Commit e986a0d6 authored by Will Deacon's avatar Will Deacon Committed by Ingo Molnar

locking/atomics, asm-generic/bitops/atomic.h: Rewrite using atomic_*() APIs

The atomic bitops can actually be implemented pretty efficiently using
the atomic_*() ops, rather than explicit use of spinlocks.
Signed-off-by: default avatarWill Deacon <will.deacon@arm.com>
Acked-by: default avatarPeter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Cc: yamada.masahiro@socionext.com
Link: https://lore.kernel.org/lkml/1529412794-17720-7-git-send-email-will.deacon@arm.comSigned-off-by: default avatarIngo Molnar <mingo@kernel.org>
parent 1c2672b4
...@@ -2,189 +2,67 @@ ...@@ -2,189 +2,67 @@
#ifndef _ASM_GENERIC_BITOPS_ATOMIC_H_ #ifndef _ASM_GENERIC_BITOPS_ATOMIC_H_
#define _ASM_GENERIC_BITOPS_ATOMIC_H_ #define _ASM_GENERIC_BITOPS_ATOMIC_H_
#include <asm/types.h> #include <linux/atomic.h>
#include <linux/irqflags.h> #include <linux/compiler.h>
#include <asm/barrier.h>
#ifdef CONFIG_SMP
#include <asm/spinlock.h>
#include <asm/cache.h> /* we use L1_CACHE_BYTES */
/* Use an array of spinlocks for our atomic_ts.
* Hash function to index into a different SPINLOCK.
* Since "a" is usually an address, use one spinlock per cacheline.
*/
# define ATOMIC_HASH_SIZE 4
# define ATOMIC_HASH(a) (&(__atomic_hash[ (((unsigned long) a)/L1_CACHE_BYTES) & (ATOMIC_HASH_SIZE-1) ]))
extern arch_spinlock_t __atomic_hash[ATOMIC_HASH_SIZE] __lock_aligned;
/* Can't use raw_spin_lock_irq because of #include problems, so
* this is the substitute */
#define _atomic_spin_lock_irqsave(l,f) do { \
arch_spinlock_t *s = ATOMIC_HASH(l); \
local_irq_save(f); \
arch_spin_lock(s); \
} while(0)
#define _atomic_spin_unlock_irqrestore(l,f) do { \
arch_spinlock_t *s = ATOMIC_HASH(l); \
arch_spin_unlock(s); \
local_irq_restore(f); \
} while(0)
#else
# define _atomic_spin_lock_irqsave(l,f) do { local_irq_save(f); } while (0)
# define _atomic_spin_unlock_irqrestore(l,f) do { local_irq_restore(f); } while (0)
#endif
/* /*
* NMI events can occur at any time, including when interrupts have been * Implementation of atomic bitops using atomic-fetch ops.
* disabled by *_irqsave(). So you can get NMI events occurring while a * See Documentation/atomic_bitops.txt for details.
* *_bit function is holding a spin lock. If the NMI handler also wants
* to do bit manipulation (and they do) then you can get a deadlock
* between the original caller of *_bit() and the NMI handler.
*
* by Keith Owens
*/ */
/** static inline void set_bit(unsigned int nr, volatile unsigned long *p)
* set_bit - Atomically set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* This function is atomic and may not be reordered. See __set_bit()
* if you do not require the atomic guarantees.
*
* Note: there are no guarantees that this function will not be reordered
* on non x86 architectures, so if you are writing portable code,
* make sure not to rely on its reordering guarantees.
*
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static inline void set_bit(int nr, volatile unsigned long *addr)
{ {
unsigned long mask = BIT_MASK(nr); p += BIT_WORD(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); atomic_long_or(BIT_MASK(nr), (atomic_long_t *)p);
unsigned long flags;
_atomic_spin_lock_irqsave(p, flags);
*p |= mask;
_atomic_spin_unlock_irqrestore(p, flags);
} }
/** static inline void clear_bit(unsigned int nr, volatile unsigned long *p)
* clear_bit - Clears a bit in memory
* @nr: Bit to clear
* @addr: Address to start counting from
*
* clear_bit() is atomic and may not be reordered. However, it does
* not contain a memory barrier, so if it is used for locking purposes,
* you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
* in order to ensure changes are visible on other processors.
*/
static inline void clear_bit(int nr, volatile unsigned long *addr)
{ {
unsigned long mask = BIT_MASK(nr); p += BIT_WORD(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); atomic_long_andnot(BIT_MASK(nr), (atomic_long_t *)p);
unsigned long flags;
_atomic_spin_lock_irqsave(p, flags);
*p &= ~mask;
_atomic_spin_unlock_irqrestore(p, flags);
} }
/** static inline void change_bit(unsigned int nr, volatile unsigned long *p)
* change_bit - Toggle a bit in memory
* @nr: Bit to change
* @addr: Address to start counting from
*
* change_bit() is atomic and may not be reordered. It may be
* reordered on other architectures than x86.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static inline void change_bit(int nr, volatile unsigned long *addr)
{ {
unsigned long mask = BIT_MASK(nr); p += BIT_WORD(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); atomic_long_xor(BIT_MASK(nr), (atomic_long_t *)p);
unsigned long flags;
_atomic_spin_lock_irqsave(p, flags);
*p ^= mask;
_atomic_spin_unlock_irqrestore(p, flags);
} }
/** static inline int test_and_set_bit(unsigned int nr, volatile unsigned long *p)
* test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It may be reordered on other architectures than x86.
* It also implies a memory barrier.
*/
static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
{ {
long old;
unsigned long mask = BIT_MASK(nr); unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long old;
unsigned long flags;
_atomic_spin_lock_irqsave(p, flags); p += BIT_WORD(nr);
old = *p; if (READ_ONCE(*p) & mask)
*p = old | mask; return 1;
_atomic_spin_unlock_irqrestore(p, flags);
return (old & mask) != 0; old = atomic_long_fetch_or(mask, (atomic_long_t *)p);
return !!(old & mask);
} }
/** static inline int test_and_clear_bit(unsigned int nr, volatile unsigned long *p)
* test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It can be reorderdered on other architectures other than x86.
* It also implies a memory barrier.
*/
static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
{ {
long old;
unsigned long mask = BIT_MASK(nr); unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long old;
unsigned long flags;
_atomic_spin_lock_irqsave(p, flags); p += BIT_WORD(nr);
old = *p; if (!(READ_ONCE(*p) & mask))
*p = old & ~mask; return 0;
_atomic_spin_unlock_irqrestore(p, flags);
return (old & mask) != 0; old = atomic_long_fetch_andnot(mask, (atomic_long_t *)p);
return !!(old & mask);
} }
/** static inline int test_and_change_bit(unsigned int nr, volatile unsigned long *p)
* test_and_change_bit - Change a bit and return its old value
* @nr: Bit to change
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
{ {
long old;
unsigned long mask = BIT_MASK(nr); unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long old;
unsigned long flags;
_atomic_spin_lock_irqsave(p, flags);
old = *p;
*p = old ^ mask;
_atomic_spin_unlock_irqrestore(p, flags);
return (old & mask) != 0; p += BIT_WORD(nr);
old = atomic_long_fetch_xor(mask, (atomic_long_t *)p);
return !!(old & mask);
} }
#endif /* _ASM_GENERIC_BITOPS_ATOMIC_H */ #endif /* _ASM_GENERIC_BITOPS_ATOMIC_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment