Commit eacd6f04 authored by Paul E. McKenney's avatar Paul E. McKenney

rcu-tasks: Move Tasks RCU to its own file

This code-movement-only commit is in preparation for adding an additional
flavor of Tasks RCU, which relies on workqueues to detect grace periods.
Signed-off-by: default avatarPaul E. McKenney <paulmck@kernel.org>
parent 5bef8da6
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Task-based RCU implementations.
*
* Copyright (C) 2020 Paul E. McKenney
*/
#ifdef CONFIG_TASKS_RCU
/*
* Simple variant of RCU whose quiescent states are voluntary context
* switch, cond_resched_rcu_qs(), user-space execution, and idle.
* As such, grace periods can take one good long time. There are no
* read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
* because this implementation is intended to get the system into a safe
* state for some of the manipulations involved in tracing and the like.
* Finally, this implementation does not support high call_rcu_tasks()
* rates from multiple CPUs. If this is required, per-CPU callback lists
* will be needed.
*/
/* Global list of callbacks and associated lock. */
static struct rcu_head *rcu_tasks_cbs_head;
static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
/* Track exiting tasks in order to allow them to be waited for. */
DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
module_param(rcu_task_stall_timeout, int, 0644);
static struct task_struct *rcu_tasks_kthread_ptr;
/**
* call_rcu_tasks() - Queue an RCU for invocation task-based grace period
* @rhp: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_tasks() assumes
* that the read-side critical sections end at a voluntary context
* switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
* or transition to usermode execution. As such, there are no read-side
* primitives analogous to rcu_read_lock() and rcu_read_unlock() because
* this primitive is intended to determine that all tasks have passed
* through a safe state, not so much for data-strcuture synchronization.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
{
unsigned long flags;
bool needwake;
rhp->next = NULL;
rhp->func = func;
raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
needwake = !rcu_tasks_cbs_head;
WRITE_ONCE(*rcu_tasks_cbs_tail, rhp);
rcu_tasks_cbs_tail = &rhp->next;
raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
/* We can't create the thread unless interrupts are enabled. */
if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
wake_up(&rcu_tasks_cbs_wq);
}
EXPORT_SYMBOL_GPL(call_rcu_tasks);
/**
* synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
*
* Control will return to the caller some time after a full rcu-tasks
* grace period has elapsed, in other words after all currently
* executing rcu-tasks read-side critical sections have elapsed. These
* read-side critical sections are delimited by calls to schedule(),
* cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
* to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
*
* This is a very specialized primitive, intended only for a few uses in
* tracing and other situations requiring manipulation of function
* preambles and profiling hooks. The synchronize_rcu_tasks() function
* is not (yet) intended for heavy use from multiple CPUs.
*
* Note that this guarantee implies further memory-ordering guarantees.
* On systems with more than one CPU, when synchronize_rcu_tasks() returns,
* each CPU is guaranteed to have executed a full memory barrier since the
* end of its last RCU-tasks read-side critical section whose beginning
* preceded the call to synchronize_rcu_tasks(). In addition, each CPU
* having an RCU-tasks read-side critical section that extends beyond
* the return from synchronize_rcu_tasks() is guaranteed to have executed
* a full memory barrier after the beginning of synchronize_rcu_tasks()
* and before the beginning of that RCU-tasks read-side critical section.
* Note that these guarantees include CPUs that are offline, idle, or
* executing in user mode, as well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
* to have executed a full memory barrier during the execution of
* synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
* (but again only if the system has more than one CPU).
*/
void synchronize_rcu_tasks(void)
{
/* Complain if the scheduler has not started. */
RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
"synchronize_rcu_tasks called too soon");
/* Wait for the grace period. */
wait_rcu_gp(call_rcu_tasks);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
/**
* rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
*
* Although the current implementation is guaranteed to wait, it is not
* obligated to, for example, if there are no pending callbacks.
*/
void rcu_barrier_tasks(void)
{
/* There is only one callback queue, so this is easy. ;-) */
synchronize_rcu_tasks();
}
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
/* See if tasks are still holding out, complain if so. */
static void check_holdout_task(struct task_struct *t,
bool needreport, bool *firstreport)
{
int cpu;
if (!READ_ONCE(t->rcu_tasks_holdout) ||
t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
!READ_ONCE(t->on_rq) ||
(IS_ENABLED(CONFIG_NO_HZ_FULL) &&
!is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
WRITE_ONCE(t->rcu_tasks_holdout, false);
list_del_init(&t->rcu_tasks_holdout_list);
put_task_struct(t);
return;
}
rcu_request_urgent_qs_task(t);
if (!needreport)
return;
if (*firstreport) {
pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
*firstreport = false;
}
cpu = task_cpu(t);
pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
t, ".I"[is_idle_task(t)],
"N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
t->rcu_tasks_idle_cpu, cpu);
sched_show_task(t);
}
/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
static int __noreturn rcu_tasks_kthread(void *arg)
{
unsigned long flags;
struct task_struct *g, *t;
unsigned long lastreport;
struct rcu_head *list;
struct rcu_head *next;
LIST_HEAD(rcu_tasks_holdouts);
int fract;
/* Run on housekeeping CPUs by default. Sysadm can move if desired. */
housekeeping_affine(current, HK_FLAG_RCU);
/*
* Each pass through the following loop makes one check for
* newly arrived callbacks, and, if there are some, waits for
* one RCU-tasks grace period and then invokes the callbacks.
* This loop is terminated by the system going down. ;-)
*/
for (;;) {
/* Pick up any new callbacks. */
raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
list = rcu_tasks_cbs_head;
rcu_tasks_cbs_head = NULL;
rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
/* If there were none, wait a bit and start over. */
if (!list) {
wait_event_interruptible(rcu_tasks_cbs_wq,
READ_ONCE(rcu_tasks_cbs_head));
if (!rcu_tasks_cbs_head) {
WARN_ON(signal_pending(current));
schedule_timeout_interruptible(HZ/10);
}
continue;
}
/*
* Wait for all pre-existing t->on_rq and t->nvcsw
* transitions to complete. Invoking synchronize_rcu()
* suffices because all these transitions occur with
* interrupts disabled. Without this synchronize_rcu(),
* a read-side critical section that started before the
* grace period might be incorrectly seen as having started
* after the grace period.
*
* This synchronize_rcu() also dispenses with the
* need for a memory barrier on the first store to
* ->rcu_tasks_holdout, as it forces the store to happen
* after the beginning of the grace period.
*/
synchronize_rcu();
/*
* There were callbacks, so we need to wait for an
* RCU-tasks grace period. Start off by scanning
* the task list for tasks that are not already
* voluntarily blocked. Mark these tasks and make
* a list of them in rcu_tasks_holdouts.
*/
rcu_read_lock();
for_each_process_thread(g, t) {
if (t != current && READ_ONCE(t->on_rq) &&
!is_idle_task(t)) {
get_task_struct(t);
t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
WRITE_ONCE(t->rcu_tasks_holdout, true);
list_add(&t->rcu_tasks_holdout_list,
&rcu_tasks_holdouts);
}
}
rcu_read_unlock();
/*
* Wait for tasks that are in the process of exiting.
* This does only part of the job, ensuring that all
* tasks that were previously exiting reach the point
* where they have disabled preemption, allowing the
* later synchronize_rcu() to finish the job.
*/
synchronize_srcu(&tasks_rcu_exit_srcu);
/*
* Each pass through the following loop scans the list
* of holdout tasks, removing any that are no longer
* holdouts. When the list is empty, we are done.
*/
lastreport = jiffies;
/* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
fract = 10;
for (;;) {
bool firstreport;
bool needreport;
int rtst;
struct task_struct *t1;
if (list_empty(&rcu_tasks_holdouts))
break;
/* Slowly back off waiting for holdouts */
schedule_timeout_interruptible(HZ/fract);
if (fract > 1)
fract--;
rtst = READ_ONCE(rcu_task_stall_timeout);
needreport = rtst > 0 &&
time_after(jiffies, lastreport + rtst);
if (needreport)
lastreport = jiffies;
firstreport = true;
WARN_ON(signal_pending(current));
list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
rcu_tasks_holdout_list) {
check_holdout_task(t, needreport, &firstreport);
cond_resched();
}
}
/*
* Because ->on_rq and ->nvcsw are not guaranteed
* to have a full memory barriers prior to them in the
* schedule() path, memory reordering on other CPUs could
* cause their RCU-tasks read-side critical sections to
* extend past the end of the grace period. However,
* because these ->nvcsw updates are carried out with
* interrupts disabled, we can use synchronize_rcu()
* to force the needed ordering on all such CPUs.
*
* This synchronize_rcu() also confines all
* ->rcu_tasks_holdout accesses to be within the grace
* period, avoiding the need for memory barriers for
* ->rcu_tasks_holdout accesses.
*
* In addition, this synchronize_rcu() waits for exiting
* tasks to complete their final preempt_disable() region
* of execution, cleaning up after the synchronize_srcu()
* above.
*/
synchronize_rcu();
/* Invoke the callbacks. */
while (list) {
next = list->next;
local_bh_disable();
list->func(list);
local_bh_enable();
list = next;
cond_resched();
}
/* Paranoid sleep to keep this from entering a tight loop */
schedule_timeout_uninterruptible(HZ/10);
}
}
/* Spawn rcu_tasks_kthread() at core_initcall() time. */
static int __init rcu_spawn_tasks_kthread(void)
{
struct task_struct *t;
t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
return 0;
smp_mb(); /* Ensure others see full kthread. */
WRITE_ONCE(rcu_tasks_kthread_ptr, t);
return 0;
}
core_initcall(rcu_spawn_tasks_kthread);
/* Do the srcu_read_lock() for the above synchronize_srcu(). */
void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
{
preempt_disable();
current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
preempt_enable();
}
/* Do the srcu_read_unlock() for the above synchronize_srcu(). */
void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
{
preempt_disable();
__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
preempt_enable();
}
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifndef CONFIG_TINY_RCU
/*
* Print any non-default Tasks RCU settings.
*/
static void __init rcu_tasks_bootup_oddness(void)
{
#ifdef CONFIG_TASKS_RCU
if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
else
pr_info("\tTasks RCU enabled.\n");
#endif /* #ifdef CONFIG_TASKS_RCU */
}
#endif /* #ifndef CONFIG_TINY_RCU */
......@@ -514,370 +514,6 @@ int rcu_cpu_stall_suppress_at_boot __read_mostly; // !0 = suppress boot stalls.
EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress_at_boot);
module_param(rcu_cpu_stall_suppress_at_boot, int, 0444);
#ifdef CONFIG_TASKS_RCU
/*
* Simple variant of RCU whose quiescent states are voluntary context
* switch, cond_resched_rcu_qs(), user-space execution, and idle.
* As such, grace periods can take one good long time. There are no
* read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
* because this implementation is intended to get the system into a safe
* state for some of the manipulations involved in tracing and the like.
* Finally, this implementation does not support high call_rcu_tasks()
* rates from multiple CPUs. If this is required, per-CPU callback lists
* will be needed.
*/
/* Global list of callbacks and associated lock. */
static struct rcu_head *rcu_tasks_cbs_head;
static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
/* Track exiting tasks in order to allow them to be waited for. */
DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
module_param(rcu_task_stall_timeout, int, 0644);
static struct task_struct *rcu_tasks_kthread_ptr;
/**
* call_rcu_tasks() - Queue an RCU for invocation task-based grace period
* @rhp: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_tasks() assumes
* that the read-side critical sections end at a voluntary context
* switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
* or transition to usermode execution. As such, there are no read-side
* primitives analogous to rcu_read_lock() and rcu_read_unlock() because
* this primitive is intended to determine that all tasks have passed
* through a safe state, not so much for data-strcuture synchronization.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
{
unsigned long flags;
bool needwake;
rhp->next = NULL;
rhp->func = func;
raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
needwake = !rcu_tasks_cbs_head;
WRITE_ONCE(*rcu_tasks_cbs_tail, rhp);
rcu_tasks_cbs_tail = &rhp->next;
raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
/* We can't create the thread unless interrupts are enabled. */
if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
wake_up(&rcu_tasks_cbs_wq);
}
EXPORT_SYMBOL_GPL(call_rcu_tasks);
/**
* synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
*
* Control will return to the caller some time after a full rcu-tasks
* grace period has elapsed, in other words after all currently
* executing rcu-tasks read-side critical sections have elapsed. These
* read-side critical sections are delimited by calls to schedule(),
* cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
* to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
*
* This is a very specialized primitive, intended only for a few uses in
* tracing and other situations requiring manipulation of function
* preambles and profiling hooks. The synchronize_rcu_tasks() function
* is not (yet) intended for heavy use from multiple CPUs.
*
* Note that this guarantee implies further memory-ordering guarantees.
* On systems with more than one CPU, when synchronize_rcu_tasks() returns,
* each CPU is guaranteed to have executed a full memory barrier since the
* end of its last RCU-tasks read-side critical section whose beginning
* preceded the call to synchronize_rcu_tasks(). In addition, each CPU
* having an RCU-tasks read-side critical section that extends beyond
* the return from synchronize_rcu_tasks() is guaranteed to have executed
* a full memory barrier after the beginning of synchronize_rcu_tasks()
* and before the beginning of that RCU-tasks read-side critical section.
* Note that these guarantees include CPUs that are offline, idle, or
* executing in user mode, as well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
* to have executed a full memory barrier during the execution of
* synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
* (but again only if the system has more than one CPU).
*/
void synchronize_rcu_tasks(void)
{
/* Complain if the scheduler has not started. */
RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
"synchronize_rcu_tasks called too soon");
/* Wait for the grace period. */
wait_rcu_gp(call_rcu_tasks);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
/**
* rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
*
* Although the current implementation is guaranteed to wait, it is not
* obligated to, for example, if there are no pending callbacks.
*/
void rcu_barrier_tasks(void)
{
/* There is only one callback queue, so this is easy. ;-) */
synchronize_rcu_tasks();
}
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
/* See if tasks are still holding out, complain if so. */
static void check_holdout_task(struct task_struct *t,
bool needreport, bool *firstreport)
{
int cpu;
if (!READ_ONCE(t->rcu_tasks_holdout) ||
t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
!READ_ONCE(t->on_rq) ||
(IS_ENABLED(CONFIG_NO_HZ_FULL) &&
!is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
WRITE_ONCE(t->rcu_tasks_holdout, false);
list_del_init(&t->rcu_tasks_holdout_list);
put_task_struct(t);
return;
}
rcu_request_urgent_qs_task(t);
if (!needreport)
return;
if (*firstreport) {
pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
*firstreport = false;
}
cpu = task_cpu(t);
pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
t, ".I"[is_idle_task(t)],
"N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
t->rcu_tasks_idle_cpu, cpu);
sched_show_task(t);
}
/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
static int __noreturn rcu_tasks_kthread(void *arg)
{
unsigned long flags;
struct task_struct *g, *t;
unsigned long lastreport;
struct rcu_head *list;
struct rcu_head *next;
LIST_HEAD(rcu_tasks_holdouts);
int fract;
/* Run on housekeeping CPUs by default. Sysadm can move if desired. */
housekeeping_affine(current, HK_FLAG_RCU);
/*
* Each pass through the following loop makes one check for
* newly arrived callbacks, and, if there are some, waits for
* one RCU-tasks grace period and then invokes the callbacks.
* This loop is terminated by the system going down. ;-)
*/
for (;;) {
/* Pick up any new callbacks. */
raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
list = rcu_tasks_cbs_head;
rcu_tasks_cbs_head = NULL;
rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
/* If there were none, wait a bit and start over. */
if (!list) {
wait_event_interruptible(rcu_tasks_cbs_wq,
READ_ONCE(rcu_tasks_cbs_head));
if (!rcu_tasks_cbs_head) {
WARN_ON(signal_pending(current));
schedule_timeout_interruptible(HZ/10);
}
continue;
}
/*
* Wait for all pre-existing t->on_rq and t->nvcsw
* transitions to complete. Invoking synchronize_rcu()
* suffices because all these transitions occur with
* interrupts disabled. Without this synchronize_rcu(),
* a read-side critical section that started before the
* grace period might be incorrectly seen as having started
* after the grace period.
*
* This synchronize_rcu() also dispenses with the
* need for a memory barrier on the first store to
* ->rcu_tasks_holdout, as it forces the store to happen
* after the beginning of the grace period.
*/
synchronize_rcu();
/*
* There were callbacks, so we need to wait for an
* RCU-tasks grace period. Start off by scanning
* the task list for tasks that are not already
* voluntarily blocked. Mark these tasks and make
* a list of them in rcu_tasks_holdouts.
*/
rcu_read_lock();
for_each_process_thread(g, t) {
if (t != current && READ_ONCE(t->on_rq) &&
!is_idle_task(t)) {
get_task_struct(t);
t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
WRITE_ONCE(t->rcu_tasks_holdout, true);
list_add(&t->rcu_tasks_holdout_list,
&rcu_tasks_holdouts);
}
}
rcu_read_unlock();
/*
* Wait for tasks that are in the process of exiting.
* This does only part of the job, ensuring that all
* tasks that were previously exiting reach the point
* where they have disabled preemption, allowing the
* later synchronize_rcu() to finish the job.
*/
synchronize_srcu(&tasks_rcu_exit_srcu);
/*
* Each pass through the following loop scans the list
* of holdout tasks, removing any that are no longer
* holdouts. When the list is empty, we are done.
*/
lastreport = jiffies;
/* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
fract = 10;
for (;;) {
bool firstreport;
bool needreport;
int rtst;
struct task_struct *t1;
if (list_empty(&rcu_tasks_holdouts))
break;
/* Slowly back off waiting for holdouts */
schedule_timeout_interruptible(HZ/fract);
if (fract > 1)
fract--;
rtst = READ_ONCE(rcu_task_stall_timeout);
needreport = rtst > 0 &&
time_after(jiffies, lastreport + rtst);
if (needreport)
lastreport = jiffies;
firstreport = true;
WARN_ON(signal_pending(current));
list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
rcu_tasks_holdout_list) {
check_holdout_task(t, needreport, &firstreport);
cond_resched();
}
}
/*
* Because ->on_rq and ->nvcsw are not guaranteed
* to have a full memory barriers prior to them in the
* schedule() path, memory reordering on other CPUs could
* cause their RCU-tasks read-side critical sections to
* extend past the end of the grace period. However,
* because these ->nvcsw updates are carried out with
* interrupts disabled, we can use synchronize_rcu()
* to force the needed ordering on all such CPUs.
*
* This synchronize_rcu() also confines all
* ->rcu_tasks_holdout accesses to be within the grace
* period, avoiding the need for memory barriers for
* ->rcu_tasks_holdout accesses.
*
* In addition, this synchronize_rcu() waits for exiting
* tasks to complete their final preempt_disable() region
* of execution, cleaning up after the synchronize_srcu()
* above.
*/
synchronize_rcu();
/* Invoke the callbacks. */
while (list) {
next = list->next;
local_bh_disable();
list->func(list);
local_bh_enable();
list = next;
cond_resched();
}
/* Paranoid sleep to keep this from entering a tight loop */
schedule_timeout_uninterruptible(HZ/10);
}
}
/* Spawn rcu_tasks_kthread() at core_initcall() time. */
static int __init rcu_spawn_tasks_kthread(void)
{
struct task_struct *t;
t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
return 0;
smp_mb(); /* Ensure others see full kthread. */
WRITE_ONCE(rcu_tasks_kthread_ptr, t);
return 0;
}
core_initcall(rcu_spawn_tasks_kthread);
/* Do the srcu_read_lock() for the above synchronize_srcu(). */
void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
{
preempt_disable();
current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
preempt_enable();
}
/* Do the srcu_read_unlock() for the above synchronize_srcu(). */
void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
{
preempt_disable();
__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
preempt_enable();
}
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifndef CONFIG_TINY_RCU
/*
* Print any non-default Tasks RCU settings.
*/
static void __init rcu_tasks_bootup_oddness(void)
{
#ifdef CONFIG_TASKS_RCU
if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
else
pr_info("\tTasks RCU enabled.\n");
#endif /* #ifdef CONFIG_TASKS_RCU */
}
#endif /* #ifndef CONFIG_TINY_RCU */
#ifdef CONFIG_PROVE_RCU
/*
......@@ -948,6 +584,8 @@ late_initcall(rcu_verify_early_boot_tests);
void rcu_early_boot_tests(void) {}
#endif /* CONFIG_PROVE_RCU */
#include "tasks.h"
#ifndef CONFIG_TINY_RCU
/*
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment