Commit e1f1f073 authored by Linus Torvalds's avatar Linus Torvalds

Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6

* git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6:
  Staging: sep: remove driver
  Staging: batman-adv: Don't write in not allocated packet_buff
  Staging: batman-adv: Don't use net_dev after dev_put
  Staging: batman-adv: Create batman_if only on register event
  Staging: batman-adv: fix own mac address detection
  Staging: batman-adv: always reply batman icmp packets with primary mac
  Staging: batman-adv: fix batman icmp originating from secondary interface
  Staging: batman-adv: unify orig_hash_lock spinlock handling to avoid deadlocks
  Staging: batman-adv: Fix merge of linus tree
  Staging: spectra: removes unused functions
  Staging: spectra: initializa lblk variable
  Staging: spectra: removes unused variable
  Staging: spectra: remove duplicate GLOB_VERSION definition
  Staging: spectra: don't use locked_ioctl, fix build
  Staging: use new REQ_FLUSH flag, fix build breakage
  Staging: spectra: removes q->prepare_flush_fn, fix build breakage
parents 472e449c d49824c0
......@@ -113,8 +113,6 @@ source "drivers/staging/vme/Kconfig"
source "drivers/staging/memrar/Kconfig"
source "drivers/staging/sep/Kconfig"
source "drivers/staging/iio/Kconfig"
source "drivers/staging/zram/Kconfig"
......
......@@ -38,7 +38,6 @@ obj-$(CONFIG_FB_UDL) += udlfb/
obj-$(CONFIG_HYPERV) += hv/
obj-$(CONFIG_VME_BUS) += vme/
obj-$(CONFIG_MRST_RAR_HANDLER) += memrar/
obj-$(CONFIG_DX_SEP) += sep/
obj-$(CONFIG_IIO) += iio/
obj-$(CONFIG_ZRAM) += zram/
obj-$(CONFIG_WLAGS49_H2) += wlags49_h2/
......
......@@ -267,6 +267,10 @@ static ssize_t store_log_level(struct kobject *kobj, struct attribute *attr,
if (atomic_read(&bat_priv->log_level) == log_level_tmp)
return count;
bat_info(net_dev, "Changing log level from: %i to: %li\n",
atomic_read(&bat_priv->log_level),
log_level_tmp);
atomic_set(&bat_priv->log_level, (unsigned)log_level_tmp);
return count;
}
......
......@@ -129,6 +129,9 @@ static bool hardif_is_iface_up(struct batman_if *batman_if)
static void update_mac_addresses(struct batman_if *batman_if)
{
if (!batman_if || !batman_if->packet_buff)
return;
addr_to_string(batman_if->addr_str, batman_if->net_dev->dev_addr);
memcpy(((struct batman_packet *)(batman_if->packet_buff))->orig,
......@@ -194,8 +197,6 @@ static void hardif_activate_interface(struct net_device *net_dev,
if (batman_if->if_status != IF_INACTIVE)
return;
dev_hold(batman_if->net_dev);
update_mac_addresses(batman_if);
batman_if->if_status = IF_TO_BE_ACTIVATED;
......@@ -222,8 +223,6 @@ static void hardif_deactivate_interface(struct net_device *net_dev,
(batman_if->if_status != IF_TO_BE_ACTIVATED))
return;
dev_put(batman_if->net_dev);
batman_if->if_status = IF_INACTIVE;
bat_info(net_dev, "Interface deactivated: %s\n", batman_if->dev);
......@@ -318,11 +317,13 @@ static struct batman_if *hardif_add_interface(struct net_device *net_dev)
if (ret != 1)
goto out;
dev_hold(net_dev);
batman_if = kmalloc(sizeof(struct batman_if), GFP_ATOMIC);
if (!batman_if) {
pr_err("Can't add interface (%s): out of memory\n",
net_dev->name);
goto out;
goto release_dev;
}
batman_if->dev = kstrdup(net_dev->name, GFP_ATOMIC);
......@@ -336,6 +337,7 @@ static struct batman_if *hardif_add_interface(struct net_device *net_dev)
batman_if->if_num = -1;
batman_if->net_dev = net_dev;
batman_if->if_status = IF_NOT_IN_USE;
batman_if->packet_buff = NULL;
INIT_LIST_HEAD(&batman_if->list);
check_known_mac_addr(batman_if->net_dev->dev_addr);
......@@ -346,6 +348,8 @@ static struct batman_if *hardif_add_interface(struct net_device *net_dev)
kfree(batman_if->dev);
free_if:
kfree(batman_if);
release_dev:
dev_put(net_dev);
out:
return NULL;
}
......@@ -374,6 +378,7 @@ static void hardif_remove_interface(struct batman_if *batman_if)
batman_if->if_status = IF_TO_BE_REMOVED;
list_del_rcu(&batman_if->list);
sysfs_del_hardif(&batman_if->hardif_obj);
dev_put(batman_if->net_dev);
call_rcu(&batman_if->rcu, hardif_free_interface);
}
......@@ -393,15 +398,13 @@ static int hard_if_event(struct notifier_block *this,
/* FIXME: each batman_if will be attached to a softif */
struct bat_priv *bat_priv = netdev_priv(soft_device);
if (!batman_if)
if (!batman_if && event == NETDEV_REGISTER)
batman_if = hardif_add_interface(net_dev);
if (!batman_if)
goto out;
switch (event) {
case NETDEV_REGISTER:
break;
case NETDEV_UP:
hardif_activate_interface(soft_device, bat_priv, batman_if);
break;
......@@ -442,8 +445,6 @@ int batman_skb_recv(struct sk_buff *skb, struct net_device *dev,
struct bat_priv *bat_priv = netdev_priv(soft_device);
struct batman_packet *batman_packet;
struct batman_if *batman_if;
struct net_device_stats *stats;
struct rtnl_link_stats64 temp;
int ret;
skb = skb_share_check(skb, GFP_ATOMIC);
......@@ -479,12 +480,6 @@ int batman_skb_recv(struct sk_buff *skb, struct net_device *dev,
if (batman_if->if_status != IF_ACTIVE)
goto err_free;
stats = (struct net_device_stats *)dev_get_stats(skb->dev, &temp);
if (stats) {
stats->rx_packets++;
stats->rx_bytes += skb->len;
}
batman_packet = (struct batman_packet *)skb->data;
if (batman_packet->version != COMPAT_VERSION) {
......
......@@ -67,6 +67,7 @@ static int bat_socket_open(struct inode *inode, struct file *file)
INIT_LIST_HEAD(&socket_client->queue_list);
socket_client->queue_len = 0;
socket_client->index = i;
socket_client->bat_priv = inode->i_private;
spin_lock_init(&socket_client->lock);
init_waitqueue_head(&socket_client->queue_wait);
......@@ -151,9 +152,8 @@ static ssize_t bat_socket_read(struct file *file, char __user *buf,
static ssize_t bat_socket_write(struct file *file, const char __user *buff,
size_t len, loff_t *off)
{
/* FIXME: each orig_node->batman_if will be attached to a softif */
struct bat_priv *bat_priv = netdev_priv(soft_device);
struct socket_client *socket_client = file->private_data;
struct bat_priv *bat_priv = socket_client->bat_priv;
struct icmp_packet_rr icmp_packet;
struct orig_node *orig_node;
struct batman_if *batman_if;
......@@ -168,6 +168,9 @@ static ssize_t bat_socket_write(struct file *file, const char __user *buff,
return -EINVAL;
}
if (!bat_priv->primary_if)
return -EFAULT;
if (len >= sizeof(struct icmp_packet_rr))
packet_len = sizeof(struct icmp_packet_rr);
......@@ -223,7 +226,8 @@ static ssize_t bat_socket_write(struct file *file, const char __user *buff,
if (batman_if->if_status != IF_ACTIVE)
goto dst_unreach;
memcpy(icmp_packet.orig, batman_if->net_dev->dev_addr, ETH_ALEN);
memcpy(icmp_packet.orig,
bat_priv->primary_if->net_dev->dev_addr, ETH_ALEN);
if (packet_len == sizeof(struct icmp_packet_rr))
memcpy(icmp_packet.rr, batman_if->net_dev->dev_addr, ETH_ALEN);
......@@ -271,7 +275,7 @@ int bat_socket_setup(struct bat_priv *bat_priv)
goto err;
d = debugfs_create_file(ICMP_SOCKET, S_IFREG | S_IWUSR | S_IRUSR,
bat_priv->debug_dir, NULL, &fops);
bat_priv->debug_dir, bat_priv, &fops);
if (d)
goto err;
......
......@@ -250,10 +250,13 @@ int choose_orig(void *data, int32_t size)
int is_my_mac(uint8_t *addr)
{
struct batman_if *batman_if;
rcu_read_lock();
list_for_each_entry_rcu(batman_if, &if_list, list) {
if ((batman_if->net_dev) &&
(compare_orig(batman_if->net_dev->dev_addr, addr))) {
if (batman_if->if_status != IF_ACTIVE)
continue;
if (compare_orig(batman_if->net_dev->dev_addr, addr)) {
rcu_read_unlock();
return 1;
}
......
......@@ -391,11 +391,12 @@ static int orig_node_add_if(struct orig_node *orig_node, int max_if_num)
int orig_hash_add_if(struct batman_if *batman_if, int max_if_num)
{
struct orig_node *orig_node;
unsigned long flags;
HASHIT(hashit);
/* resize all orig nodes because orig_node->bcast_own(_sum) depend on
* if_num */
spin_lock(&orig_hash_lock);
spin_lock_irqsave(&orig_hash_lock, flags);
while (hash_iterate(orig_hash, &hashit)) {
orig_node = hashit.bucket->data;
......@@ -404,11 +405,11 @@ int orig_hash_add_if(struct batman_if *batman_if, int max_if_num)
goto err;
}
spin_unlock(&orig_hash_lock);
spin_unlock_irqrestore(&orig_hash_lock, flags);
return 0;
err:
spin_unlock(&orig_hash_lock);
spin_unlock_irqrestore(&orig_hash_lock, flags);
return -ENOMEM;
}
......@@ -468,12 +469,13 @@ int orig_hash_del_if(struct batman_if *batman_if, int max_if_num)
{
struct batman_if *batman_if_tmp;
struct orig_node *orig_node;
unsigned long flags;
HASHIT(hashit);
int ret;
/* resize all orig nodes because orig_node->bcast_own(_sum) depend on
* if_num */
spin_lock(&orig_hash_lock);
spin_lock_irqsave(&orig_hash_lock, flags);
while (hash_iterate(orig_hash, &hashit)) {
orig_node = hashit.bucket->data;
......@@ -500,10 +502,10 @@ int orig_hash_del_if(struct batman_if *batman_if, int max_if_num)
rcu_read_unlock();
batman_if->if_num = -1;
spin_unlock(&orig_hash_lock);
spin_unlock_irqrestore(&orig_hash_lock, flags);
return 0;
err:
spin_unlock(&orig_hash_lock);
spin_unlock_irqrestore(&orig_hash_lock, flags);
return -ENOMEM;
}
......@@ -783,6 +783,8 @@ int recv_bat_packet(struct sk_buff *skb,
static int recv_my_icmp_packet(struct sk_buff *skb, size_t icmp_len)
{
/* FIXME: each batman_if will be attached to a softif */
struct bat_priv *bat_priv = netdev_priv(soft_device);
struct orig_node *orig_node;
struct icmp_packet_rr *icmp_packet;
struct ethhdr *ethhdr;
......@@ -801,6 +803,9 @@ static int recv_my_icmp_packet(struct sk_buff *skb, size_t icmp_len)
return NET_RX_DROP;
}
if (!bat_priv->primary_if)
return NET_RX_DROP;
/* answer echo request (ping) */
/* get routing information */
spin_lock_irqsave(&orig_hash_lock, flags);
......@@ -830,7 +835,8 @@ static int recv_my_icmp_packet(struct sk_buff *skb, size_t icmp_len)
}
memcpy(icmp_packet->dst, icmp_packet->orig, ETH_ALEN);
memcpy(icmp_packet->orig, ethhdr->h_dest, ETH_ALEN);
memcpy(icmp_packet->orig,
bat_priv->primary_if->net_dev->dev_addr, ETH_ALEN);
icmp_packet->msg_type = ECHO_REPLY;
icmp_packet->ttl = TTL;
......@@ -845,6 +851,8 @@ static int recv_my_icmp_packet(struct sk_buff *skb, size_t icmp_len)
static int recv_icmp_ttl_exceeded(struct sk_buff *skb, size_t icmp_len)
{
/* FIXME: each batman_if will be attached to a softif */
struct bat_priv *bat_priv = netdev_priv(soft_device);
struct orig_node *orig_node;
struct icmp_packet *icmp_packet;
struct ethhdr *ethhdr;
......@@ -865,6 +873,9 @@ static int recv_icmp_ttl_exceeded(struct sk_buff *skb, size_t icmp_len)
return NET_RX_DROP;
}
if (!bat_priv->primary_if)
return NET_RX_DROP;
/* get routing information */
spin_lock_irqsave(&orig_hash_lock, flags);
orig_node = ((struct orig_node *)
......@@ -892,7 +903,8 @@ static int recv_icmp_ttl_exceeded(struct sk_buff *skb, size_t icmp_len)
}
memcpy(icmp_packet->dst, icmp_packet->orig, ETH_ALEN);
memcpy(icmp_packet->orig, ethhdr->h_dest, ETH_ALEN);
memcpy(icmp_packet->orig,
bat_priv->primary_if->net_dev->dev_addr, ETH_ALEN);
icmp_packet->msg_type = TTL_EXCEEDED;
icmp_packet->ttl = TTL;
......
......@@ -126,6 +126,7 @@ struct socket_client {
unsigned char index;
spinlock_t lock;
wait_queue_head_t queue_wait;
struct bat_priv *bat_priv;
};
struct socket_packet {
......
config DX_SEP
tristate "Discretix SEP driver"
# depends on MRST
depends on RAR_REGISTER && PCI
default y
help
Discretix SEP driver
If unsure say M. The compiled module will be
called sep_driver.ko
obj-$(CONFIG_DX_SEP) := sep_driver.o
Todo's so far (from Alan Cox)
- Fix firmware loading
- Get firmware into firmware git tree
- Review and tidy each algorithm function
- Check whether it can be plugged into any of the kernel crypto API
interfaces
- Do something about the magic shared memory interface and replace it
with something saner (in Linux terms)
#ifndef __SEP_DEV_H__
#define __SEP_DEV_H__
/*
*
* sep_dev.h - Security Processor Device Structures
*
* Copyright(c) 2009 Intel Corporation. All rights reserved.
* Copyright(c) 2009 Discretix. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* CONTACTS:
*
* Alan Cox alan@linux.intel.com
*
*/
struct sep_device {
/* pointer to pci dev */
struct pci_dev *pdev;
unsigned long in_use;
/* address of the shared memory allocated during init for SEP driver
(coherent alloc) */
void *shared_addr;
/* the physical address of the shared area */
dma_addr_t shared_bus;
/* restricted access region (coherent alloc) */
dma_addr_t rar_bus;
void *rar_addr;
/* firmware regions: cache is at rar_addr */
unsigned long cache_size;
/* follows the cache */
dma_addr_t resident_bus;
unsigned long resident_size;
void *resident_addr;
/* start address of the access to the SEP registers from driver */
void __iomem *reg_addr;
/* transaction counter that coordinates the transactions between SEP and HOST */
unsigned long send_ct;
/* counter for the messages from sep */
unsigned long reply_ct;
/* counter for the number of bytes allocated in the pool for the current
transaction */
unsigned long data_pool_bytes_allocated;
/* array of pointers to the pages that represent input data for the synchronic
DMA action */
struct page **in_page_array;
/* array of pointers to the pages that represent out data for the synchronic
DMA action */
struct page **out_page_array;
/* number of pages in the sep_in_page_array */
unsigned long in_num_pages;
/* number of pages in the sep_out_page_array */
unsigned long out_num_pages;
/* global data for every flow */
struct sep_flow_context_t flows[SEP_DRIVER_NUM_FLOWS];
/* pointer to the workqueue that handles the flow done interrupts */
struct workqueue_struct *flow_wq;
};
static struct sep_device *sep_dev;
static inline void sep_write_reg(struct sep_device *dev, int reg, u32 value)
{
void __iomem *addr = dev->reg_addr + reg;
writel(value, addr);
}
static inline u32 sep_read_reg(struct sep_device *dev, int reg)
{
void __iomem *addr = dev->reg_addr + reg;
return readl(addr);
}
/* wait for SRAM write complete(indirect write */
static inline void sep_wait_sram_write(struct sep_device *dev)
{
u32 reg_val;
do
reg_val = sep_read_reg(dev, HW_SRAM_DATA_READY_REG_ADDR);
while (!(reg_val & 1));
}
#endif
/*
*
* sep_driver.c - Security Processor Driver main group of functions
*
* Copyright(c) 2009 Intel Corporation. All rights reserved.
* Copyright(c) 2009 Discretix. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* CONTACTS:
*
* Mark Allyn mark.a.allyn@intel.com
*
* CHANGES:
*
* 2009.06.26 Initial publish
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/kdev_t.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/poll.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <asm/ioctl.h>
#include <linux/ioport.h>
#include <asm/io.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <asm/cacheflush.h>
#include "sep_driver_hw_defs.h"
#include "sep_driver_config.h"
#include "sep_driver_api.h"
#include "sep_dev.h"
#if SEP_DRIVER_ARM_DEBUG_MODE
#define CRYS_SEP_ROM_length 0x4000
#define CRYS_SEP_ROM_start_address 0x8000C000UL
#define CRYS_SEP_ROM_start_address_offset 0xC000UL
#define SEP_ROM_BANK_register 0x80008420UL
#define SEP_ROM_BANK_register_offset 0x8420UL
#define SEP_RAR_IO_MEM_REGION_START_ADDRESS 0x82000000
/*
* THESE 2 definitions are specific to the board - must be
* defined during integration
*/
#define SEP_RAR_IO_MEM_REGION_START_ADDRESS 0xFF0D0000
/* 2M size */
static void sep_load_rom_code(struct sep_device *sep)
{
/* Index variables */
unsigned long i, k, j;
u32 reg;
u32 error;
u32 warning;
/* Loading ROM from SEP_ROM_image.h file */
k = sizeof(CRYS_SEP_ROM);
edbg("SEP Driver: DX_CC_TST_SepRomLoader start\n");
edbg("SEP Driver: k is %lu\n", k);
edbg("SEP Driver: sep->reg_addr is %p\n", sep->reg_addr);
edbg("SEP Driver: CRYS_SEP_ROM_start_address_offset is %p\n", CRYS_SEP_ROM_start_address_offset);
for (i = 0; i < 4; i++) {
/* write bank */
sep_write_reg(sep, SEP_ROM_BANK_register_offset, i);
for (j = 0; j < CRYS_SEP_ROM_length / 4; j++) {
sep_write_reg(sep, CRYS_SEP_ROM_start_address_offset + 4 * j, CRYS_SEP_ROM[i * 0x1000 + j]);
k = k - 4;
if (k == 0) {
j = CRYS_SEP_ROM_length;
i = 4;
}
}
}
/* reset the SEP */
sep_write_reg(sep, HW_HOST_SEP_SW_RST_REG_ADDR, 0x1);
/* poll for SEP ROM boot finish */
do
reg = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR);
while (!reg);
edbg("SEP Driver: ROM polling ended\n");
switch (reg) {
case 0x1:
/* fatal error - read erro status from GPRO */
error = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR0_REG_ADDR);
edbg("SEP Driver: ROM polling case 1\n");
break;
case 0x4:
/* Cold boot ended successfully */
case 0x8:
/* Warmboot ended successfully */
case 0x10:
/* ColdWarm boot ended successfully */
error = 0;
case 0x2:
/* Boot First Phase ended */
warning = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR0_REG_ADDR);
case 0x20:
edbg("SEP Driver: ROM polling case %d\n", reg);
break;
}
}
#else
static void sep_load_rom_code(struct sep_device *sep) { }
#endif /* SEP_DRIVER_ARM_DEBUG_MODE */
/*----------------------------------------
DEFINES
-----------------------------------------*/
#define BASE_ADDRESS_FOR_SYSTEM 0xfffc0000
#define SEP_RAR_IO_MEM_REGION_SIZE 0x40000
/*--------------------------------------------
GLOBAL variables
--------------------------------------------*/
/* debug messages level */
static int debug;
module_param(debug, int , 0);
MODULE_PARM_DESC(debug, "Flag to enable SEP debug messages");
/* Keep this a single static object for now to keep the conversion easy */
static struct sep_device sep_instance;
static struct sep_device *sep_dev = &sep_instance;
/*
mutex for the access to the internals of the sep driver
*/
static DEFINE_MUTEX(sep_mutex);
/* wait queue head (event) of the driver */
static DECLARE_WAIT_QUEUE_HEAD(sep_event);
/**
* sep_load_firmware - copy firmware cache/resident
* @sep: device we are loading
*
* This functions copies the cache and resident from their source
* location into destination shared memory.
*/
static int sep_load_firmware(struct sep_device *sep)
{
const struct firmware *fw;
char *cache_name = "sep/cache.image.bin";
char *res_name = "sep/resident.image.bin";
int error;
edbg("SEP Driver:rar_virtual is %p\n", sep->rar_addr);
edbg("SEP Driver:rar_bus is %08llx\n", (unsigned long long)sep->rar_bus);
/* load cache */
error = request_firmware(&fw, cache_name, &sep->pdev->dev);
if (error) {
edbg("SEP Driver:cant request cache fw\n");
return error;
}
edbg("SEP Driver:cache %08Zx@%p\n", fw->size, (void *) fw->data);
memcpy(sep->rar_addr, (void *)fw->data, fw->size);
sep->cache_size = fw->size;
release_firmware(fw);
sep->resident_bus = sep->rar_bus + sep->cache_size;
sep->resident_addr = sep->rar_addr + sep->cache_size;
/* load resident */
error = request_firmware(&fw, res_name, &sep->pdev->dev);
if (error) {
edbg("SEP Driver:cant request res fw\n");
return error;
}
edbg("sep: res %08Zx@%p\n", fw->size, (void *)fw->data);
memcpy(sep->resident_addr, (void *) fw->data, fw->size);
sep->resident_size = fw->size;
release_firmware(fw);
edbg("sep: resident v %p b %08llx cache v %p b %08llx\n",
sep->resident_addr, (unsigned long long)sep->resident_bus,
sep->rar_addr, (unsigned long long)sep->rar_bus);
return 0;
}
MODULE_FIRMWARE("sep/cache.image.bin");
MODULE_FIRMWARE("sep/resident.image.bin");
/**
* sep_map_and_alloc_shared_area - allocate shared block
* @sep: security processor
* @size: size of shared area
*
* Allocate a shared buffer in host memory that can be used by both the
* kernel and also the hardware interface via DMA.
*/
static int sep_map_and_alloc_shared_area(struct sep_device *sep,
unsigned long size)
{
/* shared_addr = ioremap_nocache(0xda00000,shared_area_size); */
sep->shared_addr = dma_alloc_coherent(&sep->pdev->dev, size,
&sep->shared_bus, GFP_KERNEL);
if (!sep->shared_addr) {
edbg("sep_driver :shared memory dma_alloc_coherent failed\n");
return -ENOMEM;
}
/* set the bus address of the shared area */
edbg("sep: shared_addr %ld bytes @%p (bus %08llx)\n",
size, sep->shared_addr, (unsigned long long)sep->shared_bus);
return 0;
}
/**
* sep_unmap_and_free_shared_area - free shared block
* @sep: security processor
*
* Free the shared area allocated to the security processor. The
* processor must have finished with this and any final posted
* writes cleared before we do so.
*/
static void sep_unmap_and_free_shared_area(struct sep_device *sep, int size)
{
dma_free_coherent(&sep->pdev->dev, size,
sep->shared_addr, sep->shared_bus);
}
/**
* sep_shared_virt_to_bus - convert bus/virt addresses
*
* Returns the bus address inside the shared area according
* to the virtual address.
*/
static dma_addr_t sep_shared_virt_to_bus(struct sep_device *sep,
void *virt_address)
{
dma_addr_t pa = sep->shared_bus + (virt_address - sep->shared_addr);
edbg("sep: virt to bus b %08llx v %p\n", (unsigned long long) pa,
virt_address);
return pa;
}
/**
* sep_shared_bus_to_virt - convert bus/virt addresses
*
* Returns virtual address inside the shared area according
* to the bus address.
*/
static void *sep_shared_bus_to_virt(struct sep_device *sep,
dma_addr_t bus_address)
{
return sep->shared_addr + (bus_address - sep->shared_bus);
}
/**
* sep_try_open - attempt to open a SEP device
* @sep: device to attempt to open
*
* Atomically attempt to get ownership of a SEP device.
* Returns 1 if the device was opened, 0 on failure.
*/
static int sep_try_open(struct sep_device *sep)
{
if (!test_and_set_bit(0, &sep->in_use))
return 1;
return 0;
}
/**
* sep_open - device open method
* @inode: inode of sep device
* @filp: file handle to sep device
*
* Open method for the SEP device. Called when userspace opens
* the SEP device node. Must also release the memory data pool
* allocations.
*
* Returns zero on success otherwise an error code.
*/
static int sep_open(struct inode *inode, struct file *filp)
{
if (sep_dev == NULL)
return -ENODEV;
/* check the blocking mode */
if (filp->f_flags & O_NDELAY) {
if (sep_try_open(sep_dev) == 0)
return -EAGAIN;
} else
if (wait_event_interruptible(sep_event, sep_try_open(sep_dev)) < 0)
return -EINTR;
/* Bind to the device, we only have one which makes it easy */
filp->private_data = sep_dev;
/* release data pool allocations */
sep_dev->data_pool_bytes_allocated = 0;
return 0;
}
/**
* sep_release - close a SEP device
* @inode: inode of SEP device
* @filp: file handle being closed
*
* Called on the final close of a SEP device. As the open protects against
* multiple simultaenous opens that means this method is called when the
* final reference to the open handle is dropped.
*/
static int sep_release(struct inode *inode, struct file *filp)
{
struct sep_device *sep = filp->private_data;
#if 0 /*!SEP_DRIVER_POLLING_MODE */
/* close IMR */
sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, 0x7FFF);
/* release IRQ line */
free_irq(SEP_DIRVER_IRQ_NUM, sep);
#endif
/* Ensure any blocked open progresses */
clear_bit(0, &sep->in_use);
wake_up(&sep_event);
return 0;
}
/*---------------------------------------------------------------
map function - this functions maps the message shared area
-----------------------------------------------------------------*/
static int sep_mmap(struct file *filp, struct vm_area_struct *vma)
{
dma_addr_t bus_addr;
struct sep_device *sep = filp->private_data;
dbg("-------->SEP Driver: mmap start\n");
/* check that the size of the mapped range is as the size of the message
shared area */
if ((vma->vm_end - vma->vm_start) > SEP_DRIVER_MMMAP_AREA_SIZE) {
edbg("SEP Driver mmap requested size is more than allowed\n");
printk(KERN_WARNING "SEP Driver mmap requested size is more than allowed\n");
printk(KERN_WARNING "SEP Driver vma->vm_end is %08lx\n", vma->vm_end);
printk(KERN_WARNING "SEP Driver vma->vm_end is %08lx\n", vma->vm_start);
return -EAGAIN;
}
edbg("SEP Driver:sep->shared_addr is %p\n", sep->shared_addr);
/* get bus address */
bus_addr = sep->shared_bus;
edbg("SEP Driver: phys_addr is %08llx\n", (unsigned long long)bus_addr);
if (remap_pfn_range(vma, vma->vm_start, bus_addr >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot)) {
edbg("SEP Driver remap_page_range failed\n");
printk(KERN_WARNING "SEP Driver remap_page_range failed\n");
return -EAGAIN;
}
dbg("SEP Driver:<-------- mmap end\n");
return 0;
}
/*-----------------------------------------------
poll function
*----------------------------------------------*/
static unsigned int sep_poll(struct file *filp, poll_table * wait)
{
unsigned long count;
unsigned int mask = 0;
unsigned long retval = 0; /* flow id */
struct sep_device *sep = filp->private_data;
dbg("---------->SEP Driver poll: start\n");
#if SEP_DRIVER_POLLING_MODE
while (sep->send_ct != (retval & 0x7FFFFFFF)) {
retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
for (count = 0; count < 10 * 4; count += 4)
edbg("Poll Debug Word %lu of the message is %lu\n", count, *((unsigned long *) (sep->shared_addr + SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES + count)));
}
sep->reply_ct++;
#else
/* add the event to the polling wait table */
poll_wait(filp, &sep_event, wait);
#endif
edbg("sep->send_ct is %lu\n", sep->send_ct);
edbg("sep->reply_ct is %lu\n", sep->reply_ct);
/* check if the data is ready */
if (sep->send_ct == sep->reply_ct) {
for (count = 0; count < 12 * 4; count += 4)
edbg("Sep Mesg Word %lu of the message is %lu\n", count, *((unsigned long *) (sep->shared_addr + count)));
for (count = 0; count < 10 * 4; count += 4)
edbg("Debug Data Word %lu of the message is %lu\n", count, *((unsigned long *) (sep->shared_addr + 0x1800 + count)));
retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
edbg("retval is %lu\n", retval);
/* check if the this is sep reply or request */
if (retval >> 31) {
edbg("SEP Driver: sep request in\n");
/* request */
mask |= POLLOUT | POLLWRNORM;
} else {
edbg("SEP Driver: sep reply in\n");
mask |= POLLIN | POLLRDNORM;
}
}
dbg("SEP Driver:<-------- poll exit\n");
return mask;
}
/**
* sep_time_address - address in SEP memory of time
* @sep: SEP device we want the address from
*
* Return the address of the two dwords in memory used for time
* setting.
*/
static u32 *sep_time_address(struct sep_device *sep)
{
return sep->shared_addr + SEP_DRIVER_SYSTEM_TIME_MEMORY_OFFSET_IN_BYTES;
}
/**
* sep_set_time - set the SEP time
* @sep: the SEP we are setting the time for
*
* Calculates time and sets it at the predefined address.
* Called with the sep mutex held.
*/
static unsigned long sep_set_time(struct sep_device *sep)
{
struct timeval time;
u32 *time_addr; /* address of time as seen by the kernel */
dbg("sep:sep_set_time start\n");
do_gettimeofday(&time);
/* set value in the SYSTEM MEMORY offset */
time_addr = sep_time_address(sep);
time_addr[0] = SEP_TIME_VAL_TOKEN;
time_addr[1] = time.tv_sec;
edbg("SEP Driver:time.tv_sec is %lu\n", time.tv_sec);
edbg("SEP Driver:time_addr is %p\n", time_addr);
edbg("SEP Driver:sep->shared_addr is %p\n", sep->shared_addr);
return time.tv_sec;
}
/**
* sep_dump_message - dump the message that is pending
* @sep: sep device
*
* Dump out the message pending in the shared message area
*/
static void sep_dump_message(struct sep_device *sep)
{
int count;
for (count = 0; count < 12 * 4; count += 4)
edbg("Word %d of the message is %u\n", count, *((u32 *) (sep->shared_addr + count)));
}
/**
* sep_send_command_handler - kick off a command
* @sep: sep being signalled
*
* This function raises interrupt to SEP that signals that is has a new
* command from the host
*/
static void sep_send_command_handler(struct sep_device *sep)
{
dbg("sep:sep_send_command_handler start\n");
mutex_lock(&sep_mutex);
sep_set_time(sep);
/* FIXME: flush cache */
flush_cache_all();
sep_dump_message(sep);
/* update counter */
sep->send_ct++;
/* send interrupt to SEP */
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x2);
dbg("SEP Driver:<-------- sep_send_command_handler end\n");
mutex_unlock(&sep_mutex);
return;
}
/**
* sep_send_reply_command_handler - kick off a command reply
* @sep: sep being signalled
*
* This function raises interrupt to SEP that signals that is has a new
* command from the host
*/
static void sep_send_reply_command_handler(struct sep_device *sep)
{
dbg("sep:sep_send_reply_command_handler start\n");
/* flash cache */
flush_cache_all();
sep_dump_message(sep);
mutex_lock(&sep_mutex);
sep->send_ct++; /* update counter */
/* send the interrupt to SEP */
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR2_REG_ADDR, sep->send_ct);
/* update both counters */
sep->send_ct++;
sep->reply_ct++;
mutex_unlock(&sep_mutex);
dbg("sep: sep_send_reply_command_handler end\n");
}
/*
This function handles the allocate data pool memory request
This function returns calculates the bus address of the
allocated memory, and the offset of this area from the mapped address.
Therefore, the FVOs in user space can calculate the exact virtual
address of this allocated memory
*/
static int sep_allocate_data_pool_memory_handler(struct sep_device *sep,
unsigned long arg)
{
int error;
struct sep_driver_alloc_t command_args;
dbg("SEP Driver:--------> sep_allocate_data_pool_memory_handler start\n");
error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_alloc_t));
if (error) {
error = -EFAULT;
goto end_function;
}
/* allocate memory */
if ((sep->data_pool_bytes_allocated + command_args.num_bytes) > SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES) {
error = -ENOMEM;
goto end_function;
}
/* set the virtual and bus address */
command_args.offset = SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES + sep->data_pool_bytes_allocated;
command_args.phys_address = sep->shared_bus + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES + sep->data_pool_bytes_allocated;
/* write the memory back to the user space */
error = copy_to_user((void *) arg, (void *) &command_args, sizeof(struct sep_driver_alloc_t));
if (error) {
error = -EFAULT;
goto end_function;
}
/* set the allocation */
sep->data_pool_bytes_allocated += command_args.num_bytes;
end_function:
dbg("SEP Driver:<-------- sep_allocate_data_pool_memory_handler end\n");
return error;
}
/*
This function handles write into allocated data pool command
*/
static int sep_write_into_data_pool_handler(struct sep_device *sep, unsigned long arg)
{
int error;
void *virt_address;
unsigned long va;
unsigned long app_in_address;
unsigned long num_bytes;
void *data_pool_area_addr;
dbg("SEP Driver:--------> sep_write_into_data_pool_handler start\n");
/* get the application address */
error = get_user(app_in_address, &(((struct sep_driver_write_t *) arg)->app_address));
if (error)
goto end_function;
/* get the virtual kernel address address */
error = get_user(va, &(((struct sep_driver_write_t *) arg)->datapool_address));
if (error)
goto end_function;
virt_address = (void *)va;
/* get the number of bytes */
error = get_user(num_bytes, &(((struct sep_driver_write_t *) arg)->num_bytes));
if (error)
goto end_function;
/* calculate the start of the data pool */
data_pool_area_addr = sep->shared_addr + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES;
/* check that the range of the virtual kernel address is correct */
if (virt_address < data_pool_area_addr || virt_address > (data_pool_area_addr + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES)) {
error = -EINVAL;
goto end_function;
}
/* copy the application data */
error = copy_from_user(virt_address, (void *) app_in_address, num_bytes);
if (error)
error = -EFAULT;
end_function:
dbg("SEP Driver:<-------- sep_write_into_data_pool_handler end\n");
return error;
}
/*
this function handles the read from data pool command
*/
static int sep_read_from_data_pool_handler(struct sep_device *sep, unsigned long arg)
{
int error;
/* virtual address of dest application buffer */
unsigned long app_out_address;
/* virtual address of the data pool */
unsigned long va;
void *virt_address;
unsigned long num_bytes;
void *data_pool_area_addr;
dbg("SEP Driver:--------> sep_read_from_data_pool_handler start\n");
/* get the application address */
error = get_user(app_out_address, &(((struct sep_driver_write_t *) arg)->app_address));
if (error)
goto end_function;
/* get the virtual kernel address address */
error = get_user(va, &(((struct sep_driver_write_t *) arg)->datapool_address));
if (error)
goto end_function;
virt_address = (void *)va;
/* get the number of bytes */
error = get_user(num_bytes, &(((struct sep_driver_write_t *) arg)->num_bytes));
if (error)
goto end_function;
/* calculate the start of the data pool */
data_pool_area_addr = sep->shared_addr + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES;
/* FIXME: These are incomplete all over the driver: what about + len
and when doing that also overflows */
/* check that the range of the virtual kernel address is correct */
if (virt_address < data_pool_area_addr || virt_address > data_pool_area_addr + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES) {
error = -EINVAL;
goto end_function;
}
/* copy the application data */
error = copy_to_user((void *) app_out_address, virt_address, num_bytes);
if (error)
error = -EFAULT;
end_function:
dbg("SEP Driver:<-------- sep_read_from_data_pool_handler end\n");
return error;
}
/*
This function releases all the application virtual buffer physical pages,
that were previously locked
*/
static int sep_free_dma_pages(struct page **page_array_ptr, unsigned long num_pages, unsigned long dirtyFlag)
{
unsigned long count;
if (dirtyFlag) {
for (count = 0; count < num_pages; count++) {
/* the out array was written, therefore the data was changed */
if (!PageReserved(page_array_ptr[count]))
SetPageDirty(page_array_ptr[count]);
page_cache_release(page_array_ptr[count]);
}
} else {
/* free in pages - the data was only read, therefore no update was done
on those pages */
for (count = 0; count < num_pages; count++)
page_cache_release(page_array_ptr[count]);
}
if (page_array_ptr)
/* free the array */
kfree(page_array_ptr);
return 0;
}
/*
This function locks all the physical pages of the kernel virtual buffer
and construct a basic lli array, where each entry holds the physical
page address and the size that application data holds in this physical pages
*/
static int sep_lock_kernel_pages(struct sep_device *sep,
unsigned long kernel_virt_addr,
unsigned long data_size,
unsigned long *num_pages_ptr,
struct sep_lli_entry_t **lli_array_ptr,
struct page ***page_array_ptr)
{
int error = 0;
/* the the page of the end address of the user space buffer */
unsigned long end_page;
/* the page of the start address of the user space buffer */
unsigned long start_page;
/* the range in pages */
unsigned long num_pages;
struct sep_lli_entry_t *lli_array;
/* next kernel address to map */
unsigned long next_kernel_address;
unsigned long count;
dbg("SEP Driver:--------> sep_lock_kernel_pages start\n");
/* set start and end pages and num pages */
end_page = (kernel_virt_addr + data_size - 1) >> PAGE_SHIFT;
start_page = kernel_virt_addr >> PAGE_SHIFT;
num_pages = end_page - start_page + 1;
edbg("SEP Driver: kernel_virt_addr is %08lx\n", kernel_virt_addr);
edbg("SEP Driver: data_size is %lu\n", data_size);
edbg("SEP Driver: start_page is %lx\n", start_page);
edbg("SEP Driver: end_page is %lx\n", end_page);
edbg("SEP Driver: num_pages is %lu\n", num_pages);
lli_array = kmalloc(sizeof(struct sep_lli_entry_t) * num_pages, GFP_ATOMIC);
if (!lli_array) {
edbg("SEP Driver: kmalloc for lli_array failed\n");
error = -ENOMEM;
goto end_function;
}
/* set the start address of the first page - app data may start not at
the beginning of the page */
lli_array[0].physical_address = (unsigned long) virt_to_phys((unsigned long *) kernel_virt_addr);
/* check that not all the data is in the first page only */
if ((PAGE_SIZE - (kernel_virt_addr & (~PAGE_MASK))) >= data_size)
lli_array[0].block_size = data_size;
else
lli_array[0].block_size = PAGE_SIZE - (kernel_virt_addr & (~PAGE_MASK));
/* debug print */
dbg("lli_array[0].physical_address is %08lx, lli_array[0].block_size is %lu\n", lli_array[0].physical_address, lli_array[0].block_size);
/* advance the address to the start of the next page */
next_kernel_address = (kernel_virt_addr & PAGE_MASK) + PAGE_SIZE;
/* go from the second page to the prev before last */
for (count = 1; count < (num_pages - 1); count++) {
lli_array[count].physical_address = (unsigned long) virt_to_phys((unsigned long *) next_kernel_address);
lli_array[count].block_size = PAGE_SIZE;
edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size);
next_kernel_address += PAGE_SIZE;
}
/* if more then 1 pages locked - then update for the last page size needed */
if (num_pages > 1) {
/* update the address of the last page */
lli_array[count].physical_address = (unsigned long) virt_to_phys((unsigned long *) next_kernel_address);
/* set the size of the last page */
lli_array[count].block_size = (kernel_virt_addr + data_size) & (~PAGE_MASK);
if (lli_array[count].block_size == 0) {
dbg("app_virt_addr is %08lx\n", kernel_virt_addr);
dbg("data_size is %lu\n", data_size);
while (1);
}
edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size);
}
/* set output params */
*lli_array_ptr = lli_array;
*num_pages_ptr = num_pages;
*page_array_ptr = 0;
end_function:
dbg("SEP Driver:<-------- sep_lock_kernel_pages end\n");
return 0;
}
/*
This function locks all the physical pages of the application virtual buffer
and construct a basic lli array, where each entry holds the physical page
address and the size that application data holds in this physical pages
*/
static int sep_lock_user_pages(struct sep_device *sep,
unsigned long app_virt_addr,
unsigned long data_size,
unsigned long *num_pages_ptr,
struct sep_lli_entry_t **lli_array_ptr,
struct page ***page_array_ptr)
{
int error = 0;
/* the the page of the end address of the user space buffer */
unsigned long end_page;
/* the page of the start address of the user space buffer */
unsigned long start_page;
/* the range in pages */
unsigned long num_pages;
struct page **page_array;
struct sep_lli_entry_t *lli_array;
unsigned long count;
int result;
dbg("SEP Driver:--------> sep_lock_user_pages start\n");
/* set start and end pages and num pages */
end_page = (app_virt_addr + data_size - 1) >> PAGE_SHIFT;
start_page = app_virt_addr >> PAGE_SHIFT;
num_pages = end_page - start_page + 1;
edbg("SEP Driver: app_virt_addr is %08lx\n", app_virt_addr);
edbg("SEP Driver: data_size is %lu\n", data_size);
edbg("SEP Driver: start_page is %lu\n", start_page);
edbg("SEP Driver: end_page is %lu\n", end_page);
edbg("SEP Driver: num_pages is %lu\n", num_pages);
/* allocate array of pages structure pointers */
page_array = kmalloc(sizeof(struct page *) * num_pages, GFP_ATOMIC);
if (!page_array) {
edbg("SEP Driver: kmalloc for page_array failed\n");
error = -ENOMEM;
goto end_function;
}
lli_array = kmalloc(sizeof(struct sep_lli_entry_t) * num_pages, GFP_ATOMIC);
if (!lli_array) {
edbg("SEP Driver: kmalloc for lli_array failed\n");
error = -ENOMEM;
goto end_function_with_error1;
}
/* convert the application virtual address into a set of physical */
down_read(&current->mm->mmap_sem);
result = get_user_pages(current, current->mm, app_virt_addr, num_pages, 1, 0, page_array, 0);
up_read(&current->mm->mmap_sem);
/* check the number of pages locked - if not all then exit with error */
if (result != num_pages) {
dbg("SEP Driver: not all pages locked by get_user_pages\n");
error = -ENOMEM;
goto end_function_with_error2;
}
/* flush the cache */
for (count = 0; count < num_pages; count++)
flush_dcache_page(page_array[count]);
/* set the start address of the first page - app data may start not at
the beginning of the page */
lli_array[0].physical_address = ((unsigned long) page_to_phys(page_array[0])) + (app_virt_addr & (~PAGE_MASK));
/* check that not all the data is in the first page only */
if ((PAGE_SIZE - (app_virt_addr & (~PAGE_MASK))) >= data_size)
lli_array[0].block_size = data_size;
else
lli_array[0].block_size = PAGE_SIZE - (app_virt_addr & (~PAGE_MASK));
/* debug print */
dbg("lli_array[0].physical_address is %08lx, lli_array[0].block_size is %lu\n", lli_array[0].physical_address, lli_array[0].block_size);
/* go from the second page to the prev before last */
for (count = 1; count < (num_pages - 1); count++) {
lli_array[count].physical_address = (unsigned long) page_to_phys(page_array[count]);
lli_array[count].block_size = PAGE_SIZE;
edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size);
}
/* if more then 1 pages locked - then update for the last page size needed */
if (num_pages > 1) {
/* update the address of the last page */
lli_array[count].physical_address = (unsigned long) page_to_phys(page_array[count]);
/* set the size of the last page */
lli_array[count].block_size = (app_virt_addr + data_size) & (~PAGE_MASK);
if (lli_array[count].block_size == 0) {
dbg("app_virt_addr is %08lx\n", app_virt_addr);
dbg("data_size is %lu\n", data_size);
while (1);
}
edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n",
count, lli_array[count].physical_address,
count, lli_array[count].block_size);
}
/* set output params */
*lli_array_ptr = lli_array;
*num_pages_ptr = num_pages;
*page_array_ptr = page_array;
goto end_function;
end_function_with_error2:
/* release the cache */
for (count = 0; count < num_pages; count++)
page_cache_release(page_array[count]);
kfree(lli_array);
end_function_with_error1:
kfree(page_array);
end_function:
dbg("SEP Driver:<-------- sep_lock_user_pages end\n");
return 0;
}
/*
this function calculates the size of data that can be inserted into the lli
table from this array the condition is that either the table is full
(all etnries are entered), or there are no more entries in the lli array
*/
static unsigned long sep_calculate_lli_table_max_size(struct sep_lli_entry_t *lli_in_array_ptr, unsigned long num_array_entries)
{
unsigned long table_data_size = 0;
unsigned long counter;
/* calculate the data in the out lli table if till we fill the whole
table or till the data has ended */
for (counter = 0; (counter < (SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP - 1)) && (counter < num_array_entries); counter++)
table_data_size += lli_in_array_ptr[counter].block_size;
return table_data_size;
}
/*
this functions builds ont lli table from the lli_array according to
the given size of data
*/
static void sep_build_lli_table(struct sep_lli_entry_t *lli_array_ptr, struct sep_lli_entry_t *lli_table_ptr, unsigned long *num_processed_entries_ptr, unsigned long *num_table_entries_ptr, unsigned long table_data_size)
{
unsigned long curr_table_data_size;
/* counter of lli array entry */
unsigned long array_counter;
dbg("SEP Driver:--------> sep_build_lli_table start\n");
/* init currrent table data size and lli array entry counter */
curr_table_data_size = 0;
array_counter = 0;
*num_table_entries_ptr = 1;
edbg("SEP Driver:table_data_size is %lu\n", table_data_size);
/* fill the table till table size reaches the needed amount */
while (curr_table_data_size < table_data_size) {
/* update the number of entries in table */
(*num_table_entries_ptr)++;
lli_table_ptr->physical_address = lli_array_ptr[array_counter].physical_address;
lli_table_ptr->block_size = lli_array_ptr[array_counter].block_size;
curr_table_data_size += lli_table_ptr->block_size;
edbg("SEP Driver:lli_table_ptr is %08lx\n", (unsigned long) lli_table_ptr);
edbg("SEP Driver:lli_table_ptr->physical_address is %08lx\n", lli_table_ptr->physical_address);
edbg("SEP Driver:lli_table_ptr->block_size is %lu\n", lli_table_ptr->block_size);
/* check for overflow of the table data */
if (curr_table_data_size > table_data_size) {
edbg("SEP Driver:curr_table_data_size > table_data_size\n");
/* update the size of block in the table */
lli_table_ptr->block_size -= (curr_table_data_size - table_data_size);
/* update the physical address in the lli array */
lli_array_ptr[array_counter].physical_address += lli_table_ptr->block_size;
/* update the block size left in the lli array */
lli_array_ptr[array_counter].block_size = (curr_table_data_size - table_data_size);
} else
/* advance to the next entry in the lli_array */
array_counter++;
edbg("SEP Driver:lli_table_ptr->physical_address is %08lx\n", lli_table_ptr->physical_address);
edbg("SEP Driver:lli_table_ptr->block_size is %lu\n", lli_table_ptr->block_size);
/* move to the next entry in table */
lli_table_ptr++;
}
/* set the info entry to default */
lli_table_ptr->physical_address = 0xffffffff;
lli_table_ptr->block_size = 0;
edbg("SEP Driver:lli_table_ptr is %08lx\n", (unsigned long) lli_table_ptr);
edbg("SEP Driver:lli_table_ptr->physical_address is %08lx\n", lli_table_ptr->physical_address);
edbg("SEP Driver:lli_table_ptr->block_size is %lu\n", lli_table_ptr->block_size);
/* set the output parameter */
*num_processed_entries_ptr += array_counter;
edbg("SEP Driver:*num_processed_entries_ptr is %lu\n", *num_processed_entries_ptr);
dbg("SEP Driver:<-------- sep_build_lli_table end\n");
return;
}
/*
this function goes over the list of the print created tables and
prints all the data
*/
static void sep_debug_print_lli_tables(struct sep_device *sep, struct sep_lli_entry_t *lli_table_ptr, unsigned long num_table_entries, unsigned long table_data_size)
{
unsigned long table_count;
unsigned long entries_count;
dbg("SEP Driver:--------> sep_debug_print_lli_tables start\n");
table_count = 1;
while ((unsigned long) lli_table_ptr != 0xffffffff) {
edbg("SEP Driver: lli table %08lx, table_data_size is %lu\n", table_count, table_data_size);
edbg("SEP Driver: num_table_entries is %lu\n", num_table_entries);
/* print entries of the table (without info entry) */
for (entries_count = 0; entries_count < num_table_entries; entries_count++, lli_table_ptr++) {
edbg("SEP Driver:lli_table_ptr address is %08lx\n", (unsigned long) lli_table_ptr);
edbg("SEP Driver:phys address is %08lx block size is %lu\n", lli_table_ptr->physical_address, lli_table_ptr->block_size);
}
/* point to the info entry */
lli_table_ptr--;
edbg("SEP Driver:phys lli_table_ptr->block_size is %lu\n", lli_table_ptr->block_size);
edbg("SEP Driver:phys lli_table_ptr->physical_address is %08lx\n", lli_table_ptr->physical_address);
table_data_size = lli_table_ptr->block_size & 0xffffff;
num_table_entries = (lli_table_ptr->block_size >> 24) & 0xff;
lli_table_ptr = (struct sep_lli_entry_t *)
(lli_table_ptr->physical_address);
edbg("SEP Driver:phys table_data_size is %lu num_table_entries is %lu lli_table_ptr is%lu\n", table_data_size, num_table_entries, (unsigned long) lli_table_ptr);
if ((unsigned long) lli_table_ptr != 0xffffffff)
lli_table_ptr = (struct sep_lli_entry_t *) sep_shared_bus_to_virt(sep, (unsigned long) lli_table_ptr);
table_count++;
}
dbg("SEP Driver:<-------- sep_debug_print_lli_tables end\n");
}
/*
This function prepares only input DMA table for synhronic symmetric
operations (HASH)
*/
static int sep_prepare_input_dma_table(struct sep_device *sep,
unsigned long app_virt_addr,
unsigned long data_size,
unsigned long block_size,
unsigned long *lli_table_ptr,
unsigned long *num_entries_ptr,
unsigned long *table_data_size_ptr,
bool isKernelVirtualAddress)
{
/* pointer to the info entry of the table - the last entry */
struct sep_lli_entry_t *info_entry_ptr;
/* array of pointers ot page */
struct sep_lli_entry_t *lli_array_ptr;
/* points to the first entry to be processed in the lli_in_array */
unsigned long current_entry;
/* num entries in the virtual buffer */
unsigned long sep_lli_entries;
/* lli table pointer */
struct sep_lli_entry_t *in_lli_table_ptr;
/* the total data in one table */
unsigned long table_data_size;
/* number of entries in lli table */
unsigned long num_entries_in_table;
/* next table address */
void *lli_table_alloc_addr;
unsigned long result;
dbg("SEP Driver:--------> sep_prepare_input_dma_table start\n");
edbg("SEP Driver:data_size is %lu\n", data_size);
edbg("SEP Driver:block_size is %lu\n", block_size);
/* initialize the pages pointers */
sep->in_page_array = 0;
sep->in_num_pages = 0;
if (data_size == 0) {
/* special case - created 2 entries table with zero data */
in_lli_table_ptr = (struct sep_lli_entry_t *) (sep->shared_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES);
/* FIXME: Should the entry below not be for _bus */
in_lli_table_ptr->physical_address = (unsigned long)sep->shared_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
in_lli_table_ptr->block_size = 0;
in_lli_table_ptr++;
in_lli_table_ptr->physical_address = 0xFFFFFFFF;
in_lli_table_ptr->block_size = 0;
*lli_table_ptr = sep->shared_bus + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
*num_entries_ptr = 2;
*table_data_size_ptr = 0;
goto end_function;
}
/* check if the pages are in Kernel Virtual Address layout */
if (isKernelVirtualAddress == true)
/* lock the pages of the kernel buffer and translate them to pages */
result = sep_lock_kernel_pages(sep, app_virt_addr, data_size, &sep->in_num_pages, &lli_array_ptr, &sep->in_page_array);
else
/* lock the pages of the user buffer and translate them to pages */
result = sep_lock_user_pages(sep, app_virt_addr, data_size, &sep->in_num_pages, &lli_array_ptr, &sep->in_page_array);
if (result)
return result;
edbg("SEP Driver:output sep->in_num_pages is %lu\n", sep->in_num_pages);
current_entry = 0;
info_entry_ptr = 0;
sep_lli_entries = sep->in_num_pages;
/* initiate to point after the message area */
lli_table_alloc_addr = sep->shared_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
/* loop till all the entries in in array are not processed */
while (current_entry < sep_lli_entries) {
/* set the new input and output tables */
in_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr;
lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* calculate the maximum size of data for input table */
table_data_size = sep_calculate_lli_table_max_size(&lli_array_ptr[current_entry], (sep_lli_entries - current_entry));
/* now calculate the table size so that it will be module block size */
table_data_size = (table_data_size / block_size) * block_size;
edbg("SEP Driver:output table_data_size is %lu\n", table_data_size);
/* construct input lli table */
sep_build_lli_table(&lli_array_ptr[current_entry], in_lli_table_ptr, &current_entry, &num_entries_in_table, table_data_size);
if (info_entry_ptr == 0) {
/* set the output parameters to physical addresses */
*lli_table_ptr = sep_shared_virt_to_bus(sep, in_lli_table_ptr);
*num_entries_ptr = num_entries_in_table;
*table_data_size_ptr = table_data_size;
edbg("SEP Driver:output lli_table_in_ptr is %08lx\n", *lli_table_ptr);
} else {
/* update the info entry of the previous in table */
info_entry_ptr->physical_address = sep_shared_virt_to_bus(sep, in_lli_table_ptr);
info_entry_ptr->block_size = ((num_entries_in_table) << 24) | (table_data_size);
}
/* save the pointer to the info entry of the current tables */
info_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1;
}
/* print input tables */
sep_debug_print_lli_tables(sep, (struct sep_lli_entry_t *)
sep_shared_bus_to_virt(sep, *lli_table_ptr), *num_entries_ptr, *table_data_size_ptr);
/* the array of the pages */
kfree(lli_array_ptr);
end_function:
dbg("SEP Driver:<-------- sep_prepare_input_dma_table end\n");
return 0;
}
/*
This function creates the input and output dma tables for
symmetric operations (AES/DES) according to the block size from LLI arays
*/
static int sep_construct_dma_tables_from_lli(struct sep_device *sep,
struct sep_lli_entry_t *lli_in_array,
unsigned long sep_in_lli_entries,
struct sep_lli_entry_t *lli_out_array,
unsigned long sep_out_lli_entries,
unsigned long block_size, unsigned long *lli_table_in_ptr, unsigned long *lli_table_out_ptr, unsigned long *in_num_entries_ptr, unsigned long *out_num_entries_ptr, unsigned long *table_data_size_ptr)
{
/* points to the area where next lli table can be allocated: keep void *
as there is pointer scaling to fix otherwise */
void *lli_table_alloc_addr;
/* input lli table */
struct sep_lli_entry_t *in_lli_table_ptr;
/* output lli table */
struct sep_lli_entry_t *out_lli_table_ptr;
/* pointer to the info entry of the table - the last entry */
struct sep_lli_entry_t *info_in_entry_ptr;
/* pointer to the info entry of the table - the last entry */
struct sep_lli_entry_t *info_out_entry_ptr;
/* points to the first entry to be processed in the lli_in_array */
unsigned long current_in_entry;
/* points to the first entry to be processed in the lli_out_array */
unsigned long current_out_entry;
/* max size of the input table */
unsigned long in_table_data_size;
/* max size of the output table */
unsigned long out_table_data_size;
/* flag te signifies if this is the first tables build from the arrays */
unsigned long first_table_flag;
/* the data size that should be in table */
unsigned long table_data_size;
/* number of etnries in the input table */
unsigned long num_entries_in_table;
/* number of etnries in the output table */
unsigned long num_entries_out_table;
dbg("SEP Driver:--------> sep_construct_dma_tables_from_lli start\n");
/* initiate to pint after the message area */
lli_table_alloc_addr = sep->shared_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
current_in_entry = 0;
current_out_entry = 0;
first_table_flag = 1;
info_in_entry_ptr = 0;
info_out_entry_ptr = 0;
/* loop till all the entries in in array are not processed */
while (current_in_entry < sep_in_lli_entries) {
/* set the new input and output tables */
in_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr;
lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* set the first output tables */
out_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr;
lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* calculate the maximum size of data for input table */
in_table_data_size = sep_calculate_lli_table_max_size(&lli_in_array[current_in_entry], (sep_in_lli_entries - current_in_entry));
/* calculate the maximum size of data for output table */
out_table_data_size = sep_calculate_lli_table_max_size(&lli_out_array[current_out_entry], (sep_out_lli_entries - current_out_entry));
edbg("SEP Driver:in_table_data_size is %lu\n", in_table_data_size);
edbg("SEP Driver:out_table_data_size is %lu\n", out_table_data_size);
/* check where the data is smallest */
table_data_size = in_table_data_size;
if (table_data_size > out_table_data_size)
table_data_size = out_table_data_size;
/* now calculate the table size so that it will be module block size */
table_data_size = (table_data_size / block_size) * block_size;
dbg("SEP Driver:table_data_size is %lu\n", table_data_size);
/* construct input lli table */
sep_build_lli_table(&lli_in_array[current_in_entry], in_lli_table_ptr, &current_in_entry, &num_entries_in_table, table_data_size);
/* construct output lli table */
sep_build_lli_table(&lli_out_array[current_out_entry], out_lli_table_ptr, &current_out_entry, &num_entries_out_table, table_data_size);
/* if info entry is null - this is the first table built */
if (info_in_entry_ptr == 0) {
/* set the output parameters to physical addresses */
*lli_table_in_ptr = sep_shared_virt_to_bus(sep, in_lli_table_ptr);
*in_num_entries_ptr = num_entries_in_table;
*lli_table_out_ptr = sep_shared_virt_to_bus(sep, out_lli_table_ptr);
*out_num_entries_ptr = num_entries_out_table;
*table_data_size_ptr = table_data_size;
edbg("SEP Driver:output lli_table_in_ptr is %08lx\n", *lli_table_in_ptr);
edbg("SEP Driver:output lli_table_out_ptr is %08lx\n", *lli_table_out_ptr);
} else {
/* update the info entry of the previous in table */
info_in_entry_ptr->physical_address = sep_shared_virt_to_bus(sep, in_lli_table_ptr);
info_in_entry_ptr->block_size = ((num_entries_in_table) << 24) | (table_data_size);
/* update the info entry of the previous in table */
info_out_entry_ptr->physical_address = sep_shared_virt_to_bus(sep, out_lli_table_ptr);
info_out_entry_ptr->block_size = ((num_entries_out_table) << 24) | (table_data_size);
}
/* save the pointer to the info entry of the current tables */
info_in_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1;
info_out_entry_ptr = out_lli_table_ptr + num_entries_out_table - 1;
edbg("SEP Driver:output num_entries_out_table is %lu\n", (unsigned long) num_entries_out_table);
edbg("SEP Driver:output info_in_entry_ptr is %lu\n", (unsigned long) info_in_entry_ptr);
edbg("SEP Driver:output info_out_entry_ptr is %lu\n", (unsigned long) info_out_entry_ptr);
}
/* print input tables */
sep_debug_print_lli_tables(sep, (struct sep_lli_entry_t *)
sep_shared_bus_to_virt(sep, *lli_table_in_ptr), *in_num_entries_ptr, *table_data_size_ptr);
/* print output tables */
sep_debug_print_lli_tables(sep, (struct sep_lli_entry_t *)
sep_shared_bus_to_virt(sep, *lli_table_out_ptr), *out_num_entries_ptr, *table_data_size_ptr);
dbg("SEP Driver:<-------- sep_construct_dma_tables_from_lli end\n");
return 0;
}
/*
This function builds input and output DMA tables for synhronic
symmetric operations (AES, DES). It also checks that each table
is of the modular block size
*/
static int sep_prepare_input_output_dma_table(struct sep_device *sep,
unsigned long app_virt_in_addr,
unsigned long app_virt_out_addr,
unsigned long data_size,
unsigned long block_size,
unsigned long *lli_table_in_ptr, unsigned long *lli_table_out_ptr, unsigned long *in_num_entries_ptr, unsigned long *out_num_entries_ptr, unsigned long *table_data_size_ptr, bool isKernelVirtualAddress)
{
/* array of pointers of page */
struct sep_lli_entry_t *lli_in_array;
/* array of pointers of page */
struct sep_lli_entry_t *lli_out_array;
int result = 0;
dbg("SEP Driver:--------> sep_prepare_input_output_dma_table start\n");
/* initialize the pages pointers */
sep->in_page_array = 0;
sep->out_page_array = 0;
/* check if the pages are in Kernel Virtual Address layout */
if (isKernelVirtualAddress == true) {
/* lock the pages of the kernel buffer and translate them to pages */
result = sep_lock_kernel_pages(sep, app_virt_in_addr, data_size, &sep->in_num_pages, &lli_in_array, &sep->in_page_array);
if (result) {
edbg("SEP Driver: sep_lock_kernel_pages for input virtual buffer failed\n");
goto end_function;
}
} else {
/* lock the pages of the user buffer and translate them to pages */
result = sep_lock_user_pages(sep, app_virt_in_addr, data_size, &sep->in_num_pages, &lli_in_array, &sep->in_page_array);
if (result) {
edbg("SEP Driver: sep_lock_user_pages for input virtual buffer failed\n");
goto end_function;
}
}
if (isKernelVirtualAddress == true) {
result = sep_lock_kernel_pages(sep, app_virt_out_addr, data_size, &sep->out_num_pages, &lli_out_array, &sep->out_page_array);
if (result) {
edbg("SEP Driver: sep_lock_kernel_pages for output virtual buffer failed\n");
goto end_function_with_error1;
}
} else {
result = sep_lock_user_pages(sep, app_virt_out_addr, data_size, &sep->out_num_pages, &lli_out_array, &sep->out_page_array);
if (result) {
edbg("SEP Driver: sep_lock_user_pages for output virtual buffer failed\n");
goto end_function_with_error1;
}
}
edbg("sep->in_num_pages is %lu\n", sep->in_num_pages);
edbg("sep->out_num_pages is %lu\n", sep->out_num_pages);
edbg("SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP is %x\n", SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);
/* call the fucntion that creates table from the lli arrays */
result = sep_construct_dma_tables_from_lli(sep, lli_in_array, sep->in_num_pages, lli_out_array, sep->out_num_pages, block_size, lli_table_in_ptr, lli_table_out_ptr, in_num_entries_ptr, out_num_entries_ptr, table_data_size_ptr);
if (result) {
edbg("SEP Driver: sep_construct_dma_tables_from_lli failed\n");
goto end_function_with_error2;
}
/* fall through - free the lli entry arrays */
dbg("in_num_entries_ptr is %08lx\n", *in_num_entries_ptr);
dbg("out_num_entries_ptr is %08lx\n", *out_num_entries_ptr);
dbg("table_data_size_ptr is %08lx\n", *table_data_size_ptr);
end_function_with_error2:
kfree(lli_out_array);
end_function_with_error1:
kfree(lli_in_array);
end_function:
dbg("SEP Driver:<-------- sep_prepare_input_output_dma_table end result = %d\n", (int) result);
return result;
}
/*
this function handles tha request for creation of the DMA table
for the synchronic symmetric operations (AES,DES)
*/
static int sep_create_sync_dma_tables_handler(struct sep_device *sep,
unsigned long arg)
{
int error;
/* command arguments */
struct sep_driver_build_sync_table_t command_args;
dbg("SEP Driver:--------> sep_create_sync_dma_tables_handler start\n");
error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_build_sync_table_t));
if (error) {
error = -EFAULT;
goto end_function;
}
edbg("app_in_address is %08lx\n", command_args.app_in_address);
edbg("app_out_address is %08lx\n", command_args.app_out_address);
edbg("data_size is %lu\n", command_args.data_in_size);
edbg("block_size is %lu\n", command_args.block_size);
/* check if we need to build only input table or input/output */
if (command_args.app_out_address)
/* prepare input and output tables */
error = sep_prepare_input_output_dma_table(sep,
command_args.app_in_address,
command_args.app_out_address,
command_args.data_in_size,
command_args.block_size,
&command_args.in_table_address,
&command_args.out_table_address, &command_args.in_table_num_entries, &command_args.out_table_num_entries, &command_args.table_data_size, command_args.isKernelVirtualAddress);
else
/* prepare input tables */
error = sep_prepare_input_dma_table(sep,
command_args.app_in_address,
command_args.data_in_size, command_args.block_size, &command_args.in_table_address, &command_args.in_table_num_entries, &command_args.table_data_size, command_args.isKernelVirtualAddress);
if (error)
goto end_function;
/* copy to user */
if (copy_to_user((void *) arg, (void *) &command_args, sizeof(struct sep_driver_build_sync_table_t)))
error = -EFAULT;
end_function:
dbg("SEP Driver:<-------- sep_create_sync_dma_tables_handler end\n");
return error;
}
/*
this function handles the request for freeing dma table for synhronic actions
*/
static int sep_free_dma_table_data_handler(struct sep_device *sep)
{
dbg("SEP Driver:--------> sep_free_dma_table_data_handler start\n");
/* free input pages array */
sep_free_dma_pages(sep->in_page_array, sep->in_num_pages, 0);
/* free output pages array if needed */
if (sep->out_page_array)
sep_free_dma_pages(sep->out_page_array, sep->out_num_pages, 1);
/* reset all the values */
sep->in_page_array = 0;
sep->out_page_array = 0;
sep->in_num_pages = 0;
sep->out_num_pages = 0;
dbg("SEP Driver:<-------- sep_free_dma_table_data_handler end\n");
return 0;
}
/*
this function find a space for the new flow dma table
*/
static int sep_find_free_flow_dma_table_space(struct sep_device *sep,
unsigned long **table_address_ptr)
{
int error = 0;
/* pointer to the id field of the flow dma table */
unsigned long *start_table_ptr;
/* Do not make start_addr unsigned long * unless fixing the offset
computations ! */
void *flow_dma_area_start_addr;
unsigned long *flow_dma_area_end_addr;
/* maximum table size in words */
unsigned long table_size_in_words;
/* find the start address of the flow DMA table area */
flow_dma_area_start_addr = sep->shared_addr + SEP_DRIVER_FLOW_DMA_TABLES_AREA_OFFSET_IN_BYTES;
/* set end address of the flow table area */
flow_dma_area_end_addr = flow_dma_area_start_addr + SEP_DRIVER_FLOW_DMA_TABLES_AREA_SIZE_IN_BYTES;
/* set table size in words */
table_size_in_words = SEP_DRIVER_MAX_FLOW_NUM_ENTRIES_IN_TABLE * (sizeof(struct sep_lli_entry_t) / sizeof(long)) + 2;
/* set the pointer to the start address of DMA area */
start_table_ptr = flow_dma_area_start_addr;
/* find the space for the next table */
while (((*start_table_ptr & 0x7FFFFFFF) != 0) && start_table_ptr < flow_dma_area_end_addr)
start_table_ptr += table_size_in_words;
/* check if we reached the end of floa tables area */
if (start_table_ptr >= flow_dma_area_end_addr)
error = -1;
else
*table_address_ptr = start_table_ptr;
return error;
}
/*
This function creates one DMA table for flow and returns its data,
and pointer to its info entry
*/
static int sep_prepare_one_flow_dma_table(struct sep_device *sep,
unsigned long virt_buff_addr,
unsigned long virt_buff_size,
struct sep_lli_entry_t *table_data,
struct sep_lli_entry_t **info_entry_ptr,
struct sep_flow_context_t *flow_data_ptr,
bool isKernelVirtualAddress)
{
int error;
/* the range in pages */
unsigned long lli_array_size;
struct sep_lli_entry_t *lli_array;
struct sep_lli_entry_t *flow_dma_table_entry_ptr;
unsigned long *start_dma_table_ptr;
/* total table data counter */
unsigned long dma_table_data_count;
/* pointer that will keep the pointer to the pages of the virtual buffer */
struct page **page_array_ptr;
unsigned long entry_count;
/* find the space for the new table */
error = sep_find_free_flow_dma_table_space(sep, &start_dma_table_ptr);
if (error)
goto end_function;
/* check if the pages are in Kernel Virtual Address layout */
if (isKernelVirtualAddress == true)
/* lock kernel buffer in the memory */
error = sep_lock_kernel_pages(sep, virt_buff_addr, virt_buff_size, &lli_array_size, &lli_array, &page_array_ptr);
else
/* lock user buffer in the memory */
error = sep_lock_user_pages(sep, virt_buff_addr, virt_buff_size, &lli_array_size, &lli_array, &page_array_ptr);
if (error)
goto end_function;
/* set the pointer to page array at the beginning of table - this table is
now considered taken */
*start_dma_table_ptr = lli_array_size;
/* point to the place of the pages pointers of the table */
start_dma_table_ptr++;
/* set the pages pointer */
*start_dma_table_ptr = (unsigned long) page_array_ptr;
/* set the pointer to the first entry */
flow_dma_table_entry_ptr = (struct sep_lli_entry_t *) (++start_dma_table_ptr);
/* now create the entries for table */
for (dma_table_data_count = entry_count = 0; entry_count < lli_array_size; entry_count++) {
flow_dma_table_entry_ptr->physical_address = lli_array[entry_count].physical_address;
flow_dma_table_entry_ptr->block_size = lli_array[entry_count].block_size;
/* set the total data of a table */
dma_table_data_count += lli_array[entry_count].block_size;
flow_dma_table_entry_ptr++;
}
/* set the physical address */
table_data->physical_address = virt_to_phys(start_dma_table_ptr);
/* set the num_entries and total data size */
table_data->block_size = ((lli_array_size + 1) << SEP_NUM_ENTRIES_OFFSET_IN_BITS) | (dma_table_data_count);
/* set the info entry */
flow_dma_table_entry_ptr->physical_address = 0xffffffff;
flow_dma_table_entry_ptr->block_size = 0;
/* set the pointer to info entry */
*info_entry_ptr = flow_dma_table_entry_ptr;
/* the array of the lli entries */
kfree(lli_array);
end_function:
return error;
}
/*
This function creates a list of tables for flow and returns the data for
the first and last tables of the list
*/
static int sep_prepare_flow_dma_tables(struct sep_device *sep,
unsigned long num_virtual_buffers,
unsigned long first_buff_addr, struct sep_flow_context_t *flow_data_ptr, struct sep_lli_entry_t *first_table_data_ptr, struct sep_lli_entry_t *last_table_data_ptr, bool isKernelVirtualAddress)
{
int error;
unsigned long virt_buff_addr;
unsigned long virt_buff_size;
struct sep_lli_entry_t table_data;
struct sep_lli_entry_t *info_entry_ptr;
struct sep_lli_entry_t *prev_info_entry_ptr;
unsigned long i;
/* init vars */
error = 0;
prev_info_entry_ptr = 0;
/* init the first table to default */
table_data.physical_address = 0xffffffff;
first_table_data_ptr->physical_address = 0xffffffff;
table_data.block_size = 0;
for (i = 0; i < num_virtual_buffers; i++) {
/* get the virtual buffer address */
error = get_user(virt_buff_addr, &first_buff_addr);
if (error)
goto end_function;
/* get the virtual buffer size */
first_buff_addr++;
error = get_user(virt_buff_size, &first_buff_addr);
if (error)
goto end_function;
/* advance the address to point to the next pair of address|size */
first_buff_addr++;
/* now prepare the one flow LLI table from the data */
error = sep_prepare_one_flow_dma_table(sep, virt_buff_addr, virt_buff_size, &table_data, &info_entry_ptr, flow_data_ptr, isKernelVirtualAddress);
if (error)
goto end_function;
if (i == 0) {
/* if this is the first table - save it to return to the user
application */
*first_table_data_ptr = table_data;
/* set the pointer to info entry */
prev_info_entry_ptr = info_entry_ptr;
} else {
/* not first table - the previous table info entry should
be updated */
prev_info_entry_ptr->block_size = (0x1 << SEP_INT_FLAG_OFFSET_IN_BITS) | (table_data.block_size);
/* set the pointer to info entry */
prev_info_entry_ptr = info_entry_ptr;
}
}
/* set the last table data */
*last_table_data_ptr = table_data;
end_function:
return error;
}
/*
this function goes over all the flow tables connected to the given
table and deallocate them
*/
static void sep_deallocated_flow_tables(struct sep_lli_entry_t *first_table_ptr)
{
/* id pointer */
unsigned long *table_ptr;
/* end address of the flow dma area */
unsigned long num_entries;
unsigned long num_pages;
struct page **pages_ptr;
/* maximum table size in words */
struct sep_lli_entry_t *info_entry_ptr;
/* set the pointer to the first table */
table_ptr = (unsigned long *) first_table_ptr->physical_address;
/* set the num of entries */
num_entries = (first_table_ptr->block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS)
& SEP_NUM_ENTRIES_MASK;
/* go over all the connected tables */
while (*table_ptr != 0xffffffff) {
/* get number of pages */
num_pages = *(table_ptr - 2);
/* get the pointer to the pages */
pages_ptr = (struct page **) (*(table_ptr - 1));
/* free the pages */
sep_free_dma_pages(pages_ptr, num_pages, 1);
/* goto to the info entry */
info_entry_ptr = ((struct sep_lli_entry_t *) table_ptr) + (num_entries - 1);
table_ptr = (unsigned long *) info_entry_ptr->physical_address;
num_entries = (info_entry_ptr->block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK;
}
return;
}
/**
* sep_find_flow_context - find a flow
* @sep: the SEP we are working with
* @flow_id: flow identifier
*
* Returns a pointer the matching flow, or NULL if the flow does not
* exist.
*/
static struct sep_flow_context_t *sep_find_flow_context(struct sep_device *sep,
unsigned long flow_id)
{
int count;
/*
* always search for flow with id default first - in case we
* already started working on the flow there can be no situation
* when 2 flows are with default flag
*/
for (count = 0; count < SEP_DRIVER_NUM_FLOWS; count++) {
if (sep->flows[count].flow_id == flow_id)
return &sep->flows[count];
}
return NULL;
}
/*
this function handles the request to create the DMA tables for flow
*/
static int sep_create_flow_dma_tables_handler(struct sep_device *sep,
unsigned long arg)
{
int error = -ENOENT;
struct sep_driver_build_flow_table_t command_args;
/* first table - output */
struct sep_lli_entry_t first_table_data;
/* dma table data */
struct sep_lli_entry_t last_table_data;
/* pointer to the info entry of the previuos DMA table */
struct sep_lli_entry_t *prev_info_entry_ptr;
/* pointer to the flow data strucutre */
struct sep_flow_context_t *flow_context_ptr;
dbg("SEP Driver:--------> sep_create_flow_dma_tables_handler start\n");
/* init variables */
prev_info_entry_ptr = 0;
first_table_data.physical_address = 0xffffffff;
/* find the free structure for flow data */
error = -EINVAL;
flow_context_ptr = sep_find_flow_context(sep, SEP_FREE_FLOW_ID);
if (flow_context_ptr == NULL)
goto end_function;
error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_build_flow_table_t));
if (error) {
error = -EFAULT;
goto end_function;
}
/* create flow tables */
error = sep_prepare_flow_dma_tables(sep, command_args.num_virtual_buffers, command_args.virt_buff_data_addr, flow_context_ptr, &first_table_data, &last_table_data, command_args.isKernelVirtualAddress);
if (error)
goto end_function_with_error;
/* check if flow is static */
if (!command_args.flow_type)
/* point the info entry of the last to the info entry of the first */
last_table_data = first_table_data;
/* set output params */
command_args.first_table_addr = first_table_data.physical_address;
command_args.first_table_num_entries = ((first_table_data.block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK);
command_args.first_table_data_size = (first_table_data.block_size & SEP_TABLE_DATA_SIZE_MASK);
/* send the parameters to user application */
error = copy_to_user((void *) arg, &command_args, sizeof(struct sep_driver_build_flow_table_t));
if (error) {
error = -EFAULT;
goto end_function_with_error;
}
/* all the flow created - update the flow entry with temp id */
flow_context_ptr->flow_id = SEP_TEMP_FLOW_ID;
/* set the processing tables data in the context */
if (command_args.input_output_flag == SEP_DRIVER_IN_FLAG)
flow_context_ptr->input_tables_in_process = first_table_data;
else
flow_context_ptr->output_tables_in_process = first_table_data;
goto end_function;
end_function_with_error:
/* free the allocated tables */
sep_deallocated_flow_tables(&first_table_data);
end_function:
dbg("SEP Driver:<-------- sep_create_flow_dma_tables_handler end\n");
return error;
}
/*
this function handles add tables to flow
*/
static int sep_add_flow_tables_handler(struct sep_device *sep, unsigned long arg)
{
int error;
unsigned long num_entries;
struct sep_driver_add_flow_table_t command_args;
struct sep_flow_context_t *flow_context_ptr;
/* first dma table data */
struct sep_lli_entry_t first_table_data;
/* last dma table data */
struct sep_lli_entry_t last_table_data;
/* pointer to the info entry of the current DMA table */
struct sep_lli_entry_t *info_entry_ptr;
dbg("SEP Driver:--------> sep_add_flow_tables_handler start\n");
/* get input parameters */
error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_add_flow_table_t));
if (error) {
error = -EFAULT;
goto end_function;
}
/* find the flow structure for the flow id */
flow_context_ptr = sep_find_flow_context(sep, command_args.flow_id);
if (flow_context_ptr == NULL)
goto end_function;
/* prepare the flow dma tables */
error = sep_prepare_flow_dma_tables(sep, command_args.num_virtual_buffers, command_args.virt_buff_data_addr, flow_context_ptr, &first_table_data, &last_table_data, command_args.isKernelVirtualAddress);
if (error)
goto end_function_with_error;
/* now check if there is already an existing add table for this flow */
if (command_args.inputOutputFlag == SEP_DRIVER_IN_FLAG) {
/* this buffer was for input buffers */
if (flow_context_ptr->input_tables_flag) {
/* add table already exists - add the new tables to the end
of the previous */
num_entries = (flow_context_ptr->last_input_table.block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK;
info_entry_ptr = (struct sep_lli_entry_t *)
(flow_context_ptr->last_input_table.physical_address + (sizeof(struct sep_lli_entry_t) * (num_entries - 1)));
/* connect to list of tables */
*info_entry_ptr = first_table_data;
/* set the first table data */
first_table_data = flow_context_ptr->first_input_table;
} else {
/* set the input flag */
flow_context_ptr->input_tables_flag = 1;
/* set the first table data */
flow_context_ptr->first_input_table = first_table_data;
}
/* set the last table data */
flow_context_ptr->last_input_table = last_table_data;
} else { /* this is output tables */
/* this buffer was for input buffers */
if (flow_context_ptr->output_tables_flag) {
/* add table already exists - add the new tables to
the end of the previous */
num_entries = (flow_context_ptr->last_output_table.block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK;
info_entry_ptr = (struct sep_lli_entry_t *)
(flow_context_ptr->last_output_table.physical_address + (sizeof(struct sep_lli_entry_t) * (num_entries - 1)));
/* connect to list of tables */
*info_entry_ptr = first_table_data;
/* set the first table data */
first_table_data = flow_context_ptr->first_output_table;
} else {
/* set the input flag */
flow_context_ptr->output_tables_flag = 1;
/* set the first table data */
flow_context_ptr->first_output_table = first_table_data;
}
/* set the last table data */
flow_context_ptr->last_output_table = last_table_data;
}
/* set output params */
command_args.first_table_addr = first_table_data.physical_address;
command_args.first_table_num_entries = ((first_table_data.block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK);
command_args.first_table_data_size = (first_table_data.block_size & SEP_TABLE_DATA_SIZE_MASK);
/* send the parameters to user application */
error = copy_to_user((void *) arg, &command_args, sizeof(struct sep_driver_add_flow_table_t));
if (error)
error = -EFAULT;
end_function_with_error:
/* free the allocated tables */
sep_deallocated_flow_tables(&first_table_data);
end_function:
dbg("SEP Driver:<-------- sep_add_flow_tables_handler end\n");
return error;
}
/*
this function add the flow add message to the specific flow
*/
static int sep_add_flow_tables_message_handler(struct sep_device *sep, unsigned long arg)
{
int error;
struct sep_driver_add_message_t command_args;
struct sep_flow_context_t *flow_context_ptr;
dbg("SEP Driver:--------> sep_add_flow_tables_message_handler start\n");
error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_add_message_t));
if (error) {
error = -EFAULT;
goto end_function;
}
/* check input */
if (command_args.message_size_in_bytes > SEP_MAX_ADD_MESSAGE_LENGTH_IN_BYTES) {
error = -ENOMEM;
goto end_function;
}
/* find the flow context */
flow_context_ptr = sep_find_flow_context(sep, command_args.flow_id);
if (flow_context_ptr == NULL)
goto end_function;
/* copy the message into context */
flow_context_ptr->message_size_in_bytes = command_args.message_size_in_bytes;
error = copy_from_user(flow_context_ptr->message, (void *) command_args.message_address, command_args.message_size_in_bytes);
if (error)
error = -EFAULT;
end_function:
dbg("SEP Driver:<-------- sep_add_flow_tables_message_handler end\n");
return error;
}
/*
this function returns the bus and virtual addresses of the static pool
*/
static int sep_get_static_pool_addr_handler(struct sep_device *sep, unsigned long arg)
{
int error;
struct sep_driver_static_pool_addr_t command_args;
dbg("SEP Driver:--------> sep_get_static_pool_addr_handler start\n");
/*prepare the output parameters in the struct */
command_args.physical_static_address = sep->shared_bus + SEP_DRIVER_STATIC_AREA_OFFSET_IN_BYTES;
command_args.virtual_static_address = (unsigned long)sep->shared_addr + SEP_DRIVER_STATIC_AREA_OFFSET_IN_BYTES;
edbg("SEP Driver:bus_static_address is %08lx, virtual_static_address %08lx\n", command_args.physical_static_address, command_args.virtual_static_address);
/* send the parameters to user application */
error = copy_to_user((void *) arg, &command_args, sizeof(struct sep_driver_static_pool_addr_t));
if (error)
error = -EFAULT;
dbg("SEP Driver:<-------- sep_get_static_pool_addr_handler end\n");
return error;
}
/*
this address gets the offset of the physical address from the start
of the mapped area
*/
static int sep_get_physical_mapped_offset_handler(struct sep_device *sep, unsigned long arg)
{
int error;
struct sep_driver_get_mapped_offset_t command_args;
dbg("SEP Driver:--------> sep_get_physical_mapped_offset_handler start\n");
error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_get_mapped_offset_t));
if (error) {
error = -EFAULT;
goto end_function;
}
if (command_args.physical_address < sep->shared_bus) {
error = -EINVAL;
goto end_function;
}
/*prepare the output parameters in the struct */
command_args.offset = command_args.physical_address - sep->shared_bus;
edbg("SEP Driver:bus_address is %08lx, offset is %lu\n", command_args.physical_address, command_args.offset);
/* send the parameters to user application */
error = copy_to_user((void *) arg, &command_args, sizeof(struct sep_driver_get_mapped_offset_t));
if (error)
error = -EFAULT;
end_function:
dbg("SEP Driver:<-------- sep_get_physical_mapped_offset_handler end\n");
return error;
}
/*
?
*/
static int sep_start_handler(struct sep_device *sep)
{
unsigned long reg_val;
unsigned long error = 0;
dbg("SEP Driver:--------> sep_start_handler start\n");
/* wait in polling for message from SEP */
do
reg_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR);
while (!reg_val);
/* check the value */
if (reg_val == 0x1)
/* fatal error - read error status from GPRO */
error = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR0_REG_ADDR);
dbg("SEP Driver:<-------- sep_start_handler end\n");
return error;
}
/*
this function handles the request for SEP initialization
*/
static int sep_init_handler(struct sep_device *sep, unsigned long arg)
{
unsigned long message_word;
unsigned long *message_ptr;
struct sep_driver_init_t command_args;
unsigned long counter;
unsigned long error;
unsigned long reg_val;
dbg("SEP Driver:--------> sep_init_handler start\n");
error = 0;
error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_init_t));
if (error) {
error = -EFAULT;
goto end_function;
}
dbg("SEP Driver:--------> sep_init_handler - finished copy_from_user\n");
/* PATCH - configure the DMA to single -burst instead of multi-burst */
/*sep_configure_dma_burst(); */
dbg("SEP Driver:--------> sep_init_handler - finished sep_configure_dma_burst \n");
message_ptr = (unsigned long *) command_args.message_addr;
/* set the base address of the SRAM */
sep_write_reg(sep, HW_SRAM_ADDR_REG_ADDR, HW_CC_SRAM_BASE_ADDRESS);
for (counter = 0; counter < command_args.message_size_in_words; counter++, message_ptr++) {
get_user(message_word, message_ptr);
/* write data to SRAM */
sep_write_reg(sep, HW_SRAM_DATA_REG_ADDR, message_word);
edbg("SEP Driver:message_word is %lu\n", message_word);
/* wait for write complete */
sep_wait_sram_write(sep);
}
dbg("SEP Driver:--------> sep_init_handler - finished getting messages from user space\n");
/* signal SEP */
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x1);
do
reg_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR);
while (!(reg_val & 0xFFFFFFFD));
dbg("SEP Driver:--------> sep_init_handler - finished waiting for reg_val & 0xFFFFFFFD \n");
/* check the value */
if (reg_val == 0x1) {
edbg("SEP Driver:init failed\n");
error = sep_read_reg(sep, 0x8060);
edbg("SEP Driver:sw monitor is %lu\n", error);
/* fatal error - read erro status from GPRO */
error = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR0_REG_ADDR);
edbg("SEP Driver:error is %lu\n", error);
}
end_function:
dbg("SEP Driver:<-------- sep_init_handler end\n");
return error;
}
/*
this function handles the request cache and resident reallocation
*/
static int sep_realloc_cache_resident_handler(struct sep_device *sep,
unsigned long arg)
{
struct sep_driver_realloc_cache_resident_t command_args;
int error;
/* copy cache and resident to the their intended locations */
error = sep_load_firmware(sep);
if (error)
return error;
command_args.new_base_addr = sep->shared_bus;
/* find the new base address according to the lowest address between
cache, resident and shared area */
if (sep->resident_bus < command_args.new_base_addr)
command_args.new_base_addr = sep->resident_bus;
if (sep->rar_bus < command_args.new_base_addr)
command_args.new_base_addr = sep->rar_bus;
/* set the return parameters */
command_args.new_cache_addr = sep->rar_bus;
command_args.new_resident_addr = sep->resident_bus;
/* set the new shared area */
command_args.new_shared_area_addr = sep->shared_bus;
edbg("SEP Driver:command_args.new_shared_addr is %08llx\n", command_args.new_shared_area_addr);
edbg("SEP Driver:command_args.new_base_addr is %08llx\n", command_args.new_base_addr);
edbg("SEP Driver:command_args.new_resident_addr is %08llx\n", command_args.new_resident_addr);
edbg("SEP Driver:command_args.new_rar_addr is %08llx\n", command_args.new_cache_addr);
/* return to user */
if (copy_to_user((void *) arg, &command_args, sizeof(struct sep_driver_realloc_cache_resident_t)))
return -EFAULT;
return 0;
}
/**
* sep_get_time_handler - time request from user space
* @sep: sep we are to set the time for
* @arg: pointer to user space arg buffer
*
* This function reports back the time and the address in the SEP
* shared buffer at which it has been placed. (Do we really need this!!!)
*/
static int sep_get_time_handler(struct sep_device *sep, unsigned long arg)
{
struct sep_driver_get_time_t command_args;
mutex_lock(&sep_mutex);
command_args.time_value = sep_set_time(sep);
command_args.time_physical_address = (unsigned long)sep_time_address(sep);
mutex_unlock(&sep_mutex);
if (copy_to_user((void __user *)arg,
&command_args, sizeof(struct sep_driver_get_time_t)))
return -EFAULT;
return 0;
}
/*
This API handles the end transaction request
*/
static int sep_end_transaction_handler(struct sep_device *sep, unsigned long arg)
{
dbg("SEP Driver:--------> sep_end_transaction_handler start\n");
#if 0 /*!SEP_DRIVER_POLLING_MODE */
/* close IMR */
sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, 0x7FFF);
/* release IRQ line */
free_irq(SEP_DIRVER_IRQ_NUM, sep);
/* lock the sep mutex */
mutex_unlock(&sep_mutex);
#endif
dbg("SEP Driver:<-------- sep_end_transaction_handler end\n");
return 0;
}
/**
* sep_set_flow_id_handler - handle flow setting
* @sep: the SEP we are configuring
* @flow_id: the flow we are setting
*
* This function handler the set flow id command
*/
static int sep_set_flow_id_handler(struct sep_device *sep,
unsigned long flow_id)
{
int error = 0;
struct sep_flow_context_t *flow_data_ptr;
/* find the flow data structure that was just used for creating new flow
- its id should be default */
mutex_lock(&sep_mutex);
flow_data_ptr = sep_find_flow_context(sep, SEP_TEMP_FLOW_ID);
if (flow_data_ptr)
flow_data_ptr->flow_id = flow_id; /* set flow id */
else
error = -EINVAL;
mutex_unlock(&sep_mutex);
return error;
}
static long sep_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int error = 0;
struct sep_device *sep = filp->private_data;
dbg("------------>SEP Driver: ioctl start\n");
edbg("SEP Driver: cmd is %x\n", cmd);
switch (cmd) {
case SEP_IOCSENDSEPCOMMAND:
/* send command to SEP */
sep_send_command_handler(sep);
edbg("SEP Driver: after sep_send_command_handler\n");
break;
case SEP_IOCSENDSEPRPLYCOMMAND:
/* send reply command to SEP */
sep_send_reply_command_handler(sep);
break;
case SEP_IOCALLOCDATAPOLL:
/* allocate data pool */
error = sep_allocate_data_pool_memory_handler(sep, arg);
break;
case SEP_IOCWRITEDATAPOLL:
/* write data into memory pool */
error = sep_write_into_data_pool_handler(sep, arg);
break;
case SEP_IOCREADDATAPOLL:
/* read data from data pool into application memory */
error = sep_read_from_data_pool_handler(sep, arg);
break;
case SEP_IOCCREATESYMDMATABLE:
/* create dma table for synhronic operation */
error = sep_create_sync_dma_tables_handler(sep, arg);
break;
case SEP_IOCCREATEFLOWDMATABLE:
/* create flow dma tables */
error = sep_create_flow_dma_tables_handler(sep, arg);
break;
case SEP_IOCFREEDMATABLEDATA:
/* free the pages */
error = sep_free_dma_table_data_handler(sep);
break;
case SEP_IOCSETFLOWID:
/* set flow id */
error = sep_set_flow_id_handler(sep, (unsigned long)arg);
break;
case SEP_IOCADDFLOWTABLE:
/* add tables to the dynamic flow */
error = sep_add_flow_tables_handler(sep, arg);
break;
case SEP_IOCADDFLOWMESSAGE:
/* add message of add tables to flow */
error = sep_add_flow_tables_message_handler(sep, arg);
break;
case SEP_IOCSEPSTART:
/* start command to sep */
error = sep_start_handler(sep);
break;
case SEP_IOCSEPINIT:
/* init command to sep */
error = sep_init_handler(sep, arg);
break;
case SEP_IOCGETSTATICPOOLADDR:
/* get the physical and virtual addresses of the static pool */
error = sep_get_static_pool_addr_handler(sep, arg);
break;
case SEP_IOCENDTRANSACTION:
error = sep_end_transaction_handler(sep, arg);
break;
case SEP_IOCREALLOCCACHERES:
error = sep_realloc_cache_resident_handler(sep, arg);
break;
case SEP_IOCGETMAPPEDADDROFFSET:
error = sep_get_physical_mapped_offset_handler(sep, arg);
break;
case SEP_IOCGETIME:
error = sep_get_time_handler(sep, arg);
break;
default:
error = -ENOTTY;
break;
}
dbg("SEP Driver:<-------- ioctl end\n");
return error;
}
#if !SEP_DRIVER_POLLING_MODE
/* handler for flow done interrupt */
static void sep_flow_done_handler(struct work_struct *work)
{
struct sep_flow_context_t *flow_data_ptr;
/* obtain the mutex */
mutex_lock(&sep_mutex);
/* get the pointer to context */
flow_data_ptr = (struct sep_flow_context_t *) work;
/* free all the current input tables in sep */
sep_deallocated_flow_tables(&flow_data_ptr->input_tables_in_process);
/* free all the current tables output tables in SEP (if needed) */
if (flow_data_ptr->output_tables_in_process.physical_address != 0xffffffff)
sep_deallocated_flow_tables(&flow_data_ptr->output_tables_in_process);
/* check if we have additional tables to be sent to SEP only input
flag may be checked */
if (flow_data_ptr->input_tables_flag) {
/* copy the message to the shared RAM and signal SEP */
memcpy((void *) flow_data_ptr->message, (void *) sep->shared_addr, flow_data_ptr->message_size_in_bytes);
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR2_REG_ADDR, 0x2);
}
mutex_unlock(&sep_mutex);
}
/*
interrupt handler function
*/
static irqreturn_t sep_inthandler(int irq, void *dev_id)
{
irqreturn_t int_error;
unsigned long reg_val;
unsigned long flow_id;
struct sep_flow_context_t *flow_context_ptr;
struct sep_device *sep = dev_id;
int_error = IRQ_HANDLED;
/* read the IRR register to check if this is SEP interrupt */
reg_val = sep_read_reg(sep, HW_HOST_IRR_REG_ADDR);
edbg("SEP Interrupt - reg is %08lx\n", reg_val);
/* check if this is the flow interrupt */
if (0 /*reg_val & (0x1 << 11) */ ) {
/* read GPRO to find out the which flow is done */
flow_id = sep_read_reg(sep, HW_HOST_IRR_REG_ADDR);
/* find the contex of the flow */
flow_context_ptr = sep_find_flow_context(sep, flow_id >> 28);
if (flow_context_ptr == NULL)
goto end_function_with_error;
/* queue the work */
INIT_WORK(&flow_context_ptr->flow_wq, sep_flow_done_handler);
queue_work(sep->flow_wq, &flow_context_ptr->flow_wq);
} else {
/* check if this is reply interrupt from SEP */
if (reg_val & (0x1 << 13)) {
/* update the counter of reply messages */
sep->reply_ct++;
/* wake up the waiting process */
wake_up(&sep_event);
} else {
int_error = IRQ_NONE;
goto end_function;
}
}
end_function_with_error:
/* clear the interrupt */
sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, reg_val);
end_function:
return int_error;
}
#endif
#if 0
static void sep_wait_busy(struct sep_device *sep)
{
u32 reg;
do {
reg = sep_read_reg(sep, HW_HOST_SEP_BUSY_REG_ADDR);
} while (reg);
}
/*
PATCH for configuring the DMA to single burst instead of multi-burst
*/
static void sep_configure_dma_burst(struct sep_device *sep)
{
#define HW_AHB_RD_WR_BURSTS_REG_ADDR 0x0E10UL
dbg("SEP Driver:<-------- sep_configure_dma_burst start \n");
/* request access to registers from SEP */
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x2);
dbg("SEP Driver:<-------- sep_configure_dma_burst finished request access to registers from SEP (write reg) \n");
sep_wait_busy(sep);
dbg("SEP Driver:<-------- sep_configure_dma_burst finished request access to registers from SEP (while(revVal) wait loop) \n");
/* set the DMA burst register to single burst */
sep_write_reg(sep, HW_AHB_RD_WR_BURSTS_REG_ADDR, 0x0UL);
/* release the sep busy */
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x0UL);
sep_wait_busy(sep);
dbg("SEP Driver:<-------- sep_configure_dma_burst done \n");
}
#endif
/*
Function that is activated on the successful probe of the SEP device
*/
static int __devinit sep_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int error = 0;
struct sep_device *sep;
int counter;
int size; /* size of memory for allocation */
edbg("Sep pci probe starting\n");
if (sep_dev != NULL) {
dev_warn(&pdev->dev, "only one SEP supported.\n");
return -EBUSY;
}
/* enable the device */
error = pci_enable_device(pdev);
if (error) {
edbg("error enabling pci device\n");
goto end_function;
}
/* set the pci dev pointer */
sep_dev = &sep_instance;
sep = &sep_instance;
edbg("sep->shared_addr = %p\n", sep->shared_addr);
/* transaction counter that coordinates the transactions between SEP
and HOST */
sep->send_ct = 0;
/* counter for the messages from sep */
sep->reply_ct = 0;
/* counter for the number of bytes allocated in the pool
for the current transaction */
sep->data_pool_bytes_allocated = 0;
/* calculate the total size for allocation */
size = SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES +
SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_SIZE_IN_BYTES + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES + SEP_DRIVER_FLOW_DMA_TABLES_AREA_SIZE_IN_BYTES + SEP_DRIVER_STATIC_AREA_SIZE_IN_BYTES + SEP_DRIVER_SYSTEM_DATA_MEMORY_SIZE_IN_BYTES;
/* allocate the shared area */
if (sep_map_and_alloc_shared_area(sep, size)) {
error = -ENOMEM;
/* allocation failed */
goto end_function_error;
}
/* now set the memory regions */
#if (SEP_DRIVER_RECONFIG_MESSAGE_AREA == 1)
/* Note: this test section will need moving before it could ever
work as the registers are not yet mapped ! */
/* send the new SHARED MESSAGE AREA to the SEP */
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR1_REG_ADDR, sep->shared_bus);
/* poll for SEP response */
retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR);
while (retval != 0xffffffff && retval != sep->shared_bus)
retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR);
/* check the return value (register) */
if (retval != sep->shared_bus) {
error = -ENOMEM;
goto end_function_deallocate_sep_shared_area;
}
#endif
/* init the flow contextes */
for (counter = 0; counter < SEP_DRIVER_NUM_FLOWS; counter++)
sep->flows[counter].flow_id = SEP_FREE_FLOW_ID;
sep->flow_wq = create_singlethread_workqueue("sepflowwq");
if (sep->flow_wq == NULL) {
error = -ENOMEM;
edbg("sep_driver:flow queue creation failed\n");
goto end_function_deallocate_sep_shared_area;
}
edbg("SEP Driver: create flow workqueue \n");
sep->pdev = pci_dev_get(pdev);
sep->reg_addr = pci_ioremap_bar(pdev, 0);
if (!sep->reg_addr) {
edbg("sep: ioremap of registers failed.\n");
goto end_function_deallocate_sep_shared_area;
}
edbg("SEP Driver:reg_addr is %p\n", sep->reg_addr);
/* load the rom code */
sep_load_rom_code(sep);
/* set up system base address and shared memory location */
sep->rar_addr = dma_alloc_coherent(&sep->pdev->dev,
2 * SEP_RAR_IO_MEM_REGION_SIZE,
&sep->rar_bus, GFP_KERNEL);
if (!sep->rar_addr) {
edbg("SEP Driver:can't allocate rar\n");
goto end_function_uniomap;
}
edbg("SEP Driver:rar_bus is %08llx\n", (unsigned long long)sep->rar_bus);
edbg("SEP Driver:rar_virtual is %p\n", sep->rar_addr);
#if !SEP_DRIVER_POLLING_MODE
edbg("SEP Driver: about to write IMR and ICR REG_ADDR\n");
/* clear ICR register */
sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, 0xFFFFFFFF);
/* set the IMR register - open only GPR 2 */
sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, (~(0x1 << 13)));
edbg("SEP Driver: about to call request_irq\n");
/* get the interrupt line */
error = request_irq(pdev->irq, sep_inthandler, IRQF_SHARED, "sep_driver", sep);
if (error)
goto end_function_free_res;
return 0;
edbg("SEP Driver: about to write IMR REG_ADDR");
/* set the IMR register - open only GPR 2 */
sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, (~(0x1 << 13)));
end_function_free_res:
dma_free_coherent(&sep->pdev->dev, 2 * SEP_RAR_IO_MEM_REGION_SIZE,
sep->rar_addr, sep->rar_bus);
#endif /* SEP_DRIVER_POLLING_MODE */
end_function_uniomap:
iounmap(sep->reg_addr);
end_function_deallocate_sep_shared_area:
/* de-allocate shared area */
sep_unmap_and_free_shared_area(sep, size);
end_function_error:
sep_dev = NULL;
end_function:
return error;
}
static const struct pci_device_id sep_pci_id_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x080c)},
{0}
};
MODULE_DEVICE_TABLE(pci, sep_pci_id_tbl);
/* field for registering driver to PCI device */
static struct pci_driver sep_pci_driver = {
.name = "sep_sec_driver",
.id_table = sep_pci_id_tbl,
.probe = sep_probe
/* FIXME: remove handler */
};
/* major and minor device numbers */
static dev_t sep_devno;
/* the files operations structure of the driver */
static struct file_operations sep_file_operations = {
.owner = THIS_MODULE,
.unlocked_ioctl = sep_ioctl,
.poll = sep_poll,
.open = sep_open,
.release = sep_release,
.mmap = sep_mmap,
};
/* cdev struct of the driver */
static struct cdev sep_cdev;
/*
this function registers the driver to the file system
*/
static int sep_register_driver_to_fs(void)
{
int ret_val = alloc_chrdev_region(&sep_devno, 0, 1, "sep_sec_driver");
if (ret_val) {
edbg("sep: major number allocation failed, retval is %d\n",
ret_val);
return ret_val;
}
/* init cdev */
cdev_init(&sep_cdev, &sep_file_operations);
sep_cdev.owner = THIS_MODULE;
/* register the driver with the kernel */
ret_val = cdev_add(&sep_cdev, sep_devno, 1);
if (ret_val) {
edbg("sep_driver:cdev_add failed, retval is %d\n", ret_val);
/* unregister dev numbers */
unregister_chrdev_region(sep_devno, 1);
}
return ret_val;
}
/*--------------------------------------------------------------
init function
----------------------------------------------------------------*/
static int __init sep_init(void)
{
int ret_val = 0;
dbg("SEP Driver:-------->Init start\n");
/* FIXME: Probe can occur before we are ready to survive a probe */
ret_val = pci_register_driver(&sep_pci_driver);
if (ret_val) {
edbg("sep_driver:sep_driver_to_device failed, ret_val is %d\n", ret_val);
goto end_function_unregister_from_fs;
}
/* register driver to fs */
ret_val = sep_register_driver_to_fs();
if (ret_val)
goto end_function_unregister_pci;
goto end_function;
end_function_unregister_pci:
pci_unregister_driver(&sep_pci_driver);
end_function_unregister_from_fs:
/* unregister from fs */
cdev_del(&sep_cdev);
/* unregister dev numbers */
unregister_chrdev_region(sep_devno, 1);
end_function:
dbg("SEP Driver:<-------- Init end\n");
return ret_val;
}
/*-------------------------------------------------------------
exit function
--------------------------------------------------------------*/
static void __exit sep_exit(void)
{
int size;
dbg("SEP Driver:--------> Exit start\n");
/* unregister from fs */
cdev_del(&sep_cdev);
/* unregister dev numbers */
unregister_chrdev_region(sep_devno, 1);
/* calculate the total size for de-allocation */
size = SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES +
SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_SIZE_IN_BYTES + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES + SEP_DRIVER_FLOW_DMA_TABLES_AREA_SIZE_IN_BYTES + SEP_DRIVER_STATIC_AREA_SIZE_IN_BYTES + SEP_DRIVER_SYSTEM_DATA_MEMORY_SIZE_IN_BYTES;
/* FIXME: We need to do this in the unload for the device */
/* free shared area */
if (sep_dev) {
sep_unmap_and_free_shared_area(sep_dev, size);
edbg("SEP Driver: free pages SEP SHARED AREA \n");
iounmap((void *) sep_dev->reg_addr);
edbg("SEP Driver: iounmap \n");
}
edbg("SEP Driver: release_mem_region \n");
dbg("SEP Driver:<-------- Exit end\n");
}
module_init(sep_init);
module_exit(sep_exit);
MODULE_LICENSE("GPL");
/*
*
* sep_driver_api.h - Security Processor Driver api definitions
*
* Copyright(c) 2009 Intel Corporation. All rights reserved.
* Copyright(c) 2009 Discretix. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* CONTACTS:
*
* Mark Allyn mark.a.allyn@intel.com
*
* CHANGES:
*
* 2009.06.26 Initial publish
*
*/
#ifndef __SEP_DRIVER_API_H__
#define __SEP_DRIVER_API_H__
/*----------------------------------------------------------------
IOCTL command defines
-----------------------------------------------------------------*/
/* magic number 1 of the sep IOCTL command */
#define SEP_IOC_MAGIC_NUMBER 's'
/* sends interrupt to sep that message is ready */
#define SEP_IOCSENDSEPCOMMAND _IO(SEP_IOC_MAGIC_NUMBER , 0)
/* sends interrupt to sep that message is ready */
#define SEP_IOCSENDSEPRPLYCOMMAND _IO(SEP_IOC_MAGIC_NUMBER , 1)
/* allocate memory in data pool */
#define SEP_IOCALLOCDATAPOLL _IO(SEP_IOC_MAGIC_NUMBER , 2)
/* write to pre-allocated memory in data pool */
#define SEP_IOCWRITEDATAPOLL _IO(SEP_IOC_MAGIC_NUMBER , 3)
/* read from pre-allocated memory in data pool */
#define SEP_IOCREADDATAPOLL _IO(SEP_IOC_MAGIC_NUMBER , 4)
/* create sym dma lli tables */
#define SEP_IOCCREATESYMDMATABLE _IO(SEP_IOC_MAGIC_NUMBER , 5)
/* create flow dma lli tables */
#define SEP_IOCCREATEFLOWDMATABLE _IO(SEP_IOC_MAGIC_NUMBER , 6)
/* free dynamic data aalocated during table creation */
#define SEP_IOCFREEDMATABLEDATA _IO(SEP_IOC_MAGIC_NUMBER , 7)
/* get the static pool area addresses (physical and virtual) */
#define SEP_IOCGETSTATICPOOLADDR _IO(SEP_IOC_MAGIC_NUMBER , 8)
/* set flow id command */
#define SEP_IOCSETFLOWID _IO(SEP_IOC_MAGIC_NUMBER , 9)
/* add tables to the dynamic flow */
#define SEP_IOCADDFLOWTABLE _IO(SEP_IOC_MAGIC_NUMBER , 10)
/* add flow add tables message */
#define SEP_IOCADDFLOWMESSAGE _IO(SEP_IOC_MAGIC_NUMBER , 11)
/* start sep command */
#define SEP_IOCSEPSTART _IO(SEP_IOC_MAGIC_NUMBER , 12)
/* init sep command */
#define SEP_IOCSEPINIT _IO(SEP_IOC_MAGIC_NUMBER , 13)
/* end transaction command */
#define SEP_IOCENDTRANSACTION _IO(SEP_IOC_MAGIC_NUMBER , 15)
/* reallocate cache and resident */
#define SEP_IOCREALLOCCACHERES _IO(SEP_IOC_MAGIC_NUMBER , 16)
/* get the offset of the address starting from the beginnnig of the map area */
#define SEP_IOCGETMAPPEDADDROFFSET _IO(SEP_IOC_MAGIC_NUMBER , 17)
/* get time address and value */
#define SEP_IOCGETIME _IO(SEP_IOC_MAGIC_NUMBER , 19)
/*-------------------------------------------
TYPEDEFS
----------------------------------------------*/
/*
init command struct
*/
struct sep_driver_init_t {
/* start of the 1G of the host memory address that SEP can access */
unsigned long message_addr;
/* start address of resident */
unsigned long message_size_in_words;
};
/*
realloc cache resident command
*/
struct sep_driver_realloc_cache_resident_t {
/* new cache address */
u64 new_cache_addr;
/* new resident address */
u64 new_resident_addr;
/* new resident address */
u64 new_shared_area_addr;
/* new base address */
u64 new_base_addr;
};
struct sep_driver_alloc_t {
/* virtual address of allocated space */
unsigned long offset;
/* physical address of allocated space */
unsigned long phys_address;
/* number of bytes to allocate */
unsigned long num_bytes;
};
/*
*/
struct sep_driver_write_t {
/* application space address */
unsigned long app_address;
/* address of the data pool */
unsigned long datapool_address;
/* number of bytes to write */
unsigned long num_bytes;
};
/*
*/
struct sep_driver_read_t {
/* application space address */
unsigned long app_address;
/* address of the data pool */
unsigned long datapool_address;
/* number of bytes to read */
unsigned long num_bytes;
};
/*
*/
struct sep_driver_build_sync_table_t {
/* address value of the data in */
unsigned long app_in_address;
/* size of data in */
unsigned long data_in_size;
/* address of the data out */
unsigned long app_out_address;
/* the size of the block of the operation - if needed,
every table will be modulo this parameter */
unsigned long block_size;
/* the physical address of the first input DMA table */
unsigned long in_table_address;
/* number of entries in the first input DMA table */
unsigned long in_table_num_entries;
/* the physical address of the first output DMA table */
unsigned long out_table_address;
/* number of entries in the first output DMA table */
unsigned long out_table_num_entries;
/* data in the first input table */
unsigned long table_data_size;
/* distinct user/kernel layout */
bool isKernelVirtualAddress;
};
/*
*/
struct sep_driver_build_flow_table_t {
/* flow type */
unsigned long flow_type;
/* flag for input output */
unsigned long input_output_flag;
/* address value of the data in */
unsigned long virt_buff_data_addr;
/* size of data in */
unsigned long num_virtual_buffers;
/* the physical address of the first input DMA table */
unsigned long first_table_addr;
/* number of entries in the first input DMA table */
unsigned long first_table_num_entries;
/* data in the first input table */
unsigned long first_table_data_size;
/* distinct user/kernel layout */
bool isKernelVirtualAddress;
};
struct sep_driver_add_flow_table_t {
/* flow id */
unsigned long flow_id;
/* flag for input output */
unsigned long inputOutputFlag;
/* address value of the data in */
unsigned long virt_buff_data_addr;
/* size of data in */
unsigned long num_virtual_buffers;
/* address of the first table */
unsigned long first_table_addr;
/* number of entries in the first table */
unsigned long first_table_num_entries;
/* data size of the first table */
unsigned long first_table_data_size;
/* distinct user/kernel layout */
bool isKernelVirtualAddress;
};
/*
command struct for set flow id
*/
struct sep_driver_set_flow_id_t {
/* flow id to set */
unsigned long flow_id;
};
/* command struct for add tables message */
struct sep_driver_add_message_t {
/* flow id to set */
unsigned long flow_id;
/* message size in bytes */
unsigned long message_size_in_bytes;
/* address of the message */
unsigned long message_address;
};
/* command struct for static pool addresses */
struct sep_driver_static_pool_addr_t {
/* physical address of the static pool */
unsigned long physical_static_address;
/* virtual address of the static pool */
unsigned long virtual_static_address;
};
/* command struct for getiing offset of the physical address from
the start of the mapped area */
struct sep_driver_get_mapped_offset_t {
/* physical address of the static pool */
unsigned long physical_address;
/* virtual address of the static pool */
unsigned long offset;
};
/* command struct for getting time value and address */
struct sep_driver_get_time_t {
/* physical address of stored time */
unsigned long time_physical_address;
/* value of the stored time */
unsigned long time_value;
};
/*
structure that represent one entry in the DMA LLI table
*/
struct sep_lli_entry_t {
/* physical address */
unsigned long physical_address;
/* block size */
unsigned long block_size;
};
/*
structure that reperesents data needed for lli table construction
*/
struct sep_lli_prepare_table_data_t {
/* pointer to the memory where the first lli entry to be built */
struct sep_lli_entry_t *lli_entry_ptr;
/* pointer to the array of lli entries from which the table is to be built */
struct sep_lli_entry_t *lli_array_ptr;
/* number of elements in lli array */
int lli_array_size;
/* number of entries in the created table */
int num_table_entries;
/* number of array entries processed during table creation */
int num_array_entries_processed;
/* the totatl data size in the created table */
int lli_table_total_data_size;
};
/*
structure that represent tone table - it is not used in code, jkust
to show what table looks like
*/
struct sep_lli_table_t {
/* number of pages mapped in this tables. If 0 - means that the table
is not defined (used as a valid flag) */
unsigned long num_pages;
/*
pointer to array of page pointers that represent the mapping of the
virtual buffer defined by the table to the physical memory. If this
pointer is NULL, it means that the table is not defined
(used as a valid flag)
*/
struct page **table_page_array_ptr;
/* maximum flow entries in table */
struct sep_lli_entry_t lli_entries[SEP_DRIVER_MAX_FLOW_NUM_ENTRIES_IN_TABLE];
};
/*
structure for keeping the mapping of the virtual buffer into physical pages
*/
struct sep_flow_buffer_data {
/* pointer to the array of page structs pointers to the pages of the
virtual buffer */
struct page **page_array_ptr;
/* number of pages taken by the virtual buffer */
unsigned long num_pages;
/* this flag signals if this page_array is the last one among many that were
sent in one setting to SEP */
unsigned long last_page_array_flag;
};
/*
struct that keeps all the data for one flow
*/
struct sep_flow_context_t {
/*
work struct for handling the flow done interrupt in the workqueue
this structure must be in the first place, since it will be used
forcasting to the containing flow context
*/
struct work_struct flow_wq;
/* flow id */
unsigned long flow_id;
/* additional input tables exists */
unsigned long input_tables_flag;
/* additional output tables exists */
unsigned long output_tables_flag;
/* data of the first input file */
struct sep_lli_entry_t first_input_table;
/* data of the first output table */
struct sep_lli_entry_t first_output_table;
/* last input table data */
struct sep_lli_entry_t last_input_table;
/* last output table data */
struct sep_lli_entry_t last_output_table;
/* first list of table */
struct sep_lli_entry_t input_tables_in_process;
/* output table in process (in sep) */
struct sep_lli_entry_t output_tables_in_process;
/* size of messages in bytes */
unsigned long message_size_in_bytes;
/* message */
unsigned char message[SEP_MAX_ADD_MESSAGE_LENGTH_IN_BYTES];
};
#endif
/*
*
* sep_driver_config.h - Security Processor Driver configuration
*
* Copyright(c) 2009 Intel Corporation. All rights reserved.
* Copyright(c) 2009 Discretix. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* CONTACTS:
*
* Mark Allyn mark.a.allyn@intel.com
*
* CHANGES:
*
* 2009.06.26 Initial publish
*
*/
#ifndef __SEP_DRIVER_CONFIG_H__
#define __SEP_DRIVER_CONFIG_H__
/*--------------------------------------
DRIVER CONFIGURATION FLAGS
-------------------------------------*/
/* if flag is on , then the driver is running in polling and
not interrupt mode */
#define SEP_DRIVER_POLLING_MODE 1
/* flag which defines if the shared area address should be
reconfiged (send to SEP anew) during init of the driver */
#define SEP_DRIVER_RECONFIG_MESSAGE_AREA 0
/* the mode for running on the ARM1172 Evaluation platform (flag is 1) */
#define SEP_DRIVER_ARM_DEBUG_MODE 0
/*-------------------------------------------
INTERNAL DATA CONFIGURATION
-------------------------------------------*/
/* flag for the input array */
#define SEP_DRIVER_IN_FLAG 0
/* flag for output array */
#define SEP_DRIVER_OUT_FLAG 1
/* maximum number of entries in one LLI tables */
#define SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP 8
/*--------------------------------------------------------
SHARED AREA memory total size is 36K
it is divided is following:
SHARED_MESSAGE_AREA 8K }
}
STATIC_POOL_AREA 4K } MAPPED AREA ( 24 K)
}
DATA_POOL_AREA 12K }
SYNCHRONIC_DMA_TABLES_AREA 5K
FLOW_DMA_TABLES_AREA 4K
SYSTEM_MEMORY_AREA 3k
SYSTEM_MEMORY total size is 3k
it is divided as following:
TIME_MEMORY_AREA 8B
-----------------------------------------------------------*/
/*
the maximum length of the message - the rest of the message shared
area will be dedicated to the dma lli tables
*/
#define SEP_DRIVER_MAX_MESSAGE_SIZE_IN_BYTES (8 * 1024)
/* the size of the message shared area in pages */
#define SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES (8 * 1024)
/* the size of the data pool static area in pages */
#define SEP_DRIVER_STATIC_AREA_SIZE_IN_BYTES (4 * 1024)
/* the size of the data pool shared area size in pages */
#define SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES (12 * 1024)
/* the size of the message shared area in pages */
#define SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_SIZE_IN_BYTES (1024 * 5)
/* the size of the data pool shared area size in pages */
#define SEP_DRIVER_FLOW_DMA_TABLES_AREA_SIZE_IN_BYTES (1024 * 4)
/* system data (time, caller id etc') pool */
#define SEP_DRIVER_SYSTEM_DATA_MEMORY_SIZE_IN_BYTES 100
/* area size that is mapped - we map the MESSAGE AREA, STATIC POOL and
DATA POOL areas. area must be module 4k */
#define SEP_DRIVER_MMMAP_AREA_SIZE (1024 * 24)
/*-----------------------------------------------
offsets of the areas starting from the shared area start address
*/
/* message area offset */
#define SEP_DRIVER_MESSAGE_AREA_OFFSET_IN_BYTES 0
/* static pool area offset */
#define SEP_DRIVER_STATIC_AREA_OFFSET_IN_BYTES \
(SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES)
/* data pool area offset */
#define SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES \
(SEP_DRIVER_STATIC_AREA_OFFSET_IN_BYTES + \
SEP_DRIVER_STATIC_AREA_SIZE_IN_BYTES)
/* synhronic dma tables area offset */
#define SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES \
(SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES + \
SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES)
/* sep driver flow dma tables area offset */
#define SEP_DRIVER_FLOW_DMA_TABLES_AREA_OFFSET_IN_BYTES \
(SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES + \
SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_SIZE_IN_BYTES)
/* system memory offset in bytes */
#define SEP_DRIVER_SYSTEM_DATA_MEMORY_OFFSET_IN_BYTES \
(SEP_DRIVER_FLOW_DMA_TABLES_AREA_OFFSET_IN_BYTES + \
SEP_DRIVER_FLOW_DMA_TABLES_AREA_SIZE_IN_BYTES)
/* offset of the time area */
#define SEP_DRIVER_SYSTEM_TIME_MEMORY_OFFSET_IN_BYTES \
(SEP_DRIVER_SYSTEM_DATA_MEMORY_OFFSET_IN_BYTES)
/* start physical address of the SEP registers memory in HOST */
#define SEP_IO_MEM_REGION_START_ADDRESS 0x80000000
/* size of the SEP registers memory region in HOST (for now 100 registers) */
#define SEP_IO_MEM_REGION_SIZE (2 * 0x100000)
/* define the number of IRQ for SEP interrupts */
#define SEP_DIRVER_IRQ_NUM 1
/* maximum number of add buffers */
#define SEP_MAX_NUM_ADD_BUFFERS 100
/* number of flows */
#define SEP_DRIVER_NUM_FLOWS 4
/* maximum number of entries in flow table */
#define SEP_DRIVER_MAX_FLOW_NUM_ENTRIES_IN_TABLE 25
/* offset of the num entries in the block length entry of the LLI */
#define SEP_NUM_ENTRIES_OFFSET_IN_BITS 24
/* offset of the interrupt flag in the block length entry of the LLI */
#define SEP_INT_FLAG_OFFSET_IN_BITS 31
/* mask for extracting data size from LLI */
#define SEP_TABLE_DATA_SIZE_MASK 0xFFFFFF
/* mask for entries after being shifted left */
#define SEP_NUM_ENTRIES_MASK 0x7F
/* default flow id */
#define SEP_FREE_FLOW_ID 0xFFFFFFFF
/* temp flow id used during cretiong of new flow until receiving
real flow id from sep */
#define SEP_TEMP_FLOW_ID (SEP_DRIVER_NUM_FLOWS + 1)
/* maximum add buffers message length in bytes */
#define SEP_MAX_ADD_MESSAGE_LENGTH_IN_BYTES (7 * 4)
/* maximum number of concurrent virtual buffers */
#define SEP_MAX_VIRT_BUFFERS_CONCURRENT 100
/* the token that defines the start of time address */
#define SEP_TIME_VAL_TOKEN 0x12345678
/* DEBUG LEVEL MASKS */
#define SEP_DEBUG_LEVEL_BASIC 0x1
#define SEP_DEBUG_LEVEL_EXTENDED 0x4
/* Debug helpers */
#define dbg(fmt, args...) \
do {\
if (debug & SEP_DEBUG_LEVEL_BASIC) \
printk(KERN_DEBUG fmt, ##args); \
} while(0);
#define edbg(fmt, args...) \
do { \
if (debug & SEP_DEBUG_LEVEL_EXTENDED) \
printk(KERN_DEBUG fmt, ##args); \
} while(0);
#endif
/*
*
* sep_driver_hw_defs.h - Security Processor Driver hardware definitions
*
* Copyright(c) 2009 Intel Corporation. All rights reserved.
* Copyright(c) 2009 Discretix. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* CONTACTS:
*
* Mark Allyn mark.a.allyn@intel.com
*
* CHANGES:
*
* 2009.06.26 Initial publish
*
*/
#ifndef SEP_DRIVER_HW_DEFS__H
#define SEP_DRIVER_HW_DEFS__H
/*--------------------------------------------------------------------------*/
/* Abstract: HW Registers Defines. */
/* */
/* Note: This file was automatically created !!! */
/* DO NOT EDIT THIS FILE !!! */
/*--------------------------------------------------------------------------*/
/* cf registers */
#define HW_R0B_ADDR_0_REG_ADDR 0x0000UL
#define HW_R0B_ADDR_1_REG_ADDR 0x0004UL
#define HW_R0B_ADDR_2_REG_ADDR 0x0008UL
#define HW_R0B_ADDR_3_REG_ADDR 0x000cUL
#define HW_R0B_ADDR_4_REG_ADDR 0x0010UL
#define HW_R0B_ADDR_5_REG_ADDR 0x0014UL
#define HW_R0B_ADDR_6_REG_ADDR 0x0018UL
#define HW_R0B_ADDR_7_REG_ADDR 0x001cUL
#define HW_R0B_ADDR_8_REG_ADDR 0x0020UL
#define HW_R2B_ADDR_0_REG_ADDR 0x0080UL
#define HW_R2B_ADDR_1_REG_ADDR 0x0084UL
#define HW_R2B_ADDR_2_REG_ADDR 0x0088UL
#define HW_R2B_ADDR_3_REG_ADDR 0x008cUL
#define HW_R2B_ADDR_4_REG_ADDR 0x0090UL
#define HW_R2B_ADDR_5_REG_ADDR 0x0094UL
#define HW_R2B_ADDR_6_REG_ADDR 0x0098UL
#define HW_R2B_ADDR_7_REG_ADDR 0x009cUL
#define HW_R2B_ADDR_8_REG_ADDR 0x00a0UL
#define HW_R3B_REG_ADDR 0x00C0UL
#define HW_R4B_REG_ADDR 0x0100UL
#define HW_CSA_ADDR_0_REG_ADDR 0x0140UL
#define HW_CSA_ADDR_1_REG_ADDR 0x0144UL
#define HW_CSA_ADDR_2_REG_ADDR 0x0148UL
#define HW_CSA_ADDR_3_REG_ADDR 0x014cUL
#define HW_CSA_ADDR_4_REG_ADDR 0x0150UL
#define HW_CSA_ADDR_5_REG_ADDR 0x0154UL
#define HW_CSA_ADDR_6_REG_ADDR 0x0158UL
#define HW_CSA_ADDR_7_REG_ADDR 0x015cUL
#define HW_CSA_ADDR_8_REG_ADDR 0x0160UL
#define HW_CSA_REG_ADDR 0x0140UL
#define HW_SINB_REG_ADDR 0x0180UL
#define HW_SOUTB_REG_ADDR 0x0184UL
#define HW_PKI_CONTROL_REG_ADDR 0x01C0UL
#define HW_PKI_STATUS_REG_ADDR 0x01C4UL
#define HW_PKI_BUSY_REG_ADDR 0x01C8UL
#define HW_PKI_A_1025_REG_ADDR 0x01CCUL
#define HW_PKI_SDMA_CTL_REG_ADDR 0x01D0UL
#define HW_PKI_SDMA_OFFSET_REG_ADDR 0x01D4UL
#define HW_PKI_SDMA_POINTERS_REG_ADDR 0x01D8UL
#define HW_PKI_SDMA_DLENG_REG_ADDR 0x01DCUL
#define HW_PKI_SDMA_EXP_POINTERS_REG_ADDR 0x01E0UL
#define HW_PKI_SDMA_RES_POINTERS_REG_ADDR 0x01E4UL
#define HW_PKI_CLR_REG_ADDR 0x01E8UL
#define HW_PKI_SDMA_BUSY_REG_ADDR 0x01E8UL
#define HW_PKI_SDMA_FIRST_EXP_N_REG_ADDR 0x01ECUL
#define HW_PKI_SDMA_MUL_BY1_REG_ADDR 0x01F0UL
#define HW_PKI_SDMA_RMUL_SEL_REG_ADDR 0x01F4UL
#define HW_DES_KEY_0_REG_ADDR 0x0208UL
#define HW_DES_KEY_1_REG_ADDR 0x020CUL
#define HW_DES_KEY_2_REG_ADDR 0x0210UL
#define HW_DES_KEY_3_REG_ADDR 0x0214UL
#define HW_DES_KEY_4_REG_ADDR 0x0218UL
#define HW_DES_KEY_5_REG_ADDR 0x021CUL
#define HW_DES_CONTROL_0_REG_ADDR 0x0220UL
#define HW_DES_CONTROL_1_REG_ADDR 0x0224UL
#define HW_DES_IV_0_REG_ADDR 0x0228UL
#define HW_DES_IV_1_REG_ADDR 0x022CUL
#define HW_AES_KEY_0_ADDR_0_REG_ADDR 0x0400UL
#define HW_AES_KEY_0_ADDR_1_REG_ADDR 0x0404UL
#define HW_AES_KEY_0_ADDR_2_REG_ADDR 0x0408UL
#define HW_AES_KEY_0_ADDR_3_REG_ADDR 0x040cUL
#define HW_AES_KEY_0_ADDR_4_REG_ADDR 0x0410UL
#define HW_AES_KEY_0_ADDR_5_REG_ADDR 0x0414UL
#define HW_AES_KEY_0_ADDR_6_REG_ADDR 0x0418UL
#define HW_AES_KEY_0_ADDR_7_REG_ADDR 0x041cUL
#define HW_AES_KEY_0_REG_ADDR 0x0400UL
#define HW_AES_IV_0_ADDR_0_REG_ADDR 0x0440UL
#define HW_AES_IV_0_ADDR_1_REG_ADDR 0x0444UL
#define HW_AES_IV_0_ADDR_2_REG_ADDR 0x0448UL
#define HW_AES_IV_0_ADDR_3_REG_ADDR 0x044cUL
#define HW_AES_IV_0_REG_ADDR 0x0440UL
#define HW_AES_CTR1_ADDR_0_REG_ADDR 0x0460UL
#define HW_AES_CTR1_ADDR_1_REG_ADDR 0x0464UL
#define HW_AES_CTR1_ADDR_2_REG_ADDR 0x0468UL
#define HW_AES_CTR1_ADDR_3_REG_ADDR 0x046cUL
#define HW_AES_CTR1_REG_ADDR 0x0460UL
#define HW_AES_SK_REG_ADDR 0x0478UL
#define HW_AES_MAC_OK_REG_ADDR 0x0480UL
#define HW_AES_PREV_IV_0_ADDR_0_REG_ADDR 0x0490UL
#define HW_AES_PREV_IV_0_ADDR_1_REG_ADDR 0x0494UL
#define HW_AES_PREV_IV_0_ADDR_2_REG_ADDR 0x0498UL
#define HW_AES_PREV_IV_0_ADDR_3_REG_ADDR 0x049cUL
#define HW_AES_PREV_IV_0_REG_ADDR 0x0490UL
#define HW_AES_CONTROL_REG_ADDR 0x04C0UL
#define HW_HASH_H0_REG_ADDR 0x0640UL
#define HW_HASH_H1_REG_ADDR 0x0644UL
#define HW_HASH_H2_REG_ADDR 0x0648UL
#define HW_HASH_H3_REG_ADDR 0x064CUL
#define HW_HASH_H4_REG_ADDR 0x0650UL
#define HW_HASH_H5_REG_ADDR 0x0654UL
#define HW_HASH_H6_REG_ADDR 0x0658UL
#define HW_HASH_H7_REG_ADDR 0x065CUL
#define HW_HASH_H8_REG_ADDR 0x0660UL
#define HW_HASH_H9_REG_ADDR 0x0664UL
#define HW_HASH_H10_REG_ADDR 0x0668UL
#define HW_HASH_H11_REG_ADDR 0x066CUL
#define HW_HASH_H12_REG_ADDR 0x0670UL
#define HW_HASH_H13_REG_ADDR 0x0674UL
#define HW_HASH_H14_REG_ADDR 0x0678UL
#define HW_HASH_H15_REG_ADDR 0x067CUL
#define HW_HASH_CONTROL_REG_ADDR 0x07C0UL
#define HW_HASH_PAD_EN_REG_ADDR 0x07C4UL
#define HW_HASH_PAD_CFG_REG_ADDR 0x07C8UL
#define HW_HASH_CUR_LEN_0_REG_ADDR 0x07CCUL
#define HW_HASH_CUR_LEN_1_REG_ADDR 0x07D0UL
#define HW_HASH_CUR_LEN_2_REG_ADDR 0x07D4UL
#define HW_HASH_CUR_LEN_3_REG_ADDR 0x07D8UL
#define HW_HASH_PARAM_REG_ADDR 0x07DCUL
#define HW_HASH_INT_BUSY_REG_ADDR 0x07E0UL
#define HW_HASH_SW_RESET_REG_ADDR 0x07E4UL
#define HW_HASH_ENDIANESS_REG_ADDR 0x07E8UL
#define HW_HASH_DATA_REG_ADDR 0x07ECUL
#define HW_DRNG_CONTROL_REG_ADDR 0x0800UL
#define HW_DRNG_VALID_REG_ADDR 0x0804UL
#define HW_DRNG_DATA_REG_ADDR 0x0808UL
#define HW_RND_SRC_EN_REG_ADDR 0x080CUL
#define HW_AES_CLK_ENABLE_REG_ADDR 0x0810UL
#define HW_DES_CLK_ENABLE_REG_ADDR 0x0814UL
#define HW_HASH_CLK_ENABLE_REG_ADDR 0x0818UL
#define HW_PKI_CLK_ENABLE_REG_ADDR 0x081CUL
#define HW_CLK_STATUS_REG_ADDR 0x0824UL
#define HW_CLK_ENABLE_REG_ADDR 0x0828UL
#define HW_DRNG_SAMPLE_REG_ADDR 0x0850UL
#define HW_RND_SRC_CTL_REG_ADDR 0x0858UL
#define HW_CRYPTO_CTL_REG_ADDR 0x0900UL
#define HW_CRYPTO_STATUS_REG_ADDR 0x090CUL
#define HW_CRYPTO_BUSY_REG_ADDR 0x0910UL
#define HW_AES_BUSY_REG_ADDR 0x0914UL
#define HW_DES_BUSY_REG_ADDR 0x0918UL
#define HW_HASH_BUSY_REG_ADDR 0x091CUL
#define HW_CONTENT_REG_ADDR 0x0924UL
#define HW_VERSION_REG_ADDR 0x0928UL
#define HW_CONTEXT_ID_REG_ADDR 0x0930UL
#define HW_DIN_BUFFER_REG_ADDR 0x0C00UL
#define HW_DIN_MEM_DMA_BUSY_REG_ADDR 0x0c20UL
#define HW_SRC_LLI_MEM_ADDR_REG_ADDR 0x0c24UL
#define HW_SRC_LLI_WORD0_REG_ADDR 0x0C28UL
#define HW_SRC_LLI_WORD1_REG_ADDR 0x0C2CUL
#define HW_SRAM_SRC_ADDR_REG_ADDR 0x0c30UL
#define HW_DIN_SRAM_BYTES_LEN_REG_ADDR 0x0c34UL
#define HW_DIN_SRAM_DMA_BUSY_REG_ADDR 0x0C38UL
#define HW_WRITE_ALIGN_REG_ADDR 0x0C3CUL
#define HW_OLD_DATA_REG_ADDR 0x0C48UL
#define HW_WRITE_ALIGN_LAST_REG_ADDR 0x0C4CUL
#define HW_DOUT_BUFFER_REG_ADDR 0x0C00UL
#define HW_DST_LLI_WORD0_REG_ADDR 0x0D28UL
#define HW_DST_LLI_WORD1_REG_ADDR 0x0D2CUL
#define HW_DST_LLI_MEM_ADDR_REG_ADDR 0x0D24UL
#define HW_DOUT_MEM_DMA_BUSY_REG_ADDR 0x0D20UL
#define HW_SRAM_DEST_ADDR_REG_ADDR 0x0D30UL
#define HW_DOUT_SRAM_BYTES_LEN_REG_ADDR 0x0D34UL
#define HW_DOUT_SRAM_DMA_BUSY_REG_ADDR 0x0D38UL
#define HW_READ_ALIGN_REG_ADDR 0x0D3CUL
#define HW_READ_LAST_DATA_REG_ADDR 0x0D44UL
#define HW_RC4_THRU_CPU_REG_ADDR 0x0D4CUL
#define HW_AHB_SINGLE_REG_ADDR 0x0E00UL
#define HW_SRAM_DATA_REG_ADDR 0x0F00UL
#define HW_SRAM_ADDR_REG_ADDR 0x0F04UL
#define HW_SRAM_DATA_READY_REG_ADDR 0x0F08UL
#define HW_HOST_IRR_REG_ADDR 0x0A00UL
#define HW_HOST_IMR_REG_ADDR 0x0A04UL
#define HW_HOST_ICR_REG_ADDR 0x0A08UL
#define HW_HOST_SEP_SRAM_THRESHOLD_REG_ADDR 0x0A10UL
#define HW_HOST_SEP_BUSY_REG_ADDR 0x0A14UL
#define HW_HOST_SEP_LCS_REG_ADDR 0x0A18UL
#define HW_HOST_CC_SW_RST_REG_ADDR 0x0A40UL
#define HW_HOST_SEP_SW_RST_REG_ADDR 0x0A44UL
#define HW_HOST_FLOW_DMA_SW_INT0_REG_ADDR 0x0A80UL
#define HW_HOST_FLOW_DMA_SW_INT1_REG_ADDR 0x0A84UL
#define HW_HOST_FLOW_DMA_SW_INT2_REG_ADDR 0x0A88UL
#define HW_HOST_FLOW_DMA_SW_INT3_REG_ADDR 0x0A8cUL
#define HW_HOST_FLOW_DMA_SW_INT4_REG_ADDR 0x0A90UL
#define HW_HOST_FLOW_DMA_SW_INT5_REG_ADDR 0x0A94UL
#define HW_HOST_FLOW_DMA_SW_INT6_REG_ADDR 0x0A98UL
#define HW_HOST_FLOW_DMA_SW_INT7_REG_ADDR 0x0A9cUL
#define HW_HOST_SEP_HOST_GPR0_REG_ADDR 0x0B00UL
#define HW_HOST_SEP_HOST_GPR1_REG_ADDR 0x0B04UL
#define HW_HOST_SEP_HOST_GPR2_REG_ADDR 0x0B08UL
#define HW_HOST_SEP_HOST_GPR3_REG_ADDR 0x0B0CUL
#define HW_HOST_HOST_SEP_GPR0_REG_ADDR 0x0B80UL
#define HW_HOST_HOST_SEP_GPR1_REG_ADDR 0x0B84UL
#define HW_HOST_HOST_SEP_GPR2_REG_ADDR 0x0B88UL
#define HW_HOST_HOST_SEP_GPR3_REG_ADDR 0x0B8CUL
#define HW_HOST_HOST_ENDIAN_REG_ADDR 0x0B90UL
#define HW_HOST_HOST_COMM_CLK_EN_REG_ADDR 0x0B94UL
#define HW_CLR_SRAM_BUSY_REG_REG_ADDR 0x0F0CUL
#define HW_CC_SRAM_BASE_ADDRESS 0x5800UL
#endif /* ifndef HW_DEFS */
......@@ -27,6 +27,7 @@
#include <linux/kthread.h>
#include <linux/log2.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
/**** Helper functions used for Div, Remainder operation on u64 ****/
......@@ -113,7 +114,6 @@ u64 GLOB_u64_Remainder(u64 addr, u32 divisor_type)
#define GLOB_SBD_NAME "nd"
#define GLOB_SBD_IRQ_NUM (29)
#define GLOB_VERSION "driver version 20091110"
#define GLOB_SBD_IOCTL_GC (0x7701)
#define GLOB_SBD_IOCTL_WL (0x7702)
......@@ -272,13 +272,6 @@ static int get_res_blk_num_os(void)
return res_blks;
}
static void SBD_prepare_flush(struct request_queue *q, struct request *rq)
{
rq->cmd_type = REQ_TYPE_LINUX_BLOCK;
/* rq->timeout = 5 * HZ; */
rq->cmd[0] = REQ_LB_OP_FLUSH;
}
/* Transfer a full request. */
static int do_transfer(struct spectra_nand_dev *tr, struct request *req)
{
......@@ -296,8 +289,7 @@ static int do_transfer(struct spectra_nand_dev *tr, struct request *req)
IdentifyDeviceData.PagesPerBlock *
res_blks_os;
if (req->cmd_type == REQ_TYPE_LINUX_BLOCK &&
req->cmd[0] == REQ_LB_OP_FLUSH) {
if (req->cmd_type & REQ_FLUSH) {
if (force_flush_cache()) /* Fail to flush cache */
return -EIO;
else
......@@ -597,11 +589,23 @@ int GLOB_SBD_ioctl(struct block_device *bdev, fmode_t mode,
return -ENOTTY;
}
int GLOB_SBD_unlocked_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
int ret;
lock_kernel();
ret = GLOB_SBD_ioctl(bdev, mode, cmd, arg);
unlock_kernel();
return ret;
}
static struct block_device_operations GLOB_SBD_ops = {
.owner = THIS_MODULE,
.open = GLOB_SBD_open,
.release = GLOB_SBD_release,
.locked_ioctl = GLOB_SBD_ioctl,
.ioctl = GLOB_SBD_unlocked_ioctl,
.getgeo = GLOB_SBD_getgeo,
};
......@@ -650,8 +654,7 @@ static int SBD_setup_device(struct spectra_nand_dev *dev, int which)
/* Here we force report 512 byte hardware sector size to Kernel */
blk_queue_logical_block_size(dev->queue, 512);
blk_queue_ordered(dev->queue, QUEUE_ORDERED_DRAIN_FLUSH,
SBD_prepare_flush);
blk_queue_ordered(dev->queue, QUEUE_ORDERED_DRAIN_FLUSH);
dev->thread = kthread_run(spectra_trans_thread, dev, "nand_thd");
if (IS_ERR(dev->thread)) {
......
......@@ -61,7 +61,6 @@ static void FTL_Cache_Read_Page(u8 *pData, u64 dwPageAddr,
static void FTL_Cache_Write_Page(u8 *pData, u64 dwPageAddr,
u8 cache_blk, u16 flag);
static int FTL_Cache_Write(void);
static int FTL_Cache_Write_Back(u8 *pData, u64 blk_addr);
static void FTL_Calculate_LRU(void);
static u32 FTL_Get_Block_Index(u32 wBlockNum);
......@@ -86,8 +85,6 @@ static u32 FTL_Replace_MWBlock(void);
static int FTL_Replace_Block(u64 blk_addr);
static int FTL_Adjust_Relative_Erase_Count(u32 Index_of_MAX);
static int FTL_Flash_Error_Handle(u8 *pData, u64 old_page_addr, u64 blk_addr);
struct device_info_tag DeviceInfo;
struct flash_cache_tag Cache;
static struct spectra_l2_cache_info cache_l2;
......@@ -775,7 +772,7 @@ static void dump_cache_l2_table(void)
{
struct list_head *p;
struct spectra_l2_cache_list *pnd;
int n, i;
int n;
n = 0;
list_for_each(p, &cache_l2.table.list) {
......@@ -1537,79 +1534,6 @@ static int FTL_Cache_Write_All(u8 *pData, u64 blk_addr)
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Cache_Update_Block
* Inputs: pointer to buffer,page address,block address
* Outputs: PASS=0 / FAIL=1
* Description: It updates the cache
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Cache_Update_Block(u8 *pData,
u64 old_page_addr, u64 blk_addr)
{
int i, j;
u8 *buf = pData;
int wResult = PASS;
int wFoundInCache;
u64 page_addr;
u64 addr;
u64 old_blk_addr;
u16 page_offset;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
old_blk_addr = (u64)(old_page_addr >>
DeviceInfo.nBitsInBlockDataSize) * DeviceInfo.wBlockDataSize;
page_offset = (u16)(GLOB_u64_Remainder(old_page_addr, 2) >>
DeviceInfo.nBitsInPageDataSize);
for (i = 0; i < DeviceInfo.wPagesPerBlock; i += Cache.pages_per_item) {
page_addr = old_blk_addr + i * DeviceInfo.wPageDataSize;
if (i != page_offset) {
wFoundInCache = FAIL;
for (j = 0; j < CACHE_ITEM_NUM; j++) {
addr = Cache.array[j].address;
addr = FTL_Get_Physical_Block_Addr(addr) +
GLOB_u64_Remainder(addr, 2);
if ((addr >= page_addr) && addr <
(page_addr + Cache.cache_item_size)) {
wFoundInCache = PASS;
buf = Cache.array[j].buf;
Cache.array[j].changed = SET;
#if CMD_DMA
#if RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE
int_cache[ftl_cmd_cnt].item = j;
int_cache[ftl_cmd_cnt].cache.address =
Cache.array[j].address;
int_cache[ftl_cmd_cnt].cache.changed =
Cache.array[j].changed;
#endif
#endif
break;
}
}
if (FAIL == wFoundInCache) {
if (ERR == FTL_Cache_Read_All(g_pTempBuf,
page_addr)) {
wResult = FAIL;
break;
}
buf = g_pTempBuf;
}
} else {
buf = pData;
}
if (FAIL == FTL_Cache_Write_All(buf,
blk_addr + (page_addr - old_blk_addr))) {
wResult = FAIL;
break;
}
}
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Copy_Block
* Inputs: source block address
......@@ -1698,7 +1622,7 @@ static int get_l2_cache_blks(void)
static int erase_l2_cache_blocks(void)
{
int i, ret = PASS;
u32 pblk, lblk;
u32 pblk, lblk = BAD_BLOCK;
u64 addr;
u32 *pbt = (u32 *)g_pBlockTable;
......@@ -2004,87 +1928,6 @@ static int search_l2_cache(u8 *buf, u64 logical_addr)
return ret;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Cache_Write_Back
* Inputs: pointer to data cached in sys memory
* address of free block in flash
* Outputs: PASS=0 / FAIL=1
* Description: writes all the pages of Cache Block to flash
*
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Cache_Write_Back(u8 *pData, u64 blk_addr)
{
int i, j, iErase;
u64 old_page_addr, addr, phy_addr;
u32 *pbt = (u32 *)g_pBlockTable;
u32 lba;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
old_page_addr = FTL_Get_Physical_Block_Addr(blk_addr) +
GLOB_u64_Remainder(blk_addr, 2);
iErase = (FAIL == FTL_Replace_Block(blk_addr)) ? PASS : FAIL;
pbt[BLK_FROM_ADDR(blk_addr)] &= (~SPARE_BLOCK);
#if CMD_DMA
p_BTableChangesDelta = (struct BTableChangesDelta *)g_pBTDelta_Free;
g_pBTDelta_Free += sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt = ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index = (u32)(blk_addr >>
DeviceInfo.nBitsInBlockDataSize);
p_BTableChangesDelta->BT_Entry_Value =
pbt[(u32)(blk_addr >> DeviceInfo.nBitsInBlockDataSize)];
p_BTableChangesDelta->ValidFields = 0x0C;
#endif
if (IN_PROGRESS_BLOCK_TABLE != g_cBlockTableStatus) {
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
FTL_Write_IN_Progress_Block_Table_Page();
}
for (i = 0; i < RETRY_TIMES; i++) {
if (PASS == iErase) {
phy_addr = FTL_Get_Physical_Block_Addr(blk_addr);
if (FAIL == GLOB_FTL_Block_Erase(phy_addr)) {
lba = BLK_FROM_ADDR(blk_addr);
MARK_BLOCK_AS_BAD(pbt[lba]);
i = RETRY_TIMES;
break;
}
}
for (j = 0; j < CACHE_ITEM_NUM; j++) {
addr = Cache.array[j].address;
if ((addr <= blk_addr) &&
((addr + Cache.cache_item_size) > blk_addr))
cache_block_to_write = j;
}
phy_addr = FTL_Get_Physical_Block_Addr(blk_addr);
if (PASS == FTL_Cache_Update_Block(pData,
old_page_addr, phy_addr)) {
cache_block_to_write = UNHIT_CACHE_ITEM;
break;
} else {
iErase = PASS;
}
}
if (i >= RETRY_TIMES) {
if (ERR == FTL_Flash_Error_Handle(pData,
old_page_addr, blk_addr))
return ERR;
else
return FAIL;
}
return PASS;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Cache_Write_Page
* Inputs: Pointer to buffer, page address, cache block number
......@@ -2370,159 +2213,6 @@ static int FTL_Write_Block_Table(int wForce)
return 1;
}
/******************************************************************
* Function: GLOB_FTL_Flash_Format
* Inputs: none
* Outputs: PASS
* Description: The block table stores bad block info, including MDF+
* blocks gone bad over the ages. Therefore, if we have a
* block table in place, then use it to scan for bad blocks
* If not, then scan for MDF.
* Now, a block table will only be found if spectra was already
* being used. For a fresh flash, we'll go thru scanning for
* MDF. If spectra was being used, then there is a chance that
* the MDF has been corrupted. Spectra avoids writing to the
* first 2 bytes of the spare area to all pages in a block. This
* covers all known flash devices. However, since flash
* manufacturers have no standard of where the MDF is stored,
* this cannot guarantee that the MDF is protected for future
* devices too. The initial scanning for the block table assures
* this. It is ok even if the block table is outdated, as all
* we're looking for are bad block markers.
* Use this when mounting a file system or starting a
* new flash.
*
*********************************************************************/
static int FTL_Format_Flash(u8 valid_block_table)
{
u32 i, j;
u32 *pbt = (u32 *)g_pBlockTable;
u32 tempNode;
int ret;
#if CMD_DMA
u32 *pbtStartingCopy = (u32 *)g_pBTStartingCopy;
if (ftl_cmd_cnt)
return FAIL;
#endif
if (FAIL == FTL_Check_Block_Table(FAIL))
valid_block_table = 0;
if (valid_block_table) {
u8 switched = 1;
u32 block, k;
k = DeviceInfo.wSpectraStartBlock;
while (switched && (k < DeviceInfo.wSpectraEndBlock)) {
switched = 0;
k++;
for (j = DeviceInfo.wSpectraStartBlock, i = 0;
j <= DeviceInfo.wSpectraEndBlock;
j++, i++) {
block = (pbt[i] & ~BAD_BLOCK) -
DeviceInfo.wSpectraStartBlock;
if (block != i) {
switched = 1;
tempNode = pbt[i];
pbt[i] = pbt[block];
pbt[block] = tempNode;
}
}
}
if ((k == DeviceInfo.wSpectraEndBlock) && switched)
valid_block_table = 0;
}
if (!valid_block_table) {
memset(g_pBlockTable, 0,
DeviceInfo.wDataBlockNum * sizeof(u32));
memset(g_pWearCounter, 0,
DeviceInfo.wDataBlockNum * sizeof(u8));
if (DeviceInfo.MLCDevice)
memset(g_pReadCounter, 0,
DeviceInfo.wDataBlockNum * sizeof(u16));
#if CMD_DMA
memset(g_pBTStartingCopy, 0,
DeviceInfo.wDataBlockNum * sizeof(u32));
memset(g_pWearCounterCopy, 0,
DeviceInfo.wDataBlockNum * sizeof(u8));
if (DeviceInfo.MLCDevice)
memset(g_pReadCounterCopy, 0,
DeviceInfo.wDataBlockNum * sizeof(u16));
#endif
for (j = DeviceInfo.wSpectraStartBlock, i = 0;
j <= DeviceInfo.wSpectraEndBlock;
j++, i++) {
if (GLOB_LLD_Get_Bad_Block((u32)j))
pbt[i] = (u32)(BAD_BLOCK | j);
}
}
nand_dbg_print(NAND_DBG_WARN, "Erasing all blocks in the NAND\n");
for (j = DeviceInfo.wSpectraStartBlock, i = 0;
j <= DeviceInfo.wSpectraEndBlock;
j++, i++) {
if ((pbt[i] & BAD_BLOCK) != BAD_BLOCK) {
ret = GLOB_LLD_Erase_Block(j);
if (FAIL == ret) {
pbt[i] = (u32)(j);
MARK_BLOCK_AS_BAD(pbt[i]);
nand_dbg_print(NAND_DBG_WARN,
"NAND Program fail in %s, Line %d, "
"Function: %s, new Bad Block %d generated!\n",
__FILE__, __LINE__, __func__, (int)j);
} else {
pbt[i] = (u32)(SPARE_BLOCK | j);
}
}
#if CMD_DMA
pbtStartingCopy[i] = pbt[i];
#endif
}
g_wBlockTableOffset = 0;
for (i = 0; (i <= (DeviceInfo.wSpectraEndBlock -
DeviceInfo.wSpectraStartBlock))
&& ((pbt[i] & BAD_BLOCK) == BAD_BLOCK); i++)
;
if (i > (DeviceInfo.wSpectraEndBlock - DeviceInfo.wSpectraStartBlock)) {
printk(KERN_ERR "All blocks bad!\n");
return FAIL;
} else {
g_wBlockTableIndex = pbt[i] & ~BAD_BLOCK;
if (i != BLOCK_TABLE_INDEX) {
tempNode = pbt[i];
pbt[i] = pbt[BLOCK_TABLE_INDEX];
pbt[BLOCK_TABLE_INDEX] = tempNode;
}
}
pbt[BLOCK_TABLE_INDEX] &= (~SPARE_BLOCK);
#if CMD_DMA
pbtStartingCopy[BLOCK_TABLE_INDEX] &= (~SPARE_BLOCK);
#endif
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
memset(g_pBTBlocks, 0xFF,
(1 + LAST_BT_ID - FIRST_BT_ID) * sizeof(u32));
g_pBTBlocks[FIRST_BT_ID-FIRST_BT_ID] = g_wBlockTableIndex;
FTL_Write_Block_Table(FAIL);
for (i = 0; i < CACHE_ITEM_NUM; i++) {
Cache.array[i].address = NAND_CACHE_INIT_ADDR;
Cache.array[i].use_cnt = 0;
Cache.array[i].changed = CLEAR;
}
#if (RESTORE_CACHE_ON_CDMA_CHAIN_FAILURE && CMD_DMA)
memcpy((void *)&cache_start_copy, (void *)&Cache,
sizeof(struct flash_cache_tag));
#endif
return PASS;
}
static int force_format_nand(void)
{
u32 i;
......@@ -3031,112 +2721,6 @@ static int FTL_Read_Block_Table(void)
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Flash_Error_Handle
* Inputs: Pointer to data
* Page address
* Block address
* Outputs: PASS=0 / FAIL=1
* Description: It handles any error occured during Spectra operation
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
static int FTL_Flash_Error_Handle(u8 *pData, u64 old_page_addr,
u64 blk_addr)
{
u32 i;
int j;
u32 tmp_node, blk_node = BLK_FROM_ADDR(blk_addr);
u64 phy_addr;
int wErase = FAIL;
int wResult = FAIL;
u32 *pbt = (u32 *)g_pBlockTable;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (ERR == GLOB_FTL_Garbage_Collection())
return ERR;
do {
for (i = DeviceInfo.wSpectraEndBlock -
DeviceInfo.wSpectraStartBlock;
i > 0; i--) {
if (IS_SPARE_BLOCK(i)) {
tmp_node = (u32)(BAD_BLOCK |
pbt[blk_node]);
pbt[blk_node] = (u32)(pbt[i] &
(~SPARE_BLOCK));
pbt[i] = tmp_node;
#if CMD_DMA
p_BTableChangesDelta =
(struct BTableChangesDelta *)
g_pBTDelta_Free;
g_pBTDelta_Free +=
sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index =
blk_node;
p_BTableChangesDelta->BT_Entry_Value =
pbt[blk_node];
p_BTableChangesDelta->ValidFields = 0x0C;
p_BTableChangesDelta =
(struct BTableChangesDelta *)
g_pBTDelta_Free;
g_pBTDelta_Free +=
sizeof(struct BTableChangesDelta);
p_BTableChangesDelta->ftl_cmd_cnt =
ftl_cmd_cnt;
p_BTableChangesDelta->BT_Index = i;
p_BTableChangesDelta->BT_Entry_Value = pbt[i];
p_BTableChangesDelta->ValidFields = 0x0C;
#endif
wResult = PASS;
break;
}
}
if (FAIL == wResult) {
if (FAIL == GLOB_FTL_Garbage_Collection())
break;
else
continue;
}
if (IN_PROGRESS_BLOCK_TABLE != g_cBlockTableStatus) {
g_cBlockTableStatus = IN_PROGRESS_BLOCK_TABLE;
FTL_Write_IN_Progress_Block_Table_Page();
}
phy_addr = FTL_Get_Physical_Block_Addr(blk_addr);
for (j = 0; j < RETRY_TIMES; j++) {
if (PASS == wErase) {
if (FAIL == GLOB_FTL_Block_Erase(phy_addr)) {
MARK_BLOCK_AS_BAD(pbt[blk_node]);
break;
}
}
if (PASS == FTL_Cache_Update_Block(pData,
old_page_addr,
phy_addr)) {
wResult = PASS;
break;
} else {
wResult = FAIL;
wErase = PASS;
}
}
} while (FAIL == wResult);
FTL_Write_Block_Table(FAIL);
return wResult;
}
/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function: FTL_Get_Page_Num
* Inputs: Size in bytes
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment