Commit ee14a6ef authored by Mark Brown's avatar Mark Brown

Merge series "Add Tegra Quad SPI driver" from Sowjanya Komatineni <skomatineni@nvidia.com>:

This series adds Tegra210, Tegra186, and Tegra194 Quad SPI driver and
enables Quad SPI on Jetson Nano and Jetson Xavier NX.

QSPI controller is available on Tegra210, Tegra186 and Tegra194.

Tegra186 and Tegra194 has additional feature of combined sequence mode
where command, address and data can all be transferred in a single transfer.
Combined sequence mode is useful only when using DMA mode transfer.

This series does not have combined sequence mode feature as Tegra186/Tegra194
GPCDMA driver is not upstreamed yet.

This series includes
- dt-binding document
- QSPI driver for Tegra210/Tegra186/Tegra194
- Enables QSPI on Jetson Nano and Jetson Xavier NX.

Delta between patch versions:
[v5]:	Simplified implementation in Patch-0006

[v4]:	Updated dummy cycles implementation based on v3 feedback
	- Added dummy_data bit field int spi_transfer to indicate corresponding
	  transfer is dummy bytes transfer.
	- Updated Tegra QSPI transfer_one_message to identify dummy transfer and
	  to use HW supported dummy bytes transfer when dummy cycles are with in
	  Tegra QSPI supported max HW dummy cycles otherwise fallsback to transfer
	  dummy bytes from software.
	- Updated dt-bindings based on v3 feedback.

[v3]:	v2 has some mixed patches sent out accidentally.
	v3 sends proper patches with fixes mentioned in v2.

[v2]:	below v1 feedback
	- Added SPI_MASTER_USES_HW_DUMMY_CYCLES flag for controllers supporting
	  hardware dummy cycles and skips dummy bytes transfer from software for
	  these controllers.
	- Updated dt-binding doc with tx/rx tap delay properties.
	- Added qspi_out clock to dt-binding doc which will be used later with
	  ddr mode support.
	- All other v1 feedback on some cleanup.

Sowjanya Komatineni (9):
  dt-bindings: clock: tegra: Add clock ID TEGRA210_CLK_QSPI_PM
  dt-bindings: spi: Add Tegra Quad SPI device tree binding
  MAINTAINERS: Add Tegra Quad SPI driver section
  spi: tegra210-quad: Add support for Tegra210 QSPI controller
  spi: spi-mem: Mark dummy transfers by setting dummy_data bit
  spi: tegra210-quad: Add support for hardware dummy cycles transfer
  arm64: tegra: Enable QSPI on Jetson Nano
  arm64: tegra: Add QSPI nodes on Tegra194
  arm64: tegra: Enable QSPI on Jetson Xavier NX

 .../bindings/spi/nvidia,tegra210-quad.yaml         |  117 ++
 MAINTAINERS                                        |    8 +
 .../dts/nvidia/tegra194-p3509-0000+p3668-0000.dts  |   12 +
 arch/arm64/boot/dts/nvidia/tegra194.dtsi           |   28 +
 arch/arm64/boot/dts/nvidia/tegra210-p3450-0000.dts |   12 +
 arch/arm64/boot/dts/nvidia/tegra210.dtsi           |    5 +-
 drivers/spi/Kconfig                                |    9 +
 drivers/spi/Makefile                               |    1 +
 drivers/spi/spi-mem.c                              |    1 +
 drivers/spi/spi-tegra210-quad.c                    | 1410 ++++++++++++++++++++
 include/dt-bindings/clock/tegra210-car.h           |    2 +-
 include/linux/spi/spi.h                            |    2 +
 12 files changed, 1604 insertions(+), 3 deletions(-)
 create mode 100644 Documentation/devicetree/bindings/spi/nvidia,tegra210-quad.yaml
 create mode 100644 drivers/spi/spi-tegra210-quad.c

--
2.7.4
parents f453f293 6a8a8b51
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/nvidia,tegra210-quad.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Tegra Quad SPI Controller
maintainers:
- Thierry Reding <thierry.reding@gmail.com>
- Jonathan Hunter <jonathanh@nvidia.com>
allOf:
- $ref: "spi-controller.yaml#"
properties:
compatible:
enum:
- nvidia,tegra210-qspi
- nvidia,tegra186-qspi
- nvidia,tegra194-qspi
reg:
maxItems: 1
interrupts:
maxItems: 1
clock-names:
items:
- const: qspi
- const: qspi_out
clocks:
maxItems: 2
resets:
maxItems: 1
dmas:
maxItems: 2
dma-names:
items:
- const: rx
- const: tx
patternProperties:
"@[0-9a-f]+":
type: object
properties:
spi-rx-bus-width:
enum: [1, 2, 4]
spi-tx-bus-width:
enum: [1, 2, 4]
nvidia,tx-clk-tap-delay:
description:
Delays the clock going out to device with this tap value.
Tap value varies based on platform design trace lengths from Tegra
QSPI to corresponding slave device.
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 0
maximum: 31
nvidia,rx-clk-tap-delay:
description:
Delays the clock coming in from the device with this tap value.
Tap value varies based on platform design trace lengths from Tegra
QSPI to corresponding slave device.
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 0
maximum: 255
required:
- reg
required:
- compatible
- reg
- interrupts
- clock-names
- clocks
- resets
unevaluatedProperties: false
examples:
- |
#include <dt-bindings/clock/tegra210-car.h>
#include <dt-bindings/reset/tegra210-car.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
spi@70410000 {
compatible = "nvidia,tegra210-qspi";
reg = <0x70410000 0x1000>;
interrupts = <GIC_SPI 10 IRQ_TYPE_LEVEL_HIGH>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&tegra_car TEGRA210_CLK_QSPI>,
<&tegra_car TEGRA210_CLK_QSPI_PM>;
clock-names = "qspi", "qspi_out";
resets = <&tegra_car 211>;
dmas = <&apbdma 5>, <&apbdma 5>;
dma-names = "rx", "tx";
flash@0 {
compatible = "spi-nor";
reg = <0>;
spi-max-frequency = <104000000>;
spi-tx-bus-width = <2>;
spi-rx-bus-width = <2>;
nvidia,tx-clk-tap-delay = <0>;
nvidia,rx-clk-tap-delay = <0>;
};
};
......@@ -17498,6 +17498,14 @@ M: Laxman Dewangan <ldewangan@nvidia.com>
S: Supported
F: drivers/spi/spi-tegra*
TEGRA QUAD SPI DRIVER
M: Thierry Reding <thierry.reding@gmail.com>
M: Jonathan Hunter <jonathanh@nvidia.com>
M: Sowjanya Komatineni <skomatineni@nvidia.com>
L: linux-tegra@vger.kernel.org
S: Maintained
F: drivers/spi/spi-tegra210-quad.c
TEGRA VIDEO DRIVER
M: Thierry Reding <thierry.reding@gmail.com>
M: Jonathan Hunter <jonathanh@nvidia.com>
......
......@@ -843,6 +843,15 @@ config SPI_MXS
help
SPI driver for Freescale MXS devices.
config SPI_TEGRA210_QUAD
tristate "NVIDIA Tegra QSPI Controller"
depends on ARCH_TEGRA || COMPILE_TEST
depends on RESET_CONTROLLER
help
QSPI driver for NVIDIA Tegra QSPI Controller interface. This
controller is different from the SPI controller and is available
on Tegra SoCs starting from Tegra210.
config SPI_TEGRA114
tristate "NVIDIA Tegra114 SPI Controller"
depends on (ARCH_TEGRA && TEGRA20_APB_DMA) || COMPILE_TEST
......
......@@ -115,6 +115,7 @@ obj-$(CONFIG_SPI_ST_SSC4) += spi-st-ssc4.o
obj-$(CONFIG_SPI_SUN4I) += spi-sun4i.o
obj-$(CONFIG_SPI_SUN6I) += spi-sun6i.o
obj-$(CONFIG_SPI_SYNQUACER) += spi-synquacer.o
obj-$(CONFIG_SPI_TEGRA210_QUAD) += spi-tegra210-quad.o
obj-$(CONFIG_SPI_TEGRA114) += spi-tegra114.o
obj-$(CONFIG_SPI_TEGRA20_SFLASH) += spi-tegra20-sflash.o
obj-$(CONFIG_SPI_TEGRA20_SLINK) += spi-tegra20-slink.o
......
......@@ -354,6 +354,7 @@ int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
xfers[xferpos].len = op->dummy.nbytes;
xfers[xferpos].tx_nbits = op->dummy.buswidth;
xfers[xferpos].dummy_data = 1;
spi_message_add_tail(&xfers[xferpos], &msg);
xferpos++;
totalxferlen += op->dummy.nbytes;
......
// SPDX-License-Identifier: GPL-2.0-only
//
// Copyright (C) 2020 NVIDIA CORPORATION.
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>
#define QSPI_COMMAND1 0x000
#define QSPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
#define QSPI_PACKED BIT(5)
#define QSPI_INTERFACE_WIDTH_MASK (0x03 << 7)
#define QSPI_INTERFACE_WIDTH(x) (((x) & 0x03) << 7)
#define QSPI_INTERFACE_WIDTH_SINGLE QSPI_INTERFACE_WIDTH(0)
#define QSPI_INTERFACE_WIDTH_DUAL QSPI_INTERFACE_WIDTH(1)
#define QSPI_INTERFACE_WIDTH_QUAD QSPI_INTERFACE_WIDTH(2)
#define QSPI_SDR_DDR_SEL BIT(9)
#define QSPI_TX_EN BIT(11)
#define QSPI_RX_EN BIT(12)
#define QSPI_CS_SW_VAL BIT(20)
#define QSPI_CS_SW_HW BIT(21)
#define QSPI_CONTROL_MODE_0 (0 << 28)
#define QSPI_CONTROL_MODE_3 (3 << 28)
#define QSPI_CONTROL_MODE_MASK (3 << 28)
#define QSPI_M_S BIT(30)
#define QSPI_PIO BIT(31)
#define QSPI_COMMAND2 0x004
#define QSPI_TX_TAP_DELAY(x) (((x) & 0x3f) << 10)
#define QSPI_RX_TAP_DELAY(x) (((x) & 0xff) << 0)
#define QSPI_CS_TIMING1 0x008
#define QSPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
#define QSPI_CS_TIMING2 0x00c
#define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1f) << 0)
#define CS_ACTIVE_BETWEEN_PACKETS_0 BIT(5)
#define QSPI_TRANS_STATUS 0x010
#define QSPI_BLK_CNT(val) (((val) >> 0) & 0xffff)
#define QSPI_RDY BIT(30)
#define QSPI_FIFO_STATUS 0x014
#define QSPI_RX_FIFO_EMPTY BIT(0)
#define QSPI_RX_FIFO_FULL BIT(1)
#define QSPI_TX_FIFO_EMPTY BIT(2)
#define QSPI_TX_FIFO_FULL BIT(3)
#define QSPI_RX_FIFO_UNF BIT(4)
#define QSPI_RX_FIFO_OVF BIT(5)
#define QSPI_TX_FIFO_UNF BIT(6)
#define QSPI_TX_FIFO_OVF BIT(7)
#define QSPI_ERR BIT(8)
#define QSPI_TX_FIFO_FLUSH BIT(14)
#define QSPI_RX_FIFO_FLUSH BIT(15)
#define QSPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7f)
#define QSPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7f)
#define QSPI_FIFO_ERROR (QSPI_RX_FIFO_UNF | \
QSPI_RX_FIFO_OVF | \
QSPI_TX_FIFO_UNF | \
QSPI_TX_FIFO_OVF)
#define QSPI_FIFO_EMPTY (QSPI_RX_FIFO_EMPTY | \
QSPI_TX_FIFO_EMPTY)
#define QSPI_TX_DATA 0x018
#define QSPI_RX_DATA 0x01c
#define QSPI_DMA_CTL 0x020
#define QSPI_TX_TRIG(n) (((n) & 0x3) << 15)
#define QSPI_TX_TRIG_1 QSPI_TX_TRIG(0)
#define QSPI_TX_TRIG_4 QSPI_TX_TRIG(1)
#define QSPI_TX_TRIG_8 QSPI_TX_TRIG(2)
#define QSPI_TX_TRIG_16 QSPI_TX_TRIG(3)
#define QSPI_RX_TRIG(n) (((n) & 0x3) << 19)
#define QSPI_RX_TRIG_1 QSPI_RX_TRIG(0)
#define QSPI_RX_TRIG_4 QSPI_RX_TRIG(1)
#define QSPI_RX_TRIG_8 QSPI_RX_TRIG(2)
#define QSPI_RX_TRIG_16 QSPI_RX_TRIG(3)
#define QSPI_DMA_EN BIT(31)
#define QSPI_DMA_BLK 0x024
#define QSPI_DMA_BLK_SET(x) (((x) & 0xffff) << 0)
#define QSPI_TX_FIFO 0x108
#define QSPI_RX_FIFO 0x188
#define QSPI_FIFO_DEPTH 64
#define QSPI_INTR_MASK 0x18c
#define QSPI_INTR_RX_FIFO_UNF_MASK BIT(25)
#define QSPI_INTR_RX_FIFO_OVF_MASK BIT(26)
#define QSPI_INTR_TX_FIFO_UNF_MASK BIT(27)
#define QSPI_INTR_TX_FIFO_OVF_MASK BIT(28)
#define QSPI_INTR_RDY_MASK BIT(29)
#define QSPI_INTR_RX_TX_FIFO_ERR (QSPI_INTR_RX_FIFO_UNF_MASK | \
QSPI_INTR_RX_FIFO_OVF_MASK | \
QSPI_INTR_TX_FIFO_UNF_MASK | \
QSPI_INTR_TX_FIFO_OVF_MASK)
#define QSPI_MISC_REG 0x194
#define QSPI_NUM_DUMMY_CYCLE(x) (((x) & 0xff) << 0)
#define QSPI_DUMMY_CYCLES_MAX 0xff
#define DATA_DIR_TX BIT(0)
#define DATA_DIR_RX BIT(1)
#define QSPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
#define DEFAULT_QSPI_DMA_BUF_LEN (64 * 1024)
struct tegra_qspi_client_data {
int tx_clk_tap_delay;
int rx_clk_tap_delay;
};
struct tegra_qspi {
struct device *dev;
struct spi_master *master;
/* lock to protect data accessed by irq */
spinlock_t lock;
struct clk *clk;
struct reset_control *rst;
void __iomem *base;
phys_addr_t phys;
unsigned int irq;
u32 cur_speed;
unsigned int cur_pos;
unsigned int words_per_32bit;
unsigned int bytes_per_word;
unsigned int curr_dma_words;
unsigned int cur_direction;
unsigned int cur_rx_pos;
unsigned int cur_tx_pos;
unsigned int dma_buf_size;
unsigned int max_buf_size;
bool is_curr_dma_xfer;
struct completion rx_dma_complete;
struct completion tx_dma_complete;
u32 tx_status;
u32 rx_status;
u32 status_reg;
bool is_packed;
bool use_dma;
u32 command1_reg;
u32 dma_control_reg;
u32 def_command1_reg;
u32 def_command2_reg;
u32 spi_cs_timing1;
u32 spi_cs_timing2;
u8 dummy_cycles;
struct completion xfer_completion;
struct spi_transfer *curr_xfer;
struct dma_chan *rx_dma_chan;
u32 *rx_dma_buf;
dma_addr_t rx_dma_phys;
struct dma_async_tx_descriptor *rx_dma_desc;
struct dma_chan *tx_dma_chan;
u32 *tx_dma_buf;
dma_addr_t tx_dma_phys;
struct dma_async_tx_descriptor *tx_dma_desc;
};
static inline u32 tegra_qspi_readl(struct tegra_qspi *tqspi, unsigned long offset)
{
return readl(tqspi->base + offset);
}
static inline void tegra_qspi_writel(struct tegra_qspi *tqspi, u32 value, unsigned long offset)
{
writel(value, tqspi->base + offset);
/* read back register to make sure that register writes completed */
if (offset != QSPI_TX_FIFO)
readl(tqspi->base + QSPI_COMMAND1);
}
static void tegra_qspi_mask_clear_irq(struct tegra_qspi *tqspi)
{
u32 value;
/* write 1 to clear status register */
value = tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS);
tegra_qspi_writel(tqspi, value, QSPI_TRANS_STATUS);
value = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
if (!(value & QSPI_INTR_RDY_MASK)) {
value |= (QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
tegra_qspi_writel(tqspi, value, QSPI_INTR_MASK);
}
/* clear fifo status error if any */
value = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
if (value & QSPI_ERR)
tegra_qspi_writel(tqspi, QSPI_ERR | QSPI_FIFO_ERROR, QSPI_FIFO_STATUS);
}
static unsigned int
tegra_qspi_calculate_curr_xfer_param(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
unsigned int max_word, max_len, total_fifo_words;
unsigned int remain_len = t->len - tqspi->cur_pos;
unsigned int bits_per_word = t->bits_per_word;
tqspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
/*
* Tegra QSPI controller supports packed or unpacked mode transfers.
* Packed mode is used for data transfers using 8, 16, or 32 bits per
* word with a minimum transfer of 1 word and for all other transfers
* unpacked mode will be used.
*/
if ((bits_per_word == 8 || bits_per_word == 16 ||
bits_per_word == 32) && t->len > 3) {
tqspi->is_packed = true;
tqspi->words_per_32bit = 32 / bits_per_word;
} else {
tqspi->is_packed = false;
tqspi->words_per_32bit = 1;
}
if (tqspi->is_packed) {
max_len = min(remain_len, tqspi->max_buf_size);
tqspi->curr_dma_words = max_len / tqspi->bytes_per_word;
total_fifo_words = (max_len + 3) / 4;
} else {
max_word = (remain_len - 1) / tqspi->bytes_per_word + 1;
max_word = min(max_word, tqspi->max_buf_size / 4);
tqspi->curr_dma_words = max_word;
total_fifo_words = max_word;
}
return total_fifo_words;
}
static unsigned int
tegra_qspi_fill_tx_fifo_from_client_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
unsigned int written_words, fifo_words_left, count;
unsigned int len, tx_empty_count, max_n_32bit, i;
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
u32 fifo_status;
fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
tx_empty_count = QSPI_TX_FIFO_EMPTY_COUNT(fifo_status);
if (tqspi->is_packed) {
fifo_words_left = tx_empty_count * tqspi->words_per_32bit;
written_words = min(fifo_words_left, tqspi->curr_dma_words);
len = written_words * tqspi->bytes_per_word;
max_n_32bit = DIV_ROUND_UP(len, 4);
for (count = 0; count < max_n_32bit; count++) {
u32 x = 0;
for (i = 0; (i < 4) && len; i++, len--)
x |= (u32)(*tx_buf++) << (i * 8);
tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
}
tqspi->cur_tx_pos += written_words * tqspi->bytes_per_word;
} else {
unsigned int write_bytes;
u8 bytes_per_word = tqspi->bytes_per_word;
max_n_32bit = min(tqspi->curr_dma_words, tx_empty_count);
written_words = max_n_32bit;
len = written_words * tqspi->bytes_per_word;
if (len > t->len - tqspi->cur_pos)
len = t->len - tqspi->cur_pos;
write_bytes = len;
for (count = 0; count < max_n_32bit; count++) {
u32 x = 0;
for (i = 0; len && (i < bytes_per_word); i++, len--)
x |= (u32)(*tx_buf++) << (i * 8);
tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
}
tqspi->cur_tx_pos += write_bytes;
}
return written_words;
}
static unsigned int
tegra_qspi_read_rx_fifo_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
unsigned int len, rx_full_count, count, i;
unsigned int read_words = 0;
u32 fifo_status, x;
fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
rx_full_count = QSPI_RX_FIFO_FULL_COUNT(fifo_status);
if (tqspi->is_packed) {
len = tqspi->curr_dma_words * tqspi->bytes_per_word;
for (count = 0; count < rx_full_count; count++) {
x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO);
for (i = 0; len && (i < 4); i++, len--)
*rx_buf++ = (x >> i * 8) & 0xff;
}
read_words += tqspi->curr_dma_words;
tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
} else {
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
u8 bytes_per_word = tqspi->bytes_per_word;
unsigned int read_bytes;
len = rx_full_count * bytes_per_word;
if (len > t->len - tqspi->cur_pos)
len = t->len - tqspi->cur_pos;
read_bytes = len;
for (count = 0; count < rx_full_count; count++) {
x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO) & rx_mask;
for (i = 0; len && (i < bytes_per_word); i++, len--)
*rx_buf++ = (x >> (i * 8)) & 0xff;
}
read_words += rx_full_count;
tqspi->cur_rx_pos += read_bytes;
}
return read_words;
}
static void
tegra_qspi_copy_client_txbuf_to_qspi_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
dma_sync_single_for_cpu(tqspi->dev, tqspi->tx_dma_phys,
tqspi->dma_buf_size, DMA_TO_DEVICE);
/*
* In packed mode, each word in FIFO may contain multiple packets
* based on bits per word. So all bytes in each FIFO word are valid.
*
* In unpacked mode, each word in FIFO contains single packet and
* based on bits per word any remaining bits in FIFO word will be
* ignored by the hardware and are invalid bits.
*/
if (tqspi->is_packed) {
tqspi->cur_tx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
} else {
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
unsigned int i, count, consume, write_bytes;
/*
* Fill tx_dma_buf to contain single packet in each word based
* on bits per word from SPI core tx_buf.
*/
consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
if (consume > t->len - tqspi->cur_pos)
consume = t->len - tqspi->cur_pos;
write_bytes = consume;
for (count = 0; count < tqspi->curr_dma_words; count++) {
u32 x = 0;
for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
x |= (u32)(*tx_buf++) << (i * 8);
tqspi->tx_dma_buf[count] = x;
}
tqspi->cur_tx_pos += write_bytes;
}
dma_sync_single_for_device(tqspi->dev, tqspi->tx_dma_phys,
tqspi->dma_buf_size, DMA_TO_DEVICE);
}
static void
tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
dma_sync_single_for_cpu(tqspi->dev, tqspi->rx_dma_phys,
tqspi->dma_buf_size, DMA_FROM_DEVICE);
if (tqspi->is_packed) {
tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
} else {
unsigned char *rx_buf = t->rx_buf + tqspi->cur_rx_pos;
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
unsigned int i, count, consume, read_bytes;
/*
* Each FIFO word contains single data packet.
* Skip invalid bits in each FIFO word based on bits per word
* and align bytes while filling in SPI core rx_buf.
*/
consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
if (consume > t->len - tqspi->cur_pos)
consume = t->len - tqspi->cur_pos;
read_bytes = consume;
for (count = 0; count < tqspi->curr_dma_words; count++) {
u32 x = tqspi->rx_dma_buf[count] & rx_mask;
for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
*rx_buf++ = (x >> (i * 8)) & 0xff;
}
tqspi->cur_rx_pos += read_bytes;
}
dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
tqspi->dma_buf_size, DMA_FROM_DEVICE);
}
static void tegra_qspi_dma_complete(void *args)
{
struct completion *dma_complete = args;
complete(dma_complete);
}
static int tegra_qspi_start_tx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
{
dma_addr_t tx_dma_phys;
reinit_completion(&tqspi->tx_dma_complete);
if (tqspi->is_packed)
tx_dma_phys = t->tx_dma;
else
tx_dma_phys = tqspi->tx_dma_phys;
tqspi->tx_dma_desc = dmaengine_prep_slave_single(tqspi->tx_dma_chan, tx_dma_phys,
len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tqspi->tx_dma_desc) {
dev_err(tqspi->dev, "Unable to get TX descriptor\n");
return -EIO;
}
tqspi->tx_dma_desc->callback = tegra_qspi_dma_complete;
tqspi->tx_dma_desc->callback_param = &tqspi->tx_dma_complete;
dmaengine_submit(tqspi->tx_dma_desc);
dma_async_issue_pending(tqspi->tx_dma_chan);
return 0;
}
static int tegra_qspi_start_rx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
{
dma_addr_t rx_dma_phys;
reinit_completion(&tqspi->rx_dma_complete);
if (tqspi->is_packed)
rx_dma_phys = t->rx_dma;
else
rx_dma_phys = tqspi->rx_dma_phys;
tqspi->rx_dma_desc = dmaengine_prep_slave_single(tqspi->rx_dma_chan, rx_dma_phys,
len, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tqspi->rx_dma_desc) {
dev_err(tqspi->dev, "Unable to get RX descriptor\n");
return -EIO;
}
tqspi->rx_dma_desc->callback = tegra_qspi_dma_complete;
tqspi->rx_dma_desc->callback_param = &tqspi->rx_dma_complete;
dmaengine_submit(tqspi->rx_dma_desc);
dma_async_issue_pending(tqspi->rx_dma_chan);
return 0;
}
static int tegra_qspi_flush_fifos(struct tegra_qspi *tqspi, bool atomic)
{
void __iomem *addr = tqspi->base + QSPI_FIFO_STATUS;
u32 val;
val = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
if ((val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY)
return 0;
val |= QSPI_RX_FIFO_FLUSH | QSPI_TX_FIFO_FLUSH;
tegra_qspi_writel(tqspi, val, QSPI_FIFO_STATUS);
if (!atomic)
return readl_relaxed_poll_timeout(addr, val,
(val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
1000, 1000000);
return readl_relaxed_poll_timeout_atomic(addr, val,
(val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
1000, 1000000);
}
static void tegra_qspi_unmask_irq(struct tegra_qspi *tqspi)
{
u32 intr_mask;
intr_mask = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
intr_mask &= ~(QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
tegra_qspi_writel(tqspi, intr_mask, QSPI_INTR_MASK);
}
static int tegra_qspi_dma_map_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
unsigned int len;
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
if (t->tx_buf) {
t->tx_dma = dma_map_single(tqspi->dev, (void *)tx_buf, len, DMA_TO_DEVICE);
if (dma_mapping_error(tqspi->dev, t->tx_dma))
return -ENOMEM;
}
if (t->rx_buf) {
t->rx_dma = dma_map_single(tqspi->dev, (void *)rx_buf, len, DMA_FROM_DEVICE);
if (dma_mapping_error(tqspi->dev, t->rx_dma)) {
dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
return -ENOMEM;
}
}
return 0;
}
static void tegra_qspi_dma_unmap_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
unsigned int len;
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
dma_unmap_single(tqspi->dev, t->rx_dma, len, DMA_FROM_DEVICE);
}
static int tegra_qspi_start_dma_based_transfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
struct dma_slave_config dma_sconfig = { 0 };
unsigned int len;
u8 dma_burst;
int ret = 0;
u32 val;
if (tqspi->is_packed) {
ret = tegra_qspi_dma_map_xfer(tqspi, t);
if (ret < 0)
return ret;
}
val = QSPI_DMA_BLK_SET(tqspi->curr_dma_words - 1);
tegra_qspi_writel(tqspi, val, QSPI_DMA_BLK);
tegra_qspi_unmask_irq(tqspi);
if (tqspi->is_packed)
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
else
len = tqspi->curr_dma_words * 4;
/* set attention level based on length of transfer */
val = 0;
if (len & 0xf) {
val |= QSPI_TX_TRIG_1 | QSPI_RX_TRIG_1;
dma_burst = 1;
} else if (((len) >> 4) & 0x1) {
val |= QSPI_TX_TRIG_4 | QSPI_RX_TRIG_4;
dma_burst = 4;
} else {
val |= QSPI_TX_TRIG_8 | QSPI_RX_TRIG_8;
dma_burst = 8;
}
tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
tqspi->dma_control_reg = val;
dma_sconfig.device_fc = true;
if (tqspi->cur_direction & DATA_DIR_TX) {
dma_sconfig.dst_addr = tqspi->phys + QSPI_TX_FIFO;
dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_sconfig.dst_maxburst = dma_burst;
ret = dmaengine_slave_config(tqspi->tx_dma_chan, &dma_sconfig);
if (ret < 0) {
dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
return ret;
}
tegra_qspi_copy_client_txbuf_to_qspi_txbuf(tqspi, t);
ret = tegra_qspi_start_tx_dma(tqspi, t, len);
if (ret < 0) {
dev_err(tqspi->dev, "failed to starting TX DMA: %d\n", ret);
return ret;
}
}
if (tqspi->cur_direction & DATA_DIR_RX) {
dma_sconfig.src_addr = tqspi->phys + QSPI_RX_FIFO;
dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_sconfig.src_maxburst = dma_burst;
ret = dmaengine_slave_config(tqspi->rx_dma_chan, &dma_sconfig);
if (ret < 0) {
dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
return ret;
}
dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
tqspi->dma_buf_size,
DMA_FROM_DEVICE);
ret = tegra_qspi_start_rx_dma(tqspi, t, len);
if (ret < 0) {
dev_err(tqspi->dev, "failed to start RX DMA: %d\n", ret);
if (tqspi->cur_direction & DATA_DIR_TX)
dmaengine_terminate_all(tqspi->tx_dma_chan);
return ret;
}
}
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
tqspi->is_curr_dma_xfer = true;
tqspi->dma_control_reg = val;
val |= QSPI_DMA_EN;
tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
return ret;
}
static int tegra_qspi_start_cpu_based_transfer(struct tegra_qspi *qspi, struct spi_transfer *t)
{
u32 val;
unsigned int cur_words;
if (qspi->cur_direction & DATA_DIR_TX)
cur_words = tegra_qspi_fill_tx_fifo_from_client_txbuf(qspi, t);
else
cur_words = qspi->curr_dma_words;
val = QSPI_DMA_BLK_SET(cur_words - 1);
tegra_qspi_writel(qspi, val, QSPI_DMA_BLK);
tegra_qspi_unmask_irq(qspi);
qspi->is_curr_dma_xfer = false;
val = qspi->command1_reg;
val |= QSPI_PIO;
tegra_qspi_writel(qspi, val, QSPI_COMMAND1);
return 0;
}
static void tegra_qspi_deinit_dma(struct tegra_qspi *tqspi)
{
if (tqspi->tx_dma_buf) {
dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
tqspi->tx_dma_buf, tqspi->tx_dma_phys);
tqspi->tx_dma_buf = NULL;
}
if (tqspi->tx_dma_chan) {
dma_release_channel(tqspi->tx_dma_chan);
tqspi->tx_dma_chan = NULL;
}
if (tqspi->rx_dma_buf) {
dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
tqspi->rx_dma_buf, tqspi->rx_dma_phys);
tqspi->rx_dma_buf = NULL;
}
if (tqspi->rx_dma_chan) {
dma_release_channel(tqspi->rx_dma_chan);
tqspi->rx_dma_chan = NULL;
}
}
static int tegra_qspi_init_dma(struct tegra_qspi *tqspi)
{
struct dma_chan *dma_chan;
dma_addr_t dma_phys;
u32 *dma_buf;
int err;
dma_chan = dma_request_chan(tqspi->dev, "rx");
if (IS_ERR(dma_chan)) {
err = PTR_ERR(dma_chan);
goto err_out;
}
tqspi->rx_dma_chan = dma_chan;
dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
if (!dma_buf) {
err = -ENOMEM;
goto err_out;
}
tqspi->rx_dma_buf = dma_buf;
tqspi->rx_dma_phys = dma_phys;
dma_chan = dma_request_chan(tqspi->dev, "tx");
if (IS_ERR(dma_chan)) {
err = PTR_ERR(dma_chan);
goto err_out;
}
tqspi->tx_dma_chan = dma_chan;
dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
if (!dma_buf) {
err = -ENOMEM;
goto err_out;
}
tqspi->tx_dma_buf = dma_buf;
tqspi->tx_dma_phys = dma_phys;
tqspi->use_dma = true;
return 0;
err_out:
tegra_qspi_deinit_dma(tqspi);
if (err != -EPROBE_DEFER) {
dev_err(tqspi->dev, "cannot use DMA: %d\n", err);
dev_err(tqspi->dev, "falling back to PIO\n");
return 0;
}
return err;
}
static u32 tegra_qspi_setup_transfer_one(struct spi_device *spi, struct spi_transfer *t,
bool is_first_of_msg)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
struct tegra_qspi_client_data *cdata = spi->controller_data;
u32 command1, command2, speed = t->speed_hz;
u8 bits_per_word = t->bits_per_word;
u32 tx_tap = 0, rx_tap = 0;
int req_mode;
if (speed != tqspi->cur_speed) {
clk_set_rate(tqspi->clk, speed);
tqspi->cur_speed = speed;
}
tqspi->cur_pos = 0;
tqspi->cur_rx_pos = 0;
tqspi->cur_tx_pos = 0;
tqspi->curr_xfer = t;
if (is_first_of_msg) {
tegra_qspi_mask_clear_irq(tqspi);
command1 = tqspi->def_command1_reg;
command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
command1 &= ~QSPI_CONTROL_MODE_MASK;
req_mode = spi->mode & 0x3;
if (req_mode == SPI_MODE_3)
command1 |= QSPI_CONTROL_MODE_3;
else
command1 |= QSPI_CONTROL_MODE_0;
if (spi->mode & SPI_CS_HIGH)
command1 |= QSPI_CS_SW_VAL;
else
command1 &= ~QSPI_CS_SW_VAL;
tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
if (cdata && cdata->tx_clk_tap_delay)
tx_tap = cdata->tx_clk_tap_delay;
if (cdata && cdata->rx_clk_tap_delay)
rx_tap = cdata->rx_clk_tap_delay;
command2 = QSPI_TX_TAP_DELAY(tx_tap) | QSPI_RX_TAP_DELAY(rx_tap);
if (command2 != tqspi->def_command2_reg)
tegra_qspi_writel(tqspi, command2, QSPI_COMMAND2);
} else {
command1 = tqspi->command1_reg;
command1 &= ~QSPI_BIT_LENGTH(~0);
command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
}
command1 &= ~QSPI_SDR_DDR_SEL;
return command1;
}
static int tegra_qspi_start_transfer_one(struct spi_device *spi,
struct spi_transfer *t, u32 command1)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
unsigned int total_fifo_words;
u8 bus_width = 0;
int ret;
total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
command1 &= ~QSPI_PACKED;
if (tqspi->is_packed)
command1 |= QSPI_PACKED;
tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
tqspi->cur_direction = 0;
command1 &= ~(QSPI_TX_EN | QSPI_RX_EN);
if (t->rx_buf) {
command1 |= QSPI_RX_EN;
tqspi->cur_direction |= DATA_DIR_RX;
bus_width = t->rx_nbits;
}
if (t->tx_buf) {
command1 |= QSPI_TX_EN;
tqspi->cur_direction |= DATA_DIR_TX;
bus_width = t->tx_nbits;
}
command1 &= ~QSPI_INTERFACE_WIDTH_MASK;
if (bus_width == SPI_NBITS_QUAD)
command1 |= QSPI_INTERFACE_WIDTH_QUAD;
else if (bus_width == SPI_NBITS_DUAL)
command1 |= QSPI_INTERFACE_WIDTH_DUAL;
else
command1 |= QSPI_INTERFACE_WIDTH_SINGLE;
tqspi->command1_reg = command1;
tegra_qspi_writel(tqspi, QSPI_NUM_DUMMY_CYCLE(tqspi->dummy_cycles), QSPI_MISC_REG);
ret = tegra_qspi_flush_fifos(tqspi, false);
if (ret < 0)
return ret;
if (tqspi->use_dma && total_fifo_words > QSPI_FIFO_DEPTH)
ret = tegra_qspi_start_dma_based_transfer(tqspi, t);
else
ret = tegra_qspi_start_cpu_based_transfer(tqspi, t);
return ret;
}
static struct tegra_qspi_client_data *tegra_qspi_parse_cdata_dt(struct spi_device *spi)
{
struct tegra_qspi_client_data *cdata;
struct device_node *slave_np = spi->dev.of_node;
cdata = kzalloc(sizeof(*cdata), GFP_KERNEL);
if (!cdata)
return NULL;
of_property_read_u32(slave_np, "nvidia,tx-clk-tap-delay",
&cdata->tx_clk_tap_delay);
of_property_read_u32(slave_np, "nvidia,rx-clk-tap-delay",
&cdata->rx_clk_tap_delay);
return cdata;
}
static void tegra_qspi_cleanup(struct spi_device *spi)
{
struct tegra_qspi_client_data *cdata = spi->controller_data;
spi->controller_data = NULL;
kfree(cdata);
}
static int tegra_qspi_setup(struct spi_device *spi)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
struct tegra_qspi_client_data *cdata = spi->controller_data;
unsigned long flags;
u32 val;
int ret;
ret = pm_runtime_resume_and_get(tqspi->dev);
if (ret < 0) {
dev_err(tqspi->dev, "failed to get runtime PM: %d\n", ret);
return ret;
}
if (!cdata) {
cdata = tegra_qspi_parse_cdata_dt(spi);
spi->controller_data = cdata;
}
spin_lock_irqsave(&tqspi->lock, flags);
/* keep default cs state to inactive */
val = tqspi->def_command1_reg;
if (spi->mode & SPI_CS_HIGH)
val &= ~QSPI_CS_SW_VAL;
else
val |= QSPI_CS_SW_VAL;
tqspi->def_command1_reg = val;
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
spin_unlock_irqrestore(&tqspi->lock, flags);
pm_runtime_put(tqspi->dev);
return 0;
}
static void tegra_qspi_dump_regs(struct tegra_qspi *tqspi)
{
dev_dbg(tqspi->dev, "============ QSPI REGISTER DUMP ============\n");
dev_dbg(tqspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_COMMAND1),
tegra_qspi_readl(tqspi, QSPI_COMMAND2));
dev_dbg(tqspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_DMA_CTL),
tegra_qspi_readl(tqspi, QSPI_DMA_BLK));
dev_dbg(tqspi->dev, "INTR_MASK: 0x%08x | MISC: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_INTR_MASK),
tegra_qspi_readl(tqspi, QSPI_MISC_REG));
dev_dbg(tqspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS),
tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS));
}
static void tegra_qspi_handle_error(struct tegra_qspi *tqspi)
{
dev_err(tqspi->dev, "error in transfer, fifo status 0x%08x\n", tqspi->status_reg);
tegra_qspi_dump_regs(tqspi);
tegra_qspi_flush_fifos(tqspi, true);
reset_control_assert(tqspi->rst);
udelay(2);
reset_control_deassert(tqspi->rst);
}
static void tegra_qspi_transfer_end(struct spi_device *spi)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
if (cs_val)
tqspi->command1_reg |= QSPI_CS_SW_VAL;
else
tqspi->command1_reg &= ~QSPI_CS_SW_VAL;
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
}
static int tegra_qspi_transfer_one_message(struct spi_master *master, struct spi_message *msg)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
struct spi_device *spi = msg->spi;
struct spi_transfer *transfer;
bool is_first_msg = true;
int ret;
msg->status = 0;
msg->actual_length = 0;
tqspi->tx_status = 0;
tqspi->rx_status = 0;
list_for_each_entry(transfer, &msg->transfers, transfer_list) {
struct spi_transfer *xfer = transfer;
u8 dummy_bytes = 0;
u32 cmd1;
tqspi->dummy_cycles = 0;
/*
* Tegra QSPI hardware supports dummy bytes transfer after actual transfer
* bytes based on programmed dummy clock cycles in the QSPI_MISC register.
* So, check if the next transfer is dummy data transfer and program dummy
* clock cycles along with the current transfer and skip next transfer.
*/
if (!list_is_last(&xfer->transfer_list, &msg->transfers)) {
struct spi_transfer *next_xfer;
next_xfer = list_next_entry(xfer, transfer_list);
if (next_xfer->dummy_data) {
u32 dummy_cycles = next_xfer->len * 8 / next_xfer->tx_nbits;
if (dummy_cycles <= QSPI_DUMMY_CYCLES_MAX) {
tqspi->dummy_cycles = dummy_cycles;
dummy_bytes = next_xfer->len;
transfer = next_xfer;
}
}
}
reinit_completion(&tqspi->xfer_completion);
cmd1 = tegra_qspi_setup_transfer_one(spi, xfer, is_first_msg);
ret = tegra_qspi_start_transfer_one(spi, xfer, cmd1);
if (ret < 0) {
dev_err(tqspi->dev, "failed to start transfer: %d\n", ret);
goto complete_xfer;
}
is_first_msg = false;
ret = wait_for_completion_timeout(&tqspi->xfer_completion,
QSPI_DMA_TIMEOUT);
if (WARN_ON(ret == 0)) {
dev_err(tqspi->dev, "transfer timeout: %d\n", ret);
if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_TX))
dmaengine_terminate_all(tqspi->tx_dma_chan);
if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_RX))
dmaengine_terminate_all(tqspi->rx_dma_chan);
tegra_qspi_handle_error(tqspi);
ret = -EIO;
goto complete_xfer;
}
if (tqspi->tx_status || tqspi->rx_status) {
tegra_qspi_handle_error(tqspi);
ret = -EIO;
goto complete_xfer;
}
msg->actual_length += xfer->len + dummy_bytes;
complete_xfer:
if (ret < 0) {
tegra_qspi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
goto exit;
}
if (list_is_last(&xfer->transfer_list, &msg->transfers)) {
/* de-activate CS after last transfer only when cs_change is not set */
if (!xfer->cs_change) {
tegra_qspi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
}
} else if (xfer->cs_change) {
/* de-activated CS between the transfers only when cs_change is set */
tegra_qspi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
}
}
ret = 0;
exit:
msg->status = ret;
spi_finalize_current_message(master);
return ret;
}
static irqreturn_t handle_cpu_based_xfer(struct tegra_qspi *tqspi)
{
struct spi_transfer *t = tqspi->curr_xfer;
unsigned long flags;
spin_lock_irqsave(&tqspi->lock, flags);
if (tqspi->tx_status || tqspi->rx_status) {
tegra_qspi_handle_error(tqspi);
complete(&tqspi->xfer_completion);
goto exit;
}
if (tqspi->cur_direction & DATA_DIR_RX)
tegra_qspi_read_rx_fifo_to_client_rxbuf(tqspi, t);
if (tqspi->cur_direction & DATA_DIR_TX)
tqspi->cur_pos = tqspi->cur_tx_pos;
else
tqspi->cur_pos = tqspi->cur_rx_pos;
if (tqspi->cur_pos == t->len) {
complete(&tqspi->xfer_completion);
goto exit;
}
tegra_qspi_calculate_curr_xfer_param(tqspi, t);
tegra_qspi_start_cpu_based_transfer(tqspi, t);
exit:
spin_unlock_irqrestore(&tqspi->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t handle_dma_based_xfer(struct tegra_qspi *tqspi)
{
struct spi_transfer *t = tqspi->curr_xfer;
unsigned int total_fifo_words;
unsigned long flags;
long wait_status;
int err = 0;
if (tqspi->cur_direction & DATA_DIR_TX) {
if (tqspi->tx_status) {
dmaengine_terminate_all(tqspi->tx_dma_chan);
err += 1;
} else {
wait_status = wait_for_completion_interruptible_timeout(
&tqspi->tx_dma_complete, QSPI_DMA_TIMEOUT);
if (wait_status <= 0) {
dmaengine_terminate_all(tqspi->tx_dma_chan);
dev_err(tqspi->dev, "failed TX DMA transfer\n");
err += 1;
}
}
}
if (tqspi->cur_direction & DATA_DIR_RX) {
if (tqspi->rx_status) {
dmaengine_terminate_all(tqspi->rx_dma_chan);
err += 2;
} else {
wait_status = wait_for_completion_interruptible_timeout(
&tqspi->rx_dma_complete, QSPI_DMA_TIMEOUT);
if (wait_status <= 0) {
dmaengine_terminate_all(tqspi->rx_dma_chan);
dev_err(tqspi->dev, "failed RX DMA transfer\n");
err += 2;
}
}
}
spin_lock_irqsave(&tqspi->lock, flags);
if (err) {
tegra_qspi_dma_unmap_xfer(tqspi, t);
tegra_qspi_handle_error(tqspi);
complete(&tqspi->xfer_completion);
goto exit;
}
if (tqspi->cur_direction & DATA_DIR_RX)
tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(tqspi, t);
if (tqspi->cur_direction & DATA_DIR_TX)
tqspi->cur_pos = tqspi->cur_tx_pos;
else
tqspi->cur_pos = tqspi->cur_rx_pos;
if (tqspi->cur_pos == t->len) {
tegra_qspi_dma_unmap_xfer(tqspi, t);
complete(&tqspi->xfer_completion);
goto exit;
}
tegra_qspi_dma_unmap_xfer(tqspi, t);
/* continue transfer in current message */
total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
if (total_fifo_words > QSPI_FIFO_DEPTH)
err = tegra_qspi_start_dma_based_transfer(tqspi, t);
else
err = tegra_qspi_start_cpu_based_transfer(tqspi, t);
exit:
spin_unlock_irqrestore(&tqspi->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t tegra_qspi_isr_thread(int irq, void *context_data)
{
struct tegra_qspi *tqspi = context_data;
tqspi->status_reg = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
if (tqspi->cur_direction & DATA_DIR_TX)
tqspi->tx_status = tqspi->status_reg & (QSPI_TX_FIFO_UNF | QSPI_TX_FIFO_OVF);
if (tqspi->cur_direction & DATA_DIR_RX)
tqspi->rx_status = tqspi->status_reg & (QSPI_RX_FIFO_OVF | QSPI_RX_FIFO_UNF);
tegra_qspi_mask_clear_irq(tqspi);
if (!tqspi->is_curr_dma_xfer)
return handle_cpu_based_xfer(tqspi);
return handle_dma_based_xfer(tqspi);
}
static const struct of_device_id tegra_qspi_of_match[] = {
{ .compatible = "nvidia,tegra210-qspi", },
{ .compatible = "nvidia,tegra186-qspi", },
{ .compatible = "nvidia,tegra194-qspi", },
{}
};
MODULE_DEVICE_TABLE(of, tegra_qspi_of_match);
static int tegra_qspi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct tegra_qspi *tqspi;
struct resource *r;
int ret, qspi_irq;
int bus_num;
master = devm_spi_alloc_master(&pdev->dev, sizeof(*tqspi));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
tqspi = spi_master_get_devdata(master);
master->mode_bits = SPI_MODE_0 | SPI_MODE_3 | SPI_CS_HIGH |
SPI_TX_DUAL | SPI_RX_DUAL | SPI_TX_QUAD | SPI_RX_QUAD;
master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
master->setup = tegra_qspi_setup;
master->cleanup = tegra_qspi_cleanup;
master->transfer_one_message = tegra_qspi_transfer_one_message;
master->num_chipselect = 1;
master->auto_runtime_pm = true;
bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
if (bus_num >= 0)
master->bus_num = bus_num;
tqspi->master = master;
tqspi->dev = &pdev->dev;
spin_lock_init(&tqspi->lock);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tqspi->base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(tqspi->base))
return PTR_ERR(tqspi->base);
tqspi->phys = r->start;
qspi_irq = platform_get_irq(pdev, 0);
tqspi->irq = qspi_irq;
tqspi->clk = devm_clk_get(&pdev->dev, "qspi");
if (IS_ERR(tqspi->clk)) {
ret = PTR_ERR(tqspi->clk);
dev_err(&pdev->dev, "failed to get clock: %d\n", ret);
return ret;
}
tqspi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(tqspi->rst)) {
ret = PTR_ERR(tqspi->rst);
dev_err(&pdev->dev, "failed to get reset control: %d\n", ret);
return ret;
}
tqspi->max_buf_size = QSPI_FIFO_DEPTH << 2;
tqspi->dma_buf_size = DEFAULT_QSPI_DMA_BUF_LEN;
ret = tegra_qspi_init_dma(tqspi);
if (ret < 0)
return ret;
if (tqspi->use_dma)
tqspi->max_buf_size = tqspi->dma_buf_size;
init_completion(&tqspi->tx_dma_complete);
init_completion(&tqspi->rx_dma_complete);
init_completion(&tqspi->xfer_completion);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to get runtime PM: %d\n", ret);
goto exit_pm_disable;
}
reset_control_assert(tqspi->rst);
udelay(2);
reset_control_deassert(tqspi->rst);
tqspi->def_command1_reg = QSPI_M_S | QSPI_CS_SW_HW | QSPI_CS_SW_VAL;
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
tqspi->spi_cs_timing1 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING1);
tqspi->spi_cs_timing2 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING2);
tqspi->def_command2_reg = tegra_qspi_readl(tqspi, QSPI_COMMAND2);
pm_runtime_put(&pdev->dev);
ret = request_threaded_irq(tqspi->irq, NULL,
tegra_qspi_isr_thread, IRQF_ONESHOT,
dev_name(&pdev->dev), tqspi);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", tqspi->irq, ret);
goto exit_pm_disable;
}
master->dev.of_node = pdev->dev.of_node;
ret = spi_register_master(master);
if (ret < 0) {
dev_err(&pdev->dev, "failed to register master: %d\n", ret);
goto exit_free_irq;
}
return 0;
exit_free_irq:
free_irq(qspi_irq, tqspi);
exit_pm_disable:
pm_runtime_disable(&pdev->dev);
tegra_qspi_deinit_dma(tqspi);
return ret;
}
static int tegra_qspi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
spi_unregister_master(master);
free_irq(tqspi->irq, tqspi);
pm_runtime_disable(&pdev->dev);
tegra_qspi_deinit_dma(tqspi);
return 0;
}
static int __maybe_unused tegra_qspi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
return spi_master_suspend(master);
}
static int __maybe_unused tegra_qspi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0) {
dev_err(dev, "failed to get runtime PM: %d\n", ret);
return ret;
}
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
tegra_qspi_writel(tqspi, tqspi->def_command2_reg, QSPI_COMMAND2);
pm_runtime_put(dev);
return spi_master_resume(master);
}
static int __maybe_unused tegra_qspi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
/* flush all write which are in PPSB queue by reading back */
tegra_qspi_readl(tqspi, QSPI_COMMAND1);
clk_disable_unprepare(tqspi->clk);
return 0;
}
static int __maybe_unused tegra_qspi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(tqspi->clk);
if (ret < 0)
dev_err(tqspi->dev, "failed to enable clock: %d\n", ret);
return ret;
}
static const struct dev_pm_ops tegra_qspi_pm_ops = {
SET_RUNTIME_PM_OPS(tegra_qspi_runtime_suspend, tegra_qspi_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(tegra_qspi_suspend, tegra_qspi_resume)
};
static struct platform_driver tegra_qspi_driver = {
.driver = {
.name = "tegra-qspi",
.pm = &tegra_qspi_pm_ops,
.of_match_table = tegra_qspi_of_match,
},
.probe = tegra_qspi_probe,
.remove = tegra_qspi_remove,
};
module_platform_driver(tegra_qspi_driver);
MODULE_ALIAS("platform:qspi-tegra");
MODULE_DESCRIPTION("NVIDIA Tegra QSPI Controller Driver");
MODULE_AUTHOR("Sowjanya Komatineni <skomatineni@nvidia.com>");
MODULE_LICENSE("GPL v2");
......@@ -307,7 +307,7 @@
#define TEGRA210_CLK_AUDIO4 275
#define TEGRA210_CLK_SPDIF 276
/* 277 */
/* 278 */
#define TEGRA210_CLK_QSPI_PM 278
/* 279 */
/* 280 */
#define TEGRA210_CLK_SOR0_LVDS 281 /* deprecated */
......
......@@ -825,6 +825,7 @@ extern void spi_res_release(struct spi_controller *ctlr,
* transfer. If 0 the default (from @spi_device) is used.
* @bits_per_word: select a bits_per_word other than the device default
* for this transfer. If 0 the default (from @spi_device) is used.
* @dummy_data: indicates transfer is dummy bytes transfer.
* @cs_change: affects chipselect after this transfer completes
* @cs_change_delay: delay between cs deassert and assert when
* @cs_change is set and @spi_transfer is not the last in @spi_message
......@@ -937,6 +938,7 @@ struct spi_transfer {
struct sg_table tx_sg;
struct sg_table rx_sg;
unsigned dummy_data:1;
unsigned cs_change:1;
unsigned tx_nbits:3;
unsigned rx_nbits:3;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment