Commit eb094f06 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 TSX Async Abort and iTLB Multihit mitigations from Thomas Gleixner:
 "The performance deterioration departement is not proud at all of
  presenting the seventh installment of speculation mitigations and
  hardware misfeature workarounds:

   1) TSX Async Abort (TAA) - 'The Annoying Affair'

      TAA is a hardware vulnerability that allows unprivileged
      speculative access to data which is available in various CPU
      internal buffers by using asynchronous aborts within an Intel TSX
      transactional region.

      The mitigation depends on a microcode update providing a new MSR
      which allows to disable TSX in the CPU. CPUs which have no
      microcode update can be mitigated by disabling TSX in the BIOS if
      the BIOS provides a tunable.

      Newer CPUs will have a bit set which indicates that the CPU is not
      vulnerable, but the MSR to disable TSX will be available
      nevertheless as it is an architected MSR. That means the kernel
      provides the ability to disable TSX on the kernel command line,
      which is useful as TSX is a truly useful mechanism to accelerate
      side channel attacks of all sorts.

   2) iITLB Multihit (NX) - 'No eXcuses'

      iTLB Multihit is an erratum where some Intel processors may incur
      a machine check error, possibly resulting in an unrecoverable CPU
      lockup, when an instruction fetch hits multiple entries in the
      instruction TLB. This can occur when the page size is changed
      along with either the physical address or cache type. A malicious
      guest running on a virtualized system can exploit this erratum to
      perform a denial of service attack.

      The workaround is that KVM marks huge pages in the extended page
      tables as not executable (NX). If the guest attempts to execute in
      such a page, the page is broken down into 4k pages which are
      marked executable. The workaround comes with a mechanism to
      recover these shattered huge pages over time.

  Both issues come with full documentation in the hardware
  vulnerabilities section of the Linux kernel user's and administrator's
  guide.

  Thanks to all patch authors and reviewers who had the extraordinary
  priviledge to be exposed to this nuisance.

  Special thanks to Borislav Petkov for polishing the final TAA patch
  set and to Paolo Bonzini for shepherding the KVM iTLB workarounds and
  providing also the backports to stable kernels for those!"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/speculation/taa: Fix printing of TAA_MSG_SMT on IBRS_ALL CPUs
  Documentation: Add ITLB_MULTIHIT documentation
  kvm: x86: mmu: Recovery of shattered NX large pages
  kvm: Add helper function for creating VM worker threads
  kvm: mmu: ITLB_MULTIHIT mitigation
  cpu/speculation: Uninline and export CPU mitigations helpers
  x86/cpu: Add Tremont to the cpu vulnerability whitelist
  x86/bugs: Add ITLB_MULTIHIT bug infrastructure
  x86/tsx: Add config options to set tsx=on|off|auto
  x86/speculation/taa: Add documentation for TSX Async Abort
  x86/tsx: Add "auto" option to the tsx= cmdline parameter
  kvm/x86: Export MDS_NO=0 to guests when TSX is enabled
  x86/speculation/taa: Add sysfs reporting for TSX Async Abort
  x86/speculation/taa: Add mitigation for TSX Async Abort
  x86/cpu: Add a "tsx=" cmdline option with TSX disabled by default
  x86/cpu: Add a helper function x86_read_arch_cap_msr()
  x86/msr: Add the IA32_TSX_CTRL MSR
parents 100d46bd 012206a8
......@@ -486,6 +486,8 @@ What: /sys/devices/system/cpu/vulnerabilities
/sys/devices/system/cpu/vulnerabilities/spec_store_bypass
/sys/devices/system/cpu/vulnerabilities/l1tf
/sys/devices/system/cpu/vulnerabilities/mds
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
/sys/devices/system/cpu/vulnerabilities/itlb_multihit
Date: January 2018
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: Information about CPU vulnerabilities
......
......@@ -12,3 +12,5 @@ are configurable at compile, boot or run time.
spectre
l1tf
mds
tsx_async_abort
multihit.rst
iTLB multihit
=============
iTLB multihit is an erratum where some processors may incur a machine check
error, possibly resulting in an unrecoverable CPU lockup, when an
instruction fetch hits multiple entries in the instruction TLB. This can
occur when the page size is changed along with either the physical address
or cache type. A malicious guest running on a virtualized system can
exploit this erratum to perform a denial of service attack.
Affected processors
-------------------
Variations of this erratum are present on most Intel Core and Xeon processor
models. The erratum is not present on:
- non-Intel processors
- Some Atoms (Airmont, Bonnell, Goldmont, GoldmontPlus, Saltwell, Silvermont)
- Intel processors that have the PSCHANGE_MC_NO bit set in the
IA32_ARCH_CAPABILITIES MSR.
Related CVEs
------------
The following CVE entry is related to this issue:
============== =================================================
CVE-2018-12207 Machine Check Error Avoidance on Page Size Change
============== =================================================
Problem
-------
Privileged software, including OS and virtual machine managers (VMM), are in
charge of memory management. A key component in memory management is the control
of the page tables. Modern processors use virtual memory, a technique that creates
the illusion of a very large memory for processors. This virtual space is split
into pages of a given size. Page tables translate virtual addresses to physical
addresses.
To reduce latency when performing a virtual to physical address translation,
processors include a structure, called TLB, that caches recent translations.
There are separate TLBs for instruction (iTLB) and data (dTLB).
Under this errata, instructions are fetched from a linear address translated
using a 4 KB translation cached in the iTLB. Privileged software modifies the
paging structure so that the same linear address using large page size (2 MB, 4
MB, 1 GB) with a different physical address or memory type. After the page
structure modification but before the software invalidates any iTLB entries for
the linear address, a code fetch that happens on the same linear address may
cause a machine-check error which can result in a system hang or shutdown.
Attack scenarios
----------------
Attacks against the iTLB multihit erratum can be mounted from malicious
guests in a virtualized system.
iTLB multihit system information
--------------------------------
The Linux kernel provides a sysfs interface to enumerate the current iTLB
multihit status of the system:whether the system is vulnerable and which
mitigations are active. The relevant sysfs file is:
/sys/devices/system/cpu/vulnerabilities/itlb_multihit
The possible values in this file are:
.. list-table::
* - Not affected
- The processor is not vulnerable.
* - KVM: Mitigation: Split huge pages
- Software changes mitigate this issue.
* - KVM: Vulnerable
- The processor is vulnerable, but no mitigation enabled
Enumeration of the erratum
--------------------------------
A new bit has been allocated in the IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) msr
and will be set on CPU's which are mitigated against this issue.
======================================= =========== ===============================
IA32_ARCH_CAPABILITIES MSR Not present Possibly vulnerable,check model
IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO] '0' Likely vulnerable,check model
IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO] '1' Not vulnerable
======================================= =========== ===============================
Mitigation mechanism
-------------------------
This erratum can be mitigated by restricting the use of large page sizes to
non-executable pages. This forces all iTLB entries to be 4K, and removes
the possibility of multiple hits.
In order to mitigate the vulnerability, KVM initially marks all huge pages
as non-executable. If the guest attempts to execute in one of those pages,
the page is broken down into 4K pages, which are then marked executable.
If EPT is disabled or not available on the host, KVM is in control of TLB
flushes and the problematic situation cannot happen. However, the shadow
EPT paging mechanism used by nested virtualization is vulnerable, because
the nested guest can trigger multiple iTLB hits by modifying its own
(non-nested) page tables. For simplicity, KVM will make large pages
non-executable in all shadow paging modes.
Mitigation control on the kernel command line and KVM - module parameter
------------------------------------------------------------------------
The KVM hypervisor mitigation mechanism for marking huge pages as
non-executable can be controlled with a module parameter "nx_huge_pages=".
The kernel command line allows to control the iTLB multihit mitigations at
boot time with the option "kvm.nx_huge_pages=".
The valid arguments for these options are:
========== ================================================================
force Mitigation is enabled. In this case, the mitigation implements
non-executable huge pages in Linux kernel KVM module. All huge
pages in the EPT are marked as non-executable.
If a guest attempts to execute in one of those pages, the page is
broken down into 4K pages, which are then marked executable.
off Mitigation is disabled.
auto Enable mitigation only if the platform is affected and the kernel
was not booted with the "mitigations=off" command line parameter.
This is the default option.
========== ================================================================
Mitigation selection guide
--------------------------
1. No virtualization in use
^^^^^^^^^^^^^^^^^^^^^^^^^^^
The system is protected by the kernel unconditionally and no further
action is required.
2. Virtualization with trusted guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the guest comes from a trusted source, you may assume that the guest will
not attempt to maliciously exploit these errata and no further action is
required.
3. Virtualization with untrusted guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the guest comes from an untrusted source, the guest host kernel will need
to apply iTLB multihit mitigation via the kernel command line or kvm
module parameter.
.. SPDX-License-Identifier: GPL-2.0
TAA - TSX Asynchronous Abort
======================================
TAA is a hardware vulnerability that allows unprivileged speculative access to
data which is available in various CPU internal buffers by using asynchronous
aborts within an Intel TSX transactional region.
Affected processors
-------------------
This vulnerability only affects Intel processors that support Intel
Transactional Synchronization Extensions (TSX) when the TAA_NO bit (bit 8)
is 0 in the IA32_ARCH_CAPABILITIES MSR. On processors where the MDS_NO bit
(bit 5) is 0 in the IA32_ARCH_CAPABILITIES MSR, the existing MDS mitigations
also mitigate against TAA.
Whether a processor is affected or not can be read out from the TAA
vulnerability file in sysfs. See :ref:`tsx_async_abort_sys_info`.
Related CVEs
------------
The following CVE entry is related to this TAA issue:
============== ===== ===================================================
CVE-2019-11135 TAA TSX Asynchronous Abort (TAA) condition on some
microprocessors utilizing speculative execution may
allow an authenticated user to potentially enable
information disclosure via a side channel with
local access.
============== ===== ===================================================
Problem
-------
When performing store, load or L1 refill operations, processors write
data into temporary microarchitectural structures (buffers). The data in
those buffers can be forwarded to load operations as an optimization.
Intel TSX is an extension to the x86 instruction set architecture that adds
hardware transactional memory support to improve performance of multi-threaded
software. TSX lets the processor expose and exploit concurrency hidden in an
application due to dynamically avoiding unnecessary synchronization.
TSX supports atomic memory transactions that are either committed (success) or
aborted. During an abort, operations that happened within the transactional region
are rolled back. An asynchronous abort takes place, among other options, when a
different thread accesses a cache line that is also used within the transactional
region when that access might lead to a data race.
Immediately after an uncompleted asynchronous abort, certain speculatively
executed loads may read data from those internal buffers and pass it to dependent
operations. This can be then used to infer the value via a cache side channel
attack.
Because the buffers are potentially shared between Hyper-Threads cross
Hyper-Thread attacks are possible.
The victim of a malicious actor does not need to make use of TSX. Only the
attacker needs to begin a TSX transaction and raise an asynchronous abort
which in turn potenitally leaks data stored in the buffers.
More detailed technical information is available in the TAA specific x86
architecture section: :ref:`Documentation/x86/tsx_async_abort.rst <tsx_async_abort>`.
Attack scenarios
----------------
Attacks against the TAA vulnerability can be implemented from unprivileged
applications running on hosts or guests.
As for MDS, the attacker has no control over the memory addresses that can
be leaked. Only the victim is responsible for bringing data to the CPU. As
a result, the malicious actor has to sample as much data as possible and
then postprocess it to try to infer any useful information from it.
A potential attacker only has read access to the data. Also, there is no direct
privilege escalation by using this technique.
.. _tsx_async_abort_sys_info:
TAA system information
-----------------------
The Linux kernel provides a sysfs interface to enumerate the current TAA status
of mitigated systems. The relevant sysfs file is:
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
The possible values in this file are:
.. list-table::
* - 'Vulnerable'
- The CPU is affected by this vulnerability and the microcode and kernel mitigation are not applied.
* - 'Vulnerable: Clear CPU buffers attempted, no microcode'
- The system tries to clear the buffers but the microcode might not support the operation.
* - 'Mitigation: Clear CPU buffers'
- The microcode has been updated to clear the buffers. TSX is still enabled.
* - 'Mitigation: TSX disabled'
- TSX is disabled.
* - 'Not affected'
- The CPU is not affected by this issue.
.. _ucode_needed:
Best effort mitigation mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the processor is vulnerable, but the availability of the microcode-based
mitigation mechanism is not advertised via CPUID the kernel selects a best
effort mitigation mode. This mode invokes the mitigation instructions
without a guarantee that they clear the CPU buffers.
This is done to address virtualization scenarios where the host has the
microcode update applied, but the hypervisor is not yet updated to expose the
CPUID to the guest. If the host has updated microcode the protection takes
effect; otherwise a few CPU cycles are wasted pointlessly.
The state in the tsx_async_abort sysfs file reflects this situation
accordingly.
Mitigation mechanism
--------------------
The kernel detects the affected CPUs and the presence of the microcode which is
required. If a CPU is affected and the microcode is available, then the kernel
enables the mitigation by default.
The mitigation can be controlled at boot time via a kernel command line option.
See :ref:`taa_mitigation_control_command_line`.
.. _virt_mechanism:
Virtualization mitigation
^^^^^^^^^^^^^^^^^^^^^^^^^
Affected systems where the host has TAA microcode and TAA is mitigated by
having disabled TSX previously, are not vulnerable regardless of the status
of the VMs.
In all other cases, if the host either does not have the TAA microcode or
the kernel is not mitigated, the system might be vulnerable.
.. _taa_mitigation_control_command_line:
Mitigation control on the kernel command line
---------------------------------------------
The kernel command line allows to control the TAA mitigations at boot time with
the option "tsx_async_abort=". The valid arguments for this option are:
============ =============================================================
off This option disables the TAA mitigation on affected platforms.
If the system has TSX enabled (see next parameter) and the CPU
is affected, the system is vulnerable.
full TAA mitigation is enabled. If TSX is enabled, on an affected
system it will clear CPU buffers on ring transitions. On
systems which are MDS-affected and deploy MDS mitigation,
TAA is also mitigated. Specifying this option on those
systems will have no effect.
full,nosmt The same as tsx_async_abort=full, with SMT disabled on
vulnerable CPUs that have TSX enabled. This is the complete
mitigation. When TSX is disabled, SMT is not disabled because
CPU is not vulnerable to cross-thread TAA attacks.
============ =============================================================
Not specifying this option is equivalent to "tsx_async_abort=full".
The kernel command line also allows to control the TSX feature using the
parameter "tsx=" on CPUs which support TSX control. MSR_IA32_TSX_CTRL is used
to control the TSX feature and the enumeration of the TSX feature bits (RTM
and HLE) in CPUID.
The valid options are:
============ =============================================================
off Disables TSX on the system.
Note that this option takes effect only on newer CPUs which are
not vulnerable to MDS, i.e., have MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1
and which get the new IA32_TSX_CTRL MSR through a microcode
update. This new MSR allows for the reliable deactivation of
the TSX functionality.
on Enables TSX.
Although there are mitigations for all known security
vulnerabilities, TSX has been known to be an accelerator for
several previous speculation-related CVEs, and so there may be
unknown security risks associated with leaving it enabled.
auto Disables TSX if X86_BUG_TAA is present, otherwise enables TSX
on the system.
============ =============================================================
Not specifying this option is equivalent to "tsx=off".
The following combinations of the "tsx_async_abort" and "tsx" are possible. For
affected platforms tsx=auto is equivalent to tsx=off and the result will be:
========= ========================== =========================================
tsx=on tsx_async_abort=full The system will use VERW to clear CPU
buffers. Cross-thread attacks are still
possible on SMT machines.
tsx=on tsx_async_abort=full,nosmt As above, cross-thread attacks on SMT
mitigated.
tsx=on tsx_async_abort=off The system is vulnerable.
tsx=off tsx_async_abort=full TSX might be disabled if microcode
provides a TSX control MSR. If so,
system is not vulnerable.
tsx=off tsx_async_abort=full,nosmt Ditto
tsx=off tsx_async_abort=off ditto
========= ========================== =========================================
For unaffected platforms "tsx=on" and "tsx_async_abort=full" does not clear CPU
buffers. For platforms without TSX control (MSR_IA32_ARCH_CAPABILITIES.MDS_NO=0)
"tsx" command line argument has no effect.
For the affected platforms below table indicates the mitigation status for the
combinations of CPUID bit MD_CLEAR and IA32_ARCH_CAPABILITIES MSR bits MDS_NO
and TSX_CTRL_MSR.
======= ========= ============= ========================================
MDS_NO MD_CLEAR TSX_CTRL_MSR Status
======= ========= ============= ========================================
0 0 0 Vulnerable (needs microcode)
0 1 0 MDS and TAA mitigated via VERW
1 1 0 MDS fixed, TAA vulnerable if TSX enabled
because MD_CLEAR has no meaning and
VERW is not guaranteed to clear buffers
1 X 1 MDS fixed, TAA can be mitigated by
VERW or TSX_CTRL_MSR
======= ========= ============= ========================================
Mitigation selection guide
--------------------------
1. Trusted userspace and guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If all user space applications are from a trusted source and do not execute
untrusted code which is supplied externally, then the mitigation can be
disabled. The same applies to virtualized environments with trusted guests.
2. Untrusted userspace and guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If there are untrusted applications or guests on the system, enabling TSX
might allow a malicious actor to leak data from the host or from other
processes running on the same physical core.
If the microcode is available and the TSX is disabled on the host, attacks
are prevented in a virtualized environment as well, even if the VMs do not
explicitly enable the mitigation.
.. _taa_default_mitigations:
Default mitigations
-------------------
The kernel's default action for vulnerable processors is:
- Deploy TSX disable mitigation (tsx_async_abort=full tsx=off).
......@@ -2055,6 +2055,25 @@
KVM MMU at runtime.
Default is 0 (off)
kvm.nx_huge_pages=
[KVM] Controls the software workaround for the
X86_BUG_ITLB_MULTIHIT bug.
force : Always deploy workaround.
off : Never deploy workaround.
auto : Deploy workaround based on the presence of
X86_BUG_ITLB_MULTIHIT.
Default is 'auto'.
If the software workaround is enabled for the host,
guests do need not to enable it for nested guests.
kvm.nx_huge_pages_recovery_ratio=
[KVM] Controls how many 4KiB pages are periodically zapped
back to huge pages. 0 disables the recovery, otherwise if
the value is N KVM will zap 1/Nth of the 4KiB pages every
minute. The default is 60.
kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM.
Default is 1 (enabled)
......@@ -2636,6 +2655,13 @@
ssbd=force-off [ARM64]
l1tf=off [X86]
mds=off [X86]
tsx_async_abort=off [X86]
kvm.nx_huge_pages=off [X86]
Exceptions:
This does not have any effect on
kvm.nx_huge_pages when
kvm.nx_huge_pages=force.
auto (default)
Mitigate all CPU vulnerabilities, but leave SMT
......@@ -2651,6 +2677,7 @@
be fully mitigated, even if it means losing SMT.
Equivalent to: l1tf=flush,nosmt [X86]
mds=full,nosmt [X86]
tsx_async_abort=full,nosmt [X86]
mminit_loglevel=
[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
......@@ -4848,6 +4875,71 @@
interruptions from clocksource watchdog are not
acceptable).
tsx= [X86] Control Transactional Synchronization
Extensions (TSX) feature in Intel processors that
support TSX control.
This parameter controls the TSX feature. The options are:
on - Enable TSX on the system. Although there are
mitigations for all known security vulnerabilities,
TSX has been known to be an accelerator for
several previous speculation-related CVEs, and
so there may be unknown security risks associated
with leaving it enabled.
off - Disable TSX on the system. (Note that this
option takes effect only on newer CPUs which are
not vulnerable to MDS, i.e., have
MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1 and which get
the new IA32_TSX_CTRL MSR through a microcode
update. This new MSR allows for the reliable
deactivation of the TSX functionality.)
auto - Disable TSX if X86_BUG_TAA is present,
otherwise enable TSX on the system.
Not specifying this option is equivalent to tsx=off.
See Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
for more details.
tsx_async_abort= [X86,INTEL] Control mitigation for the TSX Async
Abort (TAA) vulnerability.
Similar to Micro-architectural Data Sampling (MDS)
certain CPUs that support Transactional
Synchronization Extensions (TSX) are vulnerable to an
exploit against CPU internal buffers which can forward
information to a disclosure gadget under certain
conditions.
In vulnerable processors, the speculatively forwarded
data can be used in a cache side channel attack, to
access data to which the attacker does not have direct
access.
This parameter controls the TAA mitigation. The
options are:
full - Enable TAA mitigation on vulnerable CPUs
if TSX is enabled.
full,nosmt - Enable TAA mitigation and disable SMT on
vulnerable CPUs. If TSX is disabled, SMT
is not disabled because CPU is not
vulnerable to cross-thread TAA attacks.
off - Unconditionally disable TAA mitigation
Not specifying this option is equivalent to
tsx_async_abort=full. On CPUs which are MDS affected
and deploy MDS mitigation, TAA mitigation is not
required and doesn't provide any additional
mitigation.
For details see:
Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
turbografx.map[2|3]= [HW,JOY]
TurboGraFX parallel port interface
Format:
......
......@@ -27,6 +27,7 @@ x86-specific Documentation
mds
microcode
resctrl_ui
tsx_async_abort
usb-legacy-support
i386/index
x86_64/index
.. SPDX-License-Identifier: GPL-2.0
TSX Async Abort (TAA) mitigation
================================
.. _tsx_async_abort:
Overview
--------
TSX Async Abort (TAA) is a side channel attack on internal buffers in some
Intel processors similar to Microachitectural Data Sampling (MDS). In this
case certain loads may speculatively pass invalid data to dependent operations
when an asynchronous abort condition is pending in a Transactional
Synchronization Extensions (TSX) transaction. This includes loads with no
fault or assist condition. Such loads may speculatively expose stale data from
the same uarch data structures as in MDS, with same scope of exposure i.e.
same-thread and cross-thread. This issue affects all current processors that
support TSX.
Mitigation strategy
-------------------
a) TSX disable - one of the mitigations is to disable TSX. A new MSR
IA32_TSX_CTRL will be available in future and current processors after
microcode update which can be used to disable TSX. In addition, it
controls the enumeration of the TSX feature bits (RTM and HLE) in CPUID.
b) Clear CPU buffers - similar to MDS, clearing the CPU buffers mitigates this
vulnerability. More details on this approach can be found in
:ref:`Documentation/admin-guide/hw-vuln/mds.rst <mds>`.
Kernel internal mitigation modes
--------------------------------
============= ============================================================
off Mitigation is disabled. Either the CPU is not affected or
tsx_async_abort=off is supplied on the kernel command line.
tsx disabled Mitigation is enabled. TSX feature is disabled by default at
bootup on processors that support TSX control.
verw Mitigation is enabled. CPU is affected and MD_CLEAR is
advertised in CPUID.
ucode needed Mitigation is enabled. CPU is affected and MD_CLEAR is not
advertised in CPUID. That is mainly for virtualization
scenarios where the host has the updated microcode but the
hypervisor does not expose MD_CLEAR in CPUID. It's a best
effort approach without guarantee.
============= ============================================================
If the CPU is affected and the "tsx_async_abort" kernel command line parameter is
not provided then the kernel selects an appropriate mitigation depending on the
status of RTM and MD_CLEAR CPUID bits.
Below tables indicate the impact of tsx=on|off|auto cmdline options on state of
TAA mitigation, VERW behavior and TSX feature for various combinations of
MSR_IA32_ARCH_CAPABILITIES bits.
1. "tsx=off"
========= ========= ============ ============ ============== =================== ======================
MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=off
---------------------------------- -------------------------------------------------------------------------
TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
========= ========= ============ ============ ============== =================== ======================
0 0 0 HW default Yes Same as MDS Same as MDS
0 0 1 Invalid case Invalid case Invalid case Invalid case
0 1 0 HW default No Need ucode update Need ucode update
0 1 1 Disabled Yes TSX disabled TSX disabled
1 X 1 Disabled X None needed None needed
========= ========= ============ ============ ============== =================== ======================
2. "tsx=on"
========= ========= ============ ============ ============== =================== ======================
MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=on
---------------------------------- -------------------------------------------------------------------------
TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
========= ========= ============ ============ ============== =================== ======================
0 0 0 HW default Yes Same as MDS Same as MDS
0 0 1 Invalid case Invalid case Invalid case Invalid case
0 1 0 HW default No Need ucode update Need ucode update
0 1 1 Enabled Yes None Same as MDS
1 X 1 Enabled X None needed None needed
========= ========= ============ ============ ============== =================== ======================
3. "tsx=auto"
========= ========= ============ ============ ============== =================== ======================
MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=auto
---------------------------------- -------------------------------------------------------------------------
TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
========= ========= ============ ============ ============== =================== ======================
0 0 0 HW default Yes Same as MDS Same as MDS
0 0 1 Invalid case Invalid case Invalid case Invalid case
0 1 0 HW default No Need ucode update Need ucode update
0 1 1 Disabled Yes TSX disabled TSX disabled
1 X 1 Enabled X None needed None needed
========= ========= ============ ============ ============== =================== ======================
In the tables, TSX_CTRL_MSR is a new bit in MSR_IA32_ARCH_CAPABILITIES that
indicates whether MSR_IA32_TSX_CTRL is supported.
There are two control bits in IA32_TSX_CTRL MSR:
Bit 0: When set it disables the Restricted Transactional Memory (RTM)
sub-feature of TSX (will force all transactions to abort on the
XBEGIN instruction).
Bit 1: When set it disables the enumeration of the RTM and HLE feature
(i.e. it will make CPUID(EAX=7).EBX{bit4} and
CPUID(EAX=7).EBX{bit11} read as 0).
......@@ -1940,6 +1940,51 @@ config X86_INTEL_MEMORY_PROTECTION_KEYS
If unsure, say y.
choice
prompt "TSX enable mode"
depends on CPU_SUP_INTEL
default X86_INTEL_TSX_MODE_OFF
help
Intel's TSX (Transactional Synchronization Extensions) feature
allows to optimize locking protocols through lock elision which
can lead to a noticeable performance boost.
On the other hand it has been shown that TSX can be exploited
to form side channel attacks (e.g. TAA) and chances are there
will be more of those attacks discovered in the future.
Therefore TSX is not enabled by default (aka tsx=off). An admin
might override this decision by tsx=on the command line parameter.
Even with TSX enabled, the kernel will attempt to enable the best
possible TAA mitigation setting depending on the microcode available
for the particular machine.
This option allows to set the default tsx mode between tsx=on, =off
and =auto. See Documentation/admin-guide/kernel-parameters.txt for more
details.
Say off if not sure, auto if TSX is in use but it should be used on safe
platforms or on if TSX is in use and the security aspect of tsx is not
relevant.
config X86_INTEL_TSX_MODE_OFF
bool "off"
help
TSX is disabled if possible - equals to tsx=off command line parameter.
config X86_INTEL_TSX_MODE_ON
bool "on"
help
TSX is always enabled on TSX capable HW - equals the tsx=on command
line parameter.
config X86_INTEL_TSX_MODE_AUTO
bool "auto"
help
TSX is enabled on TSX capable HW that is believed to be safe against
side channel attacks- equals the tsx=auto command line parameter.
endchoice
config EFI
bool "EFI runtime service support"
depends on ACPI
......
......@@ -399,5 +399,7 @@
#define X86_BUG_MDS X86_BUG(19) /* CPU is affected by Microarchitectural data sampling */
#define X86_BUG_MSBDS_ONLY X86_BUG(20) /* CPU is only affected by the MSDBS variant of BUG_MDS */
#define X86_BUG_SWAPGS X86_BUG(21) /* CPU is affected by speculation through SWAPGS */
#define X86_BUG_TAA X86_BUG(22) /* CPU is affected by TSX Async Abort(TAA) */
#define X86_BUG_ITLB_MULTIHIT X86_BUG(23) /* CPU may incur MCE during certain page attribute changes */
#endif /* _ASM_X86_CPUFEATURES_H */
......@@ -312,9 +312,12 @@ struct kvm_rmap_head {
struct kvm_mmu_page {
struct list_head link;
struct hlist_node hash_link;
struct list_head lpage_disallowed_link;
bool unsync;
u8 mmu_valid_gen;
bool mmio_cached;
bool lpage_disallowed; /* Can't be replaced by an equiv large page */
/*
* The following two entries are used to key the shadow page in the
......@@ -859,6 +862,7 @@ struct kvm_arch {
*/
struct list_head active_mmu_pages;
struct list_head zapped_obsolete_pages;
struct list_head lpage_disallowed_mmu_pages;
struct kvm_page_track_notifier_node mmu_sp_tracker;
struct kvm_page_track_notifier_head track_notifier_head;
......@@ -933,6 +937,7 @@ struct kvm_arch {
bool exception_payload_enabled;
struct kvm_pmu_event_filter *pmu_event_filter;
struct task_struct *nx_lpage_recovery_thread;
};
struct kvm_vm_stat {
......@@ -946,6 +951,7 @@ struct kvm_vm_stat {
ulong mmu_unsync;
ulong remote_tlb_flush;
ulong lpages;
ulong nx_lpage_splits;
ulong max_mmu_page_hash_collisions;
};
......
......@@ -93,6 +93,18 @@
* Microarchitectural Data
* Sampling (MDS) vulnerabilities.
*/
#define ARCH_CAP_PSCHANGE_MC_NO BIT(6) /*
* The processor is not susceptible to a
* machine check error due to modifying the
* code page size along with either the
* physical address or cache type
* without TLB invalidation.
*/
#define ARCH_CAP_TSX_CTRL_MSR BIT(7) /* MSR for TSX control is available. */
#define ARCH_CAP_TAA_NO BIT(8) /*
* Not susceptible to
* TSX Async Abort (TAA) vulnerabilities.
*/
#define MSR_IA32_FLUSH_CMD 0x0000010b
#define L1D_FLUSH BIT(0) /*
......@@ -103,6 +115,10 @@
#define MSR_IA32_BBL_CR_CTL 0x00000119
#define MSR_IA32_BBL_CR_CTL3 0x0000011e
#define MSR_IA32_TSX_CTRL 0x00000122
#define TSX_CTRL_RTM_DISABLE BIT(0) /* Disable RTM feature */
#define TSX_CTRL_CPUID_CLEAR BIT(1) /* Disable TSX enumeration */
#define MSR_IA32_SYSENTER_CS 0x00000174
#define MSR_IA32_SYSENTER_ESP 0x00000175
#define MSR_IA32_SYSENTER_EIP 0x00000176
......
......@@ -314,7 +314,7 @@ DECLARE_STATIC_KEY_FALSE(mds_idle_clear);
#include <asm/segment.h>
/**
* mds_clear_cpu_buffers - Mitigation for MDS vulnerability
* mds_clear_cpu_buffers - Mitigation for MDS and TAA vulnerability
*
* This uses the otherwise unused and obsolete VERW instruction in
* combination with microcode which triggers a CPU buffer flush when the
......@@ -337,7 +337,7 @@ static inline void mds_clear_cpu_buffers(void)
}
/**
* mds_user_clear_cpu_buffers - Mitigation for MDS vulnerability
* mds_user_clear_cpu_buffers - Mitigation for MDS and TAA vulnerability
*
* Clear CPU buffers if the corresponding static key is enabled
*/
......
......@@ -988,4 +988,11 @@ enum mds_mitigations {
MDS_MITIGATION_VMWERV,
};
enum taa_mitigations {
TAA_MITIGATION_OFF,
TAA_MITIGATION_UCODE_NEEDED,
TAA_MITIGATION_VERW,
TAA_MITIGATION_TSX_DISABLED,
};
#endif /* _ASM_X86_PROCESSOR_H */
......@@ -30,7 +30,7 @@ obj-$(CONFIG_PROC_FS) += proc.o
obj-$(CONFIG_X86_FEATURE_NAMES) += capflags.o powerflags.o
ifdef CONFIG_CPU_SUP_INTEL
obj-y += intel.o intel_pconfig.o
obj-y += intel.o intel_pconfig.o tsx.o
obj-$(CONFIG_PM) += intel_epb.o
endif
obj-$(CONFIG_CPU_SUP_AMD) += amd.o
......
......@@ -39,6 +39,7 @@ static void __init spectre_v2_select_mitigation(void);
static void __init ssb_select_mitigation(void);
static void __init l1tf_select_mitigation(void);
static void __init mds_select_mitigation(void);
static void __init taa_select_mitigation(void);
/* The base value of the SPEC_CTRL MSR that always has to be preserved. */
u64 x86_spec_ctrl_base;
......@@ -105,6 +106,7 @@ void __init check_bugs(void)
ssb_select_mitigation();
l1tf_select_mitigation();
mds_select_mitigation();
taa_select_mitigation();
arch_smt_update();
......@@ -268,6 +270,100 @@ static int __init mds_cmdline(char *str)
}
early_param("mds", mds_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) "TAA: " fmt
/* Default mitigation for TAA-affected CPUs */
static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
static bool taa_nosmt __ro_after_init;
static const char * const taa_strings[] = {
[TAA_MITIGATION_OFF] = "Vulnerable",
[TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
[TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
[TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
};
static void __init taa_select_mitigation(void)
{
u64 ia32_cap;
if (!boot_cpu_has_bug(X86_BUG_TAA)) {
taa_mitigation = TAA_MITIGATION_OFF;
return;
}
/* TSX previously disabled by tsx=off */
if (!boot_cpu_has(X86_FEATURE_RTM)) {
taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
goto out;
}
if (cpu_mitigations_off()) {
taa_mitigation = TAA_MITIGATION_OFF;
return;
}
/* TAA mitigation is turned off on the cmdline (tsx_async_abort=off) */
if (taa_mitigation == TAA_MITIGATION_OFF)
goto out;
if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
taa_mitigation = TAA_MITIGATION_VERW;
else
taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
/*
* VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
* A microcode update fixes this behavior to clear CPU buffers. It also
* adds support for MSR_IA32_TSX_CTRL which is enumerated by the
* ARCH_CAP_TSX_CTRL_MSR bit.
*
* On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
* update is required.
*/
ia32_cap = x86_read_arch_cap_msr();
if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
!(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
/*
* TSX is enabled, select alternate mitigation for TAA which is
* the same as MDS. Enable MDS static branch to clear CPU buffers.
*
* For guests that can't determine whether the correct microcode is
* present on host, enable the mitigation for UCODE_NEEDED as well.
*/
static_branch_enable(&mds_user_clear);
if (taa_nosmt || cpu_mitigations_auto_nosmt())
cpu_smt_disable(false);
out:
pr_info("%s\n", taa_strings[taa_mitigation]);
}
static int __init tsx_async_abort_parse_cmdline(char *str)
{
if (!boot_cpu_has_bug(X86_BUG_TAA))
return 0;
if (!str)
return -EINVAL;
if (!strcmp(str, "off")) {
taa_mitigation = TAA_MITIGATION_OFF;
} else if (!strcmp(str, "full")) {
taa_mitigation = TAA_MITIGATION_VERW;
} else if (!strcmp(str, "full,nosmt")) {
taa_mitigation = TAA_MITIGATION_VERW;
taa_nosmt = true;
}
return 0;
}
early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) "Spectre V1 : " fmt
......@@ -786,13 +882,10 @@ static void update_mds_branch_idle(void)
}
#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
void cpu_bugs_smt_update(void)
{
/* Enhanced IBRS implies STIBP. No update required. */
if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
return;
mutex_lock(&spec_ctrl_mutex);
switch (spectre_v2_user) {
......@@ -819,6 +912,17 @@ void cpu_bugs_smt_update(void)
break;
}
switch (taa_mitigation) {
case TAA_MITIGATION_VERW:
case TAA_MITIGATION_UCODE_NEEDED:
if (sched_smt_active())
pr_warn_once(TAA_MSG_SMT);
break;
case TAA_MITIGATION_TSX_DISABLED:
case TAA_MITIGATION_OFF:
break;
}
mutex_unlock(&spec_ctrl_mutex);
}
......@@ -1149,6 +1253,9 @@ void x86_spec_ctrl_setup_ap(void)
x86_amd_ssb_disable();
}
bool itlb_multihit_kvm_mitigation;
EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
#undef pr_fmt
#define pr_fmt(fmt) "L1TF: " fmt
......@@ -1304,11 +1411,24 @@ static ssize_t l1tf_show_state(char *buf)
l1tf_vmx_states[l1tf_vmx_mitigation],
sched_smt_active() ? "vulnerable" : "disabled");
}
static ssize_t itlb_multihit_show_state(char *buf)
{
if (itlb_multihit_kvm_mitigation)
return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
else
return sprintf(buf, "KVM: Vulnerable\n");
}
#else
static ssize_t l1tf_show_state(char *buf)
{
return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
}
static ssize_t itlb_multihit_show_state(char *buf)
{
return sprintf(buf, "Processor vulnerable\n");
}
#endif
static ssize_t mds_show_state(char *buf)
......@@ -1328,6 +1448,21 @@ static ssize_t mds_show_state(char *buf)
sched_smt_active() ? "vulnerable" : "disabled");
}
static ssize_t tsx_async_abort_show_state(char *buf)
{
if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
(taa_mitigation == TAA_MITIGATION_OFF))
return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
return sprintf(buf, "%s; SMT Host state unknown\n",
taa_strings[taa_mitigation]);
}
return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
sched_smt_active() ? "vulnerable" : "disabled");
}
static char *stibp_state(void)
{
if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
......@@ -1398,6 +1533,12 @@ static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr
case X86_BUG_MDS:
return mds_show_state(buf);
case X86_BUG_TAA:
return tsx_async_abort_show_state(buf);
case X86_BUG_ITLB_MULTIHIT:
return itlb_multihit_show_state(buf);
default:
break;
}
......@@ -1434,4 +1575,14 @@ ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *bu
{
return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
}
ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
}
ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
}
#endif
......@@ -1016,13 +1016,14 @@ static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
#endif
}
#define NO_SPECULATION BIT(0)
#define NO_MELTDOWN BIT(1)
#define NO_SSB BIT(2)
#define NO_L1TF BIT(3)
#define NO_MDS BIT(4)
#define MSBDS_ONLY BIT(5)
#define NO_SWAPGS BIT(6)
#define NO_SPECULATION BIT(0)
#define NO_MELTDOWN BIT(1)
#define NO_SSB BIT(2)
#define NO_L1TF BIT(3)
#define NO_MDS BIT(4)
#define MSBDS_ONLY BIT(5)
#define NO_SWAPGS BIT(6)
#define NO_ITLB_MULTIHIT BIT(7)
#define VULNWL(_vendor, _family, _model, _whitelist) \
{ X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
......@@ -1043,27 +1044,27 @@ static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
/* Intel Family 6 */
VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION),
VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION),
VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION),
VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION),
VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION),
VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(CORE_YONAH, NO_SSB),
VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS),
VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS),
VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS),
VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS),
VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
/*
* Technically, swapgs isn't serializing on AMD (despite it previously
......@@ -1073,15 +1074,17 @@ static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
* good enough for our purposes.
*/
VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
/* AMD Family 0xf - 0x12 */
VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
{}
};
......@@ -1092,19 +1095,30 @@ static bool __init cpu_matches(unsigned long which)
return m && !!(m->driver_data & which);
}
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
u64 x86_read_arch_cap_msr(void)
{
u64 ia32_cap = 0;
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
return ia32_cap;
}
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
{
u64 ia32_cap = x86_read_arch_cap_msr();
/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
if (cpu_matches(NO_SPECULATION))
return;
setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
!cpu_has(c, X86_FEATURE_AMD_SSB_NO))
setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
......@@ -1121,6 +1135,21 @@ static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
if (!cpu_matches(NO_SWAPGS))
setup_force_cpu_bug(X86_BUG_SWAPGS);
/*
* When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
* - TSX is supported or
* - TSX_CTRL is present
*
* TSX_CTRL check is needed for cases when TSX could be disabled before
* the kernel boot e.g. kexec.
* TSX_CTRL check alone is not sufficient for cases when the microcode
* update is not present or running as guest that don't get TSX_CTRL.
*/
if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
(cpu_has(c, X86_FEATURE_RTM) ||
(ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
setup_force_cpu_bug(X86_BUG_TAA);
if (cpu_matches(NO_MELTDOWN))
return;
......@@ -1554,6 +1583,8 @@ void __init identify_boot_cpu(void)
#endif
cpu_detect_tlb(&boot_cpu_data);
setup_cr_pinning();
tsx_init();
}
void identify_secondary_cpu(struct cpuinfo_x86 *c)
......
......@@ -44,6 +44,22 @@ struct _tlb_table {
extern const struct cpu_dev *const __x86_cpu_dev_start[],
*const __x86_cpu_dev_end[];
#ifdef CONFIG_CPU_SUP_INTEL
enum tsx_ctrl_states {
TSX_CTRL_ENABLE,
TSX_CTRL_DISABLE,
TSX_CTRL_NOT_SUPPORTED,
};
extern __ro_after_init enum tsx_ctrl_states tsx_ctrl_state;
extern void __init tsx_init(void);
extern void tsx_enable(void);
extern void tsx_disable(void);
#else
static inline void tsx_init(void) { }
#endif /* CONFIG_CPU_SUP_INTEL */
extern void get_cpu_cap(struct cpuinfo_x86 *c);
extern void get_cpu_address_sizes(struct cpuinfo_x86 *c);
extern void cpu_detect_cache_sizes(struct cpuinfo_x86 *c);
......@@ -62,4 +78,6 @@ unsigned int aperfmperf_get_khz(int cpu);
extern void x86_spec_ctrl_setup_ap(void);
extern u64 x86_read_arch_cap_msr(void);
#endif /* ARCH_X86_CPU_H */
......@@ -762,6 +762,11 @@ static void init_intel(struct cpuinfo_x86 *c)
detect_tme(c);
init_intel_misc_features(c);
if (tsx_ctrl_state == TSX_CTRL_ENABLE)
tsx_enable();
if (tsx_ctrl_state == TSX_CTRL_DISABLE)
tsx_disable();
}
#ifdef CONFIG_X86_32
......
// SPDX-License-Identifier: GPL-2.0
/*
* Intel Transactional Synchronization Extensions (TSX) control.
*
* Copyright (C) 2019 Intel Corporation
*
* Author:
* Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
*/
#include <linux/cpufeature.h>
#include <asm/cmdline.h>
#include "cpu.h"
enum tsx_ctrl_states tsx_ctrl_state __ro_after_init = TSX_CTRL_NOT_SUPPORTED;
void tsx_disable(void)
{
u64 tsx;
rdmsrl(MSR_IA32_TSX_CTRL, tsx);
/* Force all transactions to immediately abort */
tsx |= TSX_CTRL_RTM_DISABLE;
/*
* Ensure TSX support is not enumerated in CPUID.
* This is visible to userspace and will ensure they
* do not waste resources trying TSX transactions that
* will always abort.
*/
tsx |= TSX_CTRL_CPUID_CLEAR;
wrmsrl(MSR_IA32_TSX_CTRL, tsx);
}
void tsx_enable(void)
{
u64 tsx;
rdmsrl(MSR_IA32_TSX_CTRL, tsx);
/* Enable the RTM feature in the cpu */
tsx &= ~TSX_CTRL_RTM_DISABLE;
/*
* Ensure TSX support is enumerated in CPUID.
* This is visible to userspace and will ensure they
* can enumerate and use the TSX feature.
*/
tsx &= ~TSX_CTRL_CPUID_CLEAR;
wrmsrl(MSR_IA32_TSX_CTRL, tsx);
}
static bool __init tsx_ctrl_is_supported(void)
{
u64 ia32_cap = x86_read_arch_cap_msr();
/*
* TSX is controlled via MSR_IA32_TSX_CTRL. However, support for this
* MSR is enumerated by ARCH_CAP_TSX_MSR bit in MSR_IA32_ARCH_CAPABILITIES.
*
* TSX control (aka MSR_IA32_TSX_CTRL) is only available after a
* microcode update on CPUs that have their MSR_IA32_ARCH_CAPABILITIES
* bit MDS_NO=1. CPUs with MDS_NO=0 are not planned to get
* MSR_IA32_TSX_CTRL support even after a microcode update. Thus,
* tsx= cmdline requests will do nothing on CPUs without
* MSR_IA32_TSX_CTRL support.
*/
return !!(ia32_cap & ARCH_CAP_TSX_CTRL_MSR);
}
static enum tsx_ctrl_states x86_get_tsx_auto_mode(void)
{
if (boot_cpu_has_bug(X86_BUG_TAA))
return TSX_CTRL_DISABLE;
return TSX_CTRL_ENABLE;
}
void __init tsx_init(void)
{
char arg[5] = {};
int ret;
if (!tsx_ctrl_is_supported())
return;
ret = cmdline_find_option(boot_command_line, "tsx", arg, sizeof(arg));
if (ret >= 0) {
if (!strcmp(arg, "on")) {
tsx_ctrl_state = TSX_CTRL_ENABLE;
} else if (!strcmp(arg, "off")) {
tsx_ctrl_state = TSX_CTRL_DISABLE;
} else if (!strcmp(arg, "auto")) {
tsx_ctrl_state = x86_get_tsx_auto_mode();
} else {
tsx_ctrl_state = TSX_CTRL_DISABLE;
pr_err("tsx: invalid option, defaulting to off\n");
}
} else {
/* tsx= not provided */
if (IS_ENABLED(CONFIG_X86_INTEL_TSX_MODE_AUTO))
tsx_ctrl_state = x86_get_tsx_auto_mode();
else if (IS_ENABLED(CONFIG_X86_INTEL_TSX_MODE_OFF))
tsx_ctrl_state = TSX_CTRL_DISABLE;
else
tsx_ctrl_state = TSX_CTRL_ENABLE;
}
if (tsx_ctrl_state == TSX_CTRL_DISABLE) {
tsx_disable();
/*
* tsx_disable() will change the state of the
* RTM CPUID bit. Clear it here since it is now
* expected to be not set.
*/
setup_clear_cpu_cap(X86_FEATURE_RTM);
} else if (tsx_ctrl_state == TSX_CTRL_ENABLE) {
/*
* HW defaults TSX to be enabled at bootup.
* We may still need the TSX enable support
* during init for special cases like
* kexec after TSX is disabled.
*/
tsx_enable();
/*
* tsx_enable() will change the state of the
* RTM CPUID bit. Force it here since it is now
* expected to be set.
*/
setup_force_cpu_cap(X86_FEATURE_RTM);
}
}
......@@ -37,6 +37,7 @@
#include <linux/uaccess.h>
#include <linux/hash.h>
#include <linux/kern_levels.h>
#include <linux/kthread.h>
#include <asm/page.h>
#include <asm/pat.h>
......@@ -47,6 +48,30 @@
#include <asm/kvm_page_track.h>
#include "trace.h"
extern bool itlb_multihit_kvm_mitigation;
static int __read_mostly nx_huge_pages = -1;
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
static struct kernel_param_ops nx_huge_pages_ops = {
.set = set_nx_huge_pages,
.get = param_get_bool,
};
static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
.set = set_nx_huge_pages_recovery_ratio,
.get = param_get_uint,
};
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
/*
* When setting this variable to true it enables Two-Dimensional-Paging
* where the hardware walks 2 page tables:
......@@ -352,6 +377,11 @@ static inline bool spte_ad_need_write_protect(u64 spte)
return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
}
static bool is_nx_huge_page_enabled(void)
{
return READ_ONCE(nx_huge_pages);
}
static inline u64 spte_shadow_accessed_mask(u64 spte)
{
MMU_WARN_ON(is_mmio_spte(spte));
......@@ -1190,6 +1220,17 @@ static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
kvm_mmu_gfn_disallow_lpage(slot, gfn);
}
static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
if (sp->lpage_disallowed)
return;
++kvm->stat.nx_lpage_splits;
list_add_tail(&sp->lpage_disallowed_link,
&kvm->arch.lpage_disallowed_mmu_pages);
sp->lpage_disallowed = true;
}
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
{
struct kvm_memslots *slots;
......@@ -1207,6 +1248,13 @@ static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
kvm_mmu_gfn_allow_lpage(slot, gfn);
}
static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
--kvm->stat.nx_lpage_splits;
sp->lpage_disallowed = false;
list_del(&sp->lpage_disallowed_link);
}
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
struct kvm_memory_slot *slot)
{
......@@ -2792,6 +2840,9 @@ static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
kvm_reload_remote_mmus(kvm);
}
if (sp->lpage_disallowed)
unaccount_huge_nx_page(kvm, sp);
sp->role.invalid = 1;
return list_unstable;
}
......@@ -3013,6 +3064,11 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
if (!speculative)
spte |= spte_shadow_accessed_mask(spte);
if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
is_nx_huge_page_enabled()) {
pte_access &= ~ACC_EXEC_MASK;
}
if (pte_access & ACC_EXEC_MASK)
spte |= shadow_x_mask;
else
......@@ -3233,9 +3289,32 @@ static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
__direct_pte_prefetch(vcpu, sp, sptep);
}
static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
{
int level = *levelp;
u64 spte = *it.sptep;
if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
is_nx_huge_page_enabled() &&
is_shadow_present_pte(spte) &&
!is_large_pte(spte)) {
/*
* A small SPTE exists for this pfn, but FNAME(fetch)
* and __direct_map would like to create a large PTE
* instead: just force them to go down another level,
* patching back for them into pfn the next 9 bits of
* the address.
*/
u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
*pfnp |= gfn & page_mask;
(*levelp)--;
}
}
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
int map_writable, int level, kvm_pfn_t pfn,
bool prefault)
bool prefault, bool lpage_disallowed)
{
struct kvm_shadow_walk_iterator it;
struct kvm_mmu_page *sp;
......@@ -3248,6 +3327,12 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
trace_kvm_mmu_spte_requested(gpa, level, pfn);
for_each_shadow_entry(vcpu, gpa, it) {
/*
* We cannot overwrite existing page tables with an NX
* large page, as the leaf could be executable.
*/
disallowed_hugepage_adjust(it, gfn, &pfn, &level);
base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
if (it.level == level)
break;
......@@ -3258,6 +3343,8 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
it.level - 1, true, ACC_ALL);
link_shadow_page(vcpu, it.sptep, sp);
if (lpage_disallowed)
account_huge_nx_page(vcpu->kvm, sp);
}
}
......@@ -3550,11 +3637,14 @@ static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
{
int r;
int level;
bool force_pt_level = false;
bool force_pt_level;
kvm_pfn_t pfn;
unsigned long mmu_seq;
bool map_writable, write = error_code & PFERR_WRITE_MASK;
bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
is_nx_huge_page_enabled();
force_pt_level = lpage_disallowed;
level = mapping_level(vcpu, gfn, &force_pt_level);
if (likely(!force_pt_level)) {
/*
......@@ -3588,7 +3678,8 @@ static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
goto out_unlock;
if (likely(!force_pt_level))
transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
r = __direct_map(vcpu, v, write, map_writable, level, pfn, prefault);
r = __direct_map(vcpu, v, write, map_writable, level, pfn,
prefault, false);
out_unlock:
spin_unlock(&vcpu->kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
......@@ -4174,6 +4265,8 @@ static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
unsigned long mmu_seq;
int write = error_code & PFERR_WRITE_MASK;
bool map_writable;
bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
is_nx_huge_page_enabled();
MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
......@@ -4184,8 +4277,9 @@ static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
if (r)
return r;
force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
PT_DIRECTORY_LEVEL);
force_pt_level =
lpage_disallowed ||
!check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
level = mapping_level(vcpu, gfn, &force_pt_level);
if (likely(!force_pt_level)) {
if (level > PT_DIRECTORY_LEVEL &&
......@@ -4214,7 +4308,8 @@ static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
goto out_unlock;
if (likely(!force_pt_level))
transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
r = __direct_map(vcpu, gpa, write, map_writable, level, pfn, prefault);
r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
prefault, lpage_disallowed);
out_unlock:
spin_unlock(&vcpu->kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
......@@ -6155,10 +6250,60 @@ static void kvm_set_mmio_spte_mask(void)
kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
}
static bool get_nx_auto_mode(void)
{
/* Return true when CPU has the bug, and mitigations are ON */
return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}
static void __set_nx_huge_pages(bool val)
{
nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}
static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
bool old_val = nx_huge_pages;
bool new_val;
/* In "auto" mode deploy workaround only if CPU has the bug. */
if (sysfs_streq(val, "off"))
new_val = 0;
else if (sysfs_streq(val, "force"))
new_val = 1;
else if (sysfs_streq(val, "auto"))
new_val = get_nx_auto_mode();
else if (strtobool(val, &new_val) < 0)
return -EINVAL;
__set_nx_huge_pages(new_val);
if (new_val != old_val) {
struct kvm *kvm;
int idx;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
idx = srcu_read_lock(&kvm->srcu);
kvm_mmu_zap_all_fast(kvm);
srcu_read_unlock(&kvm->srcu, idx);
wake_up_process(kvm->arch.nx_lpage_recovery_thread);
}
mutex_unlock(&kvm_lock);
}
return 0;
}
int kvm_mmu_module_init(void)
{
int ret = -ENOMEM;
if (nx_huge_pages == -1)
__set_nx_huge_pages(get_nx_auto_mode());
/*
* MMU roles use union aliasing which is, generally speaking, an
* undefined behavior. However, we supposedly know how compilers behave
......@@ -6238,3 +6383,116 @@ void kvm_mmu_module_exit(void)
unregister_shrinker(&mmu_shrinker);
mmu_audit_disable();
}
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
unsigned int old_val;
int err;
old_val = nx_huge_pages_recovery_ratio;
err = param_set_uint(val, kp);
if (err)
return err;
if (READ_ONCE(nx_huge_pages) &&
!old_val && nx_huge_pages_recovery_ratio) {
struct kvm *kvm;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
wake_up_process(kvm->arch.nx_lpage_recovery_thread);
mutex_unlock(&kvm_lock);
}
return err;
}
static void kvm_recover_nx_lpages(struct kvm *kvm)
{
int rcu_idx;
struct kvm_mmu_page *sp;
unsigned int ratio;
LIST_HEAD(invalid_list);
ulong to_zap;
rcu_idx = srcu_read_lock(&kvm->srcu);
spin_lock(&kvm->mmu_lock);
ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
/*
* We use a separate list instead of just using active_mmu_pages
* because the number of lpage_disallowed pages is expected to
* be relatively small compared to the total.
*/
sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
struct kvm_mmu_page,
lpage_disallowed_link);
WARN_ON_ONCE(!sp->lpage_disallowed);
kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
WARN_ON_ONCE(sp->lpage_disallowed);
if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
kvm_mmu_commit_zap_page(kvm, &invalid_list);
if (to_zap)
cond_resched_lock(&kvm->mmu_lock);
}
}
spin_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, rcu_idx);
}
static long get_nx_lpage_recovery_timeout(u64 start_time)
{
return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
? start_time + 60 * HZ - get_jiffies_64()
: MAX_SCHEDULE_TIMEOUT;
}
static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
u64 start_time;
long remaining_time;
while (true) {
start_time = get_jiffies_64();
remaining_time = get_nx_lpage_recovery_timeout(start_time);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop() && remaining_time > 0) {
schedule_timeout(remaining_time);
remaining_time = get_nx_lpage_recovery_timeout(start_time);
set_current_state(TASK_INTERRUPTIBLE);
}
set_current_state(TASK_RUNNING);
if (kthread_should_stop())
return 0;
kvm_recover_nx_lpages(kvm);
}
}
int kvm_mmu_post_init_vm(struct kvm *kvm)
{
int err;
err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
"kvm-nx-lpage-recovery",
&kvm->arch.nx_lpage_recovery_thread);
if (!err)
kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
return err;
}
void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
if (kvm->arch.nx_lpage_recovery_thread)
kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}
......@@ -210,4 +210,8 @@ void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
struct kvm_memory_slot *slot, u64 gfn);
int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
int kvm_mmu_post_init_vm(struct kvm *kvm);
void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
#endif
......@@ -614,13 +614,14 @@ static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
struct guest_walker *gw,
int write_fault, int hlevel,
kvm_pfn_t pfn, bool map_writable, bool prefault)
kvm_pfn_t pfn, bool map_writable, bool prefault,
bool lpage_disallowed)
{
struct kvm_mmu_page *sp = NULL;
struct kvm_shadow_walk_iterator it;
unsigned direct_access, access = gw->pt_access;
int top_level, ret;
gfn_t base_gfn;
gfn_t gfn, base_gfn;
direct_access = gw->pte_access;
......@@ -665,13 +666,25 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
link_shadow_page(vcpu, it.sptep, sp);
}
base_gfn = gw->gfn;
/*
* FNAME(page_fault) might have clobbered the bottom bits of
* gw->gfn, restore them from the virtual address.
*/
gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT);
base_gfn = gfn;
trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
clear_sp_write_flooding_count(it.sptep);
base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
/*
* We cannot overwrite existing page tables with an NX
* large page, as the leaf could be executable.
*/
disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel);
base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
if (it.level == hlevel)
break;
......@@ -683,6 +696,8 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
it.level - 1, true, direct_access);
link_shadow_page(vcpu, it.sptep, sp);
if (lpage_disallowed)
account_huge_nx_page(vcpu->kvm, sp);
}
}
......@@ -759,9 +774,11 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
int r;
kvm_pfn_t pfn;
int level = PT_PAGE_TABLE_LEVEL;
bool force_pt_level = false;
unsigned long mmu_seq;
bool map_writable, is_self_change_mapping;
bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
is_nx_huge_page_enabled();
bool force_pt_level = lpage_disallowed;
pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
......@@ -851,7 +868,7 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
if (!force_pt_level)
transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level);
r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
level, pfn, map_writable, prefault);
level, pfn, map_writable, prefault, lpage_disallowed);
kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
out_unlock:
......
......@@ -213,6 +213,7 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "mmu_unsync", VM_STAT(mmu_unsync) },
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
{ "largepages", VM_STAT(lpages, .mode = 0444) },
{ "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
{ "max_mmu_page_hash_collisions",
VM_STAT(max_mmu_page_hash_collisions) },
{ NULL }
......@@ -1279,6 +1280,14 @@ static u64 kvm_get_arch_capabilities(void)
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
/*
* If nx_huge_pages is enabled, KVM's shadow paging will ensure that
* the nested hypervisor runs with NX huge pages. If it is not,
* L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
* L1 guests, so it need not worry about its own (L2) guests.
*/
data |= ARCH_CAP_PSCHANGE_MC_NO;
/*
* If we're doing cache flushes (either "always" or "cond")
* we will do one whenever the guest does a vmlaunch/vmresume.
......@@ -1298,6 +1307,25 @@ static u64 kvm_get_arch_capabilities(void)
if (!boot_cpu_has_bug(X86_BUG_MDS))
data |= ARCH_CAP_MDS_NO;
/*
* On TAA affected systems, export MDS_NO=0 when:
* - TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
* - Updated microcode is present. This is detected by
* the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
* that VERW clears CPU buffers.
*
* When MDS_NO=0 is exported, guests deploy clear CPU buffer
* mitigation and don't complain:
*
* "Vulnerable: Clear CPU buffers attempted, no microcode"
*
* If TSX is disabled on the system, guests are also mitigated against
* TAA and clear CPU buffer mitigation is not required for guests.
*/
if (boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM) &&
(data & ARCH_CAP_TSX_CTRL_MSR))
data &= ~ARCH_CAP_MDS_NO;
return data;
}
......@@ -9428,6 +9456,7 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
atomic_set(&kvm->arch.noncoherent_dma_count, 0);
......@@ -9456,6 +9485,11 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
return kvm_x86_ops->vm_init(kvm);
}
int kvm_arch_post_init_vm(struct kvm *kvm)
{
return kvm_mmu_post_init_vm(kvm);
}
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
......@@ -9557,6 +9591,11 @@ int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
}
EXPORT_SYMBOL_GPL(x86_set_memory_region);
void kvm_arch_pre_destroy_vm(struct kvm *kvm)
{
kvm_mmu_pre_destroy_vm(kvm);
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
if (current->mm == kvm->mm) {
......
......@@ -554,12 +554,27 @@ ssize_t __weak cpu_show_mds(struct device *dev,
return sprintf(buf, "Not affected\n");
}
ssize_t __weak cpu_show_tsx_async_abort(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "Not affected\n");
}
ssize_t __weak cpu_show_itlb_multihit(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "Not affected\n");
}
static DEVICE_ATTR(meltdown, 0444, cpu_show_meltdown, NULL);
static DEVICE_ATTR(spectre_v1, 0444, cpu_show_spectre_v1, NULL);
static DEVICE_ATTR(spectre_v2, 0444, cpu_show_spectre_v2, NULL);
static DEVICE_ATTR(spec_store_bypass, 0444, cpu_show_spec_store_bypass, NULL);
static DEVICE_ATTR(l1tf, 0444, cpu_show_l1tf, NULL);
static DEVICE_ATTR(mds, 0444, cpu_show_mds, NULL);
static DEVICE_ATTR(tsx_async_abort, 0444, cpu_show_tsx_async_abort, NULL);
static DEVICE_ATTR(itlb_multihit, 0444, cpu_show_itlb_multihit, NULL);
static struct attribute *cpu_root_vulnerabilities_attrs[] = {
&dev_attr_meltdown.attr,
......@@ -568,6 +583,8 @@ static struct attribute *cpu_root_vulnerabilities_attrs[] = {
&dev_attr_spec_store_bypass.attr,
&dev_attr_l1tf.attr,
&dev_attr_mds.attr,
&dev_attr_tsx_async_abort.attr,
&dev_attr_itlb_multihit.attr,
NULL
};
......
......@@ -59,6 +59,11 @@ extern ssize_t cpu_show_l1tf(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_mds(struct device *dev,
struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_tsx_async_abort(struct device *dev,
struct device_attribute *attr,
char *buf);
extern ssize_t cpu_show_itlb_multihit(struct device *dev,
struct device_attribute *attr, char *buf);
extern __printf(4, 5)
struct device *cpu_device_create(struct device *parent, void *drvdata,
......@@ -213,28 +218,7 @@ static inline int cpuhp_smt_enable(void) { return 0; }
static inline int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) { return 0; }
#endif
/*
* These are used for a global "mitigations=" cmdline option for toggling
* optional CPU mitigations.
*/
enum cpu_mitigations {
CPU_MITIGATIONS_OFF,
CPU_MITIGATIONS_AUTO,
CPU_MITIGATIONS_AUTO_NOSMT,
};
extern enum cpu_mitigations cpu_mitigations;
/* mitigations=off */
static inline bool cpu_mitigations_off(void)
{
return cpu_mitigations == CPU_MITIGATIONS_OFF;
}
/* mitigations=auto,nosmt */
static inline bool cpu_mitigations_auto_nosmt(void)
{
return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
}
extern bool cpu_mitigations_off(void);
extern bool cpu_mitigations_auto_nosmt(void);
#endif /* _LINUX_CPU_H_ */
......@@ -1382,4 +1382,10 @@ static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
}
#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
uintptr_t data, const char *name,
struct task_struct **thread_ptr);
#endif
......@@ -2373,7 +2373,18 @@ void __init boot_cpu_hotplug_init(void)
this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
}
enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
/*
* These are used for a global "mitigations=" cmdline option for toggling
* optional CPU mitigations.
*/
enum cpu_mitigations {
CPU_MITIGATIONS_OFF,
CPU_MITIGATIONS_AUTO,
CPU_MITIGATIONS_AUTO_NOSMT,
};
static enum cpu_mitigations cpu_mitigations __ro_after_init =
CPU_MITIGATIONS_AUTO;
static int __init mitigations_parse_cmdline(char *arg)
{
......@@ -2390,3 +2401,17 @@ static int __init mitigations_parse_cmdline(char *arg)
return 0;
}
early_param("mitigations", mitigations_parse_cmdline);
/* mitigations=off */
bool cpu_mitigations_off(void)
{
return cpu_mitigations == CPU_MITIGATIONS_OFF;
}
EXPORT_SYMBOL_GPL(cpu_mitigations_off);
/* mitigations=auto,nosmt */
bool cpu_mitigations_auto_nosmt(void)
{
return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
}
EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
......@@ -50,6 +50,7 @@
#include <linux/bsearch.h>
#include <linux/io.h>
#include <linux/lockdep.h>
#include <linux/kthread.h>
#include <asm/processor.h>
#include <asm/ioctl.h>
......@@ -625,6 +626,23 @@ static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
return 0;
}
/*
* Called after the VM is otherwise initialized, but just before adding it to
* the vm_list.
*/
int __weak kvm_arch_post_init_vm(struct kvm *kvm)
{
return 0;
}
/*
* Called just after removing the VM from the vm_list, but before doing any
* other destruction.
*/
void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
{
}
static struct kvm *kvm_create_vm(unsigned long type)
{
struct kvm *kvm = kvm_arch_alloc_vm();
......@@ -681,6 +699,10 @@ static struct kvm *kvm_create_vm(unsigned long type)
goto out_err_no_irq_srcu;
r = kvm_init_mmu_notifier(kvm);
if (r)
goto out_err_no_mmu_notifier;
r = kvm_arch_post_init_vm(kvm);
if (r)
goto out_err;
......@@ -693,6 +715,11 @@ static struct kvm *kvm_create_vm(unsigned long type)
return kvm;
out_err:
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
if (kvm->mmu_notifier.ops)
mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
#endif
out_err_no_mmu_notifier:
cleanup_srcu_struct(&kvm->irq_srcu);
out_err_no_irq_srcu:
cleanup_srcu_struct(&kvm->srcu);
......@@ -737,6 +764,8 @@ static void kvm_destroy_vm(struct kvm *kvm)
mutex_lock(&kvm_lock);
list_del(&kvm->vm_list);
mutex_unlock(&kvm_lock);
kvm_arch_pre_destroy_vm(kvm);
kvm_free_irq_routing(kvm);
for (i = 0; i < KVM_NR_BUSES; i++) {
struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
......@@ -4371,3 +4400,86 @@ void kvm_exit(void)
kvm_vfio_ops_exit();
}
EXPORT_SYMBOL_GPL(kvm_exit);
struct kvm_vm_worker_thread_context {
struct kvm *kvm;
struct task_struct *parent;
struct completion init_done;
kvm_vm_thread_fn_t thread_fn;
uintptr_t data;
int err;
};
static int kvm_vm_worker_thread(void *context)
{
/*
* The init_context is allocated on the stack of the parent thread, so
* we have to locally copy anything that is needed beyond initialization
*/
struct kvm_vm_worker_thread_context *init_context = context;
struct kvm *kvm = init_context->kvm;
kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
uintptr_t data = init_context->data;
int err;
err = kthread_park(current);
/* kthread_park(current) is never supposed to return an error */
WARN_ON(err != 0);
if (err)
goto init_complete;
err = cgroup_attach_task_all(init_context->parent, current);
if (err) {
kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
__func__, err);
goto init_complete;
}
set_user_nice(current, task_nice(init_context->parent));
init_complete:
init_context->err = err;
complete(&init_context->init_done);
init_context = NULL;
if (err)
return err;
/* Wait to be woken up by the spawner before proceeding. */
kthread_parkme();
if (!kthread_should_stop())
err = thread_fn(kvm, data);
return err;
}
int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
uintptr_t data, const char *name,
struct task_struct **thread_ptr)
{
struct kvm_vm_worker_thread_context init_context = {};
struct task_struct *thread;
*thread_ptr = NULL;
init_context.kvm = kvm;
init_context.parent = current;
init_context.thread_fn = thread_fn;
init_context.data = data;
init_completion(&init_context.init_done);
thread = kthread_run(kvm_vm_worker_thread, &init_context,
"%s-%d", name, task_pid_nr(current));
if (IS_ERR(thread))
return PTR_ERR(thread);
/* kthread_run is never supposed to return NULL */
WARN_ON(thread == NULL);
wait_for_completion(&init_context.init_done);
if (!init_context.err)
*thread_ptr = thread;
return init_context.err;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment