Commit dcc6d073 authored by Chris Mason's avatar Chris Mason

Merge branch 'delayed_inode' into inode_numbers

Conflicts:
	fs/btrfs/inode.c
	fs/btrfs/ioctl.c
	fs/btrfs/transaction.c
Signed-off-by: default avatarChris Mason <chris.mason@oracle.com>
parents 09655373 16cdcec7
...@@ -7,4 +7,4 @@ btrfs-y += super.o ctree.o extent-tree.o print-tree.o root-tree.o dir-item.o \ ...@@ -7,4 +7,4 @@ btrfs-y += super.o ctree.o extent-tree.o print-tree.o root-tree.o dir-item.o \
extent_map.o sysfs.o struct-funcs.o xattr.o ordered-data.o \ extent_map.o sysfs.o struct-funcs.o xattr.o ordered-data.o \
extent_io.o volumes.o async-thread.o ioctl.o locking.o orphan.o \ extent_io.o volumes.o async-thread.o ioctl.o locking.o orphan.o \
export.o tree-log.o acl.o free-space-cache.o zlib.o lzo.o \ export.o tree-log.o acl.o free-space-cache.o zlib.o lzo.o \
compression.o delayed-ref.o relocation.o compression.o delayed-ref.o relocation.o delayed-inode.o
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
#include "extent_map.h" #include "extent_map.h"
#include "extent_io.h" #include "extent_io.h"
#include "ordered-data.h" #include "ordered-data.h"
#include "delayed-inode.h"
/* in memory btrfs inode */ /* in memory btrfs inode */
struct btrfs_inode { struct btrfs_inode {
...@@ -158,9 +159,13 @@ struct btrfs_inode { ...@@ -158,9 +159,13 @@ struct btrfs_inode {
*/ */
unsigned force_compress:4; unsigned force_compress:4;
struct btrfs_delayed_node *delayed_node;
struct inode vfs_inode; struct inode vfs_inode;
}; };
extern unsigned char btrfs_filetype_table[];
static inline struct btrfs_inode *BTRFS_I(struct inode *inode) static inline struct btrfs_inode *BTRFS_I(struct inode *inode)
{ {
return container_of(inode, struct btrfs_inode, vfs_inode); return container_of(inode, struct btrfs_inode, vfs_inode);
......
...@@ -38,11 +38,6 @@ static int balance_node_right(struct btrfs_trans_handle *trans, ...@@ -38,11 +38,6 @@ static int balance_node_right(struct btrfs_trans_handle *trans,
struct extent_buffer *src_buf); struct extent_buffer *src_buf);
static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_path *path, int level, int slot); struct btrfs_path *path, int level, int slot);
static int setup_items_for_insert(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_key *cpu_key, u32 *data_size,
u32 total_data, u32 total_size, int nr);
struct btrfs_path *btrfs_alloc_path(void) struct btrfs_path *btrfs_alloc_path(void)
{ {
...@@ -3559,11 +3554,10 @@ int btrfs_insert_some_items(struct btrfs_trans_handle *trans, ...@@ -3559,11 +3554,10 @@ int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
* to save stack depth by doing the bulk of the work in a function * to save stack depth by doing the bulk of the work in a function
* that doesn't call btrfs_search_slot * that doesn't call btrfs_search_slot
*/ */
static noinline_for_stack int int setup_items_for_insert(struct btrfs_trans_handle *trans,
setup_items_for_insert(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *cpu_key, u32 *data_size,
struct btrfs_key *cpu_key, u32 *data_size, u32 total_data, u32 total_size, int nr)
u32 total_data, u32 total_size, int nr)
{ {
struct btrfs_item *item; struct btrfs_item *item;
int i; int i;
......
...@@ -870,6 +870,7 @@ struct btrfs_block_group_cache { ...@@ -870,6 +870,7 @@ struct btrfs_block_group_cache {
struct reloc_control; struct reloc_control;
struct btrfs_device; struct btrfs_device;
struct btrfs_fs_devices; struct btrfs_fs_devices;
struct btrfs_delayed_root;
struct btrfs_fs_info { struct btrfs_fs_info {
u8 fsid[BTRFS_FSID_SIZE]; u8 fsid[BTRFS_FSID_SIZE];
u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
...@@ -896,7 +897,10 @@ struct btrfs_fs_info { ...@@ -896,7 +897,10 @@ struct btrfs_fs_info {
/* logical->physical extent mapping */ /* logical->physical extent mapping */
struct btrfs_mapping_tree mapping_tree; struct btrfs_mapping_tree mapping_tree;
/* block reservation for extent, checksum and root tree */ /*
* block reservation for extent, checksum, root tree and
* delayed dir index item
*/
struct btrfs_block_rsv global_block_rsv; struct btrfs_block_rsv global_block_rsv;
/* block reservation for delay allocation */ /* block reservation for delay allocation */
struct btrfs_block_rsv delalloc_block_rsv; struct btrfs_block_rsv delalloc_block_rsv;
...@@ -1023,6 +1027,7 @@ struct btrfs_fs_info { ...@@ -1023,6 +1027,7 @@ struct btrfs_fs_info {
* for the sys_munmap function call path * for the sys_munmap function call path
*/ */
struct btrfs_workers fixup_workers; struct btrfs_workers fixup_workers;
struct btrfs_workers delayed_workers;
struct task_struct *transaction_kthread; struct task_struct *transaction_kthread;
struct task_struct *cleaner_kthread; struct task_struct *cleaner_kthread;
int thread_pool_size; int thread_pool_size;
...@@ -1080,6 +1085,8 @@ struct btrfs_fs_info { ...@@ -1080,6 +1085,8 @@ struct btrfs_fs_info {
/* filesystem state */ /* filesystem state */
u64 fs_state; u64 fs_state;
struct btrfs_delayed_root *delayed_root;
}; };
/* /*
...@@ -1172,6 +1179,11 @@ struct btrfs_root { ...@@ -1172,6 +1179,11 @@ struct btrfs_root {
/* red-black tree that keeps track of in-memory inodes */ /* red-black tree that keeps track of in-memory inodes */
struct rb_root inode_tree; struct rb_root inode_tree;
/*
* radix tree that keeps track of delayed nodes of every inode,
* protected by inode_lock
*/
struct radix_tree_root delayed_nodes_tree;
/* /*
* right now this just gets used so that a root has its own devid * right now this just gets used so that a root has its own devid
* for stat. It may be used for more later * for stat. It may be used for more later
...@@ -2110,6 +2122,13 @@ static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info) ...@@ -2110,6 +2122,13 @@ static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
} }
/* extent-tree.c */ /* extent-tree.c */
static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
int num_items)
{
return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3 * num_items;
}
void btrfs_put_block_group(struct btrfs_block_group_cache *cache); void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root, unsigned long count); struct btrfs_root *root, unsigned long count);
...@@ -2305,6 +2324,8 @@ void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p); ...@@ -2305,6 +2324,8 @@ void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
struct btrfs_path *btrfs_alloc_path(void); struct btrfs_path *btrfs_alloc_path(void);
void btrfs_free_path(struct btrfs_path *p); void btrfs_free_path(struct btrfs_path *p);
void btrfs_set_path_blocking(struct btrfs_path *p); void btrfs_set_path_blocking(struct btrfs_path *p);
void btrfs_clear_path_blocking(struct btrfs_path *p,
struct extent_buffer *held);
void btrfs_unlock_up_safe(struct btrfs_path *p, int level); void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
...@@ -2316,6 +2337,10 @@ static inline int btrfs_del_item(struct btrfs_trans_handle *trans, ...@@ -2316,6 +2337,10 @@ static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
return btrfs_del_items(trans, root, path, path->slots[0], 1); return btrfs_del_items(trans, root, path, path->slots[0], 1);
} }
int setup_items_for_insert(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct btrfs_path *path,
struct btrfs_key *cpu_key, u32 *data_size,
u32 total_data, u32 total_size, int nr);
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, void *data, u32 data_size); *root, struct btrfs_key *key, void *data, u32 data_size);
int btrfs_insert_some_items(struct btrfs_trans_handle *trans, int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
...@@ -2379,7 +2404,7 @@ void btrfs_check_and_init_root_item(struct btrfs_root_item *item); ...@@ -2379,7 +2404,7 @@ void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
/* dir-item.c */ /* dir-item.c */
int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, const char *name, struct btrfs_root *root, const char *name,
int name_len, u64 dir, int name_len, struct inode *dir,
struct btrfs_key *location, u8 type, u64 index); struct btrfs_key *location, u8 type, u64 index);
struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct btrfs_root *root,
......
/*
* Copyright (C) 2011 Fujitsu. All rights reserved.
* Written by Miao Xie <miaox@cn.fujitsu.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/slab.h>
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
#define BTRFS_DELAYED_WRITEBACK 400
#define BTRFS_DELAYED_BACKGROUND 100
static struct kmem_cache *delayed_node_cache;
int __init btrfs_delayed_inode_init(void)
{
delayed_node_cache = kmem_cache_create("delayed_node",
sizeof(struct btrfs_delayed_node),
0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
NULL);
if (!delayed_node_cache)
return -ENOMEM;
return 0;
}
void btrfs_delayed_inode_exit(void)
{
if (delayed_node_cache)
kmem_cache_destroy(delayed_node_cache);
}
static inline void btrfs_init_delayed_node(
struct btrfs_delayed_node *delayed_node,
struct btrfs_root *root, u64 inode_id)
{
delayed_node->root = root;
delayed_node->inode_id = inode_id;
atomic_set(&delayed_node->refs, 0);
delayed_node->count = 0;
delayed_node->in_list = 0;
delayed_node->inode_dirty = 0;
delayed_node->ins_root = RB_ROOT;
delayed_node->del_root = RB_ROOT;
mutex_init(&delayed_node->mutex);
delayed_node->index_cnt = 0;
INIT_LIST_HEAD(&delayed_node->n_list);
INIT_LIST_HEAD(&delayed_node->p_list);
delayed_node->bytes_reserved = 0;
}
static inline int btrfs_is_continuous_delayed_item(
struct btrfs_delayed_item *item1,
struct btrfs_delayed_item *item2)
{
if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
item1->key.objectid == item2->key.objectid &&
item1->key.type == item2->key.type &&
item1->key.offset + 1 == item2->key.offset)
return 1;
return 0;
}
static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
struct btrfs_root *root)
{
return root->fs_info->delayed_root;
}
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
struct inode *inode)
{
struct btrfs_delayed_node *node;
struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
struct btrfs_root *root = btrfs_inode->root;
int ret;
again:
node = ACCESS_ONCE(btrfs_inode->delayed_node);
if (node) {
atomic_inc(&node->refs); /* can be accessed */
return node;
}
spin_lock(&root->inode_lock);
node = radix_tree_lookup(&root->delayed_nodes_tree, inode->i_ino);
if (node) {
if (btrfs_inode->delayed_node) {
spin_unlock(&root->inode_lock);
goto again;
}
btrfs_inode->delayed_node = node;
atomic_inc(&node->refs); /* can be accessed */
atomic_inc(&node->refs); /* cached in the inode */
spin_unlock(&root->inode_lock);
return node;
}
spin_unlock(&root->inode_lock);
node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
if (!node)
return ERR_PTR(-ENOMEM);
btrfs_init_delayed_node(node, root, inode->i_ino);
atomic_inc(&node->refs); /* cached in the btrfs inode */
atomic_inc(&node->refs); /* can be accessed */
ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
if (ret) {
kmem_cache_free(delayed_node_cache, node);
return ERR_PTR(ret);
}
spin_lock(&root->inode_lock);
ret = radix_tree_insert(&root->delayed_nodes_tree, inode->i_ino, node);
if (ret == -EEXIST) {
kmem_cache_free(delayed_node_cache, node);
spin_unlock(&root->inode_lock);
radix_tree_preload_end();
goto again;
}
btrfs_inode->delayed_node = node;
spin_unlock(&root->inode_lock);
radix_tree_preload_end();
return node;
}
/*
* Call it when holding delayed_node->mutex
*
* If mod = 1, add this node into the prepared list.
*/
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
struct btrfs_delayed_node *node,
int mod)
{
spin_lock(&root->lock);
if (node->in_list) {
if (!list_empty(&node->p_list))
list_move_tail(&node->p_list, &root->prepare_list);
else if (mod)
list_add_tail(&node->p_list, &root->prepare_list);
} else {
list_add_tail(&node->n_list, &root->node_list);
list_add_tail(&node->p_list, &root->prepare_list);
atomic_inc(&node->refs); /* inserted into list */
root->nodes++;
node->in_list = 1;
}
spin_unlock(&root->lock);
}
/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
struct btrfs_delayed_node *node)
{
spin_lock(&root->lock);
if (node->in_list) {
root->nodes--;
atomic_dec(&node->refs); /* not in the list */
list_del_init(&node->n_list);
if (!list_empty(&node->p_list))
list_del_init(&node->p_list);
node->in_list = 0;
}
spin_unlock(&root->lock);
}
struct btrfs_delayed_node *btrfs_first_delayed_node(
struct btrfs_delayed_root *delayed_root)
{
struct list_head *p;
struct btrfs_delayed_node *node = NULL;
spin_lock(&delayed_root->lock);
if (list_empty(&delayed_root->node_list))
goto out;
p = delayed_root->node_list.next;
node = list_entry(p, struct btrfs_delayed_node, n_list);
atomic_inc(&node->refs);
out:
spin_unlock(&delayed_root->lock);
return node;
}
struct btrfs_delayed_node *btrfs_next_delayed_node(
struct btrfs_delayed_node *node)
{
struct btrfs_delayed_root *delayed_root;
struct list_head *p;
struct btrfs_delayed_node *next = NULL;
delayed_root = node->root->fs_info->delayed_root;
spin_lock(&delayed_root->lock);
if (!node->in_list) { /* not in the list */
if (list_empty(&delayed_root->node_list))
goto out;
p = delayed_root->node_list.next;
} else if (list_is_last(&node->n_list, &delayed_root->node_list))
goto out;
else
p = node->n_list.next;
next = list_entry(p, struct btrfs_delayed_node, n_list);
atomic_inc(&next->refs);
out:
spin_unlock(&delayed_root->lock);
return next;
}
static void __btrfs_release_delayed_node(
struct btrfs_delayed_node *delayed_node,
int mod)
{
struct btrfs_delayed_root *delayed_root;
if (!delayed_node)
return;
delayed_root = delayed_node->root->fs_info->delayed_root;
mutex_lock(&delayed_node->mutex);
if (delayed_node->count)
btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
else
btrfs_dequeue_delayed_node(delayed_root, delayed_node);
mutex_unlock(&delayed_node->mutex);
if (atomic_dec_and_test(&delayed_node->refs)) {
struct btrfs_root *root = delayed_node->root;
spin_lock(&root->inode_lock);
if (atomic_read(&delayed_node->refs) == 0) {
radix_tree_delete(&root->delayed_nodes_tree,
delayed_node->inode_id);
kmem_cache_free(delayed_node_cache, delayed_node);
}
spin_unlock(&root->inode_lock);
}
}
static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
__btrfs_release_delayed_node(node, 0);
}
struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
struct btrfs_delayed_root *delayed_root)
{
struct list_head *p;
struct btrfs_delayed_node *node = NULL;
spin_lock(&delayed_root->lock);
if (list_empty(&delayed_root->prepare_list))
goto out;
p = delayed_root->prepare_list.next;
list_del_init(p);
node = list_entry(p, struct btrfs_delayed_node, p_list);
atomic_inc(&node->refs);
out:
spin_unlock(&delayed_root->lock);
return node;
}
static inline void btrfs_release_prepared_delayed_node(
struct btrfs_delayed_node *node)
{
__btrfs_release_delayed_node(node, 1);
}
struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
{
struct btrfs_delayed_item *item;
item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
if (item) {
item->data_len = data_len;
item->ins_or_del = 0;
item->bytes_reserved = 0;
item->block_rsv = NULL;
item->delayed_node = NULL;
atomic_set(&item->refs, 1);
}
return item;
}
/*
* __btrfs_lookup_delayed_item - look up the delayed item by key
* @delayed_node: pointer to the delayed node
* @key: the key to look up
* @prev: used to store the prev item if the right item isn't found
* @next: used to store the next item if the right item isn't found
*
* Note: if we don't find the right item, we will return the prev item and
* the next item.
*/
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
struct rb_root *root,
struct btrfs_key *key,
struct btrfs_delayed_item **prev,
struct btrfs_delayed_item **next)
{
struct rb_node *node, *prev_node = NULL;
struct btrfs_delayed_item *delayed_item = NULL;
int ret = 0;
node = root->rb_node;
while (node) {
delayed_item = rb_entry(node, struct btrfs_delayed_item,
rb_node);
prev_node = node;
ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
if (ret < 0)
node = node->rb_right;
else if (ret > 0)
node = node->rb_left;
else
return delayed_item;
}
if (prev) {
if (!prev_node)
*prev = NULL;
else if (ret < 0)
*prev = delayed_item;
else if ((node = rb_prev(prev_node)) != NULL) {
*prev = rb_entry(node, struct btrfs_delayed_item,
rb_node);
} else
*prev = NULL;
}
if (next) {
if (!prev_node)
*next = NULL;
else if (ret > 0)
*next = delayed_item;
else if ((node = rb_next(prev_node)) != NULL) {
*next = rb_entry(node, struct btrfs_delayed_item,
rb_node);
} else
*next = NULL;
}
return NULL;
}
struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
struct btrfs_delayed_node *delayed_node,
struct btrfs_key *key)
{
struct btrfs_delayed_item *item;
item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
NULL, NULL);
return item;
}
struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
struct btrfs_delayed_node *delayed_node,
struct btrfs_key *key)
{
struct btrfs_delayed_item *item;
item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
NULL, NULL);
return item;
}
struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
struct btrfs_delayed_node *delayed_node,
struct btrfs_key *key)
{
struct btrfs_delayed_item *item, *next;
item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
NULL, &next);
if (!item)
item = next;
return item;
}
struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
struct btrfs_delayed_node *delayed_node,
struct btrfs_key *key)
{
struct btrfs_delayed_item *item, *next;
item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
NULL, &next);
if (!item)
item = next;
return item;
}
static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
struct btrfs_delayed_item *ins,
int action)
{
struct rb_node **p, *node;
struct rb_node *parent_node = NULL;
struct rb_root *root;
struct btrfs_delayed_item *item;
int cmp;
if (action == BTRFS_DELAYED_INSERTION_ITEM)
root = &delayed_node->ins_root;
else if (action == BTRFS_DELAYED_DELETION_ITEM)
root = &delayed_node->del_root;
else
BUG();
p = &root->rb_node;
node = &ins->rb_node;
while (*p) {
parent_node = *p;
item = rb_entry(parent_node, struct btrfs_delayed_item,
rb_node);
cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
if (cmp < 0)
p = &(*p)->rb_right;
else if (cmp > 0)
p = &(*p)->rb_left;
else
return -EEXIST;
}
rb_link_node(node, parent_node, p);
rb_insert_color(node, root);
ins->delayed_node = delayed_node;
ins->ins_or_del = action;
if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
action == BTRFS_DELAYED_INSERTION_ITEM &&
ins->key.offset >= delayed_node->index_cnt)
delayed_node->index_cnt = ins->key.offset + 1;
delayed_node->count++;
atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
return 0;
}
static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
struct btrfs_delayed_item *item)
{
return __btrfs_add_delayed_item(node, item,
BTRFS_DELAYED_INSERTION_ITEM);
}
static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
struct btrfs_delayed_item *item)
{
return __btrfs_add_delayed_item(node, item,
BTRFS_DELAYED_DELETION_ITEM);
}
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
struct rb_root *root;
struct btrfs_delayed_root *delayed_root;
delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
BUG_ON(!delayed_root);
BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
root = &delayed_item->delayed_node->ins_root;
else
root = &delayed_item->delayed_node->del_root;
rb_erase(&delayed_item->rb_node, root);
delayed_item->delayed_node->count--;
atomic_dec(&delayed_root->items);
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
waitqueue_active(&delayed_root->wait))
wake_up(&delayed_root->wait);
}
static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
if (item) {
__btrfs_remove_delayed_item(item);
if (atomic_dec_and_test(&item->refs))
kfree(item);
}
}
struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
struct btrfs_delayed_node *delayed_node)
{
struct rb_node *p;
struct btrfs_delayed_item *item = NULL;
p = rb_first(&delayed_node->ins_root);
if (p)
item = rb_entry(p, struct btrfs_delayed_item, rb_node);
return item;
}
struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
struct btrfs_delayed_node *delayed_node)
{
struct rb_node *p;
struct btrfs_delayed_item *item = NULL;
p = rb_first(&delayed_node->del_root);
if (p)
item = rb_entry(p, struct btrfs_delayed_item, rb_node);
return item;
}
struct btrfs_delayed_item *__btrfs_next_delayed_item(
struct btrfs_delayed_item *item)
{
struct rb_node *p;
struct btrfs_delayed_item *next = NULL;
p = rb_next(&item->rb_node);
if (p)
next = rb_entry(p, struct btrfs_delayed_item, rb_node);
return next;
}
static inline struct btrfs_delayed_node *btrfs_get_delayed_node(
struct inode *inode)
{
struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
struct btrfs_delayed_node *delayed_node;
delayed_node = btrfs_inode->delayed_node;
if (delayed_node)
atomic_inc(&delayed_node->refs);
return delayed_node;
}
static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
u64 root_id)
{
struct btrfs_key root_key;
if (root->objectid == root_id)
return root;
root_key.objectid = root_id;
root_key.type = BTRFS_ROOT_ITEM_KEY;
root_key.offset = (u64)-1;
return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
}
static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_item *item)
{
struct btrfs_block_rsv *src_rsv;
struct btrfs_block_rsv *dst_rsv;
u64 num_bytes;
int ret;
if (!trans->bytes_reserved)
return 0;
src_rsv = trans->block_rsv;
dst_rsv = &root->fs_info->global_block_rsv;
num_bytes = btrfs_calc_trans_metadata_size(root, 1);
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
if (!ret) {
item->bytes_reserved = num_bytes;
item->block_rsv = dst_rsv;
}
return ret;
}
static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
struct btrfs_delayed_item *item)
{
if (!item->bytes_reserved)
return;
btrfs_block_rsv_release(root, item->block_rsv,
item->bytes_reserved);
}
static int btrfs_delayed_inode_reserve_metadata(
struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_node *node)
{
struct btrfs_block_rsv *src_rsv;
struct btrfs_block_rsv *dst_rsv;
u64 num_bytes;
int ret;
if (!trans->bytes_reserved)
return 0;
src_rsv = trans->block_rsv;
dst_rsv = &root->fs_info->global_block_rsv;
num_bytes = btrfs_calc_trans_metadata_size(root, 1);
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
if (!ret)
node->bytes_reserved = num_bytes;
return ret;
}
static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
struct btrfs_delayed_node *node)
{
struct btrfs_block_rsv *rsv;
if (!node->bytes_reserved)
return;
rsv = &root->fs_info->global_block_rsv;
btrfs_block_rsv_release(root, rsv,
node->bytes_reserved);
node->bytes_reserved = 0;
}
/*
* This helper will insert some continuous items into the same leaf according
* to the free space of the leaf.
*/
static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_item *item)
{
struct btrfs_delayed_item *curr, *next;
int free_space;
int total_data_size = 0, total_size = 0;
struct extent_buffer *leaf;
char *data_ptr;
struct btrfs_key *keys;
u32 *data_size;
struct list_head head;
int slot;
int nitems;
int i;
int ret = 0;
BUG_ON(!path->nodes[0]);
leaf = path->nodes[0];
free_space = btrfs_leaf_free_space(root, leaf);
INIT_LIST_HEAD(&head);
next = item;
/*
* count the number of the continuous items that we can insert in batch
*/
while (total_size + next->data_len + sizeof(struct btrfs_item) <=
free_space) {
total_data_size += next->data_len;
total_size += next->data_len + sizeof(struct btrfs_item);
list_add_tail(&next->tree_list, &head);
nitems++;
curr = next;
next = __btrfs_next_delayed_item(curr);
if (!next)
break;
if (!btrfs_is_continuous_delayed_item(curr, next))
break;
}
if (!nitems) {
ret = 0;
goto out;
}
/*
* we need allocate some memory space, but it might cause the task
* to sleep, so we set all locked nodes in the path to blocking locks
* first.
*/
btrfs_set_path_blocking(path);
keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
if (!keys) {
ret = -ENOMEM;
goto out;
}
data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
if (!data_size) {
ret = -ENOMEM;
goto error;
}
/* get keys of all the delayed items */
i = 0;
list_for_each_entry(next, &head, tree_list) {
keys[i] = next->key;
data_size[i] = next->data_len;
i++;
}
/* reset all the locked nodes in the patch to spinning locks. */
btrfs_clear_path_blocking(path, NULL);
/* insert the keys of the items */
ret = setup_items_for_insert(trans, root, path, keys, data_size,
total_data_size, total_size, nitems);
if (ret)
goto error;
/* insert the dir index items */
slot = path->slots[0];
list_for_each_entry_safe(curr, next, &head, tree_list) {
data_ptr = btrfs_item_ptr(leaf, slot, char);
write_extent_buffer(leaf, &curr->data,
(unsigned long)data_ptr,
curr->data_len);
slot++;
btrfs_delayed_item_release_metadata(root, curr);
list_del(&curr->tree_list);
btrfs_release_delayed_item(curr);
}
error:
kfree(data_size);
kfree(keys);
out:
return ret;
}
/*
* This helper can just do simple insertion that needn't extend item for new
* data, such as directory name index insertion, inode insertion.
*/
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_item *delayed_item)
{
struct extent_buffer *leaf;
struct btrfs_item *item;
char *ptr;
int ret;
ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
delayed_item->data_len);
if (ret < 0 && ret != -EEXIST)
return ret;
leaf = path->nodes[0];
item = btrfs_item_nr(leaf, path->slots[0]);
ptr = btrfs_item_ptr(leaf, path->slots[0], char);
write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
delayed_item->data_len);
btrfs_mark_buffer_dirty(leaf);
btrfs_delayed_item_release_metadata(root, delayed_item);
return 0;
}
/*
* we insert an item first, then if there are some continuous items, we try
* to insert those items into the same leaf.
*/
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_root *root,
struct btrfs_delayed_node *node)
{
struct btrfs_delayed_item *curr, *prev;
int ret = 0;
do_again:
mutex_lock(&node->mutex);
curr = __btrfs_first_delayed_insertion_item(node);
if (!curr)
goto insert_end;
ret = btrfs_insert_delayed_item(trans, root, path, curr);
if (ret < 0) {
btrfs_release_path(root, path);
goto insert_end;
}
prev = curr;
curr = __btrfs_next_delayed_item(prev);
if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
/* insert the continuous items into the same leaf */
path->slots[0]++;
btrfs_batch_insert_items(trans, root, path, curr);
}
btrfs_release_delayed_item(prev);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(root, path);
mutex_unlock(&node->mutex);
goto do_again;
insert_end:
mutex_unlock(&node->mutex);
return ret;
}
static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_item *item)
{
struct btrfs_delayed_item *curr, *next;
struct extent_buffer *leaf;
struct btrfs_key key;
struct list_head head;
int nitems, i, last_item;
int ret = 0;
BUG_ON(!path->nodes[0]);
leaf = path->nodes[0];
i = path->slots[0];
last_item = btrfs_header_nritems(leaf) - 1;
if (i > last_item)
return -ENOENT; /* FIXME: Is errno suitable? */
next = item;
INIT_LIST_HEAD(&head);
btrfs_item_key_to_cpu(leaf, &key, i);
nitems = 0;
/*
* count the number of the dir index items that we can delete in batch
*/
while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
list_add_tail(&next->tree_list, &head);
nitems++;
curr = next;
next = __btrfs_next_delayed_item(curr);
if (!next)
break;
if (!btrfs_is_continuous_delayed_item(curr, next))
break;
i++;
if (i > last_item)
break;
btrfs_item_key_to_cpu(leaf, &key, i);
}
if (!nitems)
return 0;
ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
if (ret)
goto out;
list_for_each_entry_safe(curr, next, &head, tree_list) {
btrfs_delayed_item_release_metadata(root, curr);
list_del(&curr->tree_list);
btrfs_release_delayed_item(curr);
}
out:
return ret;
}
static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_root *root,
struct btrfs_delayed_node *node)
{
struct btrfs_delayed_item *curr, *prev;
int ret = 0;
do_again:
mutex_lock(&node->mutex);
curr = __btrfs_first_delayed_deletion_item(node);
if (!curr)
goto delete_fail;
ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
if (ret < 0)
goto delete_fail;
else if (ret > 0) {
/*
* can't find the item which the node points to, so this node
* is invalid, just drop it.
*/
prev = curr;
curr = __btrfs_next_delayed_item(prev);
btrfs_release_delayed_item(prev);
ret = 0;
btrfs_release_path(root, path);
if (curr)
goto do_again;
else
goto delete_fail;
}
btrfs_batch_delete_items(trans, root, path, curr);
btrfs_release_path(root, path);
mutex_unlock(&node->mutex);
goto do_again;
delete_fail:
btrfs_release_path(root, path);
mutex_unlock(&node->mutex);
return ret;
}
static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
struct btrfs_delayed_root *delayed_root;
if (delayed_node && delayed_node->inode_dirty) {
BUG_ON(!delayed_node->root);
delayed_node->inode_dirty = 0;
delayed_node->count--;
delayed_root = delayed_node->root->fs_info->delayed_root;
atomic_dec(&delayed_root->items);
if (atomic_read(&delayed_root->items) <
BTRFS_DELAYED_BACKGROUND &&
waitqueue_active(&delayed_root->wait))
wake_up(&delayed_root->wait);
}
}
static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_node *node)
{
struct btrfs_key key;
struct btrfs_inode_item *inode_item;
struct extent_buffer *leaf;
int ret;
mutex_lock(&node->mutex);
if (!node->inode_dirty) {
mutex_unlock(&node->mutex);
return 0;
}
key.objectid = node->inode_id;
btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
key.offset = 0;
ret = btrfs_lookup_inode(trans, root, path, &key, 1);
if (ret > 0) {
btrfs_release_path(root, path);
mutex_unlock(&node->mutex);
return -ENOENT;
} else if (ret < 0) {
mutex_unlock(&node->mutex);
return ret;
}
btrfs_unlock_up_safe(path, 1);
leaf = path->nodes[0];
inode_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_inode_item);
write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
sizeof(struct btrfs_inode_item));
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(root, path);
btrfs_delayed_inode_release_metadata(root, node);
btrfs_release_delayed_inode(node);
mutex_unlock(&node->mutex);
return 0;
}
/* Called when committing the transaction. */
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_delayed_root *delayed_root;
struct btrfs_delayed_node *curr_node, *prev_node;
struct btrfs_path *path;
int ret = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1;
delayed_root = btrfs_get_delayed_root(root);
curr_node = btrfs_first_delayed_node(delayed_root);
while (curr_node) {
root = curr_node->root;
ret = btrfs_insert_delayed_items(trans, path, root,
curr_node);
if (!ret)
ret = btrfs_delete_delayed_items(trans, path, root,
curr_node);
if (!ret)
ret = btrfs_update_delayed_inode(trans, root, path,
curr_node);
if (ret) {
btrfs_release_delayed_node(curr_node);
break;
}
prev_node = curr_node;
curr_node = btrfs_next_delayed_node(curr_node);
btrfs_release_delayed_node(prev_node);
}
btrfs_free_path(path);
return ret;
}
static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_delayed_node *node)
{
struct btrfs_path *path;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1;
ret = btrfs_insert_delayed_items(trans, path, node->root, node);
if (!ret)
ret = btrfs_delete_delayed_items(trans, path, node->root, node);
if (!ret)
ret = btrfs_update_delayed_inode(trans, node->root, path, node);
btrfs_free_path(path);
return ret;
}
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
struct inode *inode)
{
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
int ret;
if (!delayed_node)
return 0;
mutex_lock(&delayed_node->mutex);
if (!delayed_node->count) {
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return 0;
}
mutex_unlock(&delayed_node->mutex);
ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
btrfs_release_delayed_node(delayed_node);
return ret;
}
void btrfs_remove_delayed_node(struct inode *inode)
{
struct btrfs_delayed_node *delayed_node;
delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
if (!delayed_node)
return;
BTRFS_I(inode)->delayed_node = NULL;
btrfs_release_delayed_node(delayed_node);
}
struct btrfs_async_delayed_node {
struct btrfs_root *root;
struct btrfs_delayed_node *delayed_node;
struct btrfs_work work;
};
static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
{
struct btrfs_async_delayed_node *async_node;
struct btrfs_trans_handle *trans;
struct btrfs_path *path;
struct btrfs_delayed_node *delayed_node = NULL;
struct btrfs_root *root;
unsigned long nr = 0;
int need_requeue = 0;
int ret;
async_node = container_of(work, struct btrfs_async_delayed_node, work);
path = btrfs_alloc_path();
if (!path)
goto out;
path->leave_spinning = 1;
delayed_node = async_node->delayed_node;
root = delayed_node->root;
trans = btrfs_join_transaction(root, 0);
if (IS_ERR(trans))
goto free_path;
ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
if (!ret)
ret = btrfs_delete_delayed_items(trans, path, root,
delayed_node);
if (!ret)
btrfs_update_delayed_inode(trans, root, path, delayed_node);
/*
* Maybe new delayed items have been inserted, so we need requeue
* the work. Besides that, we must dequeue the empty delayed nodes
* to avoid the race between delayed items balance and the worker.
* The race like this:
* Task1 Worker thread
* count == 0, needn't requeue
* also needn't insert the
* delayed node into prepare
* list again.
* add lots of delayed items
* queue the delayed node
* already in the list,
* and not in the prepare
* list, it means the delayed
* node is being dealt with
* by the worker.
* do delayed items balance
* the delayed node is being
* dealt with by the worker
* now, just wait.
* the worker goto idle.
* Task1 will sleep until the transaction is commited.
*/
mutex_lock(&delayed_node->mutex);
if (delayed_node->count)
need_requeue = 1;
else
btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
delayed_node);
mutex_unlock(&delayed_node->mutex);
nr = trans->blocks_used;
btrfs_end_transaction_dmeta(trans, root);
__btrfs_btree_balance_dirty(root, nr);
free_path:
btrfs_free_path(path);
out:
if (need_requeue)
btrfs_requeue_work(&async_node->work);
else {
btrfs_release_prepared_delayed_node(delayed_node);
kfree(async_node);
}
}
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
struct btrfs_root *root, int all)
{
struct btrfs_async_delayed_node *async_node;
struct btrfs_delayed_node *curr;
int count = 0;
again:
curr = btrfs_first_prepared_delayed_node(delayed_root);
if (!curr)
return 0;
async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
if (!async_node) {
btrfs_release_prepared_delayed_node(curr);
return -ENOMEM;
}
async_node->root = root;
async_node->delayed_node = curr;
async_node->work.func = btrfs_async_run_delayed_node_done;
async_node->work.flags = 0;
btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
count++;
if (all || count < 4)
goto again;
return 0;
}
void btrfs_balance_delayed_items(struct btrfs_root *root)
{
struct btrfs_delayed_root *delayed_root;
delayed_root = btrfs_get_delayed_root(root);
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
return;
if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
int ret;
ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
if (ret)
return;
wait_event_interruptible_timeout(
delayed_root->wait,
(atomic_read(&delayed_root->items) <
BTRFS_DELAYED_BACKGROUND),
HZ);
return;
}
btrfs_wq_run_delayed_node(delayed_root, root, 0);
}
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
struct btrfs_root *root, const char *name,
int name_len, struct inode *dir,
struct btrfs_disk_key *disk_key, u8 type,
u64 index)
{
struct btrfs_delayed_node *delayed_node;
struct btrfs_delayed_item *delayed_item;
struct btrfs_dir_item *dir_item;
int ret;
delayed_node = btrfs_get_or_create_delayed_node(dir);
if (IS_ERR(delayed_node))
return PTR_ERR(delayed_node);
delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
if (!delayed_item) {
ret = -ENOMEM;
goto release_node;
}
ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
/*
* we have reserved enough space when we start a new transaction,
* so reserving metadata failure is impossible
*/
BUG_ON(ret);
delayed_item->key.objectid = dir->i_ino;
btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
delayed_item->key.offset = index;
dir_item = (struct btrfs_dir_item *)delayed_item->data;
dir_item->location = *disk_key;
dir_item->transid = cpu_to_le64(trans->transid);
dir_item->data_len = 0;
dir_item->name_len = cpu_to_le16(name_len);
dir_item->type = type;
memcpy((char *)(dir_item + 1), name, name_len);
mutex_lock(&delayed_node->mutex);
ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
if (unlikely(ret)) {
printk(KERN_ERR "err add delayed dir index item(name: %s) into "
"the insertion tree of the delayed node"
"(root id: %llu, inode id: %llu, errno: %d)\n",
name,
(unsigned long long)delayed_node->root->objectid,
(unsigned long long)delayed_node->inode_id,
ret);
BUG();
}
mutex_unlock(&delayed_node->mutex);
release_node:
btrfs_release_delayed_node(delayed_node);
return ret;
}
static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
struct btrfs_delayed_node *node,
struct btrfs_key *key)
{
struct btrfs_delayed_item *item;
mutex_lock(&node->mutex);
item = __btrfs_lookup_delayed_insertion_item(node, key);
if (!item) {
mutex_unlock(&node->mutex);
return 1;
}
btrfs_delayed_item_release_metadata(root, item);
btrfs_release_delayed_item(item);
mutex_unlock(&node->mutex);
return 0;
}
int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *dir,
u64 index)
{
struct btrfs_delayed_node *node;
struct btrfs_delayed_item *item;
struct btrfs_key item_key;
int ret;
node = btrfs_get_or_create_delayed_node(dir);
if (IS_ERR(node))
return PTR_ERR(node);
item_key.objectid = dir->i_ino;
btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
item_key.offset = index;
ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
if (!ret)
goto end;
item = btrfs_alloc_delayed_item(0);
if (!item) {
ret = -ENOMEM;
goto end;
}
item->key = item_key;
ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
/*
* we have reserved enough space when we start a new transaction,
* so reserving metadata failure is impossible.
*/
BUG_ON(ret);
mutex_lock(&node->mutex);
ret = __btrfs_add_delayed_deletion_item(node, item);
if (unlikely(ret)) {
printk(KERN_ERR "err add delayed dir index item(index: %llu) "
"into the deletion tree of the delayed node"
"(root id: %llu, inode id: %llu, errno: %d)\n",
(unsigned long long)index,
(unsigned long long)node->root->objectid,
(unsigned long long)node->inode_id,
ret);
BUG();
}
mutex_unlock(&node->mutex);
end:
btrfs_release_delayed_node(node);
return ret;
}
int btrfs_inode_delayed_dir_index_count(struct inode *inode)
{
struct btrfs_delayed_node *delayed_node = BTRFS_I(inode)->delayed_node;
int ret = 0;
if (!delayed_node)
return -ENOENT;
/*
* Since we have held i_mutex of this directory, it is impossible that
* a new directory index is added into the delayed node and index_cnt
* is updated now. So we needn't lock the delayed node.
*/
if (!delayed_node->index_cnt)
return -EINVAL;
BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
return ret;
}
void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
struct list_head *del_list)
{
struct btrfs_delayed_node *delayed_node;
struct btrfs_delayed_item *item;
delayed_node = btrfs_get_delayed_node(inode);
if (!delayed_node)
return;
mutex_lock(&delayed_node->mutex);
item = __btrfs_first_delayed_insertion_item(delayed_node);
while (item) {
atomic_inc(&item->refs);
list_add_tail(&item->readdir_list, ins_list);
item = __btrfs_next_delayed_item(item);
}
item = __btrfs_first_delayed_deletion_item(delayed_node);
while (item) {
atomic_inc(&item->refs);
list_add_tail(&item->readdir_list, del_list);
item = __btrfs_next_delayed_item(item);
}
mutex_unlock(&delayed_node->mutex);
/*
* This delayed node is still cached in the btrfs inode, so refs
* must be > 1 now, and we needn't check it is going to be freed
* or not.
*
* Besides that, this function is used to read dir, we do not
* insert/delete delayed items in this period. So we also needn't
* requeue or dequeue this delayed node.
*/
atomic_dec(&delayed_node->refs);
}
void btrfs_put_delayed_items(struct list_head *ins_list,
struct list_head *del_list)
{
struct btrfs_delayed_item *curr, *next;
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
list_del(&curr->readdir_list);
if (atomic_dec_and_test(&curr->refs))
kfree(curr);
}
list_for_each_entry_safe(curr, next, del_list, readdir_list) {
list_del(&curr->readdir_list);
if (atomic_dec_and_test(&curr->refs))
kfree(curr);
}
}
int btrfs_should_delete_dir_index(struct list_head *del_list,
u64 index)
{
struct btrfs_delayed_item *curr, *next;
int ret;
if (list_empty(del_list))
return 0;
list_for_each_entry_safe(curr, next, del_list, readdir_list) {
if (curr->key.offset > index)
break;
list_del(&curr->readdir_list);
ret = (curr->key.offset == index);
if (atomic_dec_and_test(&curr->refs))
kfree(curr);
if (ret)
return 1;
else
continue;
}
return 0;
}
/*
* btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
*
*/
int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
filldir_t filldir,
struct list_head *ins_list)
{
struct btrfs_dir_item *di;
struct btrfs_delayed_item *curr, *next;
struct btrfs_key location;
char *name;
int name_len;
int over = 0;
unsigned char d_type;
if (list_empty(ins_list))
return 0;
/*
* Changing the data of the delayed item is impossible. So
* we needn't lock them. And we have held i_mutex of the
* directory, nobody can delete any directory indexes now.
*/
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
list_del(&curr->readdir_list);
if (curr->key.offset < filp->f_pos) {
if (atomic_dec_and_test(&curr->refs))
kfree(curr);
continue;
}
filp->f_pos = curr->key.offset;
di = (struct btrfs_dir_item *)curr->data;
name = (char *)(di + 1);
name_len = le16_to_cpu(di->name_len);
d_type = btrfs_filetype_table[di->type];
btrfs_disk_key_to_cpu(&location, &di->location);
over = filldir(dirent, name, name_len, curr->key.offset,
location.objectid, d_type);
if (atomic_dec_and_test(&curr->refs))
kfree(curr);
if (over)
return 1;
}
return 0;
}
BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
generation, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
sequence, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
transid, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
nbytes, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
block_group, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
struct btrfs_inode_item *inode_item,
struct inode *inode)
{
btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
btrfs_set_stack_inode_generation(inode_item,
BTRFS_I(inode)->generation);
btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
btrfs_set_stack_inode_transid(inode_item, trans->transid);
btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
btrfs_set_stack_inode_block_group(inode_item,
BTRFS_I(inode)->block_group);
btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
inode->i_atime.tv_sec);
btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
inode->i_atime.tv_nsec);
btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
inode->i_mtime.tv_sec);
btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
inode->i_mtime.tv_nsec);
btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
inode->i_ctime.tv_sec);
btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
inode->i_ctime.tv_nsec);
}
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode)
{
struct btrfs_delayed_node *delayed_node;
int ret;
delayed_node = btrfs_get_or_create_delayed_node(inode);
if (IS_ERR(delayed_node))
return PTR_ERR(delayed_node);
mutex_lock(&delayed_node->mutex);
if (delayed_node->inode_dirty) {
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
goto release_node;
}
ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
/*
* we must reserve enough space when we start a new transaction,
* so reserving metadata failure is impossible
*/
BUG_ON(ret);
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
delayed_node->inode_dirty = 1;
delayed_node->count++;
atomic_inc(&root->fs_info->delayed_root->items);
release_node:
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return ret;
}
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
struct btrfs_root *root = delayed_node->root;
struct btrfs_delayed_item *curr_item, *prev_item;
mutex_lock(&delayed_node->mutex);
curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
while (curr_item) {
btrfs_delayed_item_release_metadata(root, curr_item);
prev_item = curr_item;
curr_item = __btrfs_next_delayed_item(prev_item);
btrfs_release_delayed_item(prev_item);
}
curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
while (curr_item) {
btrfs_delayed_item_release_metadata(root, curr_item);
prev_item = curr_item;
curr_item = __btrfs_next_delayed_item(prev_item);
btrfs_release_delayed_item(prev_item);
}
if (delayed_node->inode_dirty) {
btrfs_delayed_inode_release_metadata(root, delayed_node);
btrfs_release_delayed_inode(delayed_node);
}
mutex_unlock(&delayed_node->mutex);
}
void btrfs_kill_delayed_inode_items(struct inode *inode)
{
struct btrfs_delayed_node *delayed_node;
delayed_node = btrfs_get_delayed_node(inode);
if (!delayed_node)
return;
__btrfs_kill_delayed_node(delayed_node);
btrfs_release_delayed_node(delayed_node);
}
void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
u64 inode_id = 0;
struct btrfs_delayed_node *delayed_nodes[8];
int i, n;
while (1) {
spin_lock(&root->inode_lock);
n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
(void **)delayed_nodes, inode_id,
ARRAY_SIZE(delayed_nodes));
if (!n) {
spin_unlock(&root->inode_lock);
break;
}
inode_id = delayed_nodes[n - 1]->inode_id + 1;
for (i = 0; i < n; i++)
atomic_inc(&delayed_nodes[i]->refs);
spin_unlock(&root->inode_lock);
for (i = 0; i < n; i++) {
__btrfs_kill_delayed_node(delayed_nodes[i]);
btrfs_release_delayed_node(delayed_nodes[i]);
}
}
}
/*
* Copyright (C) 2011 Fujitsu. All rights reserved.
* Written by Miao Xie <miaox@cn.fujitsu.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef __DELAYED_TREE_OPERATION_H
#define __DELAYED_TREE_OPERATION_H
#include <linux/rbtree.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <asm/atomic.h>
#include "ctree.h"
/* types of the delayed item */
#define BTRFS_DELAYED_INSERTION_ITEM 1
#define BTRFS_DELAYED_DELETION_ITEM 2
struct btrfs_delayed_root {
spinlock_t lock;
struct list_head node_list;
/*
* Used for delayed nodes which is waiting to be dealt with by the
* worker. If the delayed node is inserted into the work queue, we
* drop it from this list.
*/
struct list_head prepare_list;
atomic_t items; /* for delayed items */
int nodes; /* for delayed nodes */
wait_queue_head_t wait;
};
struct btrfs_delayed_node {
u64 inode_id;
u64 bytes_reserved;
struct btrfs_root *root;
/* Used to add the node into the delayed root's node list. */
struct list_head n_list;
/*
* Used to add the node into the prepare list, the nodes in this list
* is waiting to be dealt with by the async worker.
*/
struct list_head p_list;
struct rb_root ins_root;
struct rb_root del_root;
struct mutex mutex;
struct btrfs_inode_item inode_item;
atomic_t refs;
u64 index_cnt;
bool in_list;
bool inode_dirty;
int count;
};
struct btrfs_delayed_item {
struct rb_node rb_node;
struct btrfs_key key;
struct list_head tree_list; /* used for batch insert/delete items */
struct list_head readdir_list; /* used for readdir items */
u64 bytes_reserved;
struct btrfs_block_rsv *block_rsv;
struct btrfs_delayed_node *delayed_node;
atomic_t refs;
int ins_or_del;
u32 data_len;
char data[0];
};
static inline void btrfs_init_delayed_root(
struct btrfs_delayed_root *delayed_root)
{
atomic_set(&delayed_root->items, 0);
delayed_root->nodes = 0;
spin_lock_init(&delayed_root->lock);
init_waitqueue_head(&delayed_root->wait);
INIT_LIST_HEAD(&delayed_root->node_list);
INIT_LIST_HEAD(&delayed_root->prepare_list);
}
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
struct btrfs_root *root, const char *name,
int name_len, struct inode *dir,
struct btrfs_disk_key *disk_key, u8 type,
u64 index);
int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *dir,
u64 index);
int btrfs_inode_delayed_dir_index_count(struct inode *inode);
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
void btrfs_balance_delayed_items(struct btrfs_root *root);
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
struct inode *inode);
/* Used for evicting the inode. */
void btrfs_remove_delayed_node(struct inode *inode);
void btrfs_kill_delayed_inode_items(struct inode *inode);
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode);
/* Used for drop dead root */
void btrfs_kill_all_delayed_nodes(struct btrfs_root *root);
/* Used for readdir() */
void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
struct list_head *del_list);
void btrfs_put_delayed_items(struct list_head *ins_list,
struct list_head *del_list);
int btrfs_should_delete_dir_index(struct list_head *del_list,
u64 index);
int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
filldir_t filldir,
struct list_head *ins_list);
/* for init */
int __init btrfs_delayed_inode_init(void);
void btrfs_delayed_inode_exit(void);
#endif
...@@ -124,8 +124,9 @@ int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, ...@@ -124,8 +124,9 @@ int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
* to use for the second index (if one is created). * to use for the second index (if one is created).
*/ */
int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
*root, const char *name, int name_len, u64 dir, *root, const char *name, int name_len,
struct btrfs_key *location, u8 type, u64 index) struct inode *dir, struct btrfs_key *location,
u8 type, u64 index)
{ {
int ret = 0; int ret = 0;
int ret2 = 0; int ret2 = 0;
...@@ -137,13 +138,17 @@ int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root ...@@ -137,13 +138,17 @@ int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
struct btrfs_disk_key disk_key; struct btrfs_disk_key disk_key;
u32 data_size; u32 data_size;
key.objectid = dir; key.objectid = dir->i_ino;
btrfs_set_key_type(&key, BTRFS_DIR_ITEM_KEY); btrfs_set_key_type(&key, BTRFS_DIR_ITEM_KEY);
key.offset = btrfs_name_hash(name, name_len); key.offset = btrfs_name_hash(name, name_len);
path = btrfs_alloc_path(); path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1; path->leave_spinning = 1;
btrfs_cpu_key_to_disk(&disk_key, location);
data_size = sizeof(*dir_item) + name_len; data_size = sizeof(*dir_item) + name_len;
dir_item = insert_with_overflow(trans, root, path, &key, data_size, dir_item = insert_with_overflow(trans, root, path, &key, data_size,
name, name_len); name, name_len);
...@@ -155,7 +160,6 @@ int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root ...@@ -155,7 +160,6 @@ int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
} }
leaf = path->nodes[0]; leaf = path->nodes[0];
btrfs_cpu_key_to_disk(&disk_key, location);
btrfs_set_dir_item_key(leaf, dir_item, &disk_key); btrfs_set_dir_item_key(leaf, dir_item, &disk_key);
btrfs_set_dir_type(leaf, dir_item, type); btrfs_set_dir_type(leaf, dir_item, type);
btrfs_set_dir_data_len(leaf, dir_item, 0); btrfs_set_dir_data_len(leaf, dir_item, 0);
...@@ -174,27 +178,9 @@ int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root ...@@ -174,27 +178,9 @@ int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
} }
btrfs_release_path(root, path); btrfs_release_path(root, path);
btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); ret2 = btrfs_insert_delayed_dir_index(trans, root, name, name_len, dir,
key.offset = index; &disk_key, type, index);
dir_item = insert_with_overflow(trans, root, path, &key, data_size,
name, name_len);
if (IS_ERR(dir_item)) {
ret2 = PTR_ERR(dir_item);
goto out_free;
}
leaf = path->nodes[0];
btrfs_cpu_key_to_disk(&disk_key, location);
btrfs_set_dir_item_key(leaf, dir_item, &disk_key);
btrfs_set_dir_type(leaf, dir_item, type);
btrfs_set_dir_data_len(leaf, dir_item, 0);
btrfs_set_dir_name_len(leaf, dir_item, name_len);
btrfs_set_dir_transid(leaf, dir_item, trans->transid);
name_ptr = (unsigned long)(dir_item + 1);
write_extent_buffer(leaf, name, name_ptr, name_len);
btrfs_mark_buffer_dirty(leaf);
out_free: out_free:
btrfs_free_path(path); btrfs_free_path(path);
if (ret) if (ret)
return ret; return ret;
......
...@@ -1059,6 +1059,7 @@ static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, ...@@ -1059,6 +1059,7 @@ static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
root->name = NULL; root->name = NULL;
root->in_sysfs = 0; root->in_sysfs = 0;
root->inode_tree = RB_ROOT; root->inode_tree = RB_ROOT;
INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
root->block_rsv = NULL; root->block_rsv = NULL;
root->orphan_block_rsv = NULL; root->orphan_block_rsv = NULL;
...@@ -1707,6 +1708,13 @@ struct btrfs_root *open_ctree(struct super_block *sb, ...@@ -1707,6 +1708,13 @@ struct btrfs_root *open_ctree(struct super_block *sb,
INIT_LIST_HEAD(&fs_info->ordered_extents); INIT_LIST_HEAD(&fs_info->ordered_extents);
spin_lock_init(&fs_info->ordered_extent_lock); spin_lock_init(&fs_info->ordered_extent_lock);
fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
GFP_NOFS);
if (!fs_info->delayed_root) {
err = -ENOMEM;
goto fail_iput;
}
btrfs_init_delayed_root(fs_info->delayed_root);
sb->s_blocksize = 4096; sb->s_blocksize = 4096;
sb->s_blocksize_bits = blksize_bits(4096); sb->s_blocksize_bits = blksize_bits(4096);
...@@ -1774,7 +1782,7 @@ struct btrfs_root *open_ctree(struct super_block *sb, ...@@ -1774,7 +1782,7 @@ struct btrfs_root *open_ctree(struct super_block *sb,
bh = btrfs_read_dev_super(fs_devices->latest_bdev); bh = btrfs_read_dev_super(fs_devices->latest_bdev);
if (!bh) { if (!bh) {
err = -EINVAL; err = -EINVAL;
goto fail_iput; goto fail_alloc;
} }
memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
...@@ -1786,7 +1794,7 @@ struct btrfs_root *open_ctree(struct super_block *sb, ...@@ -1786,7 +1794,7 @@ struct btrfs_root *open_ctree(struct super_block *sb,
disk_super = &fs_info->super_copy; disk_super = &fs_info->super_copy;
if (!btrfs_super_root(disk_super)) if (!btrfs_super_root(disk_super))
goto fail_iput; goto fail_alloc;
/* check FS state, whether FS is broken. */ /* check FS state, whether FS is broken. */
fs_info->fs_state |= btrfs_super_flags(disk_super); fs_info->fs_state |= btrfs_super_flags(disk_super);
...@@ -1802,7 +1810,7 @@ struct btrfs_root *open_ctree(struct super_block *sb, ...@@ -1802,7 +1810,7 @@ struct btrfs_root *open_ctree(struct super_block *sb,
ret = btrfs_parse_options(tree_root, options); ret = btrfs_parse_options(tree_root, options);
if (ret) { if (ret) {
err = ret; err = ret;
goto fail_iput; goto fail_alloc;
} }
features = btrfs_super_incompat_flags(disk_super) & features = btrfs_super_incompat_flags(disk_super) &
...@@ -1812,7 +1820,7 @@ struct btrfs_root *open_ctree(struct super_block *sb, ...@@ -1812,7 +1820,7 @@ struct btrfs_root *open_ctree(struct super_block *sb,
"unsupported optional features (%Lx).\n", "unsupported optional features (%Lx).\n",
(unsigned long long)features); (unsigned long long)features);
err = -EINVAL; err = -EINVAL;
goto fail_iput; goto fail_alloc;
} }
features = btrfs_super_incompat_flags(disk_super); features = btrfs_super_incompat_flags(disk_super);
...@@ -1828,7 +1836,7 @@ struct btrfs_root *open_ctree(struct super_block *sb, ...@@ -1828,7 +1836,7 @@ struct btrfs_root *open_ctree(struct super_block *sb,
"unsupported option features (%Lx).\n", "unsupported option features (%Lx).\n",
(unsigned long long)features); (unsigned long long)features);
err = -EINVAL; err = -EINVAL;
goto fail_iput; goto fail_alloc;
} }
btrfs_init_workers(&fs_info->generic_worker, btrfs_init_workers(&fs_info->generic_worker,
...@@ -1875,6 +1883,9 @@ struct btrfs_root *open_ctree(struct super_block *sb, ...@@ -1875,6 +1883,9 @@ struct btrfs_root *open_ctree(struct super_block *sb,
&fs_info->generic_worker); &fs_info->generic_worker);
btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1, &fs_info->generic_worker); 1, &fs_info->generic_worker);
btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
fs_info->thread_pool_size,
&fs_info->generic_worker);
/* /*
* endios are largely parallel and should have a very * endios are largely parallel and should have a very
...@@ -1896,6 +1907,7 @@ struct btrfs_root *open_ctree(struct super_block *sb, ...@@ -1896,6 +1907,7 @@ struct btrfs_root *open_ctree(struct super_block *sb,
btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
btrfs_start_workers(&fs_info->endio_write_workers, 1); btrfs_start_workers(&fs_info->endio_write_workers, 1);
btrfs_start_workers(&fs_info->endio_freespace_worker, 1); btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
btrfs_start_workers(&fs_info->delayed_workers, 1);
fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
...@@ -2152,6 +2164,9 @@ struct btrfs_root *open_ctree(struct super_block *sb, ...@@ -2152,6 +2164,9 @@ struct btrfs_root *open_ctree(struct super_block *sb,
btrfs_stop_workers(&fs_info->endio_write_workers); btrfs_stop_workers(&fs_info->endio_write_workers);
btrfs_stop_workers(&fs_info->endio_freespace_worker); btrfs_stop_workers(&fs_info->endio_freespace_worker);
btrfs_stop_workers(&fs_info->submit_workers); btrfs_stop_workers(&fs_info->submit_workers);
btrfs_stop_workers(&fs_info->delayed_workers);
fail_alloc:
kfree(fs_info->delayed_root);
fail_iput: fail_iput:
invalidate_inode_pages2(fs_info->btree_inode->i_mapping); invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
iput(fs_info->btree_inode); iput(fs_info->btree_inode);
...@@ -2597,6 +2612,7 @@ int close_ctree(struct btrfs_root *root) ...@@ -2597,6 +2612,7 @@ int close_ctree(struct btrfs_root *root)
del_fs_roots(fs_info); del_fs_roots(fs_info);
iput(fs_info->btree_inode); iput(fs_info->btree_inode);
kfree(fs_info->delayed_root);
btrfs_stop_workers(&fs_info->generic_worker); btrfs_stop_workers(&fs_info->generic_worker);
btrfs_stop_workers(&fs_info->fixup_workers); btrfs_stop_workers(&fs_info->fixup_workers);
...@@ -2608,6 +2624,7 @@ int close_ctree(struct btrfs_root *root) ...@@ -2608,6 +2624,7 @@ int close_ctree(struct btrfs_root *root)
btrfs_stop_workers(&fs_info->endio_write_workers); btrfs_stop_workers(&fs_info->endio_write_workers);
btrfs_stop_workers(&fs_info->endio_freespace_worker); btrfs_stop_workers(&fs_info->endio_freespace_worker);
btrfs_stop_workers(&fs_info->submit_workers); btrfs_stop_workers(&fs_info->submit_workers);
btrfs_stop_workers(&fs_info->delayed_workers);
btrfs_close_devices(fs_info->fs_devices); btrfs_close_devices(fs_info->fs_devices);
btrfs_mapping_tree_free(&fs_info->mapping_tree); btrfs_mapping_tree_free(&fs_info->mapping_tree);
...@@ -2681,6 +2698,29 @@ void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) ...@@ -2681,6 +2698,29 @@ void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
u64 num_dirty; u64 num_dirty;
unsigned long thresh = 32 * 1024 * 1024; unsigned long thresh = 32 * 1024 * 1024;
if (current->flags & PF_MEMALLOC)
return;
btrfs_balance_delayed_items(root);
num_dirty = root->fs_info->dirty_metadata_bytes;
if (num_dirty > thresh) {
balance_dirty_pages_ratelimited_nr(
root->fs_info->btree_inode->i_mapping, 1);
}
return;
}
void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
{
/*
* looks as though older kernels can get into trouble with
* this code, they end up stuck in balance_dirty_pages forever
*/
u64 num_dirty;
unsigned long thresh = 32 * 1024 * 1024;
if (current->flags & PF_MEMALLOC) if (current->flags & PF_MEMALLOC)
return; return;
......
...@@ -71,6 +71,7 @@ int btrfs_insert_dev_radix(struct btrfs_root *root, ...@@ -71,6 +71,7 @@ int btrfs_insert_dev_radix(struct btrfs_root *root,
u64 block_start, u64 block_start,
u64 num_blocks); u64 num_blocks);
void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr); void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr);
void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr);
int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root); int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root);
void btrfs_mark_buffer_dirty(struct extent_buffer *buf); void btrfs_mark_buffer_dirty(struct extent_buffer *buf);
void btrfs_mark_buffer_dirty_nonblocking(struct extent_buffer *buf); void btrfs_mark_buffer_dirty_nonblocking(struct extent_buffer *buf);
......
...@@ -3975,12 +3975,6 @@ static void release_global_block_rsv(struct btrfs_fs_info *fs_info) ...@@ -3975,12 +3975,6 @@ static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
WARN_ON(fs_info->chunk_block_rsv.reserved > 0); WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
} }
static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
{
return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3 * num_items;
}
int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans, int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct btrfs_root *root,
int num_items) int num_items)
...@@ -3991,7 +3985,7 @@ int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans, ...@@ -3991,7 +3985,7 @@ int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
if (num_items == 0 || root->fs_info->chunk_root == root) if (num_items == 0 || root->fs_info->chunk_root == root)
return 0; return 0;
num_bytes = calc_trans_metadata_size(root, num_items); num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv, ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
num_bytes); num_bytes);
if (!ret) { if (!ret) {
...@@ -4030,14 +4024,14 @@ int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, ...@@ -4030,14 +4024,14 @@ int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
* If all of the metadata space is used, we can commit * If all of the metadata space is used, we can commit
* transaction and use space it freed. * transaction and use space it freed.
*/ */
u64 num_bytes = calc_trans_metadata_size(root, 4); u64 num_bytes = btrfs_calc_trans_metadata_size(root, 4);
return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
} }
void btrfs_orphan_release_metadata(struct inode *inode) void btrfs_orphan_release_metadata(struct inode *inode)
{ {
struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_root *root = BTRFS_I(inode)->root;
u64 num_bytes = calc_trans_metadata_size(root, 4); u64 num_bytes = btrfs_calc_trans_metadata_size(root, 4);
btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
} }
...@@ -4051,7 +4045,7 @@ int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, ...@@ -4051,7 +4045,7 @@ int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
* two for root back/forward refs, two for directory entries * two for root back/forward refs, two for directory entries
* and one for root of the snapshot. * and one for root of the snapshot.
*/ */
u64 num_bytes = calc_trans_metadata_size(root, 5); u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
dst_rsv->space_info = src_rsv->space_info; dst_rsv->space_info = src_rsv->space_info;
return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
} }
...@@ -4080,7 +4074,7 @@ int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) ...@@ -4080,7 +4074,7 @@ int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
if (nr_extents > reserved_extents) { if (nr_extents > reserved_extents) {
nr_extents -= reserved_extents; nr_extents -= reserved_extents;
to_reserve = calc_trans_metadata_size(root, nr_extents); to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
} else { } else {
nr_extents = 0; nr_extents = 0;
to_reserve = 0; to_reserve = 0;
...@@ -4134,7 +4128,7 @@ void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) ...@@ -4134,7 +4128,7 @@ void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
to_free = calc_csum_metadata_size(inode, num_bytes); to_free = calc_csum_metadata_size(inode, num_bytes);
if (nr_extents > 0) if (nr_extents > 0)
to_free += calc_trans_metadata_size(root, nr_extents); to_free += btrfs_calc_trans_metadata_size(root, nr_extents);
btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
to_free); to_free);
......
...@@ -2659,11 +2659,26 @@ noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, ...@@ -2659,11 +2659,26 @@ noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
struct extent_buffer *leaf; struct extent_buffer *leaf;
int ret; int ret;
/*
* If root is tree root, it means this inode is used to
* store free space information. And these inodes are updated
* when committing the transaction, so they needn't delaye to
* be updated, or deadlock will occured.
*/
if (!is_free_space_inode(root, inode)) {
ret = btrfs_delayed_update_inode(trans, root, inode);
if (!ret)
btrfs_set_inode_last_trans(trans, inode);
return ret;
}
path = btrfs_alloc_path(); path = btrfs_alloc_path();
BUG_ON(!path); if (!path)
return -ENOMEM;
path->leave_spinning = 1; path->leave_spinning = 1;
ret = btrfs_lookup_inode(trans, root, path, ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
&BTRFS_I(inode)->location, 1); 1);
if (ret) { if (ret) {
if (ret > 0) if (ret > 0)
ret = -ENOENT; ret = -ENOENT;
...@@ -2673,7 +2688,7 @@ noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, ...@@ -2673,7 +2688,7 @@ noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
btrfs_unlock_up_safe(path, 1); btrfs_unlock_up_safe(path, 1);
leaf = path->nodes[0]; leaf = path->nodes[0];
inode_item = btrfs_item_ptr(leaf, path->slots[0], inode_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_inode_item); struct btrfs_inode_item);
fill_inode_item(trans, leaf, inode_item, inode); fill_inode_item(trans, leaf, inode_item, inode);
btrfs_mark_buffer_dirty(leaf); btrfs_mark_buffer_dirty(leaf);
...@@ -2684,7 +2699,6 @@ noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, ...@@ -2684,7 +2699,6 @@ noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
return ret; return ret;
} }
/* /*
* unlink helper that gets used here in inode.c and in the tree logging * unlink helper that gets used here in inode.c and in the tree logging
* recovery code. It remove a link in a directory with a given name, and * recovery code. It remove a link in a directory with a given name, and
...@@ -2737,18 +2751,9 @@ static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, ...@@ -2737,18 +2751,9 @@ static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
goto err; goto err;
} }
di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
index, name, name_len, -1); if (ret)
if (IS_ERR(di)) {
ret = PTR_ERR(di);
goto err;
}
if (!di) {
ret = -ENOENT;
goto err; goto err;
}
ret = btrfs_delete_one_dir_name(trans, root, path, di);
btrfs_release_path(root, path);
ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
inode, dir_ino); inode, dir_ino);
...@@ -2939,6 +2944,14 @@ static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, ...@@ -2939,6 +2944,14 @@ static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
index = btrfs_inode_ref_index(path->nodes[0], ref); index = btrfs_inode_ref_index(path->nodes[0], ref);
btrfs_release_path(root, path); btrfs_release_path(root, path);
/*
* This is a commit root search, if we can lookup inode item and other
* relative items in the commit root, it means the transaction of
* dir/file creation has been committed, and the dir index item that we
* delay to insert has also been inserted into the commit root. So
* we needn't worry about the delayed insertion of the dir index item
* here.
*/
di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
dentry->d_name.name, dentry->d_name.len, 0); dentry->d_name.name, dentry->d_name.len, 0);
if (IS_ERR(di)) { if (IS_ERR(di)) {
...@@ -3045,24 +3058,16 @@ int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, ...@@ -3045,24 +3058,16 @@ int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
btrfs_release_path(root, path); btrfs_release_path(root, path);
index = key.offset; index = key.offset;
} }
btrfs_release_path(root, path);
di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
index, name, name_len, -1);
BUG_ON(!di || IS_ERR(di));
leaf = path->nodes[0];
btrfs_dir_item_key_to_cpu(leaf, di, &key);
WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
ret = btrfs_delete_one_dir_name(trans, root, path, di);
BUG_ON(ret); BUG_ON(ret);
btrfs_release_path(root, path);
btrfs_i_size_write(dir, dir->i_size - name_len * 2); btrfs_i_size_write(dir, dir->i_size - name_len * 2);
dir->i_mtime = dir->i_ctime = CURRENT_TIME; dir->i_mtime = dir->i_ctime = CURRENT_TIME;
ret = btrfs_update_inode(trans, root, dir); ret = btrfs_update_inode(trans, root, dir);
BUG_ON(ret); BUG_ON(ret);
btrfs_free_path(path);
return 0; return 0;
} }
...@@ -3323,6 +3328,15 @@ int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, ...@@ -3323,6 +3328,15 @@ int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
if (root->ref_cows || root == root->fs_info->tree_root) if (root->ref_cows || root == root->fs_info->tree_root)
btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
/*
* This function is also used to drop the items in the log tree before
* we relog the inode, so if root != BTRFS_I(inode)->root, it means
* it is used to drop the loged items. So we shouldn't kill the delayed
* items.
*/
if (min_type == 0 && root == BTRFS_I(inode)->root)
btrfs_kill_delayed_inode_items(inode);
path = btrfs_alloc_path(); path = btrfs_alloc_path();
BUG_ON(!path); BUG_ON(!path);
path->reada = -1; path->reada = -1;
...@@ -4232,7 +4246,7 @@ static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, ...@@ -4232,7 +4246,7 @@ static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
return d_splice_alias(inode, dentry); return d_splice_alias(inode, dentry);
} }
static unsigned char btrfs_filetype_table[] = { unsigned char btrfs_filetype_table[] = {
DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
}; };
...@@ -4246,6 +4260,8 @@ static int btrfs_real_readdir(struct file *filp, void *dirent, ...@@ -4246,6 +4260,8 @@ static int btrfs_real_readdir(struct file *filp, void *dirent,
struct btrfs_key key; struct btrfs_key key;
struct btrfs_key found_key; struct btrfs_key found_key;
struct btrfs_path *path; struct btrfs_path *path;
struct list_head ins_list;
struct list_head del_list;
int ret; int ret;
struct extent_buffer *leaf; struct extent_buffer *leaf;
int slot; int slot;
...@@ -4258,6 +4274,7 @@ static int btrfs_real_readdir(struct file *filp, void *dirent, ...@@ -4258,6 +4274,7 @@ static int btrfs_real_readdir(struct file *filp, void *dirent,
char tmp_name[32]; char tmp_name[32];
char *name_ptr; char *name_ptr;
int name_len; int name_len;
int is_curr = 0; /* filp->f_pos points to the current index? */
/* FIXME, use a real flag for deciding about the key type */ /* FIXME, use a real flag for deciding about the key type */
if (root->fs_info->tree_root == root) if (root->fs_info->tree_root == root)
...@@ -4280,8 +4297,16 @@ static int btrfs_real_readdir(struct file *filp, void *dirent, ...@@ -4280,8 +4297,16 @@ static int btrfs_real_readdir(struct file *filp, void *dirent,
filp->f_pos = 2; filp->f_pos = 2;
} }
path = btrfs_alloc_path(); path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = 2; path->reada = 2;
if (key_type == BTRFS_DIR_INDEX_KEY) {
INIT_LIST_HEAD(&ins_list);
INIT_LIST_HEAD(&del_list);
btrfs_get_delayed_items(inode, &ins_list, &del_list);
}
btrfs_set_key_type(&key, key_type); btrfs_set_key_type(&key, key_type);
key.offset = filp->f_pos; key.offset = filp->f_pos;
key.objectid = btrfs_ino(inode); key.objectid = btrfs_ino(inode);
...@@ -4311,8 +4336,13 @@ static int btrfs_real_readdir(struct file *filp, void *dirent, ...@@ -4311,8 +4336,13 @@ static int btrfs_real_readdir(struct file *filp, void *dirent,
break; break;
if (found_key.offset < filp->f_pos) if (found_key.offset < filp->f_pos)
goto next; goto next;
if (key_type == BTRFS_DIR_INDEX_KEY &&
btrfs_should_delete_dir_index(&del_list,
found_key.offset))
goto next;
filp->f_pos = found_key.offset; filp->f_pos = found_key.offset;
is_curr = 1;
di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
di_cur = 0; di_cur = 0;
...@@ -4367,6 +4397,15 @@ static int btrfs_real_readdir(struct file *filp, void *dirent, ...@@ -4367,6 +4397,15 @@ static int btrfs_real_readdir(struct file *filp, void *dirent,
path->slots[0]++; path->slots[0]++;
} }
if (key_type == BTRFS_DIR_INDEX_KEY) {
if (is_curr)
filp->f_pos++;
ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
&ins_list);
if (ret)
goto nopos;
}
/* Reached end of directory/root. Bump pos past the last item. */ /* Reached end of directory/root. Bump pos past the last item. */
if (key_type == BTRFS_DIR_INDEX_KEY) if (key_type == BTRFS_DIR_INDEX_KEY)
/* /*
...@@ -4379,6 +4418,8 @@ static int btrfs_real_readdir(struct file *filp, void *dirent, ...@@ -4379,6 +4418,8 @@ static int btrfs_real_readdir(struct file *filp, void *dirent,
nopos: nopos:
ret = 0; ret = 0;
err: err:
if (key_type == BTRFS_DIR_INDEX_KEY)
btrfs_put_delayed_items(&ins_list, &del_list);
btrfs_free_path(path); btrfs_free_path(path);
return ret; return ret;
} }
...@@ -4459,6 +4500,8 @@ void btrfs_dirty_inode(struct inode *inode) ...@@ -4459,6 +4500,8 @@ void btrfs_dirty_inode(struct inode *inode)
} }
} }
btrfs_end_transaction(trans, root); btrfs_end_transaction(trans, root);
if (BTRFS_I(inode)->delayed_node)
btrfs_balance_delayed_items(root);
} }
/* /*
...@@ -4527,9 +4570,12 @@ int btrfs_set_inode_index(struct inode *dir, u64 *index) ...@@ -4527,9 +4570,12 @@ int btrfs_set_inode_index(struct inode *dir, u64 *index)
int ret = 0; int ret = 0;
if (BTRFS_I(dir)->index_cnt == (u64)-1) { if (BTRFS_I(dir)->index_cnt == (u64)-1) {
ret = btrfs_set_inode_index_count(dir); ret = btrfs_inode_delayed_dir_index_count(dir);
if (ret) if (ret) {
return ret; ret = btrfs_set_inode_index_count(dir);
if (ret)
return ret;
}
} }
*index = BTRFS_I(dir)->index_cnt; *index = BTRFS_I(dir)->index_cnt;
...@@ -4701,7 +4747,7 @@ int btrfs_add_link(struct btrfs_trans_handle *trans, ...@@ -4701,7 +4747,7 @@ int btrfs_add_link(struct btrfs_trans_handle *trans,
if (ret == 0) { if (ret == 0) {
ret = btrfs_insert_dir_item(trans, root, name, name_len, ret = btrfs_insert_dir_item(trans, root, name, name_len,
parent_ino, &key, parent_inode, &key,
btrfs_inode_type(inode), index); btrfs_inode_type(inode), index);
BUG_ON(ret); BUG_ON(ret);
...@@ -6816,6 +6862,8 @@ struct inode *btrfs_alloc_inode(struct super_block *sb) ...@@ -6816,6 +6862,8 @@ struct inode *btrfs_alloc_inode(struct super_block *sb)
ei->dummy_inode = 0; ei->dummy_inode = 0;
ei->force_compress = BTRFS_COMPRESS_NONE; ei->force_compress = BTRFS_COMPRESS_NONE;
ei->delayed_node = NULL;
inode = &ei->vfs_inode; inode = &ei->vfs_inode;
extent_map_tree_init(&ei->extent_tree, GFP_NOFS); extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS); extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
...@@ -6906,6 +6954,7 @@ void btrfs_destroy_inode(struct inode *inode) ...@@ -6906,6 +6954,7 @@ void btrfs_destroy_inode(struct inode *inode)
inode_tree_del(inode); inode_tree_del(inode);
btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
free: free:
btrfs_remove_delayed_node(inode);
call_rcu(&inode->i_rcu, btrfs_i_callback); call_rcu(&inode->i_rcu, btrfs_i_callback);
} }
......
...@@ -422,7 +422,7 @@ static noinline int create_subvol(struct btrfs_root *root, ...@@ -422,7 +422,7 @@ static noinline int create_subvol(struct btrfs_root *root,
BUG_ON(ret); BUG_ON(ret);
ret = btrfs_insert_dir_item(trans, root, ret = btrfs_insert_dir_item(trans, root,
name, namelen, btrfs_ino(dir), &key, name, namelen, dir, &key,
BTRFS_FT_DIR, index); BTRFS_FT_DIR, index);
if (ret) if (ret)
goto fail; goto fail;
......
...@@ -40,6 +40,7 @@ ...@@ -40,6 +40,7 @@
#include <linux/magic.h> #include <linux/magic.h>
#include <linux/slab.h> #include <linux/slab.h>
#include "compat.h" #include "compat.h"
#include "delayed-inode.h"
#include "ctree.h" #include "ctree.h"
#include "disk-io.h" #include "disk-io.h"
#include "transaction.h" #include "transaction.h"
...@@ -1206,10 +1207,14 @@ static int __init init_btrfs_fs(void) ...@@ -1206,10 +1207,14 @@ static int __init init_btrfs_fs(void)
if (err) if (err)
goto free_extent_io; goto free_extent_io;
err = btrfs_interface_init(); err = btrfs_delayed_inode_init();
if (err) if (err)
goto free_extent_map; goto free_extent_map;
err = btrfs_interface_init();
if (err)
goto free_delayed_inode;
err = register_filesystem(&btrfs_fs_type); err = register_filesystem(&btrfs_fs_type);
if (err) if (err)
goto unregister_ioctl; goto unregister_ioctl;
...@@ -1219,6 +1224,8 @@ static int __init init_btrfs_fs(void) ...@@ -1219,6 +1224,8 @@ static int __init init_btrfs_fs(void)
unregister_ioctl: unregister_ioctl:
btrfs_interface_exit(); btrfs_interface_exit();
free_delayed_inode:
btrfs_delayed_inode_exit();
free_extent_map: free_extent_map:
extent_map_exit(); extent_map_exit();
free_extent_io: free_extent_io:
...@@ -1235,6 +1242,7 @@ static int __init init_btrfs_fs(void) ...@@ -1235,6 +1242,7 @@ static int __init init_btrfs_fs(void)
static void __exit exit_btrfs_fs(void) static void __exit exit_btrfs_fs(void)
{ {
btrfs_destroy_cachep(); btrfs_destroy_cachep();
btrfs_delayed_inode_exit();
extent_map_exit(); extent_map_exit();
extent_io_exit(); extent_io_exit();
btrfs_interface_exit(); btrfs_interface_exit();
......
...@@ -488,19 +488,40 @@ static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, ...@@ -488,19 +488,40 @@ static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
int btrfs_end_transaction(struct btrfs_trans_handle *trans, int btrfs_end_transaction(struct btrfs_trans_handle *trans,
struct btrfs_root *root) struct btrfs_root *root)
{ {
return __btrfs_end_transaction(trans, root, 0, 1); int ret;
ret = __btrfs_end_transaction(trans, root, 0, 1);
if (ret)
return ret;
return 0;
} }
int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
struct btrfs_root *root) struct btrfs_root *root)
{ {
return __btrfs_end_transaction(trans, root, 1, 1); int ret;
ret = __btrfs_end_transaction(trans, root, 1, 1);
if (ret)
return ret;
return 0;
} }
int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans, int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
struct btrfs_root *root) struct btrfs_root *root)
{ {
return __btrfs_end_transaction(trans, root, 0, 0); int ret;
ret = __btrfs_end_transaction(trans, root, 0, 0);
if (ret)
return ret;
return 0;
}
int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
return __btrfs_end_transaction(trans, root, 1, 1);
} }
/* /*
...@@ -974,7 +995,7 @@ static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, ...@@ -974,7 +995,7 @@ static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
BUG_ON(ret); BUG_ON(ret);
ret = btrfs_insert_dir_item(trans, parent_root, ret = btrfs_insert_dir_item(trans, parent_root,
dentry->d_name.name, dentry->d_name.len, dentry->d_name.name, dentry->d_name.len,
btrfs_ino(parent_inode), &key, parent_inode, &key,
BTRFS_FT_DIR, index); BTRFS_FT_DIR, index);
BUG_ON(ret); BUG_ON(ret);
...@@ -1044,6 +1065,14 @@ static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, ...@@ -1044,6 +1065,14 @@ static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
int ret; int ret;
list_for_each_entry(pending, head, list) { list_for_each_entry(pending, head, list) {
/*
* We must deal with the delayed items before creating
* snapshots, or we will create a snapthot with inconsistent
* information.
*/
ret = btrfs_run_delayed_items(trans, fs_info->fs_root);
BUG_ON(ret);
ret = create_pending_snapshot(trans, fs_info, pending); ret = create_pending_snapshot(trans, fs_info, pending);
BUG_ON(ret); BUG_ON(ret);
} }
...@@ -1297,6 +1326,9 @@ int btrfs_commit_transaction(struct btrfs_trans_handle *trans, ...@@ -1297,6 +1326,9 @@ int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
BUG_ON(ret); BUG_ON(ret);
} }
ret = btrfs_run_delayed_items(trans, root);
BUG_ON(ret);
/* /*
* rename don't use btrfs_join_transaction, so, once we * rename don't use btrfs_join_transaction, so, once we
* set the transaction to blocked above, we aren't going * set the transaction to blocked above, we aren't going
...@@ -1323,6 +1355,9 @@ int btrfs_commit_transaction(struct btrfs_trans_handle *trans, ...@@ -1323,6 +1355,9 @@ int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
ret = create_pending_snapshots(trans, root->fs_info); ret = create_pending_snapshots(trans, root->fs_info);
BUG_ON(ret); BUG_ON(ret);
ret = btrfs_run_delayed_items(trans, root);
BUG_ON(ret);
ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
BUG_ON(ret); BUG_ON(ret);
...@@ -1439,6 +1474,8 @@ int btrfs_clean_old_snapshots(struct btrfs_root *root) ...@@ -1439,6 +1474,8 @@ int btrfs_clean_old_snapshots(struct btrfs_root *root)
root = list_entry(list.next, struct btrfs_root, root_list); root = list_entry(list.next, struct btrfs_root, root_list);
list_del(&root->root_list); list_del(&root->root_list);
btrfs_kill_all_delayed_nodes(root);
if (btrfs_header_backref_rev(root->node) < if (btrfs_header_backref_rev(root->node) <
BTRFS_MIXED_BACKREF_REV) BTRFS_MIXED_BACKREF_REV)
btrfs_drop_snapshot(root, NULL, 0); btrfs_drop_snapshot(root, NULL, 0);
......
...@@ -115,6 +115,8 @@ int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, ...@@ -115,6 +115,8 @@ int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
int wait_for_unblock); int wait_for_unblock);
int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
struct btrfs_root *root); struct btrfs_root *root);
int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
struct btrfs_root *root); struct btrfs_root *root);
void btrfs_throttle(struct btrfs_root *root); void btrfs_throttle(struct btrfs_root *root);
......
...@@ -2774,6 +2774,13 @@ static int btrfs_log_inode(struct btrfs_trans_handle *trans, ...@@ -2774,6 +2774,13 @@ static int btrfs_log_inode(struct btrfs_trans_handle *trans,
max_key.type = (u8)-1; max_key.type = (u8)-1;
max_key.offset = (u64)-1; max_key.offset = (u64)-1;
ret = btrfs_commit_inode_delayed_items(trans, inode);
if (ret) {
btrfs_free_path(path);
btrfs_free_path(dst_path);
return ret;
}
mutex_lock(&BTRFS_I(inode)->log_mutex); mutex_lock(&BTRFS_I(inode)->log_mutex);
/* /*
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment