Commit dd96a8e0 authored by Linus Torvalds's avatar Linus Torvalds

Merge of master.kernel.org:/home/rmk/linux-2.6-rmk.git

parents a879cbbb 53e173f6
...@@ -133,7 +133,7 @@ CONFIG_ALIGNMENT_TRAP=y ...@@ -133,7 +133,7 @@ CONFIG_ALIGNMENT_TRAP=y
# #
CONFIG_ZBOOT_ROM_TEXT=0x0 CONFIG_ZBOOT_ROM_TEXT=0x0
CONFIG_ZBOOT_ROM_BSS=0x0 CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_CMDLINE="console=ttyS0,9600 root=/dev/nfs ip=bootp mem=64M@0x0 pci=firmware" CONFIG_CMDLINE="console=ttyS0,9600 root=/dev/nfs ip=bootp mem=64M@0x0"
# CONFIG_XIP_KERNEL is not set # CONFIG_XIP_KERNEL is not set
# #
......
...@@ -269,6 +269,12 @@ __pabt_svc: ...@@ -269,6 +269,12 @@ __pabt_svc:
add r5, sp, #S_PC add r5, sp, #S_PC
ldmia r7, {r2 - r4} @ Get USR pc, cpsr ldmia r7, {r2 - r4} @ Get USR pc, cpsr
#if __LINUX_ARM_ARCH__ < 6
@ make sure our user space atomic helper is aborted
cmp r2, #VIRT_OFFSET
bichs r3, r3, #PSR_Z_BIT
#endif
@ @
@ We are now ready to fill in the remaining blanks on the stack: @ We are now ready to fill in the remaining blanks on the stack:
@ @
...@@ -499,8 +505,12 @@ ENTRY(__switch_to) ...@@ -499,8 +505,12 @@ ENTRY(__switch_to)
mra r4, r5, acc0 mra r4, r5, acc0
stmia ip, {r4, r5} stmia ip, {r4, r5}
#endif #endif
#ifdef CONFIG_HAS_TLS_REG
mcr p15, 0, r3, c13, c0, 3 @ set TLS register
#else
mov r4, #0xffff0fff mov r4, #0xffff0fff
str r3, [r4, #-3] @ Set TLS ptr str r3, [r4, #-15] @ TLS val at 0xffff0ff0
#endif
mcr p15, 0, r6, c3, c0, 0 @ Set domain register mcr p15, 0, r6, c3, c0, 0 @ Set domain register
#ifdef CONFIG_VFP #ifdef CONFIG_VFP
@ Always disable VFP so we can lazily save/restore the old @ Always disable VFP so we can lazily save/restore the old
...@@ -519,6 +529,207 @@ ENTRY(__switch_to) ...@@ -519,6 +529,207 @@ ENTRY(__switch_to)
ldmib r2, {r4 - sl, fp, sp, pc} @ Load all regs saved previously ldmib r2, {r4 - sl, fp, sp, pc} @ Load all regs saved previously
__INIT __INIT
/*
* User helpers.
*
* These are segment of kernel provided user code reachable from user space
* at a fixed address in kernel memory. This is used to provide user space
* with some operations which require kernel help because of unimplemented
* native feature and/or instructions in many ARM CPUs. The idea is for
* this code to be executed directly in user mode for best efficiency but
* which is too intimate with the kernel counter part to be left to user
* libraries. In fact this code might even differ from one CPU to another
* depending on the available instruction set and restrictions like on
* SMP systems. In other words, the kernel reserves the right to change
* this code as needed without warning. Only the entry points and their
* results are guaranteed to be stable.
*
* Each segment is 32-byte aligned and will be moved to the top of the high
* vector page. New segments (if ever needed) must be added in front of
* existing ones. This mechanism should be used only for things that are
* really small and justified, and not be abused freely.
*
* User space is expected to implement those things inline when optimizing
* for a processor that has the necessary native support, but only if such
* resulting binaries are already to be incompatible with earlier ARM
* processors due to the use of unsupported instructions other than what
* is provided here. In other words don't make binaries unable to run on
* earlier processors just for the sake of not using these kernel helpers
* if your compiled code is not going to use the new instructions for other
* purpose.
*/
.align 5
.globl __kuser_helper_start
__kuser_helper_start:
/*
* Reference prototype:
*
* int __kernel_cmpxchg(int oldval, int newval, int *ptr)
*
* Input:
*
* r0 = oldval
* r1 = newval
* r2 = ptr
* lr = return address
*
* Output:
*
* r0 = returned value (zero or non-zero)
* C flag = set if r0 == 0, clear if r0 != 0
*
* Clobbered:
*
* r3, ip, flags
*
* Definition and user space usage example:
*
* typedef int (__kernel_cmpxchg_t)(int oldval, int newval, int *ptr);
* #define __kernel_cmpxchg (*(__kernel_cmpxchg_t *)0xffff0fc0)
*
* Atomically store newval in *ptr if *ptr is equal to oldval for user space.
* Return zero if *ptr was changed or non-zero if no exchange happened.
* The C flag is also set if *ptr was changed to allow for assembly
* optimization in the calling code.
*
* For example, a user space atomic_add implementation could look like this:
*
* #define atomic_add(ptr, val) \
* ({ register unsigned int *__ptr asm("r2") = (ptr); \
* register unsigned int __result asm("r1"); \
* asm volatile ( \
* "1: @ atomic_add\n\t" \
* "ldr r0, [r2]\n\t" \
* "mov r3, #0xffff0fff\n\t" \
* "add lr, pc, #4\n\t" \
* "add r1, r0, %2\n\t" \
* "add pc, r3, #(0xffff0fc0 - 0xffff0fff)\n\t" \
* "bcc 1b" \
* : "=&r" (__result) \
* : "r" (__ptr), "rIL" (val) \
* : "r0","r3","ip","lr","cc","memory" ); \
* __result; })
*/
__kuser_cmpxchg: @ 0xffff0fc0
#if __LINUX_ARM_ARCH__ < 6
#ifdef CONFIG_SMP /* sanity check */
#error "CONFIG_SMP on a machine supporting pre-ARMv6 processors?"
#endif
/*
* Theory of operation:
*
* We set the Z flag before loading oldval. If ever an exception
* occurs we can not be sure the loaded value will still be the same
* when the exception returns, therefore the user exception handler
* will clear the Z flag whenever the interrupted user code was
* actually from the kernel address space (see the usr_entry macro).
*
* The post-increment on the str is used to prevent a race with an
* exception happening just after the str instruction which would
* clear the Z flag although the exchange was done.
*/
teq ip, ip @ set Z flag
ldr ip, [r2] @ load current val
add r3, r2, #1 @ prepare store ptr
teqeq ip, r0 @ compare with oldval if still allowed
streq r1, [r3, #-1]! @ store newval if still allowed
subs r0, r2, r3 @ if r2 == r3 the str occured
mov pc, lr
#else
ldrex r3, [r2]
subs r3, r3, r0
strexeq r3, r1, [r2]
rsbs r0, r3, #0
mov pc, lr
#endif
.align 5
/*
* Reference prototype:
*
* int __kernel_get_tls(void)
*
* Input:
*
* lr = return address
*
* Output:
*
* r0 = TLS value
*
* Clobbered:
*
* the Z flag might be lost
*
* Definition and user space usage example:
*
* typedef int (__kernel_get_tls_t)(void);
* #define __kernel_get_tls (*(__kernel_get_tls_t *)0xffff0fe0)
*
* Get the TLS value as previously set via the __ARM_NR_set_tls syscall.
*
* This could be used as follows:
*
* #define __kernel_get_tls() \
* ({ register unsigned int __val asm("r0"); \
* asm( "mov r0, #0xffff0fff; mov lr, pc; sub pc, r0, #31" \
* : "=r" (__val) : : "lr","cc" ); \
* __val; })
*/
__kuser_get_tls: @ 0xffff0fe0
#ifndef CONFIG_HAS_TLS_REG
#ifdef CONFIG_SMP /* sanity check */
#error "CONFIG_SMP without CONFIG_HAS_TLS_REG is wrong"
#endif
ldr r0, [pc, #(16 - 8)] @ TLS stored at 0xffff0ff0
mov pc, lr
#else
mrc p15, 0, r0, c13, c0, 3 @ read TLS register
mov pc, lr
#endif
.rep 5
.word 0 @ pad up to __kuser_helper_version
.endr
/*
* Reference declaration:
*
* extern unsigned int __kernel_helper_version;
*
* Definition and user space usage example:
*
* #define __kernel_helper_version (*(unsigned int *)0xffff0ffc)
*
* User space may read this to determine the curent number of helpers
* available.
*/
__kuser_helper_version: @ 0xffff0ffc
.word ((__kuser_helper_end - __kuser_helper_start) >> 5)
.globl __kuser_helper_end
__kuser_helper_end:
/* /*
* Vector stubs. * Vector stubs.
* *
......
...@@ -450,13 +450,17 @@ asmlinkage int arm_syscall(int no, struct pt_regs *regs) ...@@ -450,13 +450,17 @@ asmlinkage int arm_syscall(int no, struct pt_regs *regs)
case NR(set_tls): case NR(set_tls):
thread->tp_value = regs->ARM_r0; thread->tp_value = regs->ARM_r0;
#ifdef CONFIG_HAS_TLS_REG
asm ("mcr p15, 0, %0, c13, c0, 3" : : "r" (regs->ARM_r0) );
#else
/* /*
* Our user accessible TLS ptr is located at 0xffff0ffc. * User space must never try to access this directly.
* On SMP read access to this address must raise a fault * Expect your app to break eventually if you do so.
* and be emulated from the data abort handler. * The user helper at 0xffff0fe0 must be used instead.
* m * (see entry-armv.S for details)
*/ */
*((unsigned long *)0xffff0ffc) = thread->tp_value; *((unsigned int *)0xffff0ff0) = regs->ARM_r0;
#endif
return 0; return 0;
default: default:
...@@ -493,6 +497,41 @@ asmlinkage int arm_syscall(int no, struct pt_regs *regs) ...@@ -493,6 +497,41 @@ asmlinkage int arm_syscall(int no, struct pt_regs *regs)
return 0; return 0;
} }
#if defined(CONFIG_CPU_32v6) && !defined(CONFIG_HAS_TLS_REG)
/*
* We might be running on an ARMv6+ processor which should have the TLS
* register, but for some reason we can't use it and have to emulate it.
*/
static int get_tp_trap(struct pt_regs *regs, unsigned int instr)
{
int reg = (instr >> 12) & 15;
if (reg == 15)
return 1;
regs->uregs[reg] = current_thread_info()->tp_value;
regs->ARM_pc += 4;
return 0;
}
static struct undef_hook arm_mrc_hook = {
.instr_mask = 0x0fff0fff,
.instr_val = 0x0e1d0f70,
.cpsr_mask = PSR_T_BIT,
.cpsr_val = 0,
.fn = get_tp_trap,
};
static int __init arm_mrc_hook_init(void)
{
register_undef_hook(&arm_mrc_hook);
return 0;
}
late_initcall(arm_mrc_hook_init);
#endif
void __bad_xchg(volatile void *ptr, int size) void __bad_xchg(volatile void *ptr, int size)
{ {
printk("xchg: bad data size: pc 0x%p, ptr 0x%p, size %d\n", printk("xchg: bad data size: pc 0x%p, ptr 0x%p, size %d\n",
...@@ -580,14 +619,17 @@ void __init trap_init(void) ...@@ -580,14 +619,17 @@ void __init trap_init(void)
{ {
extern char __stubs_start[], __stubs_end[]; extern char __stubs_start[], __stubs_end[];
extern char __vectors_start[], __vectors_end[]; extern char __vectors_start[], __vectors_end[];
extern char __kuser_helper_start[], __kuser_helper_end[];
int kuser_sz = __kuser_helper_end - __kuser_helper_start;
/* /*
* Copy the vectors and stubs (in entry-armv.S) into the * Copy the vectors, stubs and kuser helpers (in entry-armv.S)
* vector page, mapped at 0xffff0000, and ensure these are * into the vector page, mapped at 0xffff0000, and ensure these
* visible to the instruction stream. * are visible to the instruction stream.
*/ */
memcpy((void *)0xffff0000, __vectors_start, __vectors_end - __vectors_start); memcpy((void *)0xffff0000, __vectors_start, __vectors_end - __vectors_start);
memcpy((void *)0xffff0200, __stubs_start, __stubs_end - __stubs_start); memcpy((void *)0xffff0200, __stubs_start, __stubs_end - __stubs_start);
memcpy((void *)0xffff1000 - kuser_sz, __kuser_helper_start, kuser_sz);
flush_icache_range(0xffff0000, 0xffff0000 + PAGE_SIZE); flush_icache_range(0xffff0000, 0xffff0000 + PAGE_SIZE);
modify_domain(DOMAIN_USER, DOMAIN_CLIENT); modify_domain(DOMAIN_USER, DOMAIN_CLIENT);
} }
...@@ -65,19 +65,102 @@ static struct sys_timer ixdp2800_timer = { ...@@ -65,19 +65,102 @@ static struct sys_timer ixdp2800_timer = {
/************************************************************************* /*************************************************************************
* IXDP2800 PCI * IXDP2800 PCI
*************************************************************************/ *************************************************************************/
static void __init ixdp2800_slave_disable_pci_master(void)
{
*IXP2000_PCI_CMDSTAT &= ~(PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY);
}
static void __init ixdp2800_master_wait_for_slave(void)
{
volatile u32 *addr;
printk(KERN_INFO "IXDP2800: waiting for slave NPU to configure "
"its BAR sizes\n");
addr = ixp2000_pci_config_addr(0, IXDP2X00_SLAVE_NPU_DEVFN,
PCI_BASE_ADDRESS_1);
do {
*addr = 0xffffffff;
cpu_relax();
} while (*addr != 0xfe000008);
addr = ixp2000_pci_config_addr(0, IXDP2X00_SLAVE_NPU_DEVFN,
PCI_BASE_ADDRESS_2);
do {
*addr = 0xffffffff;
cpu_relax();
} while (*addr != 0xc0000008);
/*
* Configure the slave's SDRAM BAR by hand.
*/
*addr = 0x40000008;
}
static void __init ixdp2800_slave_wait_for_master_enable(void)
{
printk(KERN_INFO "IXDP2800: waiting for master NPU to enable us\n");
while ((*IXP2000_PCI_CMDSTAT & PCI_COMMAND_MASTER) == 0)
cpu_relax();
}
void __init ixdp2800_pci_preinit(void) void __init ixdp2800_pci_preinit(void)
{ {
printk("ixdp2x00_pci_preinit called\n"); printk("ixdp2x00_pci_preinit called\n");
*IXP2000_PCI_ADDR_EXT = 0x0000e000; *IXP2000_PCI_ADDR_EXT = 0x0001e000;
if (!ixdp2x00_master_npu())
ixdp2800_slave_disable_pci_master();
*IXP2000_PCI_DRAM_BASE_ADDR_MASK = (0x40000000 - 1) & ~0xfffff;
*IXP2000_PCI_SRAM_BASE_ADDR_MASK = (0x2000000 - 1) & ~0x3ffff; *IXP2000_PCI_SRAM_BASE_ADDR_MASK = (0x2000000 - 1) & ~0x3ffff;
*IXP2000_PCI_DRAM_BASE_ADDR_MASK = (0x40000000 - 1) & ~0xfffff;
ixp2000_pci_preinit(); ixp2000_pci_preinit();
if (ixdp2x00_master_npu()) {
/*
* Wait until the slave set its SRAM/SDRAM BAR sizes
* correctly before we proceed to scan and enumerate
* the bus.
*/
ixdp2800_master_wait_for_slave();
/*
* We configure the SDRAM BARs by hand because they
* are 1G and fall outside of the regular allocated
* PCI address space.
*/
*IXP2000_PCI_SDRAM_BAR = 0x00000008;
} else {
/*
* Wait for the master to complete scanning the bus
* and assigning resources before we proceed to scan
* the bus ourselves. Set pci=firmware to honor the
* master's resource assignment.
*/
ixdp2800_slave_wait_for_master_enable();
pcibios_setup("firmware");
}
}
/*
* We assign the SDRAM BARs for the two IXP2800 CPUs by hand, outside
* of the regular PCI window, because there's only 512M of outbound PCI
* memory window on each IXP, while we need 1G for each of the BARs.
*/
static void __devinit ixp2800_pci_fixup(struct pci_dev *dev)
{
if (machine_is_ixdp2800()) {
dev->resource[2].start = 0;
dev->resource[2].end = 0;
dev->resource[2].flags = 0;
}
} }
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IXP2800, ixp2800_pci_fixup);
int ixdp2800_pci_setup(int nr, struct pci_sys_data *sys) static int __init ixdp2800_pci_setup(int nr, struct pci_sys_data *sys)
{ {
sys->mem_offset = 0x00000000; sys->mem_offset = 0x00000000;
...@@ -129,22 +212,47 @@ static int __init ixdp2800_pci_map_irq(struct pci_dev *dev, u8 slot, u8 pin) ...@@ -129,22 +212,47 @@ static int __init ixdp2800_pci_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
} else return IRQ_IXP2000_PCIB; /* Slave NIC interrupt */ } else return IRQ_IXP2000_PCIB; /* Slave NIC interrupt */
} }
static void ixdp2800_pci_postinit(void) static void __init ixdp2800_master_enable_slave(void)
{ {
struct pci_dev *dev; volatile u32 *addr;
if (ixdp2x00_master_npu()) { printk(KERN_INFO "IXDP2800: enabling slave NPU\n");
dev = pci_find_slot(1, IXDP2800_SLAVE_ENET_DEVFN);
pci_remove_bus_device(dev); addr = (volatile u32 *)ixp2000_pci_config_addr(0,
} else { IXDP2X00_SLAVE_NPU_DEVFN,
dev = pci_find_slot(1, IXDP2800_MASTER_ENET_DEVFN); PCI_COMMAND);
pci_remove_bus_device(dev);
*addr |= PCI_COMMAND_MASTER;
}
static void __init ixdp2800_master_wait_for_slave_bus_scan(void)
{
volatile u32 *addr;
printk(KERN_INFO "IXDP2800: waiting for slave to finish bus scan\n");
addr = (volatile u32 *)ixp2000_pci_config_addr(0,
IXDP2X00_SLAVE_NPU_DEVFN,
PCI_COMMAND);
while ((*addr & PCI_COMMAND_MEMORY) == 0)
cpu_relax();
}
static void __init ixdp2800_slave_signal_bus_scan_completion(void)
{
printk(KERN_INFO "IXDP2800: bus scan done, signaling master\n");
*IXP2000_PCI_CMDSTAT |= PCI_COMMAND_MEMORY;
}
static void __init ixdp2800_pci_postinit(void)
{
if (!ixdp2x00_master_npu()) {
ixdp2x00_slave_pci_postinit(); ixdp2x00_slave_pci_postinit();
ixdp2800_slave_signal_bus_scan_completion();
} }
} }
struct hw_pci ixdp2800_pci __initdata = { struct __initdata hw_pci ixdp2800_pci __initdata = {
.nr_controllers = 1, .nr_controllers = 1,
.setup = ixdp2800_pci_setup, .setup = ixdp2800_pci_setup,
.preinit = ixdp2800_pci_preinit, .preinit = ixdp2800_pci_preinit,
...@@ -155,8 +263,21 @@ struct hw_pci ixdp2800_pci __initdata = { ...@@ -155,8 +263,21 @@ struct hw_pci ixdp2800_pci __initdata = {
int __init ixdp2800_pci_init(void) int __init ixdp2800_pci_init(void)
{ {
if (machine_is_ixdp2800()) if (machine_is_ixdp2800()) {
struct pci_dev *dev;
pci_common_init(&ixdp2800_pci); pci_common_init(&ixdp2800_pci);
if (ixdp2x00_master_npu()) {
dev = pci_find_slot(1, IXDP2800_SLAVE_ENET_DEVFN);
pci_remove_bus_device(dev);
ixdp2800_master_enable_slave();
ixdp2800_master_wait_for_slave_bus_scan();
} else {
dev = pci_find_slot(1, IXDP2800_MASTER_ENET_DEVFN);
pci_remove_bus_device(dev);
}
}
return 0; return 0;
} }
......
...@@ -37,7 +37,7 @@ static int pci_master_aborts = 0; ...@@ -37,7 +37,7 @@ static int pci_master_aborts = 0;
static int clear_master_aborts(void); static int clear_master_aborts(void);
static u32 * u32 *
ixp2000_pci_config_addr(unsigned int bus_nr, unsigned int devfn, int where) ixp2000_pci_config_addr(unsigned int bus_nr, unsigned int devfn, int where)
{ {
u32 *paddress; u32 *paddress;
...@@ -208,15 +208,15 @@ ixp2000_pci_preinit(void) ...@@ -208,15 +208,15 @@ ixp2000_pci_preinit(void)
* use our own resource space. * use our own resource space.
*/ */
static struct resource ixp2000_pci_mem_space = { static struct resource ixp2000_pci_mem_space = {
.start = 0x00000000, .start = 0xe0000000,
.end = 0xffffffff, .end = 0xffffffff,
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
.name = "PCI Mem Space" .name = "PCI Mem Space"
}; };
static struct resource ixp2000_pci_io_space = { static struct resource ixp2000_pci_io_space = {
.start = 0x00000000, .start = 0x00010000,
.end = 0xffffffff, .end = 0x0001ffff,
.flags = IORESOURCE_IO, .flags = IORESOURCE_IO,
.name = "PCI I/O Space" .name = "PCI I/O Space"
}; };
......
...@@ -409,3 +409,17 @@ config CPU_BPREDICT_DISABLE ...@@ -409,3 +409,17 @@ config CPU_BPREDICT_DISABLE
depends on CPU_ARM1020 depends on CPU_ARM1020
help help
Say Y here to disable branch prediction. If unsure, say N. Say Y here to disable branch prediction. If unsure, say N.
config HAS_TLS_REG
bool
depends on CPU_32v6 && !CPU_32v5 && !CPU_32v4 && !CPU_32v3
help
This selects support for the CP15 thread register.
It is defined to be available on ARMv6 or later. However
if the kernel is configured to support multiple CPUs including
a pre-ARMv6 processors, or if a given ARMv6 processor doesn't
implement the thread register for some reason, then access to
this register from user space must be trapped and emulated.
If user space is relying on the __kuser_get_tls code then
there should not be any impact.
#include <linux/linkage.h> #include <linux/linkage.h>
#include <asm/assembler.h> #include <asm/assembler.h>
#include "abort-macro.S"
/* /*
* Function: v6_early_abort * Function: v6_early_abort
* *
...@@ -13,11 +14,26 @@ ...@@ -13,11 +14,26 @@
* : sp = pointer to registers * : sp = pointer to registers
* *
* Purpose : obtain information about current aborted instruction. * Purpose : obtain information about current aborted instruction.
* Note: we read user space. This means we might cause a data
* abort here if the I-TLB and D-TLB aren't seeing the same
* picture. Unfortunately, this does happen. We live with it.
*/ */
.align 5 .align 5
ENTRY(v6_early_abort) ENTRY(v6_early_abort)
mrc p15, 0, r1, c5, c0, 0 @ get FSR mrc p15, 0, r1, c5, c0, 0 @ get FSR
mrc p15, 0, r0, c6, c0, 0 @ get FAR mrc p15, 0, r0, c6, c0, 0 @ get FAR
/*
* Faulty SWP instruction on 1136 doesn't set bit 11 in DFSR.
* The test below covers all the write situations, including Java bytecodes
*/
bic r1, r1, #1 << 11 | 1 << 10 @ clear bits 11 and 10 of FSR
tst r3, #PSR_J_BIT @ Java?
movne pc, lr
do_thumb_abort
ldreq r3, [r2] @ read aborted ARM instruction
do_ldrd_abort
tst r3, #1 << 20 @ L = 0 -> write
orreq r1, r1, #1 << 11 @ yes.
mov pc, lr mov pc, lr
...@@ -411,9 +411,10 @@ static void __init build_mem_type_table(void) ...@@ -411,9 +411,10 @@ static void __init build_mem_type_table(void)
mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4; mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;
mem_types[MT_ROM].prot_sect &= ~PMD_BIT4; mem_types[MT_ROM].prot_sect &= ~PMD_BIT4;
/* /*
* Mark cache clean areas read only from SVC mode * Mark cache clean areas and XIP ROM read only
* and no access from userspace. * from SVC mode and no access from userspace.
*/ */
mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
} }
......
...@@ -121,6 +121,7 @@ unsigned long ixp2000_gettimeoffset(void); ...@@ -121,6 +121,7 @@ unsigned long ixp2000_gettimeoffset(void);
struct pci_sys_data; struct pci_sys_data;
u32 *ixp2000_pci_config_addr(unsigned int bus, unsigned int devfn, int where);
void ixp2000_pci_preinit(void); void ixp2000_pci_preinit(void);
int ixp2000_pci_setup(int, struct pci_sys_data*); int ixp2000_pci_setup(int, struct pci_sys_data*);
struct pci_bus* ixp2000_pci_scan_bus(int, struct pci_sys_data*); struct pci_bus* ixp2000_pci_scan_bus(int, struct pci_sys_data*);
......
...@@ -99,12 +99,16 @@ extern void __readwrite_bug(const char *fn); ...@@ -99,12 +99,16 @@ extern void __readwrite_bug(const char *fn);
*/ */
#ifdef __io #ifdef __io
#define outb(v,p) __raw_writeb(v,__io(p)) #define outb(v,p) __raw_writeb(v,__io(p))
#define outw(v,p) __raw_writew(cpu_to_le16(v),__io(p)) #define outw(v,p) __raw_writew((__force __u16) \
#define outl(v,p) __raw_writel(cpu_to_le32(v),__io(p)) cpu_to_le16(v),__io(p))
#define outl(v,p) __raw_writel((__force __u32) \
cpu_to_le32(v),__io(p))
#define inb(p) ({ unsigned int __v = __raw_readb(__io(p)); __v; }) #define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __v; })
#define inw(p) ({ unsigned int __v = le16_to_cpu(__raw_readw(__io(p))); __v; }) #define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
#define inl(p) ({ unsigned int __v = le32_to_cpu(__raw_readl(__io(p))); __v; }) __raw_readw(__io(p))); __v; })
#define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
__raw_readl(__io(p))); __v; })
#define outsb(p,d,l) __raw_writesb(__io(p),d,l) #define outsb(p,d,l) __raw_writesb(__io(p),d,l)
#define outsw(p,d,l) __raw_writesw(__io(p),d,l) #define outsw(p,d,l) __raw_writesw(__io(p),d,l)
...@@ -149,9 +153,11 @@ extern void _memset_io(void __iomem *, int, size_t); ...@@ -149,9 +153,11 @@ extern void _memset_io(void __iomem *, int, size_t);
* IO port primitives for more information. * IO port primitives for more information.
*/ */
#ifdef __mem_pci #ifdef __mem_pci
#define readb(c) ({ unsigned int __v = __raw_readb(__mem_pci(c)); __v; }) #define readb(c) ({ __u8 __v = __raw_readb(__mem_pci(c)); __v; })
#define readw(c) ({ unsigned int __v = le16_to_cpu(__raw_readw(__mem_pci(c))); __v; }) #define readw(c) ({ __u16 __v = le16_to_cpu((__force __le16) \
#define readl(c) ({ unsigned int __v = le32_to_cpu(__raw_readl(__mem_pci(c))); __v; }) __raw_readw(__mem_pci(c))); __v; })
#define readl(c) ({ __u32 __v = le32_to_cpu((__force __le32) \
__raw_readl(__mem_pci(c))); __v; })
#define readb_relaxed(addr) readb(addr) #define readb_relaxed(addr) readb(addr)
#define readw_relaxed(addr) readw(addr) #define readw_relaxed(addr) readw(addr)
#define readl_relaxed(addr) readl(addr) #define readl_relaxed(addr) readl(addr)
...@@ -161,8 +167,10 @@ extern void _memset_io(void __iomem *, int, size_t); ...@@ -161,8 +167,10 @@ extern void _memset_io(void __iomem *, int, size_t);
#define readsl(p,d,l) __raw_readsl(__mem_pci(p),d,l) #define readsl(p,d,l) __raw_readsl(__mem_pci(p),d,l)
#define writeb(v,c) __raw_writeb(v,__mem_pci(c)) #define writeb(v,c) __raw_writeb(v,__mem_pci(c))
#define writew(v,c) __raw_writew(cpu_to_le16(v),__mem_pci(c)) #define writew(v,c) __raw_writew((__force __u16) \
#define writel(v,c) __raw_writel(cpu_to_le32(v),__mem_pci(c)) cpu_to_le16(v),__mem_pci(c))
#define writel(v,c) __raw_writel((__force __u32) \
cpu_to_le32(v),__mem_pci(c))
#define writesb(p,d,l) __raw_writesb(__mem_pci(p),d,l) #define writesb(p,d,l) __raw_writesb(__mem_pci(p),d,l)
#define writesw(p,d,l) __raw_writesw(__mem_pci(p),d,l) #define writesw(p,d,l) __raw_writesw(__mem_pci(p),d,l)
......
...@@ -359,8 +359,7 @@ ...@@ -359,8 +359,7 @@
#define __ARM_NR_cacheflush (__ARM_NR_BASE+2) #define __ARM_NR_cacheflush (__ARM_NR_BASE+2)
#define __ARM_NR_usr26 (__ARM_NR_BASE+3) #define __ARM_NR_usr26 (__ARM_NR_BASE+3)
#define __ARM_NR_usr32 (__ARM_NR_BASE+4) #define __ARM_NR_usr32 (__ARM_NR_BASE+4)
#define __ARM_NR_set_tls (__ARM_NR_BASE+5)
#define __ARM_NR_set_tls (__ARM_NR_BASE+0x800)
#define __sys2(x) #x #define __sys2(x) #x
#define __sys1(x) __sys2(x) #define __sys1(x) __sys2(x)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment