Commit eea221ce authored by Atsushi Nemoto's avatar Atsushi Nemoto Committed by Jeff Garzik

tc35815 driver update (take 2)

Current tc35815 driver is very obsolete and less maintained for a long
time.  Replace it with a new driver based on one from CELF patch
archive.

Major advantages of CELF version (version 1.23, for kernel 2.6.10) are:

* Independent of JMR3927.
  (Actually independent of MIPS, but AFAIK the chip is used only on
   MIPS platforms)
* TX4938 support.
* 64-bit proof.
* Asynchronous and on-demand auto negotiation.
* High performance on non-coherent architecture.
* ethtool support.
* Many bugfixes and cleanups.

And improvoments since version 1.23 are:

* TX4939 support.
* NETPOLL support.
* NAPI support. (disabled by default)
* Reduce memcpy on receiving.
* PM support.
* Many cleanups and bugfixes.
Signed-off-by: default avatarAtsushi Nemoto <anemo@mba.ocn.ne.jp>
Signed-off-by: default avatarJeff Garzik <jeff@garzik.org>
parent 3664006a
...@@ -1444,7 +1444,8 @@ config CS89x0 ...@@ -1444,7 +1444,8 @@ config CS89x0
config TC35815 config TC35815
tristate "TOSHIBA TC35815 Ethernet support" tristate "TOSHIBA TC35815 Ethernet support"
depends on NET_PCI && PCI && TOSHIBA_JMR3927 depends on NET_PCI && PCI && MIPS
select MII
config DGRS config DGRS
tristate "Digi Intl. RightSwitch SE-X support" tristate "Digi Intl. RightSwitch SE-X support"
......
/* tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux. /*
* tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
*
* Based on skelton.c by Donald Becker.
* *
* This driver is a replacement of older and less maintained version.
* This is a header of the older version:
* -----<snip>-----
* Copyright 2001 MontaVista Software Inc. * Copyright 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc. * Author: MontaVista Software, Inc.
* ahennessy@mvista.com * ahennessy@mvista.com
*
* Based on skelton.c by Donald Becker.
* Copyright (C) 2000-2001 Toshiba Corporation * Copyright (C) 2000-2001 Toshiba Corporation
* static const char *version =
* "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
* -----<snip>-----
* *
* This program is free software; you can redistribute it and/or modify it * This file is subject to the terms and conditions of the GNU General Public
* under the terms of the GNU General Public License as published by the * License. See the file "COPYING" in the main directory of this archive
* Free Software Foundation; either version 2 of the License, or (at your * for more details.
* option) any later version.
* *
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * (C) Copyright TOSHIBA CORPORATION 2004-2005
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * All Rights Reserved.
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* *
* You should have received a copy of the GNU General Public License along * Revision History:
* with this program; if not, write to the Free Software Foundation, Inc., * 1.13 64-bit proof.
* 675 Mass Ave, Cambridge, MA 02139, USA. * 1.14 Do not round-up transmit length.
* 1.15 Define TC35815_DMA_SYNC_ONDEMAND, cleanup.
* 1.16 Fix free_page bug introduced in 1.15
* 1.17 Add mii/ethtool ioctl support.
* Remove workaround for early TX4938. Cleanup.
* 1.20 Kernel 2.6.
* 1.21 Fix receive packet length (omit CRC).
* Call netif_carrier_on/netif_carrier_off.
* Add kernel/module options (speed, duplex, doforce).
* Do not try "force link mode" by default.
* Reconfigure CAM on restarting.
* Reset PHY on restarting.
* Add workaround for 100MHalf HUB.
* 1.22 Minor fix.
* 1.23 Minor cleanup.
* 1.24 Remove tc35815_setup since new stype option
* ("tc35815.speed=10", etc.) can be used for 2.6 kernel.
* 1.25 TX4939 support.
* 1.26 Minor cleanup.
* 1.27 Move TX4939 PCFG.SPEEDn control code out from this driver.
* Cleanup init_dev_addr. (NETDEV_REGISTER event notifier
* can overwrite dev_addr)
* support ETHTOOL_GPERMADDR.
* 1.28 Minor cleanup.
* 1.29 support netpoll.
* 1.30 Minor cleanup.
* 1.31 NAPI support. (disabled by default)
* Use DMA_RxAlign_2 if possible.
* Do not use PackedBuffer.
* Cleanup.
* 1.32 Fix free buffer management on non-PackedBuffer mode.
* 1.33 Fix netpoll build.
* 1.34 Fix netpoll locking. "BH rule" for NAPI is not enough with
* netpoll, hard_start_xmit might be called from irq context.
* PM support.
*/ */
static const char *version = #ifdef TC35815_NAPI
"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n"; #define DRV_VERSION "1.34-NAPI"
#else
#define DRV_VERSION "1.34"
#endif
static const char *version = "tc35815.c:v" DRV_VERSION "\n";
#define MODNAME "tc35815"
#include <linux/module.h> #include <linux/module.h>
#include <linux/kernel.h> #include <linux/kernel.h>
...@@ -40,6 +77,7 @@ static const char *version = ...@@ -40,6 +77,7 @@ static const char *version =
#include <linux/in.h> #include <linux/in.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/string.h> #include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/netdevice.h> #include <linux/netdevice.h>
...@@ -47,36 +85,47 @@ static const char *version = ...@@ -47,36 +85,47 @@ static const char *version =
#include <linux/skbuff.h> #include <linux/skbuff.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/proc_fs.h> #include <linux/mii.h>
#include <linux/spinlock.h> #include <linux/ethtool.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <asm/io.h> #include <asm/io.h>
#include <asm/dma.h>
#include <asm/byteorder.h> #include <asm/byteorder.h>
/*
* The name of the card. Is used for messages and in the requests for
* io regions, irqs and dma channels
*/
static const char* cardname = "TC35815CF";
#define TC35815_PROC_ENTRY "net/tc35815"
#define TC35815_MODULE_NAME "TC35815CF"
#define TX_TIMEOUT (4*HZ)
/* First, a few definitions that the brave might change. */ /* First, a few definitions that the brave might change. */
/* use 0 for production, 1 for verification, >2 for debug */
#ifndef TC35815_DEBUG
#define TC35815_DEBUG 1
#endif
static unsigned int tc35815_debug = TC35815_DEBUG;
#define GATHER_TXINT /* On-Demand Tx Interrupt */ #define GATHER_TXINT /* On-Demand Tx Interrupt */
#define WORKAROUND_LOSTCAR
#define WORKAROUND_100HALF_PROMISC
/* #define TC35815_USE_PACKEDBUFFER */
typedef enum {
TC35815CF = 0,
TC35815_NWU,
TC35815_TX4939,
} board_t;
/* indexed by board_t, above */
static const struct {
const char *name;
} board_info[] __devinitdata = {
{ "TOSHIBA TC35815CF 10/100BaseTX" },
{ "TOSHIBA TC35815 with Wake on LAN" },
{ "TOSHIBA TC35815/TX4939" },
};
static const struct pci_device_id tc35815_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
{0,}
};
MODULE_DEVICE_TABLE (pci, tc35815_pci_tbl);
#define vtonocache(p) KSEG1ADDR(virt_to_phys(p)) /* see MODULE_PARM_DESC */
static struct tc35815_options {
int speed;
int duplex;
int doforce;
} options;
/* /*
* Registers * Registers
...@@ -119,6 +168,11 @@ struct tc35815_regs { ...@@ -119,6 +168,11 @@ struct tc35815_regs {
* Bit assignments * Bit assignments
*/ */
/* DMA_Ctl bit asign ------------------------------------------------------- */ /* DMA_Ctl bit asign ------------------------------------------------------- */
#define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
#define DMA_RxAlign_1 0x00400000
#define DMA_RxAlign_2 0x00800000
#define DMA_RxAlign_3 0x00c00000
#define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
#define DMA_IntMask 0x00040000 /* 1:Interupt mask */ #define DMA_IntMask 0x00040000 /* 1:Interupt mask */
#define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */ #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
#define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */ #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
...@@ -269,42 +323,6 @@ struct tc35815_regs { ...@@ -269,42 +323,6 @@ struct tc35815_regs {
#define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */ #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
/* MII register offsets */
#define MII_CONTROL 0x0000
#define MII_STATUS 0x0001
#define MII_PHY_ID0 0x0002
#define MII_PHY_ID1 0x0003
#define MII_ANAR 0x0004
#define MII_ANLPAR 0x0005
#define MII_ANER 0x0006
/* MII Control register bit definitions. */
#define MIICNTL_FDX 0x0100
#define MIICNTL_RST_AUTO 0x0200
#define MIICNTL_ISOLATE 0x0400
#define MIICNTL_PWRDWN 0x0800
#define MIICNTL_AUTO 0x1000
#define MIICNTL_SPEED 0x2000
#define MIICNTL_LPBK 0x4000
#define MIICNTL_RESET 0x8000
/* MII Status register bit significance. */
#define MIISTAT_EXT 0x0001
#define MIISTAT_JAB 0x0002
#define MIISTAT_LINK 0x0004
#define MIISTAT_CAN_AUTO 0x0008
#define MIISTAT_FAULT 0x0010
#define MIISTAT_AUTO_DONE 0x0020
#define MIISTAT_CAN_T 0x0800
#define MIISTAT_CAN_T_FDX 0x1000
#define MIISTAT_CAN_TX 0x2000
#define MIISTAT_CAN_TX_FDX 0x4000
#define MIISTAT_CAN_T4 0x8000
/* MII Auto-Negotiation Expansion/RemoteEnd Register Bits */
#define MII_AN_TX_FDX 0x0100
#define MII_AN_TX_HDX 0x0080
#define MII_AN_10_FDX 0x0040
#define MII_AN_10_HDX 0x0020
/* /*
* Descriptors * Descriptors
*/ */
...@@ -352,32 +370,51 @@ struct BDesc { ...@@ -352,32 +370,51 @@ struct BDesc {
#ifdef NO_CHECK_CARRIER #ifdef NO_CHECK_CARRIER
#define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \ #define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \
Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \ Tx_EnExColl | Tx_EnExDefer | Tx_EnUnder | \
Tx_En) /* maybe 0x7d01 */ Tx_En) /* maybe 0x7b01 */
#else #else
#define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \ #define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \
Tx_EnExColl | Tx_EnExDefer | Tx_EnUnder | \ Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
Tx_En) /* maybe 0x7f01 */ Tx_En) /* maybe 0x7b01 */
#endif #endif
#define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \ #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */ | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
#define INT_EN_CMD (Int_NRAbtEn | \ #define INT_EN_CMD (Int_NRAbtEn | \
Int_DParDEn | Int_DParErrEn | \ Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \ Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
Int_STargAbtEn | \ Int_STargAbtEn | \
Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/ Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
#define DMA_CTL_CMD DMA_BURST_SIZE
#define HAVE_DMA_RXALIGN(lp) likely((lp)->boardtype != TC35815CF)
/* Tuning parameters */ /* Tuning parameters */
#define DMA_BURST_SIZE 32 #define DMA_BURST_SIZE 32
#define TX_THRESHOLD 1024 #define TX_THRESHOLD 1024
#define TX_THRESHOLD_MAX 1536 /* used threshold with packet max byte for low pci transfer ability.*/
#define TX_THRESHOLD_KEEP_LIMIT 10 /* setting threshold max value when overrun error occured this count. */
/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
#ifdef TC35815_USE_PACKEDBUFFER
#define FD_PAGE_NUM 2 #define FD_PAGE_NUM 2
#define FD_PAGE_ORDER 1 #define RX_BUF_NUM 8 /* >= 2 */
/* 16 + RX_BUF_PAGES * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*2 */
#define RX_BUF_PAGES 8 /* >= 2 */
#define RX_FD_NUM 250 /* >= 32 */ #define RX_FD_NUM 250 /* >= 32 */
#define TX_FD_NUM 128 #define TX_FD_NUM 128
#define RX_BUF_SIZE PAGE_SIZE
#else /* TC35815_USE_PACKEDBUFFER */
#define FD_PAGE_NUM 4
#define RX_BUF_NUM 128 /* < 256 */
#define RX_FD_NUM 256 /* >= 32 */
#define TX_FD_NUM 128
#if RX_CTL_CMD & Rx_LongEn
#define RX_BUF_SIZE PAGE_SIZE
#elif RX_CTL_CMD & Rx_StripCRC
#define RX_BUF_SIZE ALIGN(ETH_FRAME_LEN + 4 + 2, 32) /* +2: reserve */
#else
#define RX_BUF_SIZE ALIGN(ETH_FRAME_LEN + 2, 32) /* +2: reserve */
#endif
#endif /* TC35815_USE_PACKEDBUFFER */
#define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
#define NAPI_WEIGHT 16
struct TxFD { struct TxFD {
struct FDesc fd; struct FDesc fd;
...@@ -392,18 +429,27 @@ struct RxFD { ...@@ -392,18 +429,27 @@ struct RxFD {
struct FrFD { struct FrFD {
struct FDesc fd; struct FDesc fd;
struct BDesc bd[RX_BUF_PAGES]; struct BDesc bd[RX_BUF_NUM];
}; };
extern unsigned long tc_readl(volatile __u32 *addr); #define tc_readl(addr) readl(addr)
extern void tc_writel(unsigned long data, volatile __u32 *addr); #define tc_writel(d, addr) writel(d, addr)
dma_addr_t priv_dma_handle; #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
/* Timer state engine. */
enum tc35815_timer_state {
arbwait = 0, /* Waiting for auto negotiation to complete. */
lupwait = 1, /* Auto-neg complete, awaiting link-up status. */
ltrywait = 2, /* Forcing try of all modes, from fastest to slowest. */
asleep = 3, /* Time inactive. */
lcheck = 4, /* Check link status. */
};
/* Information that need to be kept for each board. */ /* Information that need to be kept for each board. */
struct tc35815_local { struct tc35815_local {
struct net_device *next_module; struct pci_dev *pci_dev;
/* statistics */ /* statistics */
struct net_device_stats stats; struct net_device_stats stats;
...@@ -411,216 +457,372 @@ struct tc35815_local { ...@@ -411,216 +457,372 @@ struct tc35815_local {
int max_tx_qlen; int max_tx_qlen;
int tx_ints; int tx_ints;
int rx_ints; int rx_ints;
int tx_underrun;
} lstats; } lstats;
int tbusy; /* Tx control lock. This protects the transmit buffer ring
int option; * state along with the "tx full" state of the driver. This
#define TC35815_OPT_AUTO 0x00 * means all netif_queue flow control actions are protected
#define TC35815_OPT_10M 0x01 * by this lock as well.
#define TC35815_OPT_100M 0x02 */
#define TC35815_OPT_FULLDUP 0x04 spinlock_t lock;
int linkspeed; /* 10 or 100 */
int phy_addr;
int fullduplex; int fullduplex;
unsigned short saved_lpa;
struct timer_list timer;
enum tc35815_timer_state timer_state; /* State of auto-neg timer. */
unsigned int timer_ticks; /* Number of clicks at each state */
/* /*
* Transmitting: Batch Mode. * Transmitting: Batch Mode.
* 1 BD in 1 TxFD. * 1 BD in 1 TxFD.
* Receiving: Packing Mode. * Receiving: Packing Mode. (TC35815_USE_PACKEDBUFFER)
* 1 circular FD for Free Buffer List. * 1 circular FD for Free Buffer List.
* RX_BUG_PAGES BD in Free Buffer FD. * RX_BUF_NUM BD in Free Buffer FD.
* One Free Buffer BD has PAGE_SIZE data buffer. * One Free Buffer BD has PAGE_SIZE data buffer.
* Or Non-Packing Mode.
* 1 circular FD for Free Buffer List.
* RX_BUF_NUM BD in Free Buffer FD.
* One Free Buffer BD has ETH_FRAME_LEN data buffer.
*/ */
struct pci_dev *pdev; void * fd_buf; /* for TxFD, RxFD, FrFD */
dma_addr_t fd_buf_dma_handle; dma_addr_t fd_buf_dma;
void * fd_buf; /* for TxFD, TxFD, FrFD */
struct TxFD *tfd_base; struct TxFD *tfd_base;
int tfd_start; unsigned int tfd_start;
int tfd_end; unsigned int tfd_end;
struct RxFD *rfd_base; struct RxFD *rfd_base;
struct RxFD *rfd_limit; struct RxFD *rfd_limit;
struct RxFD *rfd_cur; struct RxFD *rfd_cur;
struct FrFD *fbl_ptr; struct FrFD *fbl_ptr;
#ifdef TC35815_USE_PACKEDBUFFER
unsigned char fbl_curid; unsigned char fbl_curid;
dma_addr_t data_buf_dma_handle[RX_BUF_PAGES]; void * data_buf[RX_BUF_NUM]; /* packing */
void * data_buf[RX_BUF_PAGES]; /* packing */ dma_addr_t data_buf_dma[RX_BUF_NUM];
spinlock_t lock; struct {
struct sk_buff *skb;
dma_addr_t skb_dma;
} tx_skbs[TX_FD_NUM];
#else
unsigned int fbl_count;
struct {
struct sk_buff *skb;
dma_addr_t skb_dma;
} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
#endif
struct mii_if_info mii;
unsigned short mii_id[2];
u32 msg_enable;
board_t boardtype;
}; };
/* Index to functions, as function prototypes. */ static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
{
return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
}
#ifdef DEBUG
static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
{
return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
}
#endif
#ifdef TC35815_USE_PACKEDBUFFER
static inline void *rxbuf_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
{
int i;
for (i = 0; i < RX_BUF_NUM; i++) {
if (bus >= lp->data_buf_dma[i] &&
bus < lp->data_buf_dma[i] + PAGE_SIZE)
return (void *)((u8 *)lp->data_buf[i] +
(bus - lp->data_buf_dma[i]));
}
return NULL;
}
#define TC35815_DMA_SYNC_ONDEMAND
static void* alloc_rxbuf_page(struct pci_dev *hwdev, dma_addr_t *dma_handle)
{
#ifdef TC35815_DMA_SYNC_ONDEMAND
void *buf;
/* pci_map + pci_dma_sync will be more effective than
* pci_alloc_consistent on some archs. */
if ((buf = (void *)__get_free_page(GFP_ATOMIC)) == NULL)
return NULL;
*dma_handle = pci_map_single(hwdev, buf, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(*dma_handle)) {
free_page((unsigned long)buf);
return NULL;
}
return buf;
#else
return pci_alloc_consistent(hwdev, PAGE_SIZE, dma_handle);
#endif
}
static void free_rxbuf_page(struct pci_dev *hwdev, void *buf, dma_addr_t dma_handle)
{
#ifdef TC35815_DMA_SYNC_ONDEMAND
pci_unmap_single(hwdev, dma_handle, PAGE_SIZE, PCI_DMA_FROMDEVICE);
free_page((unsigned long)buf);
#else
pci_free_consistent(hwdev, PAGE_SIZE, buf, dma_handle);
#endif
}
#else /* TC35815_USE_PACKEDBUFFER */
static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
struct pci_dev *hwdev,
dma_addr_t *dma_handle)
{
struct sk_buff *skb;
skb = dev_alloc_skb(RX_BUF_SIZE);
if (!skb)
return NULL;
skb->dev = dev;
*dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(*dma_handle)) {
dev_kfree_skb_any(skb);
return NULL;
}
skb_reserve(skb, 2); /* make IP header 4byte aligned */
return skb;
}
static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
{
pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(skb);
}
#endif /* TC35815_USE_PACKEDBUFFER */
static int __devinit tc35815_probe1(struct pci_dev *pdev, unsigned int base_addr, unsigned int irq); /* Index to functions, as function prototypes. */
static int tc35815_open(struct net_device *dev); static int tc35815_open(struct net_device *dev);
static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev); static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
static void tc35815_tx_timeout(struct net_device *dev);
static irqreturn_t tc35815_interrupt(int irq, void *dev_id); static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
#ifdef TC35815_NAPI
static int tc35815_rx(struct net_device *dev, int limit);
static int tc35815_poll(struct net_device *dev, int *budget);
#else
static void tc35815_rx(struct net_device *dev); static void tc35815_rx(struct net_device *dev);
#endif
static void tc35815_txdone(struct net_device *dev); static void tc35815_txdone(struct net_device *dev);
static int tc35815_close(struct net_device *dev); static int tc35815_close(struct net_device *dev);
static struct net_device_stats *tc35815_get_stats(struct net_device *dev); static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
static void tc35815_set_multicast_list(struct net_device *dev); static void tc35815_set_multicast_list(struct net_device *dev);
static void tc35815_tx_timeout(struct net_device *dev);
static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
#ifdef CONFIG_NET_POLL_CONTROLLER
static void tc35815_poll_controller(struct net_device *dev);
#endif
static const struct ethtool_ops tc35815_ethtool_ops;
/* Example routines you must write ;->. */
static void tc35815_chip_reset(struct net_device *dev); static void tc35815_chip_reset(struct net_device *dev);
static void tc35815_chip_init(struct net_device *dev); static void tc35815_chip_init(struct net_device *dev);
static void tc35815_find_phy(struct net_device *dev);
static void tc35815_phy_chip_init(struct net_device *dev); static void tc35815_phy_chip_init(struct net_device *dev);
/* A list of all installed tc35815 devices. */ #ifdef DEBUG
static struct net_device *root_tc35815_dev = NULL; static void panic_queues(struct net_device *dev);
#endif
/* static void tc35815_timer(unsigned long data);
* PCI device identifiers for "new style" Linux PCI Device Drivers static void tc35815_start_auto_negotiation(struct net_device *dev,
*/ struct ethtool_cmd *ep);
static struct pci_device_id tc35815_pci_tbl[] = { static int tc_mdio_read(struct net_device *dev, int phy_id, int location);
{ PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, static void tc_mdio_write(struct net_device *dev, int phy_id, int location,
{ 0, } int val);
};
MODULE_DEVICE_TABLE (pci, tc35815_pci_tbl); static void __devinit tc35815_init_dev_addr (struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int i;
/* dev_addr will be overwritten on NETDEV_REGISTER event */
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
;
for (i = 0; i < 6; i += 2) {
unsigned short data;
tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
;
data = tc_readl(&tr->PROM_Data);
dev->dev_addr[i] = data & 0xff;
dev->dev_addr[i+1] = data >> 8;
}
}
int static int __devinit tc35815_init_one (struct pci_dev *pdev,
tc35815_probe(struct pci_dev *pdev,
const struct pci_device_id *ent) const struct pci_device_id *ent)
{ {
int err = 0; void __iomem *ioaddr = NULL;
int ret; struct net_device *dev;
unsigned long pci_memaddr; struct tc35815_local *lp;
unsigned int pci_irq_line; int rc;
unsigned long mmio_start, mmio_end, mmio_flags, mmio_len;
static int printed_version;
if (!printed_version++) {
printk(version);
dev_printk(KERN_DEBUG, &pdev->dev,
"speed:%d duplex:%d doforce:%d\n",
options.speed, options.duplex, options.doforce);
}
if (!pdev->irq) {
dev_warn(&pdev->dev, "no IRQ assigned.\n");
return -ENODEV;
}
printk(KERN_INFO "tc35815_probe: found device %#08x.%#08x\n", ent->vendor, ent->device); /* dev zeroed in alloc_etherdev */
dev = alloc_etherdev (sizeof (*lp));
if (dev == NULL) {
dev_err(&pdev->dev, "unable to alloc new ethernet\n");
return -ENOMEM;
}
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
lp = dev->priv;
err = pci_enable_device(pdev); /* enable device (incl. PCI PM wakeup), and bus-mastering */
if (err) rc = pci_enable_device (pdev);
return err; if (rc)
goto err_out;
pci_memaddr = pci_resource_start (pdev, 1); mmio_start = pci_resource_start (pdev, 1);
mmio_end = pci_resource_end (pdev, 1);
mmio_flags = pci_resource_flags (pdev, 1);
mmio_len = pci_resource_len (pdev, 1);
printk(KERN_INFO " pci_memaddr=%#08lx resource_flags=%#08lx\n", pci_memaddr, pci_resource_flags (pdev, 0)); /* set this immediately, we need to know before
* we talk to the chip directly */
if (!pci_memaddr) { /* make sure PCI base addr 1 is MMIO */
printk(KERN_WARNING "no PCI MEM resources, aborting\n"); if (!(mmio_flags & IORESOURCE_MEM)) {
ret = -ENODEV; dev_err(&pdev->dev, "region #1 not an MMIO resource, aborting\n");
rc = -ENODEV;
goto err_out; goto err_out;
} }
pci_irq_line = pdev->irq;
/* irq disabled. */ /* check for weird/broken PCI region reporting */
if (pci_irq_line == 0) { if ((mmio_len < sizeof(struct tc35815_regs))) {
printk(KERN_WARNING "no PCI irq, aborting\n"); dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n");
ret = -ENODEV; rc = -ENODEV;
goto err_out; goto err_out;
} }
ret = tc35815_probe1(pdev, pci_memaddr, pci_irq_line); rc = pci_request_regions (pdev, MODNAME);
if (ret) if (rc)
goto err_out; goto err_out;
pci_set_master(pdev); pci_set_master (pdev);
return 0;
err_out: /* ioremap MMIO region */
pci_disable_device(pdev); ioaddr = ioremap (mmio_start, mmio_len);
return ret; if (ioaddr == NULL) {
} dev_err(&pdev->dev, "cannot remap MMIO, aborting\n");
rc = -EIO;
goto err_out_free_res;
}
static int __devinit tc35815_probe1(struct pci_dev *pdev, unsigned int base_addr, unsigned int irq) /* Initialize the device structure. */
{ dev->open = tc35815_open;
static unsigned version_printed = 0; dev->hard_start_xmit = tc35815_send_packet;
int i, ret; dev->stop = tc35815_close;
struct tc35815_local *lp; dev->get_stats = tc35815_get_stats;
struct tc35815_regs *tr; dev->set_multicast_list = tc35815_set_multicast_list;
struct net_device *dev; dev->do_ioctl = tc35815_ioctl;
dev->ethtool_ops = &tc35815_ethtool_ops;
dev->tx_timeout = tc35815_tx_timeout;
dev->watchdog_timeo = TC35815_TX_TIMEOUT;
#ifdef TC35815_NAPI
dev->poll = tc35815_poll;
dev->weight = NAPI_WEIGHT;
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = tc35815_poll_controller;
#endif
/* Allocate a new 'dev' if needed. */ dev->irq = pdev->irq;
dev = alloc_etherdev(sizeof(struct tc35815_local)); dev->base_addr = (unsigned long) ioaddr;
if (dev == NULL)
return -ENOMEM;
/* /* dev->priv/lp zeroed and aligned in alloc_etherdev */
* alloc_etherdev allocs and zeros dev->priv
*/
lp = dev->priv; lp = dev->priv;
spin_lock_init(&lp->lock);
lp->pci_dev = pdev;
lp->boardtype = ent->driver_data;
if (tc35815_debug && version_printed++ == 0) lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
printk(KERN_DEBUG "%s", version); pci_set_drvdata(pdev, dev);
/* Fill in the 'dev' fields. */
dev->irq = irq;
dev->base_addr = (unsigned long)ioremap(base_addr,
sizeof(struct tc35815_regs));
if (!dev->base_addr) {
ret = -ENOMEM;
goto err_out;
}
tr = (struct tc35815_regs*)dev->base_addr;
/* Soft reset the chip. */
tc35815_chip_reset(dev); tc35815_chip_reset(dev);
/* Retrieve and print the ethernet address. */ /* Retrieve the ethernet address. */
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) tc35815_init_dev_addr(dev);
;
for (i = 0; i < 6; i += 2) { rc = register_netdev (dev);
unsigned short data; if (rc)
tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl); goto err_out_unmap;
while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
; memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
data = tc_readl(&tr->PROM_Data); printk(KERN_INFO "%s: %s at 0x%lx, "
dev->dev_addr[i] = data & 0xff; "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, "
dev->dev_addr[i+1] = data >> 8; "IRQ %d\n",
} dev->name,
board_info[ent->driver_data].name,
dev->base_addr,
dev->dev_addr[0], dev->dev_addr[1],
dev->dev_addr[2], dev->dev_addr[3],
dev->dev_addr[4], dev->dev_addr[5],
dev->irq);
setup_timer(&lp->timer, tc35815_timer, (unsigned long) dev);
lp->mii.dev = dev;
lp->mii.mdio_read = tc_mdio_read;
lp->mii.mdio_write = tc_mdio_write;
lp->mii.phy_id_mask = 0x1f;
lp->mii.reg_num_mask = 0x1f;
tc35815_find_phy(dev);
lp->mii.phy_id = lp->phy_addr;
lp->mii.full_duplex = 0;
lp->mii.force_media = 0;
/* Initialize the device structure. */ return 0;
lp->pdev = pdev;
lp->next_module = root_tc35815_dev;
root_tc35815_dev = dev;
spin_lock_init(&lp->lock); err_out_unmap:
iounmap(ioaddr);
err_out_free_res:
pci_release_regions (pdev);
err_out:
free_netdev (dev);
return rc;
}
if (dev->mem_start > 0) {
lp->option = dev->mem_start;
if ((lp->option & TC35815_OPT_10M) &&
(lp->option & TC35815_OPT_100M)) {
/* if both speed speficied, auto select. */
lp->option &= ~(TC35815_OPT_10M | TC35815_OPT_100M);
}
}
//XXX fixme
lp->option |= TC35815_OPT_10M;
/* do auto negotiation */ static void __devexit tc35815_remove_one (struct pci_dev *pdev)
tc35815_phy_chip_init(dev); {
struct net_device *dev = pci_get_drvdata (pdev);
unsigned long mmio_addr;
dev->open = tc35815_open; mmio_addr = dev->base_addr;
dev->stop = tc35815_close;
dev->tx_timeout = tc35815_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->hard_start_xmit = tc35815_send_packet;
dev->get_stats = tc35815_get_stats;
dev->set_multicast_list = tc35815_set_multicast_list;
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
ret = register_netdev(dev); unregister_netdev (dev);
if (ret)
goto err_out_iounmap;
printk(KERN_INFO "%s: %s found at %#x, irq %d, MAC", if (mmio_addr) {
dev->name, cardname, base_addr, irq); iounmap ((void __iomem *)mmio_addr);
for (i = 0; i < 6; i++) pci_release_regions (pdev);
printk(" %2.2x", dev->dev_addr[i]); }
printk("\n");
printk(KERN_INFO "%s: linkspeed %dMbps, %s Duplex\n",
dev->name, lp->linkspeed, lp->fullduplex ? "Full" : "Half");
return 0; free_netdev (dev);
err_out_iounmap: pci_set_drvdata (pdev, NULL);
iounmap((void *) dev->base_addr);
err_out:
free_netdev(dev);
return ret;
} }
static int static int
tc35815_init_queues(struct net_device *dev) tc35815_init_queues(struct net_device *dev)
{ {
...@@ -629,44 +831,64 @@ tc35815_init_queues(struct net_device *dev) ...@@ -629,44 +831,64 @@ tc35815_init_queues(struct net_device *dev)
unsigned long fd_addr; unsigned long fd_addr;
if (!lp->fd_buf) { if (!lp->fd_buf) {
if (sizeof(struct FDesc) + BUG_ON(sizeof(struct FDesc) +
sizeof(struct BDesc) * RX_BUF_PAGES + sizeof(struct BDesc) * RX_BUF_NUM +
sizeof(struct FDesc) * RX_FD_NUM + sizeof(struct FDesc) * RX_FD_NUM +
sizeof(struct TxFD) * TX_FD_NUM > PAGE_SIZE * FD_PAGE_NUM) { sizeof(struct TxFD) * TX_FD_NUM >
printk(KERN_WARNING "%s: Invalid Queue Size.\n", dev->name); PAGE_SIZE * FD_PAGE_NUM);
return -ENOMEM;
}
if ((lp->fd_buf = (void *)__get_free_pages(GFP_KERNEL, FD_PAGE_ORDER)) == 0) if ((lp->fd_buf = pci_alloc_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, &lp->fd_buf_dma)) == 0)
return -ENOMEM; return -ENOMEM;
for (i = 0; i < RX_BUF_PAGES; i++) { for (i = 0; i < RX_BUF_NUM; i++) {
if ((lp->data_buf[i] = (void *)get_zeroed_page(GFP_KERNEL)) == 0) { #ifdef TC35815_USE_PACKEDBUFFER
if ((lp->data_buf[i] = alloc_rxbuf_page(lp->pci_dev, &lp->data_buf_dma[i])) == NULL) {
while (--i >= 0) { while (--i >= 0) {
free_page((unsigned long)lp->data_buf[i]); free_rxbuf_page(lp->pci_dev,
lp->data_buf[i] = 0; lp->data_buf[i],
lp->data_buf_dma[i]);
lp->data_buf[i] = NULL;
}
pci_free_consistent(lp->pci_dev,
PAGE_SIZE * FD_PAGE_NUM,
lp->fd_buf,
lp->fd_buf_dma);
lp->fd_buf = NULL;
return -ENOMEM;
} }
free_page((unsigned long)lp->fd_buf); #else
lp->fd_buf = 0; lp->rx_skbs[i].skb =
alloc_rxbuf_skb(dev, lp->pci_dev,
&lp->rx_skbs[i].skb_dma);
if (!lp->rx_skbs[i].skb) {
while (--i >= 0) {
free_rxbuf_skb(lp->pci_dev,
lp->rx_skbs[i].skb,
lp->rx_skbs[i].skb_dma);
lp->rx_skbs[i].skb = NULL;
}
pci_free_consistent(lp->pci_dev,
PAGE_SIZE * FD_PAGE_NUM,
lp->fd_buf,
lp->fd_buf_dma);
lp->fd_buf = NULL;
return -ENOMEM; return -ENOMEM;
} }
#ifdef __mips__
dma_cache_wback_inv((unsigned long)lp->data_buf[i], PAGE_SIZE * FD_PAGE_NUM);
#endif #endif
} }
#ifdef __mips__ printk(KERN_DEBUG "%s: FD buf %p DataBuf",
dma_cache_wback_inv((unsigned long)lp->fd_buf, PAGE_SIZE * FD_PAGE_NUM); dev->name, lp->fd_buf);
#ifdef TC35815_USE_PACKEDBUFFER
printk(" DataBuf");
for (i = 0; i < RX_BUF_NUM; i++)
printk(" %p", lp->data_buf[i]);
#endif #endif
printk("\n");
} else { } else {
memset(lp->fd_buf, 0, PAGE_SIZE * FD_PAGE_NUM); for (i = 0; i < FD_PAGE_NUM; i++) {
#ifdef __mips__ clear_page((void *)((unsigned long)lp->fd_buf + i * PAGE_SIZE));
dma_cache_wback_inv((unsigned long)lp->fd_buf, PAGE_SIZE * FD_PAGE_NUM); }
#endif
} }
#ifdef __mips__
fd_addr = (unsigned long)vtonocache(lp->fd_buf);
#else
fd_addr = (unsigned long)lp->fd_buf; fd_addr = (unsigned long)lp->fd_buf;
#endif
/* Free Descriptors (for Receive) */ /* Free Descriptors (for Receive) */
lp->rfd_base = (struct RxFD *)fd_addr; lp->rfd_base = (struct RxFD *)fd_addr;
...@@ -675,34 +897,66 @@ tc35815_init_queues(struct net_device *dev) ...@@ -675,34 +897,66 @@ tc35815_init_queues(struct net_device *dev)
lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD); lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
} }
lp->rfd_cur = lp->rfd_base; lp->rfd_cur = lp->rfd_base;
lp->rfd_limit = (struct RxFD *)(fd_addr - lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
sizeof(struct FDesc) -
sizeof(struct BDesc) * 30);
/* Transmit Descriptors */ /* Transmit Descriptors */
lp->tfd_base = (struct TxFD *)fd_addr; lp->tfd_base = (struct TxFD *)fd_addr;
fd_addr += sizeof(struct TxFD) * TX_FD_NUM; fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
for (i = 0; i < TX_FD_NUM; i++) { for (i = 0; i < TX_FD_NUM; i++) {
lp->tfd_base[i].fd.FDNext = cpu_to_le32(virt_to_bus(&lp->tfd_base[i+1])); lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0); lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0); lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
} }
lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(virt_to_bus(&lp->tfd_base[0])); lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
lp->tfd_start = 0; lp->tfd_start = 0;
lp->tfd_end = 0; lp->tfd_end = 0;
/* Buffer List (for Receive) */ /* Buffer List (for Receive) */
lp->fbl_ptr = (struct FrFD *)fd_addr; lp->fbl_ptr = (struct FrFD *)fd_addr;
lp->fbl_ptr->fd.FDNext = cpu_to_le32(virt_to_bus(lp->fbl_ptr)); lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_PAGES | FD_CownsFD); lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
for (i = 0; i < RX_BUF_PAGES; i++) { #ifndef TC35815_USE_PACKEDBUFFER
lp->fbl_ptr->bd[i].BuffData = cpu_to_le32(virt_to_bus(lp->data_buf[i])); /*
* move all allocated skbs to head of rx_skbs[] array.
* fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
* tc35815_rx() had failed.
*/
lp->fbl_count = 0;
for (i = 0; i < RX_BUF_NUM; i++) {
if (lp->rx_skbs[i].skb) {
if (i != lp->fbl_count) {
lp->rx_skbs[lp->fbl_count].skb =
lp->rx_skbs[i].skb;
lp->rx_skbs[lp->fbl_count].skb_dma =
lp->rx_skbs[i].skb_dma;
}
lp->fbl_count++;
}
}
#endif
for (i = 0; i < RX_BUF_NUM; i++) {
#ifdef TC35815_USE_PACKEDBUFFER
lp->fbl_ptr->bd[i].BuffData = cpu_to_le32(lp->data_buf_dma[i]);
#else
if (i >= lp->fbl_count) {
lp->fbl_ptr->bd[i].BuffData = 0;
lp->fbl_ptr->bd[i].BDCtl = 0;
continue;
}
lp->fbl_ptr->bd[i].BuffData =
cpu_to_le32(lp->rx_skbs[i].skb_dma);
#endif
/* BDID is index of FrFD.bd[] */ /* BDID is index of FrFD.bd[] */
lp->fbl_ptr->bd[i].BDCtl = lp->fbl_ptr->bd[i].BDCtl =
cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | PAGE_SIZE); cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
RX_BUF_SIZE);
} }
#ifdef TC35815_USE_PACKEDBUFFER
lp->fbl_curid = 0; lp->fbl_curid = 0;
#endif
printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
return 0; return 0;
} }
...@@ -713,11 +967,25 @@ tc35815_clear_queues(struct net_device *dev) ...@@ -713,11 +967,25 @@ tc35815_clear_queues(struct net_device *dev)
int i; int i;
for (i = 0; i < TX_FD_NUM; i++) { for (i = 0; i < TX_FD_NUM; i++) {
struct sk_buff *skb = (struct sk_buff *) u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
le32_to_cpu(lp->tfd_base[i].fd.FDSystem); struct sk_buff *skb =
if (skb) fdsystem != 0xffffffff ?
lp->tx_skbs[fdsystem].skb : NULL;
#ifdef DEBUG
if (lp->tx_skbs[i].skb != skb) {
printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[i].skb != skb);
#endif
if (skb) {
pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[i].skb = NULL;
lp->tx_skbs[i].skb_dma = 0;
dev_kfree_skb_any(skb); dev_kfree_skb_any(skb);
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0); }
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
} }
tc35815_init_queues(dev); tc35815_init_queues(dev);
...@@ -731,28 +999,53 @@ tc35815_free_queues(struct net_device *dev) ...@@ -731,28 +999,53 @@ tc35815_free_queues(struct net_device *dev)
if (lp->tfd_base) { if (lp->tfd_base) {
for (i = 0; i < TX_FD_NUM; i++) { for (i = 0; i < TX_FD_NUM; i++) {
struct sk_buff *skb = (struct sk_buff *) u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
le32_to_cpu(lp->tfd_base[i].fd.FDSystem); struct sk_buff *skb =
if (skb) fdsystem != 0xffffffff ?
dev_kfree_skb_any(skb); lp->tx_skbs[fdsystem].skb : NULL;
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0); #ifdef DEBUG
if (lp->tx_skbs[i].skb != skb) {
printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[i].skb != skb);
#endif
if (skb) {
dev_kfree_skb(skb);
pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[i].skb = NULL;
lp->tx_skbs[i].skb_dma = 0;
}
lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
} }
} }
lp->rfd_base = NULL;
lp->rfd_base = NULL; lp->rfd_base = NULL;
lp->rfd_limit = NULL; lp->rfd_limit = NULL;
lp->rfd_cur = NULL; lp->rfd_cur = NULL;
lp->fbl_ptr = NULL; lp->fbl_ptr = NULL;
for (i = 0; i < RX_BUF_PAGES; i++) { for (i = 0; i < RX_BUF_NUM; i++) {
if (lp->data_buf[i]) #ifdef TC35815_USE_PACKEDBUFFER
free_page((unsigned long)lp->data_buf[i]); if (lp->data_buf[i]) {
lp->data_buf[i] = 0; free_rxbuf_page(lp->pci_dev,
lp->data_buf[i], lp->data_buf_dma[i]);
lp->data_buf[i] = NULL;
}
#else
if (lp->rx_skbs[i].skb) {
free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
lp->rx_skbs[i].skb_dma);
lp->rx_skbs[i].skb = NULL;
}
#endif
} }
if (lp->fd_buf) if (lp->fd_buf) {
__free_pages(lp->fd_buf, FD_PAGE_ORDER); pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
lp->fd_buf, lp->fd_buf_dma);
lp->fd_buf = NULL; lp->fd_buf = NULL;
}
} }
static void static void
...@@ -792,6 +1085,7 @@ dump_rxfd(struct RxFD *fd) ...@@ -792,6 +1085,7 @@ dump_rxfd(struct RxFD *fd)
return bd_count; return bd_count;
} }
#if defined(DEBUG) || defined(TC35815_USE_PACKEDBUFFER)
static void static void
dump_frfd(struct FrFD *fd) dump_frfd(struct FrFD *fd)
{ {
...@@ -802,20 +1096,22 @@ dump_frfd(struct FrFD *fd) ...@@ -802,20 +1096,22 @@ dump_frfd(struct FrFD *fd)
le32_to_cpu(fd->fd.FDStat), le32_to_cpu(fd->fd.FDStat),
le32_to_cpu(fd->fd.FDCtl)); le32_to_cpu(fd->fd.FDCtl));
printk("BD: "); printk("BD: ");
for (i = 0; i < RX_BUF_PAGES; i++) for (i = 0; i < RX_BUF_NUM; i++)
printk(" %08x %08x", printk(" %08x %08x",
le32_to_cpu(fd->bd[i].BuffData), le32_to_cpu(fd->bd[i].BuffData),
le32_to_cpu(fd->bd[i].BDCtl)); le32_to_cpu(fd->bd[i].BDCtl));
printk("\n"); printk("\n");
} }
#endif
#ifdef DEBUG
static void static void
panic_queues(struct net_device *dev) panic_queues(struct net_device *dev)
{ {
struct tc35815_local *lp = dev->priv; struct tc35815_local *lp = dev->priv;
int i; int i;
printk("TxFD base %p, start %d, end %d\n", printk("TxFD base %p, start %u, end %u\n",
lp->tfd_base, lp->tfd_start, lp->tfd_end); lp->tfd_base, lp->tfd_start, lp->tfd_end);
printk("RxFD base %p limit %p cur %p\n", printk("RxFD base %p limit %p cur %p\n",
lp->rfd_base, lp->rfd_limit, lp->rfd_cur); lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
...@@ -829,31 +1125,13 @@ panic_queues(struct net_device *dev) ...@@ -829,31 +1125,13 @@ panic_queues(struct net_device *dev)
dump_frfd(lp->fbl_ptr); dump_frfd(lp->fbl_ptr);
panic("%s: Illegal queue state.", dev->name); panic("%s: Illegal queue state.", dev->name);
} }
#if 0
static void print_buf(char *add, int length)
{
int i;
int len = length;
printk("print_buf(%08x)(%x)\n", (unsigned int) add,length);
if (len > 100)
len = 100;
for (i = 0; i < len; i++) {
printk(" %2.2X", (unsigned char) add[i]);
if (!(i % 16))
printk("\n");
}
printk("\n");
}
#endif #endif
static void print_eth(char *add) static void print_eth(char *add)
{ {
int i; int i;
printk("print_eth(%08x)\n", (unsigned int) add); printk("print_eth(%p)\n", add);
for (i = 0; i < 6; i++) for (i = 0; i < 6; i++)
printk(" %2.2X", (unsigned char) add[i + 6]); printk(" %2.2X", (unsigned char) add[i + 6]);
printk(" =>"); printk(" =>");
...@@ -862,6 +1140,73 @@ static void print_eth(char *add) ...@@ -862,6 +1140,73 @@ static void print_eth(char *add)
printk(" : %2.2X%2.2X\n", (unsigned char) add[12], (unsigned char) add[13]); printk(" : %2.2X%2.2X\n", (unsigned char) add[12], (unsigned char) add[13]);
} }
static int tc35815_tx_full(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
return ((lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end);
}
static void tc35815_restart(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
int do_phy_reset = 1;
del_timer(&lp->timer); /* Kill if running */
if (lp->mii_id[0] == 0x0016 && (lp->mii_id[1] & 0xfc00) == 0xf800) {
/* Resetting PHY cause problem on some chip... (SEEQ 80221) */
do_phy_reset = 0;
}
if (do_phy_reset) {
int timeout;
tc_mdio_write(dev, pid, MII_BMCR, BMCR_RESET);
timeout = 100;
while (--timeout) {
if (!(tc_mdio_read(dev, pid, MII_BMCR) & BMCR_RESET))
break;
udelay(1);
}
if (!timeout)
printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
}
tc35815_chip_reset(dev);
tc35815_clear_queues(dev);
tc35815_chip_init(dev);
/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
tc35815_set_multicast_list(dev);
}
static void tc35815_tx_timeout(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
dev->name, tc_readl(&tr->Tx_Stat));
/* Try to restart the adaptor. */
spin_lock_irq(&lp->lock);
tc35815_restart(dev);
spin_unlock_irq(&lp->lock);
lp->stats.tx_errors++;
/* If we have space available to accept new transmit
* requests, wake up the queueing layer. This would
* be the case if the chipset_init() call above just
* flushes out the tx queue and empties it.
*
* If instead, the tx queue is retained then the
* netif_wake_queue() call should be placed in the
* TX completion interrupt handler of the driver instead
* of here.
*/
if (!tc35815_tx_full(dev))
netif_wake_queue(dev);
}
/* /*
* Open/initialize the board. This is called (in the current kernel) * Open/initialize the board. This is called (in the current kernel)
* sometime after booting when the 'ifconfig' program is run. * sometime after booting when the 'ifconfig' program is run.
...@@ -874,16 +1219,16 @@ static int ...@@ -874,16 +1219,16 @@ static int
tc35815_open(struct net_device *dev) tc35815_open(struct net_device *dev)
{ {
struct tc35815_local *lp = dev->priv; struct tc35815_local *lp = dev->priv;
/* /*
* This is used if the interrupt line can turned off (shared). * This is used if the interrupt line can turned off (shared).
* See 3c503.c for an example of selecting the IRQ at config-time. * See 3c503.c for an example of selecting the IRQ at config-time.
*/ */
if (request_irq(dev->irq, &tc35815_interrupt, IRQF_SHARED, dev->name, dev)) {
if (dev->irq == 0 ||
request_irq(dev->irq, &tc35815_interrupt, IRQF_SHARED, cardname, dev)) {
return -EAGAIN; return -EAGAIN;
} }
del_timer(&lp->timer); /* Kill if running */
tc35815_chip_reset(dev); tc35815_chip_reset(dev);
if (tc35815_init_queues(dev) != 0) { if (tc35815_init_queues(dev) != 0) {
...@@ -892,138 +1237,119 @@ tc35815_open(struct net_device *dev) ...@@ -892,138 +1237,119 @@ tc35815_open(struct net_device *dev)
} }
/* Reset the hardware here. Don't forget to set the station address. */ /* Reset the hardware here. Don't forget to set the station address. */
spin_lock_irq(&lp->lock);
tc35815_chip_init(dev); tc35815_chip_init(dev);
spin_unlock_irq(&lp->lock);
lp->tbusy = 0; /* We are now ready to accept transmit requeusts from
* the queueing layer of the networking.
*/
netif_start_queue(dev); netif_start_queue(dev);
return 0; return 0;
} }
static void tc35815_tx_timeout(struct net_device *dev) /* This will only be invoked if your driver is _not_ in XOFF state.
{ * What this means is that you need not check it, and that this
struct tc35815_local *lp = dev->priv; * invariant will hold if you make sure that the netif_*_queue()
struct tc35815_regs *tr = (struct tc35815_regs *)dev->base_addr; * calls are done at the proper times.
unsigned long flags; */
spin_lock_irqsave(&lp->lock, flags);
printk(KERN_WARNING "%s: transmit timed out, status %#lx\n",
dev->name, tc_readl(&tr->Tx_Stat));
/* Try to restart the adaptor. */
tc35815_chip_reset(dev);
tc35815_clear_queues(dev);
tc35815_chip_init(dev);
lp->tbusy=0;
spin_unlock_irqrestore(&lp->lock, flags);
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev) static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
{ {
struct tc35815_local *lp = dev->priv; struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs *)dev->base_addr; struct TxFD *txfd;
unsigned long flags;
if (netif_queue_stopped(dev)) { /* If some error occurs while trying to transmit this
/* * packet, you should return '1' from this function.
* If we get here, some higher level has decided we are broken. * In such a case you _may not_ do anything to the
* There should really be a "kick me" function call instead. * SKB, it is still owned by the network queueing
* layer when an error is returned. This means you
* may not modify any SKB fields, you may not free
* the SKB, etc.
*/ */
int tickssofar = jiffies - dev->trans_start;
if (tickssofar < 5)
return 1;
printk(KERN_WARNING "%s: transmit timed out, status %#lx\n",
dev->name, tc_readl(&tr->Tx_Stat));
/* Try to restart the adaptor. */
tc35815_chip_reset(dev);
tc35815_clear_queues(dev);
tc35815_chip_init(dev);
lp->tbusy=0;
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
/* /* This is the most common case for modern hardware.
* Block a timer-based transmit from overlapping. This could better be * The spinlock protects this code from the TX complete
* done with atomic_swap(1, lp->tbusy), but set_bit() works as well. * hardware interrupt handler. Queue flow control is
* thus managed under this lock as well.
*/ */
if (test_and_set_bit(0, (void*)&lp->tbusy) != 0) {
printk(KERN_WARNING "%s: Transmitter access conflict.\n", dev->name);
dev_kfree_skb_any(skb);
} else {
short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
unsigned char *buf = skb->data;
struct TxFD *txfd = &lp->tfd_base[lp->tfd_start];
unsigned long flags;
lp->stats.tx_bytes += skb->len;
#ifdef __mips__
dma_cache_wback_inv((unsigned long)buf, length);
#endif
spin_lock_irqsave(&lp->lock, flags); spin_lock_irqsave(&lp->lock, flags);
/* failsafe... */ /* failsafe... (handle txdone now if half of FDs are used) */
if (lp->tfd_start != lp->tfd_end) if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
TX_FD_NUM / 2)
tc35815_txdone(dev); tc35815_txdone(dev);
if (netif_msg_pktdata(lp))
txfd->bd.BuffData = cpu_to_le32(virt_to_bus(buf)); print_eth(skb->data);
#ifdef DEBUG
txfd->bd.BDCtl = cpu_to_le32(length); if (lp->tx_skbs[lp->tfd_start].skb) {
txfd->fd.FDSystem = cpu_to_le32((__u32)skb); printk("%s: tx_skbs conflict.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
#endif
lp->tx_skbs[lp->tfd_start].skb = skb;
lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
/*add to ring */
txfd = &lp->tfd_base[lp->tfd_start];
txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
txfd->bd.BDCtl = cpu_to_le32(skb->len);
txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT)); txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
if (lp->tfd_start == lp->tfd_end) { if (lp->tfd_start == lp->tfd_end) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
/* Start DMA Transmitter. */ /* Start DMA Transmitter. */
txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL); txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
#ifdef GATHER_TXINT #ifdef GATHER_TXINT
txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
#endif #endif
if (tc35815_debug > 2) { if (netif_msg_tx_queued(lp)) {
printk("%s: starting TxFD.\n", dev->name); printk("%s: starting TxFD.\n", dev->name);
dump_txfd(txfd); dump_txfd(txfd);
if (tc35815_debug > 3)
print_eth(buf);
} }
tc_writel(virt_to_bus(txfd), &tr->TxFrmPtr); tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
} else { } else {
txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL); txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
if (tc35815_debug > 2) { if (netif_msg_tx_queued(lp)) {
printk("%s: queueing TxFD.\n", dev->name); printk("%s: queueing TxFD.\n", dev->name);
dump_txfd(txfd); dump_txfd(txfd);
if (tc35815_debug > 3)
print_eth(buf);
} }
} }
lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM; lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
dev->trans_start = jiffies; dev->trans_start = jiffies;
if ((lp->tfd_start + 1) % TX_FD_NUM != lp->tfd_end) { /* If we just used up the very last entry in the
/* we can send another packet */ * TX ring on this device, tell the queueing
lp->tbusy = 0; * layer to send no more.
netif_start_queue(dev); */
} else { if (tc35815_tx_full(dev)) {
netif_stop_queue(dev); if (netif_msg_tx_queued(lp))
if (tc35815_debug > 1)
printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name); printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
} netif_stop_queue(dev);
spin_unlock_irqrestore(&lp->lock, flags);
} }
/* When the TX completion hw interrupt arrives, this
* is when the transmit statistics are updated.
*/
spin_unlock_irqrestore(&lp->lock, flags);
return 0; return 0;
} }
#define FATAL_ERROR_INT \ #define FATAL_ERROR_INT \
(Int_IntPCI | Int_DmParErr | Int_IntNRAbt) (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
static void tc35815_fatal_error_interrupt(struct net_device *dev, int status) static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
{ {
static int count; static int count;
printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):", printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
dev->name, status); dev->name, status);
if (status & Int_IntPCI) if (status & Int_IntPCI)
printk(" IntPCI"); printk(" IntPCI");
if (status & Int_DmParErr) if (status & Int_DmParErr)
...@@ -1033,44 +1359,26 @@ static void tc35815_fatal_error_interrupt(struct net_device *dev, int status) ...@@ -1033,44 +1359,26 @@ static void tc35815_fatal_error_interrupt(struct net_device *dev, int status)
printk("\n"); printk("\n");
if (count++ > 100) if (count++ > 100)
panic("%s: Too many fatal errors.", dev->name); panic("%s: Too many fatal errors.", dev->name);
printk(KERN_WARNING "%s: Resetting %s...\n", dev->name, cardname); printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
/* Try to restart the adaptor. */ /* Try to restart the adaptor. */
tc35815_chip_reset(dev); tc35815_restart(dev);
tc35815_clear_queues(dev);
tc35815_chip_init(dev);
} }
/* #ifdef TC35815_NAPI
* The typical workload of the driver: static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
* Handle the network interface interrupts. #else
*/ static int tc35815_do_interrupt(struct net_device *dev, u32 status)
static irqreturn_t tc35815_interrupt(int irq, void *dev_id) #endif
{ {
struct net_device *dev = dev_id; struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr; struct tc35815_regs __iomem *tr =
struct tc35815_local *lp; (struct tc35815_regs __iomem *)dev->base_addr;
int status, boguscount = 0; int ret = -1;
int handled = 0;
if (dev == NULL) {
printk(KERN_WARNING "%s: irq %d for unknown device.\n", cardname, irq);
return IRQ_NONE;
}
tr = (struct tc35815_regs*)dev->base_addr;
lp = dev->priv;
do {
status = tc_readl(&tr->Int_Src);
if (status == 0)
break;
handled = 1;
tc_writel(status, &tr->Int_Src); /* write to clear */
/* Fatal errors... */ /* Fatal errors... */
if (status & FATAL_ERROR_INT) { if (status & FATAL_ERROR_INT) {
tc35815_fatal_error_interrupt(dev, status); tc35815_fatal_error_interrupt(dev, status);
break; return 0;
} }
/* recoverable errors */ /* recoverable errors */
if (status & Int_IntFDAEx) { if (status & Int_IntFDAEx) {
...@@ -1080,6 +1388,7 @@ static irqreturn_t tc35815_interrupt(int irq, void *dev_id) ...@@ -1080,6 +1388,7 @@ static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
"%s: Free Descriptor Area Exhausted (%#x).\n", "%s: Free Descriptor Area Exhausted (%#x).\n",
dev->name, status); dev->name, status);
lp->stats.rx_dropped++; lp->stats.rx_dropped++;
ret = 0;
} }
if (status & Int_IntBLEx) { if (status & Int_IntBLEx) {
/* disable BLEx int. (until we make rooms...) */ /* disable BLEx int. (until we make rooms...) */
...@@ -1088,55 +1397,132 @@ static irqreturn_t tc35815_interrupt(int irq, void *dev_id) ...@@ -1088,55 +1397,132 @@ static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
"%s: Buffer List Exhausted (%#x).\n", "%s: Buffer List Exhausted (%#x).\n",
dev->name, status); dev->name, status);
lp->stats.rx_dropped++; lp->stats.rx_dropped++;
ret = 0;
} }
if (status & Int_IntExBD) { if (status & Int_IntExBD) {
printk(KERN_WARNING printk(KERN_WARNING
"%s: Excessive Buffer Descriptiors (%#x).\n", "%s: Excessive Buffer Descriptiors (%#x).\n",
dev->name, status); dev->name, status);
lp->stats.rx_length_errors++; lp->stats.rx_length_errors++;
ret = 0;
} }
/* normal notification */ /* normal notification */
if (status & Int_IntMacRx) { if (status & Int_IntMacRx) {
/* Got a packet(s). */ /* Got a packet(s). */
lp->lstats.rx_ints++; #ifdef TC35815_NAPI
ret = tc35815_rx(dev, limit);
#else
tc35815_rx(dev); tc35815_rx(dev);
ret = 0;
#endif
lp->lstats.rx_ints++;
} }
if (status & Int_IntMacTx) { if (status & Int_IntMacTx) {
/* Transmit complete. */
lp->lstats.tx_ints++; lp->lstats.tx_ints++;
tc35815_txdone(dev); tc35815_txdone(dev);
netif_wake_queue(dev);
ret = 0;
} }
} while (++boguscount < 20) ; return ret;
}
return IRQ_RETVAL(handled); /*
* The typical workload of the driver:
* Handle the network interface interrupts.
*/
static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
#ifdef TC35815_NAPI
u32 dmactl = tc_readl(&tr->DMA_Ctl);
if (!(dmactl & DMA_IntMask)) {
/* disable interrupts */
tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
if (netif_rx_schedule_prep(dev))
__netif_rx_schedule(dev);
else {
printk(KERN_ERR "%s: interrupt taken in poll\n",
dev->name);
BUG();
}
(void)tc_readl(&tr->Int_Src); /* flush */
return IRQ_HANDLED;
}
return IRQ_NONE;
#else
struct tc35815_local *lp = dev->priv;
int handled;
u32 status;
spin_lock(&lp->lock);
status = tc_readl(&tr->Int_Src);
tc_writel(status, &tr->Int_Src); /* write to clear */
handled = tc35815_do_interrupt(dev, status);
(void)tc_readl(&tr->Int_Src); /* flush */
spin_unlock(&lp->lock);
return IRQ_RETVAL(handled >= 0);
#endif /* TC35815_NAPI */
} }
#ifdef CONFIG_NET_POLL_CONTROLLER
static void tc35815_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
tc35815_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/* We have a good packet(s), get it/them out of the buffers. */ /* We have a good packet(s), get it/them out of the buffers. */
#ifdef TC35815_NAPI
static int
tc35815_rx(struct net_device *dev, int limit)
#else
static void static void
tc35815_rx(struct net_device *dev) tc35815_rx(struct net_device *dev)
#endif
{ {
struct tc35815_local *lp = dev->priv; struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
unsigned int fdctl; unsigned int fdctl;
int i; int i;
int buf_free_count = 0; int buf_free_count = 0;
int fd_free_count = 0; int fd_free_count = 0;
#ifdef TC35815_NAPI
int received = 0;
#endif
while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) { while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
int status = le32_to_cpu(lp->rfd_cur->fd.FDStat); int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
int pkt_len = fdctl & FD_FDLength_MASK; int pkt_len = fdctl & FD_FDLength_MASK;
struct RxFD *next_rfd;
int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
#ifdef DEBUG
struct RxFD *next_rfd;
#endif
#if (RX_CTL_CMD & Rx_StripCRC) == 0
pkt_len -= 4;
#endif
if (tc35815_debug > 2) if (netif_msg_rx_status(lp))
dump_rxfd(lp->rfd_cur); dump_rxfd(lp->rfd_cur);
if (status & Rx_Good) { if (status & Rx_Good) {
/* Malloc up new buffer. */
struct sk_buff *skb; struct sk_buff *skb;
unsigned char *data; unsigned char *data;
int cur_bd, offset; int cur_bd;
#ifdef TC35815_USE_PACKEDBUFFER
lp->stats.rx_bytes += pkt_len; int offset;
#endif
#ifdef TC35815_NAPI
if (--limit < 0)
break;
#endif
#ifdef TC35815_USE_PACKEDBUFFER
BUG_ON(bd_count > 2);
skb = dev_alloc_skb(pkt_len + 2); /* +2: for reserve */ skb = dev_alloc_skb(pkt_len + 2); /* +2: for reserve */
if (skb == NULL) { if (skb == NULL) {
printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
...@@ -1154,25 +1540,64 @@ tc35815_rx(struct net_device *dev) ...@@ -1154,25 +1540,64 @@ tc35815_rx(struct net_device *dev)
while (offset < pkt_len && cur_bd < bd_count) { while (offset < pkt_len && cur_bd < bd_count) {
int len = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BDCtl) & int len = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BDCtl) &
BD_BuffLength_MASK; BD_BuffLength_MASK;
void *rxbuf = dma_addr_t dma = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BuffData);
bus_to_virt(le32_to_cpu(lp->rfd_cur->bd[cur_bd].BuffData)); void *rxbuf = rxbuf_bus_to_virt(lp, dma);
#ifdef __mips__ if (offset + len > pkt_len)
dma_cache_inv((unsigned long)rxbuf, len); len = pkt_len - offset;
#ifdef TC35815_DMA_SYNC_ONDEMAND
pci_dma_sync_single_for_cpu(lp->pci_dev,
dma, len,
PCI_DMA_FROMDEVICE);
#endif #endif
memcpy(data + offset, rxbuf, len); memcpy(data + offset, rxbuf, len);
offset += len; offset += len;
cur_bd++; cur_bd++;
} }
#if 0 #else /* TC35815_USE_PACKEDBUFFER */
print_buf(data,pkt_len); BUG_ON(bd_count > 1);
cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
& BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
#ifdef DEBUG
if (cur_bd >= RX_BUF_NUM) {
printk("%s: invalid BDID.\n", dev->name);
panic_queues(dev);
}
BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
(le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
if (!lp->rx_skbs[cur_bd].skb) {
printk("%s: NULL skb.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(cur_bd >= RX_BUF_NUM);
#endif #endif
if (tc35815_debug > 3) skb = lp->rx_skbs[cur_bd].skb;
prefetch(skb->data);
lp->rx_skbs[cur_bd].skb = NULL;
lp->fbl_count--;
pci_unmap_single(lp->pci_dev,
lp->rx_skbs[cur_bd].skb_dma,
RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
if (!HAVE_DMA_RXALIGN(lp))
memmove(skb->data, skb->data - 2, pkt_len);
data = skb_put(skb, pkt_len);
#endif /* TC35815_USE_PACKEDBUFFER */
if (netif_msg_pktdata(lp))
print_eth(data); print_eth(data);
skb->protocol = eth_type_trans(skb, dev); skb->protocol = eth_type_trans(skb, dev);
#ifdef TC35815_NAPI
netif_receive_skb(skb);
received++;
#else
netif_rx(skb); netif_rx(skb);
#endif
dev->last_rx = jiffies;
lp->stats.rx_packets++; lp->stats.rx_packets++;
lp->stats.rx_bytes += pkt_len;
} else { } else {
lp->stats.rx_errors++; lp->stats.rx_errors++;
printk(KERN_DEBUG "%s: Rx error (status %x)\n",
dev->name, status & Rx_Stat_Mask);
/* WORKAROUND: LongErr and CRCErr means Overflow. */ /* WORKAROUND: LongErr and CRCErr means Overflow. */
if ((status & Rx_LongErr) && (status & Rx_CRCErr)) { if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
status &= ~(Rx_LongErr|Rx_CRCErr); status &= ~(Rx_LongErr|Rx_CRCErr);
...@@ -1189,63 +1614,150 @@ tc35815_rx(struct net_device *dev) ...@@ -1189,63 +1614,150 @@ tc35815_rx(struct net_device *dev)
int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl); int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
unsigned char id = unsigned char id =
(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
if (id >= RX_BUF_PAGES) { #ifdef DEBUG
if (id >= RX_BUF_NUM) {
printk("%s: invalid BDID.\n", dev->name); printk("%s: invalid BDID.\n", dev->name);
panic_queues(dev); panic_queues(dev);
} }
#else
BUG_ON(id >= RX_BUF_NUM);
#endif
/* free old buffers */ /* free old buffers */
while (lp->fbl_curid != id) { #ifdef TC35815_USE_PACKEDBUFFER
bdctl = le32_to_cpu(lp->fbl_ptr->bd[lp->fbl_curid].BDCtl); while (lp->fbl_curid != id)
#else
while (lp->fbl_count < RX_BUF_NUM)
#endif
{
#ifdef TC35815_USE_PACKEDBUFFER
unsigned char curid = lp->fbl_curid;
#else
unsigned char curid =
(id + 1 + lp->fbl_count) % RX_BUF_NUM;
#endif
struct BDesc *bd = &lp->fbl_ptr->bd[curid];
#ifdef DEBUG
bdctl = le32_to_cpu(bd->BDCtl);
if (bdctl & BD_CownsBD) { if (bdctl & BD_CownsBD) {
printk("%s: Freeing invalid BD.\n", printk("%s: Freeing invalid BD.\n",
dev->name); dev->name);
panic_queues(dev); panic_queues(dev);
} }
#endif
/* pass BD to controler */ /* pass BD to controler */
#ifndef TC35815_USE_PACKEDBUFFER
if (!lp->rx_skbs[curid].skb) {
lp->rx_skbs[curid].skb =
alloc_rxbuf_skb(dev,
lp->pci_dev,
&lp->rx_skbs[curid].skb_dma);
if (!lp->rx_skbs[curid].skb)
break; /* try on next reception */
bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
}
#endif /* TC35815_USE_PACKEDBUFFER */
/* Note: BDLength was modified by chip. */ /* Note: BDLength was modified by chip. */
lp->fbl_ptr->bd[lp->fbl_curid].BDCtl = bd->BDCtl = cpu_to_le32(BD_CownsBD |
cpu_to_le32(BD_CownsBD | (curid << BD_RxBDID_SHIFT) |
(lp->fbl_curid << BD_RxBDID_SHIFT) | RX_BUF_SIZE);
PAGE_SIZE); #ifdef TC35815_USE_PACKEDBUFFER
lp->fbl_curid = lp->fbl_curid = (curid + 1) % RX_BUF_NUM;
(lp->fbl_curid + 1) % RX_BUF_PAGES; if (netif_msg_rx_status(lp)) {
if (tc35815_debug > 2) {
printk("%s: Entering new FBD %d\n", printk("%s: Entering new FBD %d\n",
dev->name, lp->fbl_curid); dev->name, lp->fbl_curid);
dump_frfd(lp->fbl_ptr); dump_frfd(lp->fbl_ptr);
} }
#else
lp->fbl_count++;
#endif
buf_free_count++; buf_free_count++;
} }
} }
/* put RxFD back to controller */ /* put RxFD back to controller */
next_rfd = bus_to_virt(le32_to_cpu(lp->rfd_cur->fd.FDNext)); #ifdef DEBUG
#ifdef __mips__ next_rfd = fd_bus_to_virt(lp,
next_rfd = (struct RxFD *)vtonocache(next_rfd); le32_to_cpu(lp->rfd_cur->fd.FDNext));
#endif
if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) { if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
printk("%s: RxFD FDNext invalid.\n", dev->name); printk("%s: RxFD FDNext invalid.\n", dev->name);
panic_queues(dev); panic_queues(dev);
} }
#endif
for (i = 0; i < (bd_count + 1) / 2 + 1; i++) { for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
/* pass FD to controler */ /* pass FD to controler */
lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); /* for debug */ #ifdef DEBUG
lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
#else
lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
#endif
lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD); lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
lp->rfd_cur++; lp->rfd_cur++;
fd_free_count++; fd_free_count++;
} }
if (lp->rfd_cur > lp->rfd_limit)
lp->rfd_cur = next_rfd; lp->rfd_cur = lp->rfd_base;
#ifdef DEBUG
if (lp->rfd_cur != next_rfd)
printk("rfd_cur = %p, next_rfd %p\n",
lp->rfd_cur, next_rfd);
#endif
} }
/* re-enable BL/FDA Exhaust interrupts. */ /* re-enable BL/FDA Exhaust interrupts. */
if (fd_free_count) { if (fd_free_count) {
tc_writel(tc_readl(&tr->Int_En) | Int_FDAExEn, &tr->Int_En); struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
u32 en, en_old = tc_readl(&tr->Int_En);
en = en_old | Int_FDAExEn;
if (buf_free_count) if (buf_free_count)
tc_writel(tc_readl(&tr->Int_En) | Int_BLExEn, &tr->Int_En); en |= Int_BLExEn;
if (en != en_old)
tc_writel(en, &tr->Int_En);
} }
#ifdef TC35815_NAPI
return received;
#endif
} }
#ifdef TC35815_NAPI
static int
tc35815_poll(struct net_device *dev, int *budget)
{
struct tc35815_local *lp = dev->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int limit = min(*budget, dev->quota);
int received = 0, handled;
u32 status;
spin_lock(&lp->lock);
status = tc_readl(&tr->Int_Src);
do {
tc_writel(status, &tr->Int_Src); /* write to clear */
handled = tc35815_do_interrupt(dev, status, limit);
if (handled >= 0) {
received += handled;
limit -= handled;
if (limit <= 0)
break;
}
status = tc_readl(&tr->Int_Src);
} while (status);
spin_unlock(&lp->lock);
dev->quota -= received;
*budget -= received;
if (limit <= 0)
return 1;
netif_rx_complete(dev);
/* enable interrupts */
tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
return 0;
}
#endif
#ifdef NO_CHECK_CARRIER #ifdef NO_CHECK_CARRIER
#define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_LateColl|Tx_TxPar|Tx_SQErr) #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_LateColl|Tx_TxPar|Tx_SQErr)
#else #else
...@@ -1264,9 +1776,17 @@ tc35815_check_tx_stat(struct net_device *dev, int status) ...@@ -1264,9 +1776,17 @@ tc35815_check_tx_stat(struct net_device *dev, int status)
if (status & Tx_TxColl_MASK) if (status & Tx_TxColl_MASK)
lp->stats.collisions += status & Tx_TxColl_MASK; lp->stats.collisions += status & Tx_TxColl_MASK;
#ifndef NO_CHECK_CARRIER
/* TX4939 does not have NCarr */
if (lp->boardtype == TC35815_TX4939)
status &= ~Tx_NCarr;
#ifdef WORKAROUND_LOSTCAR
/* WORKAROUND: ignore LostCrS in full duplex operation */ /* WORKAROUND: ignore LostCrS in full duplex operation */
if (lp->fullduplex) if ((lp->timer_state != asleep && lp->timer_state != lcheck)
|| lp->fullduplex)
status &= ~Tx_NCarr; status &= ~Tx_NCarr;
#endif
#endif
if (!(status & TX_STA_ERR)) { if (!(status & TX_STA_ERR)) {
/* no error. */ /* no error. */
...@@ -1282,6 +1802,15 @@ tc35815_check_tx_stat(struct net_device *dev, int status) ...@@ -1282,6 +1802,15 @@ tc35815_check_tx_stat(struct net_device *dev, int status)
if (status & Tx_Under) { if (status & Tx_Under) {
lp->stats.tx_fifo_errors++; lp->stats.tx_fifo_errors++;
msg = "Tx FIFO Underrun."; msg = "Tx FIFO Underrun.";
if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
lp->lstats.tx_underrun++;
if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
msg = "Tx FIFO Underrun.Change Tx threshold to max.";
}
}
} }
if (status & Tx_Defer) { if (status & Tx_Defer) {
lp->stats.tx_fifo_errors++; lp->stats.tx_fifo_errors++;
...@@ -1305,18 +1834,19 @@ tc35815_check_tx_stat(struct net_device *dev, int status) ...@@ -1305,18 +1834,19 @@ tc35815_check_tx_stat(struct net_device *dev, int status)
lp->stats.tx_heartbeat_errors++; lp->stats.tx_heartbeat_errors++;
msg = "Signal Quality Error."; msg = "Signal Quality Error.";
} }
if (msg) if (msg && netif_msg_tx_err(lp))
printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status); printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
} }
/* This handles TX complete events posted by the device
* via interrupts.
*/
static void static void
tc35815_txdone(struct net_device *dev) tc35815_txdone(struct net_device *dev)
{ {
struct tc35815_local *lp = dev->priv; struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
struct TxFD *txfd; struct TxFD *txfd;
unsigned int fdctl; unsigned int fdctl;
int num_done = 0;
txfd = &lp->tfd_base[lp->tfd_end]; txfd = &lp->tfd_base[lp->tfd_end];
while (lp->tfd_start != lp->tfd_end && while (lp->tfd_start != lp->tfd_end &&
...@@ -1324,38 +1854,61 @@ tc35815_txdone(struct net_device *dev) ...@@ -1324,38 +1854,61 @@ tc35815_txdone(struct net_device *dev)
int status = le32_to_cpu(txfd->fd.FDStat); int status = le32_to_cpu(txfd->fd.FDStat);
struct sk_buff *skb; struct sk_buff *skb;
unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext); unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
if (tc35815_debug > 2) { if (netif_msg_tx_done(lp)) {
printk("%s: complete TxFD.\n", dev->name); printk("%s: complete TxFD.\n", dev->name);
dump_txfd(txfd); dump_txfd(txfd);
} }
tc35815_check_tx_stat(dev, status); tc35815_check_tx_stat(dev, status);
skb = (struct sk_buff *)le32_to_cpu(txfd->fd.FDSystem); skb = fdsystem != 0xffffffff ?
lp->tx_skbs[fdsystem].skb : NULL;
#ifdef DEBUG
if (lp->tx_skbs[lp->tfd_end].skb != skb) {
printk("%s: tx_skbs mismatch.\n", dev->name);
panic_queues(dev);
}
#else
BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
#endif
if (skb) { if (skb) {
lp->stats.tx_bytes += skb->len;
pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
lp->tx_skbs[lp->tfd_end].skb = NULL;
lp->tx_skbs[lp->tfd_end].skb_dma = 0;
#ifdef TC35815_NAPI
dev_kfree_skb_any(skb); dev_kfree_skb_any(skb);
#else
dev_kfree_skb_irq(skb);
#endif
} }
txfd->fd.FDSystem = cpu_to_le32(0); txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
num_done++;
lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM; lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
txfd = &lp->tfd_base[lp->tfd_end]; txfd = &lp->tfd_base[lp->tfd_end];
if ((fdnext & ~FD_Next_EOL) != virt_to_bus(txfd)) { #ifdef DEBUG
if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
printk("%s: TxFD FDNext invalid.\n", dev->name); printk("%s: TxFD FDNext invalid.\n", dev->name);
panic_queues(dev); panic_queues(dev);
} }
#endif
if (fdnext & FD_Next_EOL) { if (fdnext & FD_Next_EOL) {
/* DMA Transmitter has been stopping... */ /* DMA Transmitter has been stopping... */
if (lp->tfd_end != lp->tfd_start) { if (lp->tfd_end != lp->tfd_start) {
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM; int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
struct TxFD* txhead = &lp->tfd_base[head]; struct TxFD* txhead = &lp->tfd_base[head];
int qlen = (lp->tfd_start + TX_FD_NUM int qlen = (lp->tfd_start + TX_FD_NUM
- lp->tfd_end) % TX_FD_NUM; - lp->tfd_end) % TX_FD_NUM;
#ifdef DEBUG
if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) { if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
printk("%s: TxFD FDCtl invalid.\n", dev->name); printk("%s: TxFD FDCtl invalid.\n", dev->name);
panic_queues(dev); panic_queues(dev);
} }
#endif
/* log max queue length */ /* log max queue length */
if (lp->lstats.max_tx_qlen < qlen) if (lp->lstats.max_tx_qlen < qlen)
lp->lstats.max_tx_qlen = qlen; lp->lstats.max_tx_qlen = qlen;
...@@ -1366,21 +1919,23 @@ tc35815_txdone(struct net_device *dev) ...@@ -1366,21 +1919,23 @@ tc35815_txdone(struct net_device *dev)
#ifdef GATHER_TXINT #ifdef GATHER_TXINT
txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
#endif #endif
if (tc35815_debug > 2) { if (netif_msg_tx_queued(lp)) {
printk("%s: start TxFD on queue.\n", printk("%s: start TxFD on queue.\n",
dev->name); dev->name);
dump_txfd(txfd); dump_txfd(txfd);
} }
tc_writel(virt_to_bus(txfd), &tr->TxFrmPtr); tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
} }
break; break;
} }
} }
if (num_done > 0 && lp->tbusy) { /* If we had stopped the queue due to a "tx full"
lp->tbusy = 0; * condition, and space has now been made available,
netif_start_queue(dev); * wake up the queue.
} */
if (netif_queue_stopped(dev) && ! tc35815_tx_full(dev))
netif_wake_queue(dev);
} }
/* The inverse routine to tc35815_open(). */ /* The inverse routine to tc35815_open(). */
...@@ -1388,18 +1943,18 @@ static int ...@@ -1388,18 +1943,18 @@ static int
tc35815_close(struct net_device *dev) tc35815_close(struct net_device *dev)
{ {
struct tc35815_local *lp = dev->priv; struct tc35815_local *lp = dev->priv;
lp->tbusy = 1;
netif_stop_queue(dev); netif_stop_queue(dev);
/* Flush the Tx and disable Rx here. */ /* Flush the Tx and disable Rx here. */
del_timer(&lp->timer); /* Kill if running */
tc35815_chip_reset(dev); tc35815_chip_reset(dev);
free_irq(dev->irq, dev); free_irq(dev->irq, dev);
tc35815_free_queues(dev); tc35815_free_queues(dev);
return 0; return 0;
} }
/* /*
...@@ -1409,29 +1964,29 @@ tc35815_close(struct net_device *dev) ...@@ -1409,29 +1964,29 @@ tc35815_close(struct net_device *dev)
static struct net_device_stats *tc35815_get_stats(struct net_device *dev) static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
{ {
struct tc35815_local *lp = dev->priv; struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; struct tc35815_regs __iomem *tr =
unsigned long flags; (struct tc35815_regs __iomem *)dev->base_addr;
if (netif_running(dev)) { if (netif_running(dev)) {
spin_lock_irqsave(&lp->lock, flags);
/* Update the statistics from the device registers. */ /* Update the statistics from the device registers. */
lp->stats.rx_missed_errors = tc_readl(&tr->Miss_Cnt); lp->stats.rx_missed_errors = tc_readl(&tr->Miss_Cnt);
spin_unlock_irqrestore(&lp->lock, flags);
} }
return &lp->stats; return &lp->stats;
} }
static void tc35815_set_cam_entry(struct tc35815_regs *tr, int index, unsigned char *addr) static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
{ {
struct tc35815_local *lp = dev->priv;
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int cam_index = index * 6; int cam_index = index * 6;
unsigned long cam_data; u32 cam_data;
unsigned long saved_addr; u32 saved_addr;
saved_addr = tc_readl(&tr->CAM_Adr); saved_addr = tc_readl(&tr->CAM_Adr);
if (tc35815_debug > 1) { if (netif_msg_hw(lp)) {
int i; int i;
printk(KERN_DEBUG "%s: CAM %d:", cardname, index); printk(KERN_DEBUG "%s: CAM %d:", dev->name, index);
for (i = 0; i < 6; i++) for (i = 0; i < 6; i++)
printk(" %02x", addr[i]); printk(" %02x", addr[i]);
printk("\n"); printk("\n");
...@@ -1458,14 +2013,6 @@ static void tc35815_set_cam_entry(struct tc35815_regs *tr, int index, unsigned c ...@@ -1458,14 +2013,6 @@ static void tc35815_set_cam_entry(struct tc35815_regs *tr, int index, unsigned c
tc_writel(cam_data, &tr->CAM_Data); tc_writel(cam_data, &tr->CAM_Data);
} }
if (tc35815_debug > 2) {
int i;
for (i = cam_index / 4; i < cam_index / 4 + 2; i++) {
tc_writel(i * 4, &tr->CAM_Adr);
printk("CAM 0x%x: %08lx",
i * 4, tc_readl(&tr->CAM_Data));
}
}
tc_writel(saved_addr, &tr->CAM_Adr); tc_writel(saved_addr, &tr->CAM_Adr);
} }
...@@ -1480,10 +2027,19 @@ static void tc35815_set_cam_entry(struct tc35815_regs *tr, int index, unsigned c ...@@ -1480,10 +2027,19 @@ static void tc35815_set_cam_entry(struct tc35815_regs *tr, int index, unsigned c
static void static void
tc35815_set_multicast_list(struct net_device *dev) tc35815_set_multicast_list(struct net_device *dev)
{ {
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
if (dev->flags&IFF_PROMISC) if (dev->flags&IFF_PROMISC)
{ {
#ifdef WORKAROUND_100HALF_PROMISC
/* With some (all?) 100MHalf HUB, controller will hang
* if we enabled promiscuous mode before linkup... */
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
if (!(tc_mdio_read(dev, pid, MII_BMSR) & BMSR_LSTATUS))
return;
#endif
/* Enable promiscuous mode */ /* Enable promiscuous mode */
tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl); tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
} }
...@@ -1505,7 +2061,7 @@ tc35815_set_multicast_list(struct net_device *dev) ...@@ -1505,7 +2061,7 @@ tc35815_set_multicast_list(struct net_device *dev)
if (!cur_addr) if (!cur_addr)
break; break;
/* entry 0,1 is reserved. */ /* entry 0,1 is reserved. */
tc35815_set_cam_entry(tr, i + 2, cur_addr->dmi_addr); tc35815_set_cam_entry(dev, i + 2, cur_addr->dmi_addr);
ena_bits |= CAM_Ena_Bit(i + 2); ena_bits |= CAM_Ena_Bit(i + 2);
} }
tc_writel(ena_bits, &tr->CAM_Ena); tc_writel(ena_bits, &tr->CAM_Ena);
...@@ -1517,122 +2073,753 @@ tc35815_set_multicast_list(struct net_device *dev) ...@@ -1517,122 +2073,753 @@ tc35815_set_multicast_list(struct net_device *dev)
} }
} }
static unsigned long tc_phy_read(struct net_device *dev, struct tc35815_regs *tr, int phy, int phy_reg) static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{ {
struct tc35815_local *lp = dev->priv; struct tc35815_local *lp = dev->priv;
unsigned long data; strcpy(info->driver, MODNAME);
unsigned long flags; strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(lp->pci_dev));
}
spin_lock_irqsave(&lp->lock, flags); static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tc35815_local *lp = dev->priv;
spin_lock_irq(&lp->lock);
mii_ethtool_gset(&lp->mii, cmd);
spin_unlock_irq(&lp->lock);
return 0;
}
static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct tc35815_local *lp = dev->priv;
int rc;
#if 1 /* use our negotiation method... */
/* Verify the settings we care about. */
if (cmd->autoneg != AUTONEG_ENABLE &&
cmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (cmd->autoneg == AUTONEG_DISABLE &&
((cmd->speed != SPEED_100 &&
cmd->speed != SPEED_10) ||
(cmd->duplex != DUPLEX_HALF &&
cmd->duplex != DUPLEX_FULL)))
return -EINVAL;
/* Ok, do it to it. */
spin_lock_irq(&lp->lock);
del_timer(&lp->timer);
tc35815_start_auto_negotiation(dev, cmd);
spin_unlock_irq(&lp->lock);
rc = 0;
#else
spin_lock_irq(&lp->lock);
rc = mii_ethtool_sset(&lp->mii, cmd);
spin_unlock_irq(&lp->lock);
#endif
return rc;
}
static int tc35815_nway_reset(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int rc;
spin_lock_irq(&lp->lock);
rc = mii_nway_restart(&lp->mii);
spin_unlock_irq(&lp->lock);
return rc;
}
static u32 tc35815_get_link(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int rc;
spin_lock_irq(&lp->lock);
rc = mii_link_ok(&lp->mii);
spin_unlock_irq(&lp->lock);
return rc;
}
static u32 tc35815_get_msglevel(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
return lp->msg_enable;
}
static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
{
struct tc35815_local *lp = dev->priv;
lp->msg_enable = datum;
}
static int tc35815_get_stats_count(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
return sizeof(lp->lstats) / sizeof(int);
}
tc_writel(MD_CA_Busy | (phy << 5) | phy_reg, &tr->MD_CA); static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
{
struct tc35815_local *lp = dev->priv;
data[0] = lp->lstats.max_tx_qlen;
data[1] = lp->lstats.tx_ints;
data[2] = lp->lstats.rx_ints;
data[3] = lp->lstats.tx_underrun;
}
static struct {
const char str[ETH_GSTRING_LEN];
} ethtool_stats_keys[] = {
{ "max_tx_qlen" },
{ "tx_ints" },
{ "rx_ints" },
{ "tx_underrun" },
};
static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
}
static const struct ethtool_ops tc35815_ethtool_ops = {
.get_drvinfo = tc35815_get_drvinfo,
.get_settings = tc35815_get_settings,
.set_settings = tc35815_set_settings,
.nway_reset = tc35815_nway_reset,
.get_link = tc35815_get_link,
.get_msglevel = tc35815_get_msglevel,
.set_msglevel = tc35815_set_msglevel,
.get_strings = tc35815_get_strings,
.get_stats_count = tc35815_get_stats_count,
.get_ethtool_stats = tc35815_get_ethtool_stats,
.get_perm_addr = ethtool_op_get_perm_addr,
};
static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct tc35815_local *lp = dev->priv;
int rc;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irq(&lp->lock);
rc = generic_mii_ioctl(&lp->mii, if_mii(rq), cmd, NULL);
spin_unlock_irq(&lp->lock);
return rc;
}
static int tc_mdio_read(struct net_device *dev, int phy_id, int location)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
u32 data;
tc_writel(MD_CA_Busy | (phy_id << 5) | location, &tr->MD_CA);
while (tc_readl(&tr->MD_CA) & MD_CA_Busy) while (tc_readl(&tr->MD_CA) & MD_CA_Busy)
; ;
data = tc_readl(&tr->MD_Data); data = tc_readl(&tr->MD_Data);
spin_unlock_irqrestore(&lp->lock, flags); return data & 0xffff;
return data; }
static void tc_mdio_write(struct net_device *dev, int phy_id, int location,
int val)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
tc_writel(val, &tr->MD_Data);
tc_writel(MD_CA_Busy | MD_CA_Wr | (phy_id << 5) | location, &tr->MD_CA);
while (tc_readl(&tr->MD_CA) & MD_CA_Busy)
;
}
/* Auto negotiation. The scheme is very simple. We have a timer routine
* that keeps watching the auto negotiation process as it progresses.
* The DP83840 is first told to start doing it's thing, we set up the time
* and place the timer state machine in it's initial state.
*
* Here the timer peeks at the DP83840 status registers at each click to see
* if the auto negotiation has completed, we assume here that the DP83840 PHY
* will time out at some point and just tell us what (didn't) happen. For
* complete coverage we only allow so many of the ticks at this level to run,
* when this has expired we print a warning message and try another strategy.
* This "other" strategy is to force the interface into various speed/duplex
* configurations and we stop when we see a link-up condition before the
* maximum number of "peek" ticks have occurred.
*
* Once a valid link status has been detected we configure the BigMAC and
* the rest of the Happy Meal to speak the most efficient protocol we could
* get a clean link for. The priority for link configurations, highest first
* is:
* 100 Base-T Full Duplex
* 100 Base-T Half Duplex
* 10 Base-T Full Duplex
* 10 Base-T Half Duplex
*
* We start a new timer now, after a successful auto negotiation status has
* been detected. This timer just waits for the link-up bit to get set in
* the BMCR of the DP83840. When this occurs we print a kernel log message
* describing the link type in use and the fact that it is up.
*
* If a fatal error of some sort is signalled and detected in the interrupt
* service routine, and the chip is reset, or the link is ifconfig'd down
* and then back up, this entire process repeats itself all over again.
*/
/* Note: Above comments are come from sunhme driver. */
static int tc35815_try_next_permutation(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short bmcr;
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
/* Downgrade from full to half duplex. Only possible via ethtool. */
if (bmcr & BMCR_FULLDPLX) {
bmcr &= ~BMCR_FULLDPLX;
printk(KERN_DEBUG "%s: try next permutation (BMCR %x)\n", dev->name, bmcr);
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
return 0;
}
/* Downgrade from 100 to 10. */
if (bmcr & BMCR_SPEED100) {
bmcr &= ~BMCR_SPEED100;
printk(KERN_DEBUG "%s: try next permutation (BMCR %x)\n", dev->name, bmcr);
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
return 0;
}
/* We've tried everything. */
return -1;
} }
static void tc_phy_write(struct net_device *dev, unsigned long d, struct tc35815_regs *tr, int phy, int phy_reg) static void
tc35815_display_link_mode(struct net_device *dev)
{ {
struct tc35815_local *lp = dev->priv; struct tc35815_local *lp = dev->priv;
unsigned long flags; int pid = lp->phy_addr;
unsigned short lpa, bmcr;
char *speed = "", *duplex = "";
lpa = tc_mdio_read(dev, pid, MII_LPA);
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
if (options.speed ? (bmcr & BMCR_SPEED100) : (lpa & (LPA_100HALF | LPA_100FULL)))
speed = "100Mb/s";
else
speed = "10Mb/s";
if (options.duplex ? (bmcr & BMCR_FULLDPLX) : (lpa & (LPA_100FULL | LPA_10FULL)))
duplex = "Full Duplex";
else
duplex = "Half Duplex";
if (netif_msg_link(lp))
printk(KERN_INFO "%s: Link is up at %s, %s.\n",
dev->name, speed, duplex);
printk(KERN_DEBUG "%s: MII BMCR %04x BMSR %04x LPA %04x\n",
dev->name,
bmcr, tc_mdio_read(dev, pid, MII_BMSR), lpa);
}
spin_lock_irqsave(&lp->lock, flags); static void tc35815_display_forced_link_mode(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short bmcr;
char *speed = "", *duplex = "";
tc_writel(d, &tr->MD_Data); bmcr = tc_mdio_read(dev, pid, MII_BMCR);
tc_writel(MD_CA_Busy | MD_CA_Wr | (phy << 5) | phy_reg, &tr->MD_CA); if (bmcr & BMCR_SPEED100)
while (tc_readl(&tr->MD_CA) & MD_CA_Busy) speed = "100Mb/s";
; else
spin_unlock_irqrestore(&lp->lock, flags); speed = "10Mb/s";
if (bmcr & BMCR_FULLDPLX)
duplex = "Full Duplex.\n";
else
duplex = "Half Duplex.\n";
if (netif_msg_link(lp))
printk(KERN_INFO "%s: Link has been forced up at %s, %s",
dev->name, speed, duplex);
} }
static void tc35815_phy_chip_init(struct net_device *dev) static void tc35815_set_link_modes(struct net_device *dev)
{ {
struct tc35815_local *lp = dev->priv; struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; struct tc35815_regs __iomem *tr =
static int first = 1; (struct tc35815_regs __iomem *)dev->base_addr;
unsigned short ctl; int pid = lp->phy_addr;
unsigned short bmcr, lpa;
if (first) { int speed;
unsigned short id0, id1;
int count; if (lp->timer_state == arbwait) {
first = 0; lpa = tc_mdio_read(dev, pid, MII_LPA);
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
/* first data written to the PHY will be an ID number */ printk(KERN_DEBUG "%s: MII BMCR %04x BMSR %04x LPA %04x\n",
tc_phy_write(dev, 0, tr, 0, MII_CONTROL); /* ID:0 */ dev->name,
#if 0 bmcr, tc_mdio_read(dev, pid, MII_BMSR), lpa);
tc_phy_write(dev, MIICNTL_RESET, tr, 0, MII_CONTROL); if (!(lpa & (LPA_10HALF | LPA_10FULL |
printk(KERN_INFO "%s: Resetting PHY...", dev->name); LPA_100HALF | LPA_100FULL))) {
while (tc_phy_read(dev, tr, 0, MII_CONTROL) & MIICNTL_RESET) /* fall back to 10HALF */
; printk(KERN_INFO "%s: bad ability %04x - falling back to 10HD.\n",
printk("\n"); dev->name, lpa);
tc_phy_write(dev, MIICNTL_AUTO|MIICNTL_SPEED|MIICNTL_FDX, tr, 0, lpa = LPA_10HALF;
MII_CONTROL); }
#endif if (options.duplex ? (bmcr & BMCR_FULLDPLX) : (lpa & (LPA_100FULL | LPA_10FULL)))
id0 = tc_phy_read(dev, tr, 0, MII_PHY_ID0); lp->fullduplex = 1;
id1 = tc_phy_read(dev, tr, 0, MII_PHY_ID1); else
printk(KERN_DEBUG "%s: PHY ID %04x %04x\n", dev->name, lp->fullduplex = 0;
id0, id1); if (options.speed ? (bmcr & BMCR_SPEED100) : (lpa & (LPA_100HALF | LPA_100FULL)))
if (lp->option & TC35815_OPT_10M) { speed = 100;
lp->linkspeed = 10; else
lp->fullduplex = (lp->option & TC35815_OPT_FULLDUP) != 0; speed = 10;
} else if (lp->option & TC35815_OPT_100M) {
lp->linkspeed = 100;
lp->fullduplex = (lp->option & TC35815_OPT_FULLDUP) != 0;
} else { } else {
/* auto negotiation */ /* Forcing a link mode. */
unsigned long neg_result; bmcr = tc_mdio_read(dev, pid, MII_BMCR);
tc_phy_write(dev, MIICNTL_AUTO | MIICNTL_RST_AUTO, tr, 0, MII_CONTROL); if (bmcr & BMCR_FULLDPLX)
printk(KERN_INFO "%s: Auto Negotiation...", dev->name); lp->fullduplex = 1;
count = 0; else
while (!(tc_phy_read(dev, tr, 0, MII_STATUS) & MIISTAT_AUTO_DONE)) {
if (count++ > 5000) {
printk(" failed. Assume 10Mbps\n");
lp->linkspeed = 10;
lp->fullduplex = 0; lp->fullduplex = 0;
goto done; if (bmcr & BMCR_SPEED100)
speed = 100;
else
speed = 10;
} }
if (count % 512 == 0)
printk("."); tc_writel(tc_readl(&tr->MAC_Ctl) | MAC_HaltReq, &tr->MAC_Ctl);
mdelay(1); if (lp->fullduplex) {
tc_writel(tc_readl(&tr->MAC_Ctl) | MAC_FullDup, &tr->MAC_Ctl);
} else {
tc_writel(tc_readl(&tr->MAC_Ctl) & ~MAC_FullDup, &tr->MAC_Ctl);
}
tc_writel(tc_readl(&tr->MAC_Ctl) & ~MAC_HaltReq, &tr->MAC_Ctl);
/* TX4939 PCFG.SPEEDn bit will be changed on NETDEV_CHANGE event. */
#ifndef NO_CHECK_CARRIER
/* TX4939 does not have EnLCarr */
if (lp->boardtype != TC35815_TX4939) {
#ifdef WORKAROUND_LOSTCAR
/* WORKAROUND: enable LostCrS only if half duplex operation */
if (!lp->fullduplex && lp->boardtype != TC35815_TX4939)
tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr, &tr->Tx_Ctl);
#endif
} }
printk(" done.\n"); #endif
neg_result = tc_phy_read(dev, tr, 0, MII_ANLPAR); lp->mii.full_duplex = lp->fullduplex;
if (neg_result & (MII_AN_TX_FDX | MII_AN_TX_HDX)) }
lp->linkspeed = 100;
static void tc35815_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short bmsr, bmcr, lpa;
int restart_timer = 0;
spin_lock_irq(&lp->lock);
lp->timer_ticks++;
switch (lp->timer_state) {
case arbwait:
/*
* Only allow for 5 ticks, thats 10 seconds and much too
* long to wait for arbitration to complete.
*/
/* TC35815 need more times... */
if (lp->timer_ticks >= 10) {
/* Enter force mode. */
if (!options.doforce) {
printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful,"
" cable probblem?\n", dev->name);
/* Try to restart the adaptor. */
tc35815_restart(dev);
goto out;
}
printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful,"
" trying force link mode\n", dev->name);
printk(KERN_DEBUG "%s: BMCR %x BMSR %x\n", dev->name,
tc_mdio_read(dev, pid, MII_BMCR),
tc_mdio_read(dev, pid, MII_BMSR));
bmcr = BMCR_SPEED100;
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
/*
* OK, seems we need do disable the transceiver
* for the first tick to make sure we get an
* accurate link state at the second tick.
*/
lp->timer_state = ltrywait;
lp->timer_ticks = 0;
restart_timer = 1;
} else {
/* Anything interesting happen? */
bmsr = tc_mdio_read(dev, pid, MII_BMSR);
if (bmsr & BMSR_ANEGCOMPLETE) {
/* Just what we've been waiting for... */
tc35815_set_link_modes(dev);
/*
* Success, at least so far, advance our state
* engine.
*/
lp->timer_state = lupwait;
restart_timer = 1;
} else {
restart_timer = 1;
}
}
break;
case lupwait:
/*
* Auto negotiation was successful and we are awaiting a
* link up status. I have decided to let this timer run
* forever until some sort of error is signalled, reporting
* a message to the user at 10 second intervals.
*/
bmsr = tc_mdio_read(dev, pid, MII_BMSR);
if (bmsr & BMSR_LSTATUS) {
/*
* Wheee, it's up, display the link mode in use and put
* the timer to sleep.
*/
tc35815_display_link_mode(dev);
netif_carrier_on(dev);
#ifdef WORKAROUND_100HALF_PROMISC
/* delayed promiscuous enabling */
if (dev->flags & IFF_PROMISC)
tc35815_set_multicast_list(dev);
#endif
#if 1
lp->saved_lpa = tc_mdio_read(dev, pid, MII_LPA);
lp->timer_state = lcheck;
restart_timer = 1;
#else
lp->timer_state = asleep;
restart_timer = 0;
#endif
} else {
if (lp->timer_ticks >= 10) {
printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
"not completely up.\n", dev->name);
lp->timer_ticks = 0;
restart_timer = 1;
} else {
restart_timer = 1;
}
}
break;
case ltrywait:
/*
* Making the timeout here too long can make it take
* annoyingly long to attempt all of the link mode
* permutations, but then again this is essentially
* error recovery code for the most part.
*/
bmsr = tc_mdio_read(dev, pid, MII_BMSR);
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
if (lp->timer_ticks == 1) {
/*
* Re-enable transceiver, we'll re-enable the
* transceiver next tick, then check link state
* on the following tick.
*/
restart_timer = 1;
break;
}
if (lp->timer_ticks == 2) {
restart_timer = 1;
break;
}
if (bmsr & BMSR_LSTATUS) {
/* Force mode selection success. */
tc35815_display_forced_link_mode(dev);
netif_carrier_on(dev);
tc35815_set_link_modes(dev);
#ifdef WORKAROUND_100HALF_PROMISC
/* delayed promiscuous enabling */
if (dev->flags & IFF_PROMISC)
tc35815_set_multicast_list(dev);
#endif
#if 1
lp->saved_lpa = tc_mdio_read(dev, pid, MII_LPA);
lp->timer_state = lcheck;
restart_timer = 1;
#else
lp->timer_state = asleep;
restart_timer = 0;
#endif
} else {
if (lp->timer_ticks >= 4) { /* 6 seconds or so... */
int ret;
ret = tc35815_try_next_permutation(dev);
if (ret == -1) {
/*
* Aieee, tried them all, reset the
* chip and try all over again.
*/
printk(KERN_NOTICE "%s: Link down, "
"cable problem?\n",
dev->name);
/* Try to restart the adaptor. */
tc35815_restart(dev);
goto out;
}
lp->timer_ticks = 0;
restart_timer = 1;
} else {
restart_timer = 1;
}
}
break;
case lcheck:
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
lpa = tc_mdio_read(dev, pid, MII_LPA);
if (bmcr & (BMCR_PDOWN | BMCR_ISOLATE | BMCR_RESET)) {
printk(KERN_ERR "%s: PHY down? (BMCR %x)\n", dev->name,
bmcr);
} else if ((lp->saved_lpa ^ lpa) &
(LPA_100FULL|LPA_100HALF|LPA_10FULL|LPA_10HALF)) {
printk(KERN_NOTICE "%s: link status changed"
" (BMCR %x LPA %x->%x)\n", dev->name,
bmcr, lp->saved_lpa, lpa);
} else {
/* go on */
restart_timer = 1;
break;
}
/* Try to restart the adaptor. */
tc35815_restart(dev);
goto out;
case asleep:
default:
/* Can't happens.... */
printk(KERN_ERR "%s: Aieee, link timer is asleep but we got "
"one anyways!\n", dev->name);
restart_timer = 0;
lp->timer_ticks = 0;
lp->timer_state = asleep; /* foo on you */
break;
}
if (restart_timer) {
lp->timer.expires = jiffies + msecs_to_jiffies(1200);
add_timer(&lp->timer);
}
out:
spin_unlock_irq(&lp->lock);
}
static void tc35815_start_auto_negotiation(struct net_device *dev,
struct ethtool_cmd *ep)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short bmsr, bmcr, advertize;
int timeout;
netif_carrier_off(dev);
bmsr = tc_mdio_read(dev, pid, MII_BMSR);
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
advertize = tc_mdio_read(dev, pid, MII_ADVERTISE);
if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
if (options.speed || options.duplex) {
/* Advertise only specified configuration. */
advertize &= ~(ADVERTISE_10HALF |
ADVERTISE_10FULL |
ADVERTISE_100HALF |
ADVERTISE_100FULL);
if (options.speed != 10) {
if (options.duplex != 1)
advertize |= ADVERTISE_100FULL;
if (options.duplex != 2)
advertize |= ADVERTISE_100HALF;
}
if (options.speed != 100) {
if (options.duplex != 1)
advertize |= ADVERTISE_10FULL;
if (options.duplex != 2)
advertize |= ADVERTISE_10HALF;
}
if (options.speed == 100)
bmcr |= BMCR_SPEED100;
else if (options.speed == 10)
bmcr &= ~BMCR_SPEED100;
if (options.duplex == 2)
bmcr |= BMCR_FULLDPLX;
else if (options.duplex == 1)
bmcr &= ~BMCR_FULLDPLX;
} else {
/* Advertise everything we can support. */
if (bmsr & BMSR_10HALF)
advertize |= ADVERTISE_10HALF;
else else
lp->linkspeed = 10; advertize &= ~ADVERTISE_10HALF;
if (neg_result & (MII_AN_TX_FDX | MII_AN_10_FDX)) if (bmsr & BMSR_10FULL)
lp->fullduplex = 1; advertize |= ADVERTISE_10FULL;
else else
lp->fullduplex = 0; advertize &= ~ADVERTISE_10FULL;
done: if (bmsr & BMSR_100HALF)
; advertize |= ADVERTISE_100HALF;
else
advertize &= ~ADVERTISE_100HALF;
if (bmsr & BMSR_100FULL)
advertize |= ADVERTISE_100FULL;
else
advertize &= ~ADVERTISE_100FULL;
}
tc_mdio_write(dev, pid, MII_ADVERTISE, advertize);
/* Enable Auto-Negotiation, this is usually on already... */
bmcr |= BMCR_ANENABLE;
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
/* Restart it to make sure it is going. */
bmcr |= BMCR_ANRESTART;
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
printk(KERN_DEBUG "%s: ADVERTISE %x BMCR %x\n", dev->name, advertize, bmcr);
/* BMCR_ANRESTART self clears when the process has begun. */
timeout = 64; /* More than enough. */
while (--timeout) {
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
if (!(bmcr & BMCR_ANRESTART))
break; /* got it. */
udelay(10);
}
if (!timeout) {
printk(KERN_ERR "%s: TC35815 would not start auto "
"negotiation BMCR=0x%04x\n",
dev->name, bmcr);
printk(KERN_NOTICE "%s: Performing force link "
"detection.\n", dev->name);
goto force_link;
} else {
printk(KERN_DEBUG "%s: auto negotiation started.\n", dev->name);
lp->timer_state = arbwait;
} }
} else {
force_link:
/* Force the link up, trying first a particular mode.
* Either we are here at the request of ethtool or
* because the Happy Meal would not start to autoneg.
*/
/* Disable auto-negotiation in BMCR, enable the duplex and
* speed setting, init the timer state machine, and fire it off.
*/
if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
bmcr = BMCR_SPEED100;
} else {
if (ep->speed == SPEED_100)
bmcr = BMCR_SPEED100;
else
bmcr = 0;
if (ep->duplex == DUPLEX_FULL)
bmcr |= BMCR_FULLDPLX;
} }
tc_mdio_write(dev, pid, MII_BMCR, bmcr);
ctl = 0; /* OK, seems we need do disable the transceiver for the first
if (lp->linkspeed == 100) * tick to make sure we get an accurate link state at the
ctl |= MIICNTL_SPEED; * second tick.
if (lp->fullduplex) */
ctl |= MIICNTL_FDX; lp->timer_state = ltrywait;
tc_phy_write(dev, ctl, tr, 0, MII_CONTROL); }
if (lp->fullduplex) { del_timer(&lp->timer);
tc_writel(tc_readl(&tr->MAC_Ctl) | MAC_FullDup, &tr->MAC_Ctl); lp->timer_ticks = 0;
lp->timer.expires = jiffies + msecs_to_jiffies(1200);
add_timer(&lp->timer);
}
static void tc35815_find_phy(struct net_device *dev)
{
struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short id0;
/* find MII phy */
for (pid = 31; pid >= 0; pid--) {
id0 = tc_mdio_read(dev, pid, MII_BMSR);
if (id0 != 0xffff && id0 != 0x0000 &&
(id0 & BMSR_RESV) != (0xffff & BMSR_RESV) /* paranoia? */
) {
lp->phy_addr = pid;
break;
} }
}
if (pid < 0) {
printk(KERN_ERR "%s: No MII Phy found.\n",
dev->name);
lp->phy_addr = pid = 0;
}
lp->mii_id[0] = tc_mdio_read(dev, pid, MII_PHYSID1);
lp->mii_id[1] = tc_mdio_read(dev, pid, MII_PHYSID2);
if (netif_msg_hw(lp))
printk(KERN_INFO "%s: PHY(%02x) ID %04x %04x\n", dev->name,
pid, lp->mii_id[0], lp->mii_id[1]);
} }
static void tc35815_chip_reset(struct net_device *dev) static void tc35815_phy_chip_init(struct net_device *dev)
{ {
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; struct tc35815_local *lp = dev->priv;
int pid = lp->phy_addr;
unsigned short bmcr;
struct ethtool_cmd ecmd, *ep;
/* dis-isolate if needed. */
bmcr = tc_mdio_read(dev, pid, MII_BMCR);
if (bmcr & BMCR_ISOLATE) {
int count = 32;
printk(KERN_DEBUG "%s: unisolating...", dev->name);
tc_mdio_write(dev, pid, MII_BMCR, bmcr & ~BMCR_ISOLATE);
while (--count) {
if (!(tc_mdio_read(dev, pid, MII_BMCR) & BMCR_ISOLATE))
break;
udelay(20);
}
printk(" %s.\n", count ? "done" : "failed");
}
if (options.speed && options.duplex) {
ecmd.autoneg = AUTONEG_DISABLE;
ecmd.speed = options.speed == 10 ? SPEED_10 : SPEED_100;
ecmd.duplex = options.duplex == 1 ? DUPLEX_HALF : DUPLEX_FULL;
ep = &ecmd;
} else {
ep = NULL;
}
tc35815_start_auto_negotiation(dev, ep);
}
static void tc35815_chip_reset(struct net_device *dev)
{
struct tc35815_regs __iomem *tr =
(struct tc35815_regs __iomem *)dev->base_addr;
int i;
/* reset the controller */ /* reset the controller */
tc_writel(MAC_Reset, &tr->MAC_Ctl); tc_writel(MAC_Reset, &tr->MAC_Ctl);
while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) udelay(4); /* 3200ns */
; i = 0;
while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
if (i++ > 100) {
printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
break;
}
mdelay(1);
}
tc_writel(0, &tr->MAC_Ctl); tc_writel(0, &tr->MAC_Ctl);
/* initialize registers to default value */ /* initialize registers to default value */
...@@ -1650,90 +2837,142 @@ static void tc35815_chip_reset(struct net_device *dev) ...@@ -1650,90 +2837,142 @@ static void tc35815_chip_reset(struct net_device *dev)
tc_writel(0, &tr->CAM_Ena); tc_writel(0, &tr->CAM_Ena);
(void)tc_readl(&tr->Miss_Cnt); /* Read to clear */ (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
/* initialize internal SRAM */
tc_writel(DMA_TestMode, &tr->DMA_Ctl);
for (i = 0; i < 0x1000; i += 4) {
tc_writel(i, &tr->CAM_Adr);
tc_writel(0, &tr->CAM_Data);
}
tc_writel(0, &tr->DMA_Ctl);
} }
static void tc35815_chip_init(struct net_device *dev) static void tc35815_chip_init(struct net_device *dev)
{ {
struct tc35815_local *lp = dev->priv; struct tc35815_local *lp = dev->priv;
struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; struct tc35815_regs __iomem *tr =
unsigned long flags; (struct tc35815_regs __iomem *)dev->base_addr;
unsigned long txctl = TX_CTL_CMD; unsigned long txctl = TX_CTL_CMD;
tc35815_phy_chip_init(dev); tc35815_phy_chip_init(dev);
/* load station address to CAM */ /* load station address to CAM */
tc35815_set_cam_entry(tr, CAM_ENTRY_SOURCE, dev->dev_addr); tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
/* Enable CAM (broadcast and unicast) */ /* Enable CAM (broadcast and unicast) */
tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
spin_lock_irqsave(&lp->lock, flags); /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
if (HAVE_DMA_RXALIGN(lp))
tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
else
tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl); tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
#ifdef TC35815_USE_PACKEDBUFFER
tc_writel(RxFrag_EnPack | ETH_ZLEN, &tr->RxFragSize); /* Packing */ tc_writel(RxFrag_EnPack | ETH_ZLEN, &tr->RxFragSize); /* Packing */
#else
tc_writel(ETH_ZLEN, &tr->RxFragSize);
#endif
tc_writel(0, &tr->TxPollCtr); /* Batch mode */ tc_writel(0, &tr->TxPollCtr); /* Batch mode */
tc_writel(TX_THRESHOLD, &tr->TxThrsh); tc_writel(TX_THRESHOLD, &tr->TxThrsh);
tc_writel(INT_EN_CMD, &tr->Int_En); tc_writel(INT_EN_CMD, &tr->Int_En);
/* set queues */ /* set queues */
tc_writel(virt_to_bus(lp->rfd_base), &tr->FDA_Bas); tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base, tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
&tr->FDA_Lim); &tr->FDA_Lim);
/* /*
* Activation method: * Activation method:
* First, enable eht MAC Transmitter and the DMA Receive circuits. * First, enable the MAC Transmitter and the DMA Receive circuits.
* Then enable the DMA Transmitter and the MAC Receive circuits. * Then enable the DMA Transmitter and the MAC Receive circuits.
*/ */
tc_writel(virt_to_bus(lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */ tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */ tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
/* start MAC transmitter */ /* start MAC transmitter */
#ifndef NO_CHECK_CARRIER
/* TX4939 does not have EnLCarr */
if (lp->boardtype == TC35815_TX4939)
txctl &= ~Tx_EnLCarr;
#ifdef WORKAROUND_LOSTCAR
/* WORKAROUND: ignore LostCrS in full duplex operation */ /* WORKAROUND: ignore LostCrS in full duplex operation */
if (lp->fullduplex) if ((lp->timer_state != asleep && lp->timer_state != lcheck) ||
txctl = TX_CTL_CMD & ~Tx_EnLCarr; lp->fullduplex)
txctl &= ~Tx_EnLCarr;
#endif
#endif /* !NO_CHECK_CARRIER */
#ifdef GATHER_TXINT #ifdef GATHER_TXINT
txctl &= ~Tx_EnComp; /* disable global tx completion int. */ txctl &= ~Tx_EnComp; /* disable global tx completion int. */
#endif #endif
tc_writel(txctl, &tr->Tx_Ctl); tc_writel(txctl, &tr->Tx_Ctl);
#if 0 /* No need to polling */ }
tc_writel(virt_to_bus(lp->tfd_base), &tr->TxFrmPtr); /* start DMA transmitter */
#endif #ifdef CONFIG_PM
static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct tc35815_local *lp = dev->priv;
unsigned long flags;
pci_save_state(pdev);
if (!netif_running(dev))
return 0;
netif_device_detach(dev);
spin_lock_irqsave(&lp->lock, flags);
del_timer(&lp->timer); /* Kill if running */
tc35815_chip_reset(dev);
spin_unlock_irqrestore(&lp->lock, flags); spin_unlock_irqrestore(&lp->lock, flags);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
} }
static struct pci_driver tc35815_driver = { static int tc35815_resume(struct pci_dev *pdev)
.name = TC35815_MODULE_NAME, {
.probe = tc35815_probe, struct net_device *dev = pci_get_drvdata(pdev);
.remove = NULL, struct tc35815_local *lp = dev->priv;
unsigned long flags;
pci_restore_state(pdev);
if (!netif_running(dev))
return 0;
pci_set_power_state(pdev, PCI_D0);
spin_lock_irqsave(&lp->lock, flags);
tc35815_restart(dev);
spin_unlock_irqrestore(&lp->lock, flags);
netif_device_attach(dev);
return 0;
}
#endif /* CONFIG_PM */
static struct pci_driver tc35815_pci_driver = {
.name = MODNAME,
.id_table = tc35815_pci_tbl, .id_table = tc35815_pci_tbl,
.probe = tc35815_init_one,
.remove = __devexit_p(tc35815_remove_one),
#ifdef CONFIG_PM
.suspend = tc35815_suspend,
.resume = tc35815_resume,
#endif
}; };
module_param_named(speed, options.speed, int, 0);
MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
module_param_named(duplex, options.duplex, int, 0);
MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
module_param_named(doforce, options.doforce, int, 0);
MODULE_PARM_DESC(doforce, "try force link mode if auto-negotiation failed");
static int __init tc35815_init_module(void) static int __init tc35815_init_module(void)
{ {
return pci_register_driver(&tc35815_driver); return pci_register_driver(&tc35815_pci_driver);
} }
static void __exit tc35815_cleanup_module(void) static void __exit tc35815_cleanup_module(void)
{ {
struct net_device *next_dev; pci_unregister_driver(&tc35815_pci_driver);
/*
* TODO: implement a tc35815_driver.remove hook, and
* move this code into that function. Then, delete
* all root_tc35815_dev list handling code.
*/
while (root_tc35815_dev) {
struct net_device *dev = root_tc35815_dev;
next_dev = ((struct tc35815_local *)dev->priv)->next_module;
iounmap((void *)(dev->base_addr));
unregister_netdev(dev);
free_netdev(dev);
root_tc35815_dev = next_dev;
}
pci_unregister_driver(&tc35815_driver);
} }
module_init(tc35815_init_module); module_init(tc35815_init_module);
module_exit(tc35815_cleanup_module); module_exit(tc35815_cleanup_module);
MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
MODULE_LICENSE("GPL");
...@@ -1459,6 +1459,8 @@ ...@@ -1459,6 +1459,8 @@
#define PCI_VENDOR_ID_TOSHIBA_2 0x102f #define PCI_VENDOR_ID_TOSHIBA_2 0x102f
#define PCI_DEVICE_ID_TOSHIBA_TC35815CF 0x0030 #define PCI_DEVICE_ID_TOSHIBA_TC35815CF 0x0030
#define PCI_DEVICE_ID_TOSHIBA_TC35815_NWU 0x0031
#define PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939 0x0032
#define PCI_DEVICE_ID_TOSHIBA_TC86C001_IDE 0x0105 #define PCI_DEVICE_ID_TOSHIBA_TC86C001_IDE 0x0105
#define PCI_DEVICE_ID_TOSHIBA_TC86C001_MISC 0x0108 #define PCI_DEVICE_ID_TOSHIBA_TC86C001_MISC 0x0108
#define PCI_DEVICE_ID_TOSHIBA_SPIDER_NET 0x01b3 #define PCI_DEVICE_ID_TOSHIBA_SPIDER_NET 0x01b3
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment