->pm.dpm.current_ps =
adev->pm.dpm.requested_ps =
adev->pm.dpm.boot_ps;
mutex_unlock(&adev->pm.mutex);
}
return ret;
}
static int cz_dpm_resume(void *handle)
{
int ret = 0;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
mutex_lock(&adev->pm.mutex);
/* do the actual fw loading */
ret = cz_smu_start(adev);
if (ret) {
DRM_ERROR("amdgpu: smc start failed\n");
mutex_unlock(&adev->pm.mutex);
return ret;
}
if (!amdgpu_dpm) {
adev->pm.dpm_enabled = false;
mutex_unlock(&adev->pm.mutex);
return ret;
}
/* cz dpm setup asic */
cz_dpm_setup_asic(adev);
/* cz dpm enable */
ret = cz_dpm_enable(adev);
if (ret)
adev->pm.dpm_enabled = false;
else
adev->pm.dpm_enabled = true;
mutex_unlock(&adev->pm.mutex);
/* upon resume, re-compute the clocks */
if (adev->pm.dpm_enabled)
amdgpu_pm_compute_clocks(adev);
return 0;
}
static int cz_dpm_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int cz_dpm_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
static int cz_dpm_get_temperature(struct amdgpu_device *adev)
{
int actual_temp = 0;
uint32_t val = RREG32_SMC(ixTHM_TCON_CUR_TMP);
uint32_t temp = REG_GET_FIELD(val, THM_TCON_CUR_TMP, CUR_TEMP);
if (REG_GET_FIELD(val, THM_TCON_CUR_TMP, CUR_TEMP_RANGE_SEL))
actual_temp = 1000 * ((temp / 8) - 49);
else
actual_temp = 1000 * (temp / 8);
return actual_temp;
}
static int cz_dpm_pre_set_power_state(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_ps requested_ps = *adev->pm.dpm.requested_ps;
struct amdgpu_ps *new_ps = &requested_ps;
cz_update_requested_ps(adev, new_ps);
cz_apply_state_adjust_rules(adev, &pi->requested_rps,
&pi->current_rps);
return 0;
}
static int cz_dpm_update_sclk_limit(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_and_voltage_limits *limits =
&adev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
uint32_t clock, stable_ps_clock = 0;
clock = pi->sclk_dpm.soft_min_clk;
if (pi->caps_stable_power_state) {
stable_ps_clock = limits->sclk * 75 / 100;
if (clock < stable_ps_clock)
clock = stable_ps_clock;
}
if (clock != pi->sclk_dpm.soft_min_clk) {
pi->sclk_dpm.soft_min_clk = clock;
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMin,
cz_get_sclk_level(adev, clock,
PPSMC_MSG_SetSclkSoftMin));
}
if (pi->caps_stable_power_state &&
pi->sclk_dpm.soft_max_clk != clock) {
pi->sclk_dpm.soft_max_clk = clock;
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMax,
cz_get_sclk_level(adev, clock,
PPSMC_MSG_SetSclkSoftMax));
} else {
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMax,
cz_get_sclk_level(adev,
pi->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax));
}
return 0;
}
static int cz_dpm_set_deep_sleep_sclk_threshold(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
if (pi->caps_sclk_ds) {
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetMinDeepSleepSclk,
CZ_MIN_DEEP_SLEEP_SCLK);
}
return 0;
}
/* ?? without dal support, is this still needed in setpowerstate list*/
static int cz_dpm_set_watermark_threshold(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetWatermarkFrequency,
pi->sclk_dpm.soft_max_clk);
return 0;
}
static int cz_dpm_enable_nbdpm(struct amdgpu_device *adev)
{
int ret = 0;
struct cz_power_info *pi = cz_get_pi(adev);
/* also depend on dal NBPStateDisableRequired */
if (pi->nb_dpm_enabled_by_driver && !pi->nb_dpm_enabled) {
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_EnableAllSmuFeatures,
NB_DPM_MASK);
if (ret) {
DRM_ERROR("amdgpu: nb dpm enable failed\n");
return ret;
}
pi->nb_dpm_enabled = true;
}
return ret;
}
static void cz_dpm_nbdpm_lm_pstate_enable(struct amdgpu_device *adev,
bool enable)
{
if (enable)
cz_send_msg_to_smc(adev, PPSMC_MSG_EnableLowMemoryPstate);
else
cz_send_msg_to_smc(adev, PPSMC_MSG_DisableLowMemoryPstate);
}
static int cz_dpm_update_low_memory_pstate(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct cz_ps *ps = &pi->requested_ps;
if (pi->sys_info.nb_dpm_enable) {
if (ps->force_high)
cz_dpm_nbdpm_lm_pstate_enable(adev, false);
else
cz_dpm_nbdpm_lm_pstate_enable(adev, true);
}
return 0;
}
/* with dpm enabled */
static int cz_dpm_set_power_state(struct amdgpu_device *adev)
{
cz_dpm_update_sclk_limit(adev);
cz_dpm_set_deep_sleep_sclk_threshold(adev);
cz_dpm_set_watermark_threshold(adev);
cz_dpm_enable_nbdpm(adev);
cz_dpm_update_low_memory_pstate(adev);
return 0;
}
static void cz_dpm_post_set_power_state(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_ps *ps = &pi->requested_rps;
cz_update_current_ps(adev, ps);
}
static int cz_dpm_force_highest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->sclk_dpm.soft_min_clk != pi->sclk_dpm.soft_max_clk) {
pi->sclk_dpm.soft_min_clk =
pi->sclk_dpm.soft_max_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMin,
cz_get_sclk_level(adev,
pi->sclk_dpm.soft_min_clk,
PPSMC_MSG_SetSclkSoftMin));
if (ret)
return ret;
}
return ret;
}
static int cz_dpm_force_lowest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->sclk_dpm.soft_max_clk != pi->sclk_dpm.soft_min_clk) {
pi->sclk_dpm.soft_max_clk = pi->sclk_dpm.soft_min_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMax,
cz_get_sclk_level(adev,
pi->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax));
if (ret)
return ret;
}
return ret;
}
static uint32_t cz_dpm_get_max_sclk_level(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
if (!pi->max_sclk_level) {
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxSclkLevel);
pi->max_sclk_level = cz_get_argument(adev) + 1;
}
if (pi->max_sclk_level > CZ_MAX_HARDWARE_POWERLEVELS) {
DRM_ERROR("Invalid max sclk level!\n");
return -EINVAL;
}
return pi->max_sclk_level;
}
static int cz_dpm_unforce_dpm_levels(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_clock_voltage_dependency_table *dep_table =
&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
uint32_t level = 0;
int ret = 0;
pi->sclk_dpm.soft_min_clk = dep_table->entries[0].clk;
level = cz_dpm_get_max_sclk_level(adev) - 1;
if (level < dep_table->count)
pi->sclk_dpm.soft_max_clk = dep_table->entries[level].clk;
else
pi->sclk_dpm.soft_max_clk =
dep_table->entries[dep_table->count - 1].clk;
/* get min/max sclk soft value
* notify SMU to execute */
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMin,
cz_get_sclk_level(adev,
pi->sclk_dpm.soft_min_clk,
PPSMC_MSG_SetSclkSoftMin));
if (ret)
return ret;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetSclkSoftMax,
cz_get_sclk_level(adev,
pi->sclk_dpm.soft_max_clk,
PPSMC_MSG_SetSclkSoftMax));
if (ret)
return ret;
DRM_DEBUG("DPM unforce state min=%d, max=%d.\n",
pi->sclk_dpm.soft_min_clk,
pi->sclk_dpm.soft_max_clk);
return 0;
}
static int cz_dpm_uvd_force_highest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->uvd_dpm.soft_min_clk != pi->uvd_dpm.soft_max_clk) {
pi->uvd_dpm.soft_min_clk =
pi->uvd_dpm.soft_max_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetUvdSoftMin,
cz_get_uvd_level(adev,
pi->uvd_dpm.soft_min_clk,
PPSMC_MSG_SetUvdSoftMin));
if (ret)
return ret;
}
return ret;
}
static int cz_dpm_uvd_force_lowest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->uvd_dpm.soft_max_clk != pi->uvd_dpm.soft_min_clk) {
pi->uvd_dpm.soft_max_clk = pi->uvd_dpm.soft_min_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetUvdSoftMax,
cz_get_uvd_level(adev,
pi->uvd_dpm.soft_max_clk,
PPSMC_MSG_SetUvdSoftMax));
if (ret)
return ret;
}
return ret;
}
static uint32_t cz_dpm_get_max_uvd_level(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
if (!pi->max_uvd_level) {
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxUvdLevel);
pi->max_uvd_level = cz_get_argument(adev) + 1;
}
if (pi->max_uvd_level > CZ_MAX_HARDWARE_POWERLEVELS) {
DRM_ERROR("Invalid max uvd level!\n");
return -EINVAL;
}
return pi->max_uvd_level;
}
static int cz_dpm_unforce_uvd_dpm_levels(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_uvd_clock_voltage_dependency_table *dep_table =
&adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
uint32_t level = 0;
int ret = 0;
pi->uvd_dpm.soft_min_clk = dep_table->entries[0].vclk;
level = cz_dpm_get_max_uvd_level(adev) - 1;
if (level < dep_table->count)
pi->uvd_dpm.soft_max_clk = dep_table->entries[level].vclk;
else
pi->uvd_dpm.soft_max_clk =
dep_table->entries[dep_table->count - 1].vclk;
/* get min/max sclk soft value
* notify SMU to execute */
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetUvdSoftMin,
cz_get_uvd_level(adev,
pi->uvd_dpm.soft_min_clk,
PPSMC_MSG_SetUvdSoftMin));
if (ret)
return ret;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetUvdSoftMax,
cz_get_uvd_level(adev,
pi->uvd_dpm.soft_max_clk,
PPSMC_MSG_SetUvdSoftMax));
if (ret)
return ret;
DRM_DEBUG("DPM uvd unforce state min=%d, max=%d.\n",
pi->uvd_dpm.soft_min_clk,
pi->uvd_dpm.soft_max_clk);
return 0;
}
static int cz_dpm_vce_force_highest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->vce_dpm.soft_min_clk != pi->vce_dpm.soft_max_clk) {
pi->vce_dpm.soft_min_clk =
pi->vce_dpm.soft_max_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetEclkSoftMin,
cz_get_eclk_level(adev,
pi->vce_dpm.soft_min_clk,
PPSMC_MSG_SetEclkSoftMin));
if (ret)
return ret;
}
return ret;
}
static int cz_dpm_vce_force_lowest(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (pi->vce_dpm.soft_max_clk != pi->vce_dpm.soft_min_clk) {
pi->vce_dpm.soft_max_clk = pi->vce_dpm.soft_min_clk;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetEclkSoftMax,
cz_get_uvd_level(adev,
pi->vce_dpm.soft_max_clk,
PPSMC_MSG_SetEclkSoftMax));
if (ret)
return ret;
}
return ret;
}
static uint32_t cz_dpm_get_max_vce_level(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
if (!pi->max_vce_level) {
cz_send_msg_to_smc(adev, PPSMC_MSG_GetMaxEclkLevel);
pi->max_vce_level = cz_get_argument(adev) + 1;
}
if (pi->max_vce_level > CZ_MAX_HARDWARE_POWERLEVELS) {
DRM_ERROR("Invalid max vce level!\n");
return -EINVAL;
}
return pi->max_vce_level;
}
static int cz_dpm_unforce_vce_dpm_levels(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_vce_clock_voltage_dependency_table *dep_table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
uint32_t level = 0;
int ret = 0;
pi->vce_dpm.soft_min_clk = dep_table->entries[0].ecclk;
level = cz_dpm_get_max_vce_level(adev) - 1;
if (level < dep_table->count)
pi->vce_dpm.soft_max_clk = dep_table->entries[level].ecclk;
else
pi->vce_dpm.soft_max_clk =
dep_table->entries[dep_table->count - 1].ecclk;
/* get min/max sclk soft value
* notify SMU to execute */
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetEclkSoftMin,
cz_get_eclk_level(adev,
pi->vce_dpm.soft_min_clk,
PPSMC_MSG_SetEclkSoftMin));
if (ret)
return ret;
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetEclkSoftMax,
cz_get_eclk_level(adev,
pi->vce_dpm.soft_max_clk,
PPSMC_MSG_SetEclkSoftMax));
if (ret)
return ret;
DRM_DEBUG("DPM vce unforce state min=%d, max=%d.\n",
pi->vce_dpm.soft_min_clk,
pi->vce_dpm.soft_max_clk);
return 0;
}
static int cz_dpm_force_dpm_level(struct amdgpu_device *adev,
enum amdgpu_dpm_forced_level level)
{
int ret = 0;
switch (level) {
case AMDGPU_DPM_FORCED_LEVEL_HIGH:
/* sclk */
ret = cz_dpm_unforce_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_force_highest(adev);
if (ret)
return ret;
/* uvd */
ret = cz_dpm_unforce_uvd_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_uvd_force_highest(adev);
if (ret)
return ret;
/* vce */
ret = cz_dpm_unforce_vce_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_vce_force_highest(adev);
if (ret)
return ret;
break;
case AMDGPU_DPM_FORCED_LEVEL_LOW:
/* sclk */
ret = cz_dpm_unforce_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_force_lowest(adev);
if (ret)
return ret;
/* uvd */
ret = cz_dpm_unforce_uvd_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_uvd_force_lowest(adev);
if (ret)
return ret;
/* vce */
ret = cz_dpm_unforce_vce_dpm_levels(adev);
if (ret)
return ret;
ret = cz_dpm_vce_force_lowest(adev);
if (ret)
return ret;
break;
case AMDGPU_DPM_FORCED_LEVEL_AUTO:
/* sclk */
ret = cz_dpm_unforce_dpm_levels(adev);
if (ret)
return ret;
/* uvd */
ret = cz_dpm_unforce_uvd_dpm_levels(adev);
if (ret)
return ret;
/* vce */
ret = cz_dpm_unforce_vce_dpm_levels(adev);
if (ret)
return ret;
break;
default:
break;
}
adev->pm.dpm.forced_level = level;
return ret;
}
/* fix me, display configuration change lists here
* mostly dal related*/
static void cz_dpm_display_configuration_changed(struct amdgpu_device *adev)
{
}
static uint32_t cz_dpm_get_sclk(struct amdgpu_device *adev, bool low)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct cz_ps *requested_state = cz_get_ps(&pi->requested_rps);
if (low)
return requested_state->levels[0].sclk;
else
return requested_state->levels[requested_state->num_levels - 1].sclk;
}
static uint32_t cz_dpm_get_mclk(struct amdgpu_device *adev, bool low)
{
struct cz_power_info *pi = cz_get_pi(adev);
return pi->sys_info.bootup_uma_clk;
}
static int cz_enable_uvd_dpm(struct amdgpu_device *adev, bool enable)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (enable && pi->caps_uvd_dpm ) {
pi->dpm_flags |= DPMFlags_UVD_Enabled;
DRM_DEBUG("UVD DPM Enabled.\n");
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_EnableAllSmuFeatures, UVD_DPM_MASK);
} else {
pi->dpm_flags &= ~DPMFlags_UVD_Enabled;
DRM_DEBUG("UVD DPM Stopped\n");
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_DisableAllSmuFeatures, UVD_DPM_MASK);
}
return ret;
}
static int cz_update_uvd_dpm(struct amdgpu_device *adev, bool gate)
{
return cz_enable_uvd_dpm(adev, !gate);
}
static void cz_dpm_powergate_uvd(struct amdgpu_device *adev, bool gate)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret;
if (pi->uvd_power_gated == gate)
return;
pi->uvd_power_gated = gate;
if (gate) {
if (pi->caps_uvd_pg) {
ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_CG_STATE_GATE);
if (ret) {
DRM_ERROR("UVD DPM Power Gating failed to set clockgating state\n");
return;
}
/* shutdown the UVD block */
ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_PG_STATE_GATE);
if (ret) {
DRM_ERROR("UVD DPM Power Gating failed to set powergating state\n");
return;
}
}
cz_update_uvd_dpm(adev, gate);
if (pi->caps_uvd_pg) {
/* power off the UVD block */
ret = cz_send_msg_to_smc(adev, PPSMC_MSG_UVDPowerOFF);
if (ret) {
DRM_ERROR("UVD DPM Power Gating failed to send SMU PowerOFF message\n");
return;
}
}
} else {
if (pi->caps_uvd_pg) {
/* power on the UVD block */
if (pi->uvd_dynamic_pg)
ret = cz_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_UVDPowerON, 1);
else
ret = cz_send_msg_to_smc_with_parameter(adev, PPSMC_MSG_UVDPowerON, 0);
if (ret) {
DRM_ERROR("UVD DPM Power Gating Failed to send SMU PowerON message\n");
return;
}
/* re-init the UVD block */
ret = amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_PG_STATE_UNGATE);
if (ret) {
DRM_ERROR("UVD DPM Power Gating Failed to set powergating state\n");
return;
}
ret = amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_UVD,
AMD_CG_STATE_UNGATE);
if (ret) {
DRM_ERROR("UVD DPM Power Gating Failed to set clockgating state\n");
return;
}
}
cz_update_uvd_dpm(adev, gate);
}
}
static int cz_enable_vce_dpm(struct amdgpu_device *adev, bool enable)
{
struct cz_power_info *pi = cz_get_pi(adev);
int ret = 0;
if (enable && pi->caps_vce_dpm) {
pi->dpm_flags |= DPMFlags_VCE_Enabled;
DRM_DEBUG("VCE DPM Enabled.\n");
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_EnableAllSmuFeatures, VCE_DPM_MASK);
} else {
pi->dpm_flags &= ~DPMFlags_VCE_Enabled;
DRM_DEBUG("VCE DPM Stopped\n");
ret = cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_DisableAllSmuFeatures, VCE_DPM_MASK);
}
return ret;
}
static int cz_update_vce_dpm(struct amdgpu_device *adev)
{
struct cz_power_info *pi = cz_get_pi(adev);
struct amdgpu_vce_clock_voltage_dependency_table *table =
&adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
/* Stable Pstate is enabled and we need to set the VCE DPM to highest level */
if (pi->caps_stable_power_state) {
pi->vce_dpm.hard_min_clk = table->entries[table->count-1].ecclk;
} else { /* non-stable p-state cases. without vce.Arbiter.EcclkHardMin */
/* leave it as set by user */
/*pi->vce_dpm.hard_min_clk = table->entries[0].ecclk;*/
}
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetEclkHardMin,
cz_get_eclk_level(adev,
pi->vce_dpm.hard_min_clk,
PPSMC_MSG_SetEclkHardMin));
return 0;
}
static void cz_dpm_powergate_vce(struct amdgpu_device *adev, bool gate)
{
struct cz_power_info *pi = cz_get_pi(adev);
if (pi->caps_vce_pg) {
if (pi->vce_power_gated != gate) {
if (gate) {
/* disable clockgating so we can properly shut down the block */
amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_UNGATE);
/* shutdown the VCE block */
amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_GATE);
cz_enable_vce_dpm(adev, false);
cz_send_msg_to_smc(adev, PPSMC_MSG_VCEPowerOFF);
pi->vce_power_gated = true;
} else {
cz_send_msg_to_smc(adev, PPSMC_MSG_VCEPowerON);
pi->vce_power_gated = false;
/* re-init the VCE block */
amdgpu_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_UNGATE);
/* enable clockgating. hw will dynamically gate/ungate clocks on the fly */
amdgpu_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_GATE);
cz_update_vce_dpm(adev);
cz_enable_vce_dpm(adev, true);
}
} else {
if (! pi->vce_power_gated) {
cz_update_vce_dpm(adev);
}
}
} else { /*pi->caps_vce_pg*/
pi->vce_power_gated = gate;
cz_update_vce_dpm(adev);
cz_enable_vce_dpm(adev, !gate);
}
}
static int cz_check_state_equal(struct amdgpu_device *adev,
struct amdgpu_ps *cps,
struct amdgpu_ps *rps,
bool *equal)
{
if (equal == NULL)
return -EINVAL;
*equal = false;
return 0;
}
const struct amd_ip_funcs cz_dpm_ip_funcs = {
.name = "cz_dpm",
.early_init = cz_dpm_early_init,
.late_init = cz_dpm_late_init,
.sw_init = cz_dpm_sw_init,
.sw_fini = cz_dpm_sw_fini,
.hw_init = cz_dpm_hw_init,
.hw_fini = cz_dpm_hw_fini,
.suspend = cz_dpm_suspend,
.resume = cz_dpm_resume,
.is_idle = NULL,
.wait_for_idle = NULL,
.soft_reset = NULL,
.set_clockgating_state = cz_dpm_set_clockgating_state,
.set_powergating_state = cz_dpm_set_powergating_state,
};
static const struct amdgpu_dpm_funcs cz_dpm_funcs = {
.get_temperature = cz_dpm_get_temperature,
.pre_set_power_state = cz_dpm_pre_set_power_state,
.set_power_state = cz_dpm_set_power_state,
.post_set_power_state = cz_dpm_post_set_power_state,
.display_configuration_changed = cz_dpm_display_configuration_changed,
.get_sclk = cz_dpm_get_sclk,
.get_mclk = cz_dpm_get_mclk,
.print_power_state = cz_dpm_print_power_state,
.debugfs_print_current_performance_level =
cz_dpm_debugfs_print_current_performance_level,
.force_performance_level = cz_dpm_force_dpm_level,
.vblank_too_short = NULL,
.powergate_uvd = cz_dpm_powergate_uvd,
.powergate_vce = cz_dpm_powergate_vce,
.check_state_equal = cz_check_state_equal,
};
static void cz_dpm_set_funcs(struct amdgpu_device *adev)
{
if (NULL == adev->pm.funcs)
adev->pm.funcs = &cz_dpm_funcs;
}
const struct amdgpu_ip_block_version cz_dpm_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_SMC,
.major = 8,
.minor = 0,
.rev = 0,
.funcs = &cz_dpm_ip_funcs,
};
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef __CZ_DPM_H__
#define __CZ_DPM_H__
#include "smu8_fusion.h"
#define CZ_AT_DFLT 30
#define CZ_NUM_NBPSTATES 4
#define CZ_NUM_NBPMEMORY_CLOCK 2
#define CZ_MAX_HARDWARE_POWERLEVELS 8
#define CZ_MAX_DISPLAY_CLOCK_LEVEL 8
#define CZ_MAX_DISPLAYPHY_IDS 10
#define PPCZ_VOTINGRIGHTSCLIENTS_DFLT0 0x3FFFC102
#define SMC_RAM_END 0x40000
#define DPMFlags_SCLK_Enabled 0x00000001
#define DPMFlags_UVD_Enabled 0x00000002
#define DPMFlags_VCE_Enabled 0x00000004
#define DPMFlags_ACP_Enabled 0x00000008
#define DPMFlags_ForceHighestValid 0x40000000
#define DPMFlags_Debug 0x80000000
/* Do not change the following, it is also defined in SMU8.h */
#define SMU_EnabledFeatureScoreboard_AcpDpmOn 0x00000001
#define SMU_EnabledFeatureScoreboard_SclkDpmOn 0x00200000
#define SMU_EnabledFeatureScoreboard_UvdDpmOn 0x00800000
#define SMU_EnabledFeatureScoreboard_VceDpmOn 0x01000000
/* temporary solution to SetMinDeepSleepSclk
* should indicate by display adaptor
* 10k Hz unit*/
#define CZ_MIN_DEEP_SLEEP_SCLK 800
enum cz_pt_config_reg_type {
CZ_CONFIGREG_MMR = 0,
CZ_CONFIGREG_SMC_IND,
CZ_CONFIGREG_DIDT_IND,
CZ_CONFIGREG_CACHE,
CZ_CONFIGREG_MAX
};
struct cz_pt_config_reg {
uint32_t offset;
uint32_t mask;
uint32_t shift;
uint32_t value;
enum cz_pt_config_reg_type type;
};
struct cz_dpm_entry {
uint32_t soft_min_clk;
uint32_t hard_min_clk;
uint32_t soft_max_clk;
uint32_t hard_max_clk;
};
struct cz_pl {
uint32_t sclk;
uint8_t vddc_index;
uint8_t ds_divider_index;
uint8_t ss_divider_index;
uint8_t allow_gnb_slow;
uint8_t force_nbp_state;
uint8_t display_wm;
uint8_t vce_wm;
};
struct cz_ps {
struct cz_pl levels[CZ_MAX_HARDWARE_POWERLEVELS];
uint32_t num_levels;
bool need_dfs_bypass;
uint8_t dpm0_pg_nb_ps_lo;
uint8_t dpm0_pg_nb_ps_hi;
uint8_t dpmx_nb_ps_lo;
uint8_t dpmx_nb_ps_hi;
bool force_high;
};
struct cz_displayphy_entry {
uint8_t phy_present;
uint8_t active_lane_mapping;
uint8_t display_conf_type;
uint8_t num_active_lanes;
};
struct cz_displayphy_info {
bool phy_access_initialized;
struct cz_displayphy_entry entries[CZ_MAX_DISPLAYPHY_IDS];
};
struct cz_sys_info {
uint32_t bootup_uma_clk;
uint32_t bootup_sclk;
uint32_t dentist_vco_freq;
uint32_t nb_dpm_enable;
uint32_t nbp_memory_clock[CZ_NUM_NBPMEMORY_CLOCK];
uint32_t nbp_n_clock[CZ_NUM_NBPSTATES];
uint8_t nbp_voltage_index[CZ_NUM_NBPSTATES];
uint32_t display_clock[CZ_MAX_DISPLAY_CLOCK_LEVEL];
uint16_t bootup_nb_voltage_index;
uint8_t htc_tmp_lmt;
uint8_t htc_hyst_lmt;
uint32_t uma_channel_number;
};
struct cz_power_info {
uint32_t active_target[CZ_MAX_HARDWARE_POWERLEVELS];
struct cz_sys_info sys_info;
struct cz_pl boot_pl;
bool disable_nb_ps3_in_battery;
bool battery_state;
uint32_t lowest_valid;
uint32_t highest_valid;
uint16_t high_voltage_threshold;
/* smc offsets */
uint32_t sram_end;
uint32_t dpm_table_start;
uint32_t soft_regs_start;
/* dpm SMU tables */
uint8_t uvd_level_count;
uint8_t vce_level_count;
uint8_t acp_level_count;
uint32_t fps_high_threshold;
uint32_t fps_low_threshold;
/* dpm table */
uint32_t dpm_flags;
struct cz_dpm_entry sclk_dpm;
struct cz_dpm_entry uvd_dpm;
struct cz_dpm_entry vce_dpm;
struct cz_dpm_entry acp_dpm;
uint8_t uvd_boot_level;
uint8_t uvd_interval;
uint8_t vce_boot_level;
uint8_t vce_interval;
uint8_t acp_boot_level;
uint8_t acp_interval;
uint8_t graphics_boot_level;
uint8_t graphics_interval;
uint8_t graphics_therm_throttle_enable;
uint8_t graphics_voltage_change_enable;
uint8_t graphics_clk_slow_enable;
uint8_t graphics_clk_slow_divider;
uint32_t low_sclk_interrupt_threshold;
bool uvd_power_gated;
bool vce_power_gated;
bool acp_power_gated;
uint32_t active_process_mask;
uint32_t mgcg_cgtt_local0;
uint32_t mgcg_cgtt_local1;
uint32_t clock_slow_down_step;
uint32_t skip_clock_slow_down;
bool enable_nb_ps_policy;
uint32_t voting_clients;
uint32_t voltage_drop_threshold;
uint32_t gfx_pg_threshold;
uint32_t max_sclk_level;
uint32_t max_uvd_level;
uint32_t max_vce_level;
/* flags */
bool didt_enabled;
bool video_start;
bool cac_enabled;
bool bapm_enabled;
bool nb_dpm_enabled_by_driver;
bool nb_dpm_enabled;
bool auto_thermal_throttling_enabled;
bool dpm_enabled;
bool need_pptable_upload;
/* caps */
bool caps_cac;
bool caps_power_containment;
bool caps_sq_ramping;
bool caps_db_ramping;
bool caps_td_ramping;
bool caps_tcp_ramping;
bool caps_sclk_throttle_low_notification;
bool caps_fps;
bool caps_uvd_dpm;
bool caps_uvd_pg;
bool caps_vce_dpm;
bool caps_vce_pg;
bool caps_acp_dpm;
bool caps_acp_pg;
bool caps_stable_power_state;
bool caps_enable_dfs_bypass;
bool caps_sclk_ds;
bool caps_voltage_island;
/* power state */
struct amdgpu_ps current_rps;
struct cz_ps current_ps;
struct amdgpu_ps requested_rps;
struct cz_ps requested_ps;
bool uvd_power_down;
bool vce_power_down;
bool acp_power_down;
bool uvd_dynamic_pg;
};
/* cz_smc.c */
uint32_t cz_get_argument(struct amdgpu_device *adev);
int cz_send_msg_to_smc(struct amdgpu_device *adev, uint16_t msg);
int cz_send_msg_to_smc_with_parameter(struct amdgpu_device *adev,
uint16_t msg, uint32_t parameter);
int cz_read_smc_sram_dword(struct amdgpu_device *adev,
uint32_t smc_address, uint32_t *value, uint32_t limit);
int cz_smu_upload_pptable(struct amdgpu_device *adev);
int cz_smu_download_pptable(struct amdgpu_device *adev, void **table);
#endif
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include "drmP.h"
#include "amdgpu.h"
#include "smu8.h"
#include "smu8_fusion.h"
#include "cz_ppsmc.h"
#include "cz_smumgr.h"
#include "smu_ucode_xfer_cz.h"
#include "amdgpu_ucode.h"
#include "cz_dpm.h"
#include "vi_dpm.h"
#include "smu/smu_8_0_d.h"
#include "smu/smu_8_0_sh_mask.h"
#include "gca/gfx_8_0_d.h"
#include "gca/gfx_8_0_sh_mask.h"
uint32_t cz_get_argument(struct amdgpu_device *adev)
{
return RREG32(mmSMU_MP1_SRBM2P_ARG_0);
}
static struct cz_smu_private_data *cz_smu_get_priv(struct amdgpu_device *adev)
{
struct cz_smu_private_data *priv =
(struct cz_smu_private_data *)(adev->smu.priv);
return priv;
}
static int cz_send_msg_to_smc_async(struct amdgpu_device *adev, u16 msg)
{
int i;
u32 content = 0, tmp;
for (i = 0; i < adev->usec_timeout; i++) {
tmp = REG_GET_FIELD(RREG32(mmSMU_MP1_SRBM2P_RESP_0),
SMU_MP1_SRBM2P_RESP_0, CONTENT);
if (content != tmp)
break;
udelay(1);
}
/* timeout means wrong logic*/
if (i == adev->usec_timeout)
return -EINVAL;
WREG32(mmSMU_MP1_SRBM2P_RESP_0, 0);
WREG32(mmSMU_MP1_SRBM2P_MSG_0, msg);
return 0;
}
int cz_send_msg_to_smc(struct amdgpu_device *adev, u16 msg)
{
int i;
u32 content = 0, tmp = 0;
if (cz_send_msg_to_smc_async(adev, msg))
return -EINVAL;
for (i = 0; i < adev->usec_timeout; i++) {
tmp = REG_GET_FIELD(RREG32(mmSMU_MP1_SRBM2P_RESP_0),
SMU_MP1_SRBM2P_RESP_0, CONTENT);
if (content != tmp)
break;
udelay(1);
}
/* timeout means wrong logic*/
if (i == adev->usec_timeout)
return -EINVAL;
if (PPSMC_Result_OK != tmp) {
dev_err(adev->dev, "SMC Failed to send Message.\n");
return -EINVAL;
}
return 0;
}
int cz_send_msg_to_smc_with_parameter(struct amdgpu_device *adev,
u16 msg, u32 parameter)
{
WREG32(mmSMU_MP1_SRBM2P_ARG_0, parameter);
return cz_send_msg_to_smc(adev, msg);
}
static int cz_set_smc_sram_address(struct amdgpu_device *adev,
u32 smc_address, u32 limit)
{
if (smc_address & 3)
return -EINVAL;
if ((smc_address + 3) > limit)
return -EINVAL;
WREG32(mmMP0PUB_IND_INDEX_0, SMN_MP1_SRAM_START_ADDR + smc_address);
return 0;
}
int cz_read_smc_sram_dword(struct amdgpu_device *adev, u32 smc_address,
u32 *value, u32 limit)
{
int ret;
ret = cz_set_smc_sram_address(adev, smc_address, limit);
if (ret)
return ret;
*value = RREG32(mmMP0PUB_IND_DATA_0);
return 0;
}
static int cz_write_smc_sram_dword(struct amdgpu_device *adev, u32 smc_address,
u32 value, u32 limit)
{
int ret;
ret = cz_set_smc_sram_address(adev, smc_address, limit);
if (ret)
return ret;
WREG32(mmMP0PUB_IND_DATA_0, value);
return 0;
}
static int cz_smu_request_load_fw(struct amdgpu_device *adev)
{
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
uint32_t smc_addr = SMU8_FIRMWARE_HEADER_LOCATION +
offsetof(struct SMU8_Firmware_Header, UcodeLoadStatus);
cz_write_smc_sram_dword(adev, smc_addr, 0, smc_addr + 4);
/*prepare toc buffers*/
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_DriverDramAddrHi,
priv->toc_buffer.mc_addr_high);
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_DriverDramAddrLo,
priv->toc_buffer.mc_addr_low);
cz_send_msg_to_smc(adev, PPSMC_MSG_InitJobs);
/*execute jobs*/
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_ExecuteJob,
priv->toc_entry_aram);
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_ExecuteJob,
priv->toc_entry_power_profiling_index);
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_ExecuteJob,
priv->toc_entry_initialize_index);
return 0;
}
/*
*Check if the FW has been loaded, SMU will not return if loading
*has not finished.
*/
static int cz_smu_check_fw_load_finish(struct amdgpu_device *adev,
uint32_t fw_mask)
{
int i;
uint32_t index = SMN_MP1_SRAM_START_ADDR +
SMU8_FIRMWARE_HEADER_LOCATION +
offsetof(struct SMU8_Firmware_Header, UcodeLoadStatus);
WREG32(mmMP0PUB_IND_INDEX, index);
for (i = 0; i < adev->usec_timeout; i++) {
if (fw_mask == (RREG32(mmMP0PUB_IND_DATA) & fw_mask))
break;
udelay(1);
}
if (i >= adev->usec_timeout) {
dev_err(adev->dev,
"SMU check loaded firmware failed, expecting 0x%x, getting 0x%x",
fw_mask, RREG32(mmMP0PUB_IND_DATA));
return -EINVAL;
}
return 0;
}
/*
* interfaces for different ip blocks to check firmware loading status
* 0 for success otherwise failed
*/
static int cz_smu_check_finished(struct amdgpu_device *adev,
enum AMDGPU_UCODE_ID id)
{
switch (id) {
case AMDGPU_UCODE_ID_SDMA0:
if (adev->smu.fw_flags & AMDGPU_SDMA0_UCODE_LOADED)
return 0;
break;
case AMDGPU_UCODE_ID_SDMA1:
if (adev->smu.fw_flags & AMDGPU_SDMA1_UCODE_LOADED)
return 0;
break;
case AMDGPU_UCODE_ID_CP_CE:
if (adev->smu.fw_flags & AMDGPU_CPCE_UCODE_LOADED)
return 0;
break;
case AMDGPU_UCODE_ID_CP_PFP:
if (adev->smu.fw_flags & AMDGPU_CPPFP_UCODE_LOADED)
return 0;
case AMDGPU_UCODE_ID_CP_ME:
if (adev->smu.fw_flags & AMDGPU_CPME_UCODE_LOADED)
return 0;
break;
case AMDGPU_UCODE_ID_CP_MEC1:
if (adev->smu.fw_flags & AMDGPU_CPMEC1_UCODE_LOADED)
return 0;
break;
case AMDGPU_UCODE_ID_CP_MEC2:
if (adev->smu.fw_flags & AMDGPU_CPMEC2_UCODE_LOADED)
return 0;
break;
case AMDGPU_UCODE_ID_RLC_G:
if (adev->smu.fw_flags & AMDGPU_CPRLC_UCODE_LOADED)
return 0;
break;
case AMDGPU_UCODE_ID_MAXIMUM:
default:
break;
}
return 1;
}
static int cz_load_mec_firmware(struct amdgpu_device *adev)
{
struct amdgpu_firmware_info *ucode =
&adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC1];
uint32_t reg_data;
uint32_t tmp;
if (ucode->fw == NULL)
return -EINVAL;
/* Disable MEC parsing/prefetching */
tmp = RREG32(mmCP_MEC_CNTL);
tmp = REG_SET_FIELD(tmp, CP_MEC_CNTL, MEC_ME1_HALT, 1);
tmp = REG_SET_FIELD(tmp, CP_MEC_CNTL, MEC_ME2_HALT, 1);
WREG32(mmCP_MEC_CNTL, tmp);
tmp = RREG32(mmCP_CPC_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, ATC, 0);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, MTYPE, 1);
WREG32(mmCP_CPC_IC_BASE_CNTL, tmp);
reg_data = lower_32_bits(ucode->mc_addr) &
REG_FIELD_MASK(CP_CPC_IC_BASE_LO, IC_BASE_LO);
WREG32(mmCP_CPC_IC_BASE_LO, reg_data);
reg_data = upper_32_bits(ucode->mc_addr) &
REG_FIELD_MASK(CP_CPC_IC_BASE_HI, IC_BASE_HI);
WREG32(mmCP_CPC_IC_BASE_HI, reg_data);
return 0;
}
int cz_smu_start(struct amdgpu_device *adev)
{
int ret = 0;
uint32_t fw_to_check = UCODE_ID_RLC_G_MASK |
UCODE_ID_SDMA0_MASK |
UCODE_ID_SDMA1_MASK |
UCODE_ID_CP_CE_MASK |
UCODE_ID_CP_ME_MASK |
UCODE_ID_CP_PFP_MASK |
UCODE_ID_CP_MEC_JT1_MASK |
UCODE_ID_CP_MEC_JT2_MASK;
if (adev->asic_type == CHIP_STONEY)
fw_to_check &= ~(UCODE_ID_SDMA1_MASK | UCODE_ID_CP_MEC_JT2_MASK);
cz_smu_request_load_fw(adev);
ret = cz_smu_check_fw_load_finish(adev, fw_to_check);
if (ret)
return ret;
/* manually load MEC firmware for CZ */
if (adev->asic_type == CHIP_CARRIZO || adev->asic_type == CHIP_STONEY) {
ret = cz_load_mec_firmware(adev);
if (ret) {
dev_err(adev->dev, "(%d) Mec Firmware load failed\n", ret);
return ret;
}
}
/* setup fw load flag */
adev->smu.fw_flags = AMDGPU_SDMA0_UCODE_LOADED |
AMDGPU_SDMA1_UCODE_LOADED |
AMDGPU_CPCE_UCODE_LOADED |
AMDGPU_CPPFP_UCODE_LOADED |
AMDGPU_CPME_UCODE_LOADED |
AMDGPU_CPMEC1_UCODE_LOADED |
AMDGPU_CPMEC2_UCODE_LOADED |
AMDGPU_CPRLC_UCODE_LOADED;
if (adev->asic_type == CHIP_STONEY)
adev->smu.fw_flags &= ~(AMDGPU_SDMA1_UCODE_LOADED | AMDGPU_CPMEC2_UCODE_LOADED);
return ret;
}
static uint32_t cz_convert_fw_type(uint32_t fw_type)
{
enum AMDGPU_UCODE_ID result = AMDGPU_UCODE_ID_MAXIMUM;
switch (fw_type) {
case UCODE_ID_SDMA0:
result = AMDGPU_UCODE_ID_SDMA0;
break;
case UCODE_ID_SDMA1:
result = AMDGPU_UCODE_ID_SDMA1;
break;
case UCODE_ID_CP_CE:
result = AMDGPU_UCODE_ID_CP_CE;
break;
case UCODE_ID_CP_PFP:
result = AMDGPU_UCODE_ID_CP_PFP;
break;
case UCODE_ID_CP_ME:
result = AMDGPU_UCODE_ID_CP_ME;
break;
case UCODE_ID_CP_MEC_JT1:
case UCODE_ID_CP_MEC_JT2:
result = AMDGPU_UCODE_ID_CP_MEC1;
break;
case UCODE_ID_RLC_G:
result = AMDGPU_UCODE_ID_RLC_G;
break;
default:
DRM_ERROR("UCode type is out of range!");
}
return result;
}
static uint8_t cz_smu_translate_firmware_enum_to_arg(
enum cz_scratch_entry firmware_enum)
{
uint8_t ret = 0;
switch (firmware_enum) {
case CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0:
ret = UCODE_ID_SDMA0;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_SDMA1:
ret = UCODE_ID_SDMA1;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE:
ret = UCODE_ID_CP_CE;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP:
ret = UCODE_ID_CP_PFP;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME:
ret = UCODE_ID_CP_ME;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1:
ret = UCODE_ID_CP_MEC_JT1;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2:
ret = UCODE_ID_CP_MEC_JT2;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_GMCON_RENG:
ret = UCODE_ID_GMCON_RENG;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G:
ret = UCODE_ID_RLC_G;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH:
ret = UCODE_ID_RLC_SCRATCH;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM:
ret = UCODE_ID_RLC_SRM_ARAM;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM:
ret = UCODE_ID_RLC_SRM_DRAM;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_DMCU_ERAM:
ret = UCODE_ID_DMCU_ERAM;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_DMCU_IRAM:
ret = UCODE_ID_DMCU_IRAM;
break;
case CZ_SCRATCH_ENTRY_UCODE_ID_POWER_PROFILING:
ret = TASK_ARG_INIT_MM_PWR_LOG;
break;
case CZ_SCRATCH_ENTRY_DATA_ID_SDMA_HALT:
case CZ_SCRATCH_ENTRY_DATA_ID_SYS_CLOCKGATING:
case CZ_SCRATCH_ENTRY_DATA_ID_SDMA_RING_REGS:
case CZ_SCRATCH_ENTRY_DATA_ID_NONGFX_REINIT:
case CZ_SCRATCH_ENTRY_DATA_ID_SDMA_START:
case CZ_SCRATCH_ENTRY_DATA_ID_IH_REGISTERS:
ret = TASK_ARG_REG_MMIO;
break;
case CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE:
ret = TASK_ARG_INIT_CLK_TABLE;
break;
}
return ret;
}
static int cz_smu_populate_single_firmware_entry(struct amdgpu_device *adev,
enum cz_scratch_entry firmware_enum,
struct cz_buffer_entry *entry)
{
uint64_t gpu_addr;
uint32_t data_size;
uint8_t ucode_id = cz_smu_translate_firmware_enum_to_arg(firmware_enum);
enum AMDGPU_UCODE_ID id = cz_convert_fw_type(ucode_id);
struct amdgpu_firmware_info *ucode = &adev->firmware.ucode[id];
const struct gfx_firmware_header_v1_0 *header;
if (ucode->fw == NULL)
return -EINVAL;
gpu_addr = ucode->mc_addr;
header = (const struct gfx_firmware_header_v1_0 *)ucode->fw->data;
data_size = le32_to_cpu(header->header.ucode_size_bytes);
if ((firmware_enum == CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1) ||
(firmware_enum == CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2)) {
gpu_addr += le32_to_cpu(header->jt_offset) << 2;
data_size = le32_to_cpu(header->jt_size) << 2;
}
entry->mc_addr_low = lower_32_bits(gpu_addr);
entry->mc_addr_high = upper_32_bits(gpu_addr);
entry->data_size = data_size;
entry->firmware_ID = firmware_enum;
return 0;
}
static int cz_smu_populate_single_scratch_entry(struct amdgpu_device *adev,
enum cz_scratch_entry scratch_type,
uint32_t size_in_byte,
struct cz_buffer_entry *entry)
{
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
uint64_t mc_addr = (((uint64_t) priv->smu_buffer.mc_addr_high) << 32) |
priv->smu_buffer.mc_addr_low;
mc_addr += size_in_byte;
priv->smu_buffer_used_bytes += size_in_byte;
entry->data_size = size_in_byte;
entry->kaddr = priv->smu_buffer.kaddr + priv->smu_buffer_used_bytes;
entry->mc_addr_low = lower_32_bits(mc_addr);
entry->mc_addr_high = upper_32_bits(mc_addr);
entry->firmware_ID = scratch_type;
return 0;
}
static int cz_smu_populate_single_ucode_load_task(struct amdgpu_device *adev,
enum cz_scratch_entry firmware_enum,
bool is_last)
{
uint8_t i;
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
struct TOC *toc = (struct TOC *)priv->toc_buffer.kaddr;
struct SMU_Task *task = &toc->tasks[priv->toc_entry_used_count++];
task->type = TASK_TYPE_UCODE_LOAD;
task->arg = cz_smu_translate_firmware_enum_to_arg(firmware_enum);
task->next = is_last ? END_OF_TASK_LIST : priv->toc_entry_used_count;
for (i = 0; i < priv->driver_buffer_length; i++)
if (priv->driver_buffer[i].firmware_ID == firmware_enum)
break;
if (i >= priv->driver_buffer_length) {
dev_err(adev->dev, "Invalid Firmware Type\n");
return -EINVAL;
}
task->addr.low = priv->driver_buffer[i].mc_addr_low;
task->addr.high = priv->driver_buffer[i].mc_addr_high;
task->size_bytes = priv->driver_buffer[i].data_size;
return 0;
}
static int cz_smu_populate_single_scratch_task(struct amdgpu_device *adev,
enum cz_scratch_entry firmware_enum,
uint8_t type, bool is_last)
{
uint8_t i;
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
struct TOC *toc = (struct TOC *)priv->toc_buffer.kaddr;
struct SMU_Task *task = &toc->tasks[priv->toc_entry_used_count++];
task->type = type;
task->arg = cz_smu_translate_firmware_enum_to_arg(firmware_enum);
task->next = is_last ? END_OF_TASK_LIST : priv->toc_entry_used_count;
for (i = 0; i < priv->scratch_buffer_length; i++)
if (priv->scratch_buffer[i].firmware_ID == firmware_enum)
break;
if (i >= priv->scratch_buffer_length) {
dev_err(adev->dev, "Invalid Firmware Type\n");
return -EINVAL;
}
task->addr.low = priv->scratch_buffer[i].mc_addr_low;
task->addr.high = priv->scratch_buffer[i].mc_addr_high;
task->size_bytes = priv->scratch_buffer[i].data_size;
if (CZ_SCRATCH_ENTRY_DATA_ID_IH_REGISTERS == firmware_enum) {
struct cz_ih_meta_data *pIHReg_restore =
(struct cz_ih_meta_data *)priv->scratch_buffer[i].kaddr;
pIHReg_restore->command =
METADATA_CMD_MODE0 | METADATA_PERFORM_ON_LOAD;
}
return 0;
}
static int cz_smu_construct_toc_for_rlc_aram_save(struct amdgpu_device *adev)
{
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
priv->toc_entry_aram = priv->toc_entry_used_count;
cz_smu_populate_single_scratch_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM,
TASK_TYPE_UCODE_SAVE, true);
return 0;
}
static int cz_smu_construct_toc_for_vddgfx_enter(struct amdgpu_device *adev)
{
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
struct TOC *toc = (struct TOC *)priv->toc_buffer.kaddr;
toc->JobList[JOB_GFX_SAVE] = (uint8_t)priv->toc_entry_used_count;
cz_smu_populate_single_scratch_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH,
TASK_TYPE_UCODE_SAVE, false);
cz_smu_populate_single_scratch_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM,
TASK_TYPE_UCODE_SAVE, true);
return 0;
}
static int cz_smu_construct_toc_for_vddgfx_exit(struct amdgpu_device *adev)
{
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
struct TOC *toc = (struct TOC *)priv->toc_buffer.kaddr;
toc->JobList[JOB_GFX_RESTORE] = (uint8_t)priv->toc_entry_used_count;
/* populate ucode */
if (adev->firmware.smu_load) {
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE, false);
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP, false);
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME, false);
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1, false);
if (adev->asic_type == CHIP_STONEY) {
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1, false);
} else {
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2, false);
}
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G, false);
}
/* populate scratch */
cz_smu_populate_single_scratch_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH,
TASK_TYPE_UCODE_LOAD, false);
cz_smu_populate_single_scratch_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM,
TASK_TYPE_UCODE_LOAD, false);
cz_smu_populate_single_scratch_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM,
TASK_TYPE_UCODE_LOAD, true);
return 0;
}
static int cz_smu_construct_toc_for_power_profiling(struct amdgpu_device *adev)
{
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
priv->toc_entry_power_profiling_index = priv->toc_entry_used_count;
cz_smu_populate_single_scratch_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_POWER_PROFILING,
TASK_TYPE_INITIALIZE, true);
return 0;
}
static int cz_smu_construct_toc_for_bootup(struct amdgpu_device *adev)
{
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
priv->toc_entry_initialize_index = priv->toc_entry_used_count;
if (adev->firmware.smu_load) {
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0, false);
if (adev->asic_type == CHIP_STONEY) {
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0, false);
} else {
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA1, false);
}
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE, false);
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP, false);
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME, false);
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1, false);
if (adev->asic_type == CHIP_STONEY) {
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1, false);
} else {
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2, false);
}
cz_smu_populate_single_ucode_load_task(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G, true);
}
return 0;
}
static int cz_smu_construct_toc_for_clock_table(struct amdgpu_device *adev)
{
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
priv->toc_entry_clock_table = priv->toc_entry_used_count;
cz_smu_populate_single_scratch_task(adev,
CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE,
TASK_TYPE_INITIALIZE, true);
return 0;
}
static int cz_smu_initialize_toc_empty_job_list(struct amdgpu_device *adev)
{
int i;
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
struct TOC *toc = (struct TOC *)priv->toc_buffer.kaddr;
for (i = 0; i < NUM_JOBLIST_ENTRIES; i++)
toc->JobList[i] = (uint8_t)IGNORE_JOB;
return 0;
}
/*
* cz smu uninitialization
*/
int cz_smu_fini(struct amdgpu_device *adev)
{
amdgpu_bo_unref(&adev->smu.toc_buf);
amdgpu_bo_unref(&adev->smu.smu_buf);
kfree(adev->smu.priv);
adev->smu.priv = NULL;
if (adev->firmware.smu_load)
amdgpu_ucode_fini_bo(adev);
return 0;
}
int cz_smu_download_pptable(struct amdgpu_device *adev, void **table)
{
uint8_t i;
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
for (i = 0; i < priv->scratch_buffer_length; i++)
if (priv->scratch_buffer[i].firmware_ID ==
CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE)
break;
if (i >= priv->scratch_buffer_length) {
dev_err(adev->dev, "Invalid Scratch Type\n");
return -EINVAL;
}
*table = (struct SMU8_Fusion_ClkTable *)priv->scratch_buffer[i].kaddr;
/* prepare buffer for pptable */
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetClkTableAddrHi,
priv->scratch_buffer[i].mc_addr_high);
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetClkTableAddrLo,
priv->scratch_buffer[i].mc_addr_low);
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_ExecuteJob,
priv->toc_entry_clock_table);
/* actual downloading */
cz_send_msg_to_smc(adev, PPSMC_MSG_ClkTableXferToDram);
return 0;
}
int cz_smu_upload_pptable(struct amdgpu_device *adev)
{
uint8_t i;
struct cz_smu_private_data *priv = cz_smu_get_priv(adev);
for (i = 0; i < priv->scratch_buffer_length; i++)
if (priv->scratch_buffer[i].firmware_ID ==
CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE)
break;
if (i >= priv->scratch_buffer_length) {
dev_err(adev->dev, "Invalid Scratch Type\n");
return -EINVAL;
}
/* prepare SMU */
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetClkTableAddrHi,
priv->scratch_buffer[i].mc_addr_high);
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_SetClkTableAddrLo,
priv->scratch_buffer[i].mc_addr_low);
cz_send_msg_to_smc_with_parameter(adev,
PPSMC_MSG_ExecuteJob,
priv->toc_entry_clock_table);
/* actual uploading */
cz_send_msg_to_smc(adev, PPSMC_MSG_ClkTableXferToSmu);
return 0;
}
/*
* cz smumgr functions initialization
*/
static const struct amdgpu_smumgr_funcs cz_smumgr_funcs = {
.check_fw_load_finish = cz_smu_check_finished,
.request_smu_load_fw = NULL,
.request_smu_specific_fw = NULL,
};
/*
* cz smu initialization
*/
int cz_smu_init(struct amdgpu_device *adev)
{
int ret = -EINVAL;
uint64_t mc_addr = 0;
struct amdgpu_bo **toc_buf = &adev->smu.toc_buf;
struct amdgpu_bo **smu_buf = &adev->smu.smu_buf;
void *toc_buf_ptr = NULL;
void *smu_buf_ptr = NULL;
struct cz_smu_private_data *priv =
kzalloc(sizeof(struct cz_smu_private_data), GFP_KERNEL);
if (priv == NULL)
return -ENOMEM;
/* allocate firmware buffers */
if (adev->firmware.smu_load)
amdgpu_ucode_init_bo(adev);
adev->smu.priv = priv;
adev->smu.fw_flags = 0;
priv->toc_buffer.data_size = 4096;
priv->smu_buffer.data_size =
ALIGN(UCODE_ID_RLC_SCRATCH_SIZE_BYTE, 32) +
ALIGN(UCODE_ID_RLC_SRM_ARAM_SIZE_BYTE, 32) +
ALIGN(UCODE_ID_RLC_SRM_DRAM_SIZE_BYTE, 32) +
ALIGN(sizeof(struct SMU8_MultimediaPowerLogData), 32) +
ALIGN(sizeof(struct SMU8_Fusion_ClkTable), 32);
/* prepare toc buffer and smu buffer:
* 1. create amdgpu_bo for toc buffer and smu buffer
* 2. pin mc address
* 3. map kernel virtual address
*/
ret = amdgpu_bo_create(adev, priv->toc_buffer.data_size, PAGE_SIZE,
true, AMDGPU_GEM_DOMAIN_GTT, 0, NULL, NULL,
toc_buf);
if (ret) {
dev_err(adev->dev, "(%d) SMC TOC buffer allocation failed\n", ret);
return ret;
}
ret = amdgpu_bo_create(adev, priv->smu_buffer.data_size, PAGE_SIZE,
true, AMDGPU_GEM_DOMAIN_GTT, 0, NULL, NULL,
smu_buf);
if (ret) {
dev_err(adev->dev, "(%d) SMC Internal buffer allocation failed\n", ret);
return ret;
}
/* toc buffer reserve/pin/map */
ret = amdgpu_bo_reserve(adev->smu.toc_buf, false);
if (ret) {
amdgpu_bo_unref(&adev->smu.toc_buf);
dev_err(adev->dev, "(%d) SMC TOC buffer reserve failed\n", ret);
return ret;
}
ret = amdgpu_bo_pin(adev->smu.toc_buf, AMDGPU_GEM_DOMAIN_GTT, &mc_addr);
if (ret) {
amdgpu_bo_unreserve(adev->smu.toc_buf);
amdgpu_bo_unref(&adev->smu.toc_buf);
dev_err(adev->dev, "(%d) SMC TOC buffer pin failed\n", ret);
return ret;
}
ret = amdgpu_bo_kmap(*toc_buf, &toc_buf_ptr);
if (ret)
goto smu_init_failed;
amdgpu_bo_unreserve(adev->smu.toc_buf);
priv->toc_buffer.mc_addr_low = lower_32_bits(mc_addr);
priv->toc_buffer.mc_addr_high = upper_32_bits(mc_addr);
priv->toc_buffer.kaddr = toc_buf_ptr;
/* smu buffer reserve/pin/map */
ret = amdgpu_bo_reserve(adev->smu.smu_buf, false);
if (ret) {
amdgpu_bo_unref(&adev->smu.smu_buf);
dev_err(adev->dev, "(%d) SMC Internal buffer reserve failed\n", ret);
return ret;
}
ret = amdgpu_bo_pin(adev->smu.smu_buf, AMDGPU_GEM_DOMAIN_GTT, &mc_addr);
if (ret) {
amdgpu_bo_unreserve(adev->smu.smu_buf);
amdgpu_bo_unref(&adev->smu.smu_buf);
dev_err(adev->dev, "(%d) SMC Internal buffer pin failed\n", ret);
return ret;
}
ret = amdgpu_bo_kmap(*smu_buf, &smu_buf_ptr);
if (ret)
goto smu_init_failed;
amdgpu_bo_unreserve(adev->smu.smu_buf);
priv->smu_buffer.mc_addr_low = lower_32_bits(mc_addr);
priv->smu_buffer.mc_addr_high = upper_32_bits(mc_addr);
priv->smu_buffer.kaddr = smu_buf_ptr;
if (adev->firmware.smu_load) {
if (cz_smu_populate_single_firmware_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0,
&priv->driver_buffer[priv->driver_buffer_length++]))
goto smu_init_failed;
if (adev->asic_type == CHIP_STONEY) {
if (cz_smu_populate_single_firmware_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0,
&priv->driver_buffer[priv->driver_buffer_length++]))
goto smu_init_failed;
} else {
if (cz_smu_populate_single_firmware_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA1,
&priv->driver_buffer[priv->driver_buffer_length++]))
goto smu_init_failed;
}
if (cz_smu_populate_single_firmware_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE,
&priv->driver_buffer[priv->driver_buffer_length++]))
goto smu_init_failed;
if (cz_smu_populate_single_firmware_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP,
&priv->driver_buffer[priv->driver_buffer_length++]))
goto smu_init_failed;
if (cz_smu_populate_single_firmware_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME,
&priv->driver_buffer[priv->driver_buffer_length++]))
goto smu_init_failed;
if (cz_smu_populate_single_firmware_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1,
&priv->driver_buffer[priv->driver_buffer_length++]))
goto smu_init_failed;
if (adev->asic_type == CHIP_STONEY) {
if (cz_smu_populate_single_firmware_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1,
&priv->driver_buffer[priv->driver_buffer_length++]))
goto smu_init_failed;
} else {
if (cz_smu_populate_single_firmware_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2,
&priv->driver_buffer[priv->driver_buffer_length++]))
goto smu_init_failed;
}
if (cz_smu_populate_single_firmware_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G,
&priv->driver_buffer[priv->driver_buffer_length++]))
goto smu_init_failed;
}
if (cz_smu_populate_single_scratch_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH,
UCODE_ID_RLC_SCRATCH_SIZE_BYTE,
&priv->scratch_buffer[priv->scratch_buffer_length++]))
goto smu_init_failed;
if (cz_smu_populate_single_scratch_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM,
UCODE_ID_RLC_SRM_ARAM_SIZE_BYTE,
&priv->scratch_buffer[priv->scratch_buffer_length++]))
goto smu_init_failed;
if (cz_smu_populate_single_scratch_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM,
UCODE_ID_RLC_SRM_DRAM_SIZE_BYTE,
&priv->scratch_buffer[priv->scratch_buffer_length++]))
goto smu_init_failed;
if (cz_smu_populate_single_scratch_entry(adev,
CZ_SCRATCH_ENTRY_UCODE_ID_POWER_PROFILING,
sizeof(struct SMU8_MultimediaPowerLogData),
&priv->scratch_buffer[priv->scratch_buffer_length++]))
goto smu_init_failed;
if (cz_smu_populate_single_scratch_entry(adev,
CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE,
sizeof(struct SMU8_Fusion_ClkTable),
&priv->scratch_buffer[priv->scratch_buffer_length++]))
goto smu_init_failed;
cz_smu_initialize_toc_empty_job_list(adev);
cz_smu_construct_toc_for_rlc_aram_save(adev);
cz_smu_construct_toc_for_vddgfx_enter(adev);
cz_smu_construct_toc_for_vddgfx_exit(adev);
cz_smu_construct_toc_for_power_profiling(adev);
cz_smu_construct_toc_for_bootup(adev);
cz_smu_construct_toc_for_clock_table(adev);
/* init the smumgr functions */
adev->smu.smumgr_funcs = &cz_smumgr_funcs;
return 0;
smu_init_failed:
amdgpu_bo_unref(toc_buf);
amdgpu_bo_unref(smu_buf);
return ret;
}
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef __CZ_SMC_H__
#define __CZ_SMC_H__
#define MAX_NUM_FIRMWARE 8
#define MAX_NUM_SCRATCH 11
#define CZ_SCRATCH_SIZE_NONGFX_CLOCKGATING 1024
#define CZ_SCRATCH_SIZE_NONGFX_GOLDENSETTING 2048
#define CZ_SCRATCH_SIZE_SDMA_METADATA 1024
#define CZ_SCRATCH_SIZE_IH ((2*256+1)*4)
enum cz_scratch_entry {
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA0 = 0,
CZ_SCRATCH_ENTRY_UCODE_ID_SDMA1,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_CE,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_PFP,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_ME,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT1,
CZ_SCRATCH_ENTRY_UCODE_ID_CP_MEC_JT2,
CZ_SCRATCH_ENTRY_UCODE_ID_GMCON_RENG,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_G,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SCRATCH,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_ARAM,
CZ_SCRATCH_ENTRY_UCODE_ID_RLC_SRM_DRAM,
CZ_SCRATCH_ENTRY_UCODE_ID_DMCU_ERAM,
CZ_SCRATCH_ENTRY_UCODE_ID_DMCU_IRAM,
CZ_SCRATCH_ENTRY_UCODE_ID_POWER_PROFILING,
CZ_SCRATCH_ENTRY_DATA_ID_SDMA_HALT,
CZ_SCRATCH_ENTRY_DATA_ID_SYS_CLOCKGATING,
CZ_SCRATCH_ENTRY_DATA_ID_SDMA_RING_REGS,
CZ_SCRATCH_ENTRY_DATA_ID_NONGFX_REINIT,
CZ_SCRATCH_ENTRY_DATA_ID_SDMA_START,
CZ_SCRATCH_ENTRY_DATA_ID_IH_REGISTERS,
CZ_SCRATCH_ENTRY_SMU8_FUSION_CLKTABLE
};
struct cz_buffer_entry {
uint32_t data_size;
uint32_t mc_addr_low;
uint32_t mc_addr_high;
void *kaddr;
enum cz_scratch_entry firmware_ID;
};
struct cz_register_index_data_pair {
uint32_t offset;
uint32_t value;
};
struct cz_ih_meta_data {
uint32_t command;
struct cz_register_index_data_pair register_index_value_pair[1];
};
struct cz_smu_private_data {
uint8_t driver_buffer_length;
uint8_t scratch_buffer_length;
uint16_t toc_entry_used_count;
uint16_t toc_entry_initialize_index;
uint16_t toc_entry_power_profiling_index;
uint16_t toc_entry_aram;
uint16_t toc_entry_ih_register_restore_task_index;
uint16_t toc_entry_clock_table;
uint16_t ih_register_restore_task_size;
uint16_t smu_buffer_used_bytes;
struct cz_buffer_entry toc_buffer;
struct cz_buffer_entry smu_buffer;
struct cz_buffer_entry driver_buffer[MAX_NUM_FIRMWARE];
struct cz_buffer_entry scratch_buffer[MAX_NUM_SCRATCH];
};
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment