Commit ef1a628d authored by Michael Buesch's avatar Michael Buesch Committed by John W. Linville

b43: Implement dynamic PHY API

This patch implements a dynamic "ops" based PHY API.
This is needed in order to conveniently support future PHY types
to avoid the "switch"-hell.

This patch does not change any functionality. It just moves lots
of code from one place to another and adjusts it for the changed
data structures.
Signed-off-by: default avatarMichael Buesch <mb@bu3sch.de>
Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
parent 35e032d8
b43-y += main.o
b43-y += tables.o
b43-$(CONFIG_B43_NPHY) += tables_nphy.o
b43-y += phy.o
b43-y += phy_common.o
b43-y += phy_g.o
b43-y += phy_a.o
b43-$(CONFIG_B43_NPHY) += nphy.o
b43-y += sysfs.o
b43-y += xmit.o
......
......@@ -12,7 +12,7 @@
#include "leds.h"
#include "rfkill.h"
#include "lo.h"
#include "phy.h"
#include "phy_common.h"
/* The unique identifier of the firmware that's officially supported by
......@@ -508,122 +508,6 @@ struct b43_iv {
} __attribute__((__packed__));
struct b43_phy {
/* Band support flags. */
bool supports_2ghz;
bool supports_5ghz;
/* GMODE bit enabled? */
bool gmode;
/* Analog Type */
u8 analog;
/* B43_PHYTYPE_ */
u8 type;
/* PHY revision number. */
u8 rev;
/* Radio versioning */
u16 radio_manuf; /* Radio manufacturer */
u16 radio_ver; /* Radio version */
u8 radio_rev; /* Radio revision */
bool dyn_tssi_tbl; /* tssi2dbm is kmalloc()ed. */
/* ACI (adjacent channel interference) flags. */
bool aci_enable;
bool aci_wlan_automatic;
bool aci_hw_rssi;
/* Radio switched on/off */
bool radio_on;
struct {
/* Values saved when turning the radio off.
* They are needed when turning it on again. */
bool valid;
u16 rfover;
u16 rfoverval;
} radio_off_context;
u16 minlowsig[2];
u16 minlowsigpos[2];
/* TSSI to dBm table in use */
const s8 *tssi2dbm;
/* Target idle TSSI */
int tgt_idle_tssi;
/* Current idle TSSI */
int cur_idle_tssi;
/* LocalOscillator control values. */
struct b43_txpower_lo_control *lo_control;
/* Values from b43_calc_loopback_gain() */
s16 max_lb_gain; /* Maximum Loopback gain in hdB */
s16 trsw_rx_gain; /* TRSW RX gain in hdB */
s16 lna_lod_gain; /* LNA lod */
s16 lna_gain; /* LNA */
s16 pga_gain; /* PGA */
/* Desired TX power level (in dBm).
* This is set by the user and adjusted in b43_phy_xmitpower(). */
u8 power_level;
/* A-PHY TX Power control value. */
u16 txpwr_offset;
/* Current TX power level attenuation control values */
struct b43_bbatt bbatt;
struct b43_rfatt rfatt;
u8 tx_control; /* B43_TXCTL_XXX */
/* Hardware Power Control enabled? */
bool hardware_power_control;
/* Current Interference Mitigation mode */
int interfmode;
/* Stack of saved values from the Interference Mitigation code.
* Each value in the stack is layed out as follows:
* bit 0-11: offset
* bit 12-15: register ID
* bit 16-32: value
* register ID is: 0x1 PHY, 0x2 Radio, 0x3 ILT
*/
#define B43_INTERFSTACK_SIZE 26
u32 interfstack[B43_INTERFSTACK_SIZE]; //FIXME: use a data structure
/* Saved values from the NRSSI Slope calculation */
s16 nrssi[2];
s32 nrssislope;
/* In memory nrssi lookup table. */
s8 nrssi_lt[64];
/* current channel */
u8 channel;
u16 lofcal;
u16 initval; //FIXME rename?
/* PHY TX errors counter. */
atomic_t txerr_cnt;
/* The device does address auto increment for the OFDM tables.
* We cache the previously used address here and omit the address
* write on the next table access, if possible. */
u16 ofdmtab_addr; /* The address currently set in hardware. */
enum { /* The last data flow direction. */
B43_OFDMTAB_DIRECTION_UNKNOWN = 0,
B43_OFDMTAB_DIRECTION_READ,
B43_OFDMTAB_DIRECTION_WRITE,
} ofdmtab_addr_direction;
#if B43_DEBUG
/* Manual TX-power control enabled? */
bool manual_txpower_control;
/* PHY registers locked by b43_phy_lock()? */
bool phy_locked;
#endif /* B43_DEBUG */
};
/* Data structures for DMA transmission, per 80211 core. */
struct b43_dma {
struct b43_dmaring *tx_ring_AC_BK; /* Background */
......@@ -908,6 +792,15 @@ static inline int b43_is_mode(struct b43_wl *wl, int type)
return (wl->operating && wl->if_type == type);
}
/**
* b43_current_band - Returns the currently used band.
* Returns one of IEEE80211_BAND_2GHZ and IEEE80211_BAND_5GHZ.
*/
static inline enum ieee80211_band b43_current_band(struct b43_wl *wl)
{
return wl->hw->conf.channel->band;
}
static inline u16 b43_read16(struct b43_wldev *dev, u16 offset)
{
return ssb_read16(dev->dev, offset);
......
......@@ -443,76 +443,6 @@ static ssize_t txstat_read_file(struct b43_wldev *dev,
return count;
}
static ssize_t txpower_g_read_file(struct b43_wldev *dev,
char *buf, size_t bufsize)
{
ssize_t count = 0;
if (dev->phy.type != B43_PHYTYPE_G) {
fappend("Device is not a G-PHY\n");
goto out;
}
fappend("Control: %s\n", dev->phy.manual_txpower_control ?
"MANUAL" : "AUTOMATIC");
fappend("Baseband attenuation: %u\n", dev->phy.bbatt.att);
fappend("Radio attenuation: %u\n", dev->phy.rfatt.att);
fappend("TX Mixer Gain: %s\n",
(dev->phy.tx_control & B43_TXCTL_TXMIX) ? "ON" : "OFF");
fappend("PA Gain 2dB: %s\n",
(dev->phy.tx_control & B43_TXCTL_PA2DB) ? "ON" : "OFF");
fappend("PA Gain 3dB: %s\n",
(dev->phy.tx_control & B43_TXCTL_PA3DB) ? "ON" : "OFF");
fappend("\n\n");
fappend("You can write to this file:\n");
fappend("Writing \"auto\" enables automatic txpower control.\n");
fappend
("Writing the attenuation values as \"bbatt rfatt txmix pa2db pa3db\" "
"enables manual txpower control.\n");
fappend("Example: 5 4 0 0 1\n");
fappend("Enables manual control with Baseband attenuation 5, "
"Radio attenuation 4, No TX Mixer Gain, "
"No PA Gain 2dB, With PA Gain 3dB.\n");
out:
return count;
}
static int txpower_g_write_file(struct b43_wldev *dev,
const char *buf, size_t count)
{
if (dev->phy.type != B43_PHYTYPE_G)
return -ENODEV;
if ((count >= 4) && (memcmp(buf, "auto", 4) == 0)) {
/* Automatic control */
dev->phy.manual_txpower_control = 0;
b43_phy_xmitpower(dev);
} else {
int bbatt = 0, rfatt = 0, txmix = 0, pa2db = 0, pa3db = 0;
/* Manual control */
if (sscanf(buf, "%d %d %d %d %d", &bbatt, &rfatt,
&txmix, &pa2db, &pa3db) != 5)
return -EINVAL;
b43_put_attenuation_into_ranges(dev, &bbatt, &rfatt);
dev->phy.manual_txpower_control = 1;
dev->phy.bbatt.att = bbatt;
dev->phy.rfatt.att = rfatt;
dev->phy.tx_control = 0;
if (txmix)
dev->phy.tx_control |= B43_TXCTL_TXMIX;
if (pa2db)
dev->phy.tx_control |= B43_TXCTL_PA2DB;
if (pa3db)
dev->phy.tx_control |= B43_TXCTL_PA3DB;
b43_phy_lock(dev);
b43_radio_lock(dev);
b43_set_txpower_g(dev, &dev->phy.bbatt,
&dev->phy.rfatt, dev->phy.tx_control);
b43_radio_unlock(dev);
b43_phy_unlock(dev);
}
return 0;
}
/* wl->irq_lock is locked */
static int restart_write_file(struct b43_wldev *dev,
const char *buf, size_t count)
......@@ -560,7 +490,7 @@ static ssize_t loctls_read_file(struct b43_wldev *dev,
err = -ENODEV;
goto out;
}
lo = phy->lo_control;
lo = phy->g->lo_control;
fappend("-- Local Oscillator calibration data --\n\n");
fappend("HW-power-control enabled: %d\n",
dev->phy.hardware_power_control);
......@@ -578,8 +508,8 @@ static ssize_t loctls_read_file(struct b43_wldev *dev,
list_for_each_entry(cal, &lo->calib_list, list) {
bool active;
active = (b43_compare_bbatt(&cal->bbatt, &phy->bbatt) &&
b43_compare_rfatt(&cal->rfatt, &phy->rfatt));
active = (b43_compare_bbatt(&cal->bbatt, &phy->g->bbatt) &&
b43_compare_rfatt(&cal->rfatt, &phy->g->rfatt));
fappend("BB(%d), RF(%d,%d) -> I=%d, Q=%d "
"(expires in %lu sec)%s\n",
cal->bbatt.att,
......@@ -763,7 +693,6 @@ B43_DEBUGFS_FOPS(mmio32read, mmio32read__read_file, mmio32read__write_file, 1);
B43_DEBUGFS_FOPS(mmio32write, NULL, mmio32write__write_file, 1);
B43_DEBUGFS_FOPS(tsf, tsf_read_file, tsf_write_file, 1);
B43_DEBUGFS_FOPS(txstat, txstat_read_file, NULL, 0);
B43_DEBUGFS_FOPS(txpower_g, txpower_g_read_file, txpower_g_write_file, 0);
B43_DEBUGFS_FOPS(restart, NULL, restart_write_file, 1);
B43_DEBUGFS_FOPS(loctls, loctls_read_file, NULL, 0);
......@@ -877,7 +806,6 @@ void b43_debugfs_add_device(struct b43_wldev *dev)
ADD_FILE(mmio32write, 0200);
ADD_FILE(tsf, 0600);
ADD_FILE(txstat, 0400);
ADD_FILE(txpower_g, 0600);
ADD_FILE(restart, 0200);
ADD_FILE(loctls, 0400);
......@@ -907,7 +835,6 @@ void b43_debugfs_remove_device(struct b43_wldev *dev)
debugfs_remove(e->file_mmio32write.dentry);
debugfs_remove(e->file_tsf.dentry);
debugfs_remove(e->file_txstat.dentry);
debugfs_remove(e->file_txpower_g.dentry);
debugfs_remove(e->file_restart.dentry);
debugfs_remove(e->file_loctls.dentry);
......
......@@ -29,7 +29,7 @@
#include "b43.h"
#include "lo.h"
#include "phy.h"
#include "phy_g.h"
#include "main.h"
#include <linux/delay.h>
......@@ -174,7 +174,8 @@ static u16 lo_txctl_register_table(struct b43_wldev *dev,
static void lo_measure_txctl_values(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
u16 reg, mask;
u16 trsw_rx, pga;
u16 radio_pctl_reg;
......@@ -195,7 +196,7 @@ static void lo_measure_txctl_values(struct b43_wldev *dev)
int lb_gain; /* Loopback gain (in dB) */
trsw_rx = 0;
lb_gain = phy->max_lb_gain / 2;
lb_gain = gphy->max_lb_gain / 2;
if (lb_gain > 10) {
radio_pctl_reg = 0;
pga = abs(10 - lb_gain) / 6;
......@@ -226,7 +227,7 @@ static void lo_measure_txctl_values(struct b43_wldev *dev)
}
b43_radio_write16(dev, 0x43, (b43_radio_read16(dev, 0x43)
& 0xFFF0) | radio_pctl_reg);
b43_phy_set_baseband_attenuation(dev, 2);
b43_gphy_set_baseband_attenuation(dev, 2);
reg = lo_txctl_register_table(dev, &mask, NULL);
mask = ~mask;
......@@ -277,7 +278,8 @@ static void lo_measure_txctl_values(struct b43_wldev *dev)
static void lo_read_power_vector(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
int i;
u64 tmp;
u64 power_vector = 0;
......@@ -298,6 +300,7 @@ static void lo_measure_gain_values(struct b43_wldev *dev,
s16 max_rx_gain, int use_trsw_rx)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 tmp;
if (max_rx_gain < 0)
......@@ -308,7 +311,7 @@ static void lo_measure_gain_values(struct b43_wldev *dev,
int trsw_rx_gain;
if (use_trsw_rx) {
trsw_rx_gain = phy->trsw_rx_gain / 2;
trsw_rx_gain = gphy->trsw_rx_gain / 2;
if (max_rx_gain >= trsw_rx_gain) {
trsw_rx_gain = max_rx_gain - trsw_rx_gain;
trsw_rx = 0x20;
......@@ -316,38 +319,38 @@ static void lo_measure_gain_values(struct b43_wldev *dev,
} else
trsw_rx_gain = max_rx_gain;
if (trsw_rx_gain < 9) {
phy->lna_lod_gain = 0;
gphy->lna_lod_gain = 0;
} else {
phy->lna_lod_gain = 1;
gphy->lna_lod_gain = 1;
trsw_rx_gain -= 8;
}
trsw_rx_gain = clamp_val(trsw_rx_gain, 0, 0x2D);
phy->pga_gain = trsw_rx_gain / 3;
if (phy->pga_gain >= 5) {
phy->pga_gain -= 5;
phy->lna_gain = 2;
gphy->pga_gain = trsw_rx_gain / 3;
if (gphy->pga_gain >= 5) {
gphy->pga_gain -= 5;
gphy->lna_gain = 2;
} else
phy->lna_gain = 0;
gphy->lna_gain = 0;
} else {
phy->lna_gain = 0;
phy->trsw_rx_gain = 0x20;
gphy->lna_gain = 0;
gphy->trsw_rx_gain = 0x20;
if (max_rx_gain >= 0x14) {
phy->lna_lod_gain = 1;
phy->pga_gain = 2;
gphy->lna_lod_gain = 1;
gphy->pga_gain = 2;
} else if (max_rx_gain >= 0x12) {
phy->lna_lod_gain = 1;
phy->pga_gain = 1;
gphy->lna_lod_gain = 1;
gphy->pga_gain = 1;
} else if (max_rx_gain >= 0xF) {
phy->lna_lod_gain = 1;
phy->pga_gain = 0;
gphy->lna_lod_gain = 1;
gphy->pga_gain = 0;
} else {
phy->lna_lod_gain = 0;
phy->pga_gain = 0;
gphy->lna_lod_gain = 0;
gphy->pga_gain = 0;
}
}
tmp = b43_radio_read16(dev, 0x7A);
if (phy->lna_lod_gain == 0)
if (gphy->lna_lod_gain == 0)
tmp &= ~0x0008;
else
tmp |= 0x0008;
......@@ -392,10 +395,11 @@ static void lo_measure_setup(struct b43_wldev *dev,
{
struct ssb_sprom *sprom = &dev->dev->bus->sprom;
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
u16 tmp;
if (b43_has_hardware_pctl(phy)) {
if (b43_has_hardware_pctl(dev)) {
sav->phy_lo_mask = b43_phy_read(dev, B43_PHY_LO_MASK);
sav->phy_extg_01 = b43_phy_read(dev, B43_PHY_EXTG(0x01));
sav->phy_dacctl_hwpctl = b43_phy_read(dev, B43_PHY_DACCTL);
......@@ -496,7 +500,7 @@ static void lo_measure_setup(struct b43_wldev *dev,
b43_phy_write(dev, B43_PHY_CCK(0x2B), 0x0802);
if (phy->rev >= 2)
b43_dummy_transmission(dev);
b43_radio_selectchannel(dev, 6, 0);
b43_gphy_channel_switch(dev, 6, 0);
b43_radio_read16(dev, 0x51); /* dummy read */
if (phy->type == B43_PHYTYPE_G)
b43_phy_write(dev, B43_PHY_CCK(0x2F), 0);
......@@ -520,18 +524,19 @@ static void lo_measure_restore(struct b43_wldev *dev,
struct lo_g_saved_values *sav)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 tmp;
if (phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_PGACTL, 0xE300);
tmp = (phy->pga_gain << 8);
tmp = (gphy->pga_gain << 8);
b43_phy_write(dev, B43_PHY_RFOVERVAL, tmp | 0xA0);
udelay(5);
b43_phy_write(dev, B43_PHY_RFOVERVAL, tmp | 0xA2);
udelay(2);
b43_phy_write(dev, B43_PHY_RFOVERVAL, tmp | 0xA3);
} else {
tmp = (phy->pga_gain | 0xEFA0);
tmp = (gphy->pga_gain | 0xEFA0);
b43_phy_write(dev, B43_PHY_PGACTL, tmp);
}
if (phy->type == B43_PHYTYPE_G) {
......@@ -572,7 +577,7 @@ static void lo_measure_restore(struct b43_wldev *dev,
b43_phy_write(dev, B43_PHY_CCK(0x3E), sav->phy_cck_3E);
b43_phy_write(dev, B43_PHY_CRS0, sav->phy_crs0);
}
if (b43_has_hardware_pctl(phy)) {
if (b43_has_hardware_pctl(dev)) {
tmp = (sav->phy_lo_mask & 0xBFFF);
b43_phy_write(dev, B43_PHY_LO_MASK, tmp);
b43_phy_write(dev, B43_PHY_EXTG(0x01), sav->phy_extg_01);
......@@ -580,7 +585,7 @@ static void lo_measure_restore(struct b43_wldev *dev,
b43_phy_write(dev, B43_PHY_CCK(0x14), sav->phy_cck_14);
b43_phy_write(dev, B43_PHY_HPWR_TSSICTL, sav->phy_hpwr_tssictl);
}
b43_radio_selectchannel(dev, sav->old_channel, 1);
b43_gphy_channel_switch(dev, sav->old_channel, 1);
}
struct b43_lo_g_statemachine {
......@@ -597,6 +602,7 @@ static int lo_probe_possible_loctls(struct b43_wldev *dev,
struct b43_lo_g_statemachine *d)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_loctl test_loctl;
struct b43_loctl orig_loctl;
struct b43_loctl prev_loctl = {
......@@ -646,9 +652,9 @@ static int lo_probe_possible_loctls(struct b43_wldev *dev,
test_loctl.q != prev_loctl.q) &&
(abs(test_loctl.i) <= 16 && abs(test_loctl.q) <= 16)) {
b43_lo_write(dev, &test_loctl);
feedth = lo_measure_feedthrough(dev, phy->lna_gain,
phy->pga_gain,
phy->trsw_rx_gain);
feedth = lo_measure_feedthrough(dev, gphy->lna_gain,
gphy->pga_gain,
gphy->trsw_rx_gain);
if (feedth < d->lowest_feedth) {
memcpy(probe_loctl, &test_loctl,
sizeof(struct b43_loctl));
......@@ -677,6 +683,7 @@ static void lo_probe_loctls_statemachine(struct b43_wldev *dev,
int *max_rx_gain)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_lo_g_statemachine d;
u16 feedth;
int found_lower;
......@@ -693,17 +700,17 @@ static void lo_probe_loctls_statemachine(struct b43_wldev *dev,
max_repeat = 4;
do {
b43_lo_write(dev, &d.min_loctl);
feedth = lo_measure_feedthrough(dev, phy->lna_gain,
phy->pga_gain,
phy->trsw_rx_gain);
feedth = lo_measure_feedthrough(dev, gphy->lna_gain,
gphy->pga_gain,
gphy->trsw_rx_gain);
if (feedth < 0x258) {
if (feedth >= 0x12C)
*max_rx_gain += 6;
else
*max_rx_gain += 3;
feedth = lo_measure_feedthrough(dev, phy->lna_gain,
phy->pga_gain,
phy->trsw_rx_gain);
feedth = lo_measure_feedthrough(dev, gphy->lna_gain,
gphy->pga_gain,
gphy->trsw_rx_gain);
}
d.lowest_feedth = feedth;
......@@ -752,6 +759,7 @@ struct b43_lo_calib * b43_calibrate_lo_setting(struct b43_wldev *dev,
const struct b43_rfatt *rfatt)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_loctl loctl = {
.i = 0,
.q = 0,
......@@ -782,11 +790,11 @@ struct b43_lo_calib * b43_calibrate_lo_setting(struct b43_wldev *dev,
if (rfatt->with_padmix)
max_rx_gain -= pad_mix_gain;
if (has_loopback_gain(phy))
max_rx_gain += phy->max_lb_gain;
max_rx_gain += gphy->max_lb_gain;
lo_measure_gain_values(dev, max_rx_gain,
has_loopback_gain(phy));
b43_phy_set_baseband_attenuation(dev, bbatt->att);
b43_gphy_set_baseband_attenuation(dev, bbatt->att);
lo_probe_loctls_statemachine(dev, &loctl, &max_rx_gain);
lo_measure_restore(dev, &saved_regs);
......@@ -820,7 +828,7 @@ struct b43_lo_calib * b43_get_calib_lo_settings(struct b43_wldev *dev,
const struct b43_bbatt *bbatt,
const struct b43_rfatt *rfatt)
{
struct b43_txpower_lo_control *lo = dev->phy.lo_control;
struct b43_txpower_lo_control *lo = dev->phy.g->lo_control;
struct b43_lo_calib *c;
c = b43_find_lo_calib(lo, bbatt, rfatt);
......@@ -839,7 +847,8 @@ struct b43_lo_calib * b43_get_calib_lo_settings(struct b43_wldev *dev,
void b43_gphy_dc_lt_init(struct b43_wldev *dev, bool update_all)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
int i;
int rf_offset, bb_offset;
const struct b43_rfatt *rfatt;
......@@ -917,14 +926,14 @@ static inline void b43_lo_fixup_rfatt(struct b43_rfatt *rf)
void b43_lo_g_adjust(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = dev->phy.g;
struct b43_lo_calib *cal;
struct b43_rfatt rf;
memcpy(&rf, &phy->rfatt, sizeof(rf));
memcpy(&rf, &gphy->rfatt, sizeof(rf));
b43_lo_fixup_rfatt(&rf);
cal = b43_get_calib_lo_settings(dev, &phy->bbatt, &rf);
cal = b43_get_calib_lo_settings(dev, &gphy->bbatt, &rf);
if (!cal)
return;
b43_lo_write(dev, &cal->ctl);
......@@ -952,7 +961,8 @@ void b43_lo_g_adjust_to(struct b43_wldev *dev,
void b43_lo_g_maintanance_work(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
unsigned long now;
unsigned long expire;
struct b43_lo_calib *cal, *tmp;
......@@ -962,7 +972,7 @@ void b43_lo_g_maintanance_work(struct b43_wldev *dev)
if (!lo)
return;
now = jiffies;
hwpctl = b43_has_hardware_pctl(phy);
hwpctl = b43_has_hardware_pctl(dev);
if (hwpctl) {
/* Read the power vector and update it, if needed. */
......@@ -983,8 +993,8 @@ void b43_lo_g_maintanance_work(struct b43_wldev *dev)
if (!time_before(cal->calib_time, expire))
continue;
/* This item expired. */
if (b43_compare_bbatt(&cal->bbatt, &phy->bbatt) &&
b43_compare_rfatt(&cal->rfatt, &phy->rfatt)) {
if (b43_compare_bbatt(&cal->bbatt, &gphy->bbatt) &&
b43_compare_rfatt(&cal->rfatt, &gphy->rfatt)) {
B43_WARN_ON(current_item_expired);
current_item_expired = 1;
}
......@@ -1002,7 +1012,7 @@ void b43_lo_g_maintanance_work(struct b43_wldev *dev)
/* Recalibrate currently used LO setting. */
if (b43_debug(dev, B43_DBG_LO))
b43dbg(dev->wl, "LO: Recalibrating current LO setting\n");
cal = b43_calibrate_lo_setting(dev, &phy->bbatt, &phy->rfatt);
cal = b43_calibrate_lo_setting(dev, &gphy->bbatt, &gphy->rfatt);
if (cal) {
list_add(&cal->list, &lo->calib_list);
b43_lo_write(dev, &cal->ctl);
......@@ -1013,7 +1023,7 @@ void b43_lo_g_maintanance_work(struct b43_wldev *dev)
void b43_lo_g_cleanup(struct b43_wldev *dev)
{
struct b43_txpower_lo_control *lo = dev->phy.lo_control;
struct b43_txpower_lo_control *lo = dev->phy.g->lo_control;
struct b43_lo_calib *cal, *tmp;
if (!lo)
......@@ -1027,9 +1037,7 @@ void b43_lo_g_cleanup(struct b43_wldev *dev)
/* LO Initialization */
void b43_lo_g_init(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
if (b43_has_hardware_pctl(phy)) {
if (b43_has_hardware_pctl(dev)) {
lo_read_power_vector(dev);
b43_gphy_dc_lt_init(dev, 1);
}
......
#ifndef B43_LO_H_
#define B43_LO_H_
#include "phy.h"
/* G-PHY Local Oscillator */
#include "phy_g.h"
struct b43_wldev;
......
......@@ -44,7 +44,8 @@
#include "b43.h"
#include "main.h"
#include "debugfs.h"
#include "phy.h"
#include "phy_common.h"
#include "phy_g.h"
#include "nphy.h"
#include "dma.h"
#include "pio.h"
......@@ -1174,6 +1175,8 @@ static void b43_calculate_link_quality(struct b43_wldev *dev)
{
/* Top half of Link Quality calculation. */
if (dev->phy.type != B43_PHYTYPE_G)
return;
if (dev->noisecalc.calculation_running)
return;
dev->noisecalc.calculation_running = 1;
......@@ -1184,7 +1187,7 @@ static void b43_calculate_link_quality(struct b43_wldev *dev)
static void handle_irq_noise(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *phy = dev->phy.g;
u16 tmp;
u8 noise[4];
u8 i, j;
......@@ -1192,6 +1195,9 @@ static void handle_irq_noise(struct b43_wldev *dev)
/* Bottom half of Link Quality calculation. */
if (dev->phy.type != B43_PHYTYPE_G)
return;
/* Possible race condition: It might be possible that the user
* changed to a different channel in the meantime since we
* started the calculation. We ignore that fact, since it's
......@@ -2688,9 +2694,7 @@ static void b43_mgmtframe_txantenna(struct b43_wldev *dev, int antenna)
/* This is the opposite of b43_chip_init() */
static void b43_chip_exit(struct b43_wldev *dev)
{
b43_radio_turn_off(dev, 1);
b43_gpio_cleanup(dev);
b43_lo_g_cleanup(dev);
/* firmware is released later */
}
......@@ -2700,7 +2704,7 @@ static void b43_chip_exit(struct b43_wldev *dev)
static int b43_chip_init(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
int err, tmp;
int err;
u32 value32, macctl;
u16 value16;
......@@ -2725,19 +2729,19 @@ static int b43_chip_init(struct b43_wldev *dev)
err = b43_upload_initvals(dev);
if (err)
goto err_gpio_clean;
b43_radio_turn_on(dev);
b43_write16(dev, 0x03E6, 0x0000);
err = b43_phy_init(dev);
if (err)
goto err_radio_off;
goto err_gpio_clean;
/* Select initial Interference Mitigation. */
tmp = phy->interfmode;
phy->interfmode = B43_INTERFMODE_NONE;
b43_radio_set_interference_mitigation(dev, tmp);
/* Disable Interference Mitigation. */
if (phy->ops->interf_mitigation)
phy->ops->interf_mitigation(dev, B43_INTERFMODE_NONE);
b43_set_rx_antenna(dev, B43_ANTENNA_DEFAULT);
/* Select the antennae */
if (phy->ops->set_rx_antenna)
phy->ops->set_rx_antenna(dev, B43_ANTENNA_DEFAULT);
b43_mgmtframe_txantenna(dev, B43_ANTENNA_DEFAULT);
if (phy->type == B43_PHYTYPE_B) {
......@@ -2790,8 +2794,6 @@ static int b43_chip_init(struct b43_wldev *dev)
out:
return err;
err_radio_off:
b43_radio_turn_off(dev, 1);
err_gpio_clean:
b43_gpio_cleanup(dev);
return err;
......@@ -2799,25 +2801,10 @@ static int b43_chip_init(struct b43_wldev *dev)
static void b43_periodic_every60sec(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
const struct b43_phy_operations *ops = dev->phy.ops;
if (phy->type != B43_PHYTYPE_G)
return;
if (dev->dev->bus->sprom.boardflags_lo & B43_BFL_RSSI) {
b43_mac_suspend(dev);
b43_calc_nrssi_slope(dev);
if ((phy->radio_ver == 0x2050) && (phy->radio_rev == 8)) {
u8 old_chan = phy->channel;
/* VCO Calibration */
if (old_chan >= 8)
b43_radio_selectchannel(dev, 1, 0);
else
b43_radio_selectchannel(dev, 13, 0);
b43_radio_selectchannel(dev, old_chan, 0);
}
b43_mac_enable(dev);
}
if (ops->pwork_60sec)
ops->pwork_60sec(dev);
}
static void b43_periodic_every30sec(struct b43_wldev *dev)
......@@ -2845,32 +2832,10 @@ static void b43_periodic_every15sec(struct b43_wldev *dev)
}
}
if (phy->type == B43_PHYTYPE_G) {
//TODO: update_aci_moving_average
if (phy->aci_enable && phy->aci_wlan_automatic) {
b43_mac_suspend(dev);
if (!phy->aci_enable && 1 /*TODO: not scanning? */ ) {
if (0 /*TODO: bunch of conditions */ ) {
b43_radio_set_interference_mitigation
(dev, B43_INTERFMODE_MANUALWLAN);
}
} else if (1 /*TODO*/) {
/*
if ((aci_average > 1000) && !(b43_radio_aci_scan(dev))) {
b43_radio_set_interference_mitigation(dev,
B43_INTERFMODE_NONE);
}
*/
}
b43_mac_enable(dev);
} else if (phy->interfmode == B43_INTERFMODE_NONWLAN &&
phy->rev == 1) {
//TODO: implement rev1 workaround
}
}
b43_phy_xmitpower(dev); //FIXME: unless scanning?
b43_lo_g_maintanance_work(dev);
//TODO for APHY (temperature?)
if (phy->ops->pwork_15sec)
phy->ops->pwork_15sec(dev);
phy->ops->xmitpower(dev);
atomic_set(&phy->txerr_cnt, B43_PHY_TX_BADNESS_LIMIT);
wmb();
......@@ -3401,7 +3366,7 @@ static int b43_op_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf)
/* Switch to the requested channel.
* The firmware takes care of races with the TX handler. */
if (conf->channel->hw_value != phy->channel)
b43_radio_selectchannel(dev, conf->channel->hw_value, 0);
b43_switch_channel(dev, conf->channel->hw_value);
/* Enable/Disable ShortSlot timing. */
if ((!!(conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME)) !=
......@@ -3419,7 +3384,7 @@ static int b43_op_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf)
if (conf->power_level != 0) {
if (conf->power_level != phy->power_level) {
phy->power_level = conf->power_level;
b43_phy_xmitpower(dev);
phy->ops->xmitpower(dev);
}
}
......@@ -3427,7 +3392,8 @@ static int b43_op_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf)
antenna = b43_antenna_from_ieee80211(dev, conf->antenna_sel_tx);
b43_mgmtframe_txantenna(dev, antenna);
antenna = b43_antenna_from_ieee80211(dev, conf->antenna_sel_rx);
b43_set_rx_antenna(dev, antenna);
if (phy->ops->set_rx_antenna)
phy->ops->set_rx_antenna(dev, antenna);
/* Update templates for AP/mesh mode. */
if (b43_is_mode(wl, IEEE80211_IF_TYPE_AP) ||
......@@ -3436,7 +3402,7 @@ static int b43_op_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf)
if (!!conf->radio_enabled != phy->radio_on) {
if (conf->radio_enabled) {
b43_radio_turn_on(dev);
b43_software_rfkill(dev, RFKILL_STATE_UNBLOCKED);
b43info(dev->wl, "Radio turned on by software\n");
if (!dev->radio_hw_enable) {
b43info(dev->wl, "The hardware RF-kill button "
......@@ -3444,7 +3410,7 @@ static int b43_op_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf)
"Press the button to turn it on.\n");
}
} else {
b43_radio_turn_off(dev, 0);
b43_software_rfkill(dev, RFKILL_STATE_SOFT_BLOCKED);
b43info(dev->wl, "Radio turned off by software\n");
}
}
......@@ -3818,48 +3784,9 @@ static int b43_phy_versioning(struct b43_wldev *dev)
static void setup_struct_phy_for_init(struct b43_wldev *dev,
struct b43_phy *phy)
{
struct b43_txpower_lo_control *lo;
int i;
memset(phy->minlowsig, 0xFF, sizeof(phy->minlowsig));
memset(phy->minlowsigpos, 0, sizeof(phy->minlowsigpos));
phy->aci_enable = 0;
phy->aci_wlan_automatic = 0;
phy->aci_hw_rssi = 0;
phy->radio_off_context.valid = 0;
lo = phy->lo_control;
if (lo) {
memset(lo, 0, sizeof(*(phy->lo_control)));
lo->tx_bias = 0xFF;
INIT_LIST_HEAD(&lo->calib_list);
}
phy->max_lb_gain = 0;
phy->trsw_rx_gain = 0;
phy->txpwr_offset = 0;
/* NRSSI */
phy->nrssislope = 0;
for (i = 0; i < ARRAY_SIZE(phy->nrssi); i++)
phy->nrssi[i] = -1000;
for (i = 0; i < ARRAY_SIZE(phy->nrssi_lt); i++)
phy->nrssi_lt[i] = i;
phy->lofcal = 0xFFFF;
phy->initval = 0xFFFF;
phy->interfmode = B43_INTERFMODE_NONE;
phy->channel = 0xFF;
phy->hardware_power_control = !!modparam_hwpctl;
/* PHY TX errors counter. */
atomic_set(&phy->txerr_cnt, B43_PHY_TX_BADNESS_LIMIT);
/* OFDM-table address caching. */
phy->ofdmtab_addr_direction = B43_OFDMTAB_DIRECTION_UNKNOWN;
}
static void setup_struct_wldev_for_init(struct b43_wldev *dev)
......@@ -3995,7 +3922,6 @@ static void b43_set_pretbtt(struct b43_wldev *dev)
/* Locking: wl->mutex */
static void b43_wireless_core_exit(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
u32 macctl;
B43_WARN_ON(b43_status(dev) > B43_STAT_INITIALIZED);
......@@ -4016,16 +3942,12 @@ static void b43_wireless_core_exit(struct b43_wldev *dev)
b43_dma_free(dev);
b43_pio_free(dev);
b43_chip_exit(dev);
b43_radio_turn_off(dev, 1);
b43_switch_analog(dev, 0);
if (phy->dyn_tssi_tbl)
kfree(phy->tssi2dbm);
kfree(phy->lo_control);
phy->lo_control = NULL;
if (dev->wl->current_beacon) {
dev_kfree_skb_any(dev->wl->current_beacon);
dev->wl->current_beacon = NULL;
}
b43_phy_exit(dev);
ssb_device_disable(dev->dev, 0);
ssb_bus_may_powerdown(dev->dev->bus);
......@@ -4052,29 +3974,24 @@ static int b43_wireless_core_init(struct b43_wldev *dev)
b43_wireless_core_reset(dev, tmp);
}
if ((phy->type == B43_PHYTYPE_B) || (phy->type == B43_PHYTYPE_G)) {
phy->lo_control =
kzalloc(sizeof(*(phy->lo_control)), GFP_KERNEL);
if (!phy->lo_control) {
err = -ENOMEM;
goto err_busdown;
}
}
setup_struct_wldev_for_init(dev);
err = b43_phy_init_tssi2dbm_table(dev);
err = b43_phy_operations_setup(dev);
if (err)
goto err_kfree_lo_control;
goto err_busdown;
/* Enable IRQ routing to this device. */
ssb_pcicore_dev_irqvecs_enable(&bus->pcicore, dev->dev);
b43_imcfglo_timeouts_workaround(dev);
b43_bluetooth_coext_disable(dev);
b43_phy_early_init(dev);
if (phy->ops->prepare) {
err = phy->ops->prepare(dev);
if (err)
goto err_phy_exit;
}
err = b43_chip_init(dev);
if (err)
goto err_kfree_tssitbl;
goto err_phy_exit;
b43_shm_write16(dev, B43_SHM_SHARED,
B43_SHM_SH_WLCOREREV, dev->dev->id.revision);
hf = b43_hf_read(dev);
......@@ -4140,15 +4057,11 @@ static int b43_wireless_core_init(struct b43_wldev *dev)
out:
return err;
err_chip_exit:
err_chip_exit:
b43_chip_exit(dev);
err_kfree_tssitbl:
if (phy->dyn_tssi_tbl)
kfree(phy->tssi2dbm);
err_kfree_lo_control:
kfree(phy->lo_control);
phy->lo_control = NULL;
err_busdown:
err_phy_exit:
b43_phy_exit(dev);
err_busdown:
ssb_bus_may_powerdown(bus);
B43_WARN_ON(b43_status(dev) != B43_STAT_UNINIT);
return err;
......@@ -4511,7 +4424,6 @@ static int b43_wireless_core_attach(struct b43_wldev *dev)
wl->current_dev = dev;
INIT_WORK(&dev->restart_work, b43_chip_reset);
b43_radio_turn_off(dev, 1);
b43_switch_analog(dev, 0);
ssb_device_disable(dev->dev, 0);
ssb_bus_may_powerdown(bus);
......
......@@ -81,9 +81,8 @@ static void b43_nphy_tx_power_fix(struct b43_wldev *dev)
//TODO
}
/* Tune the hardware to a new channel. Don't call this directly.
* Use b43_radio_selectchannel() */
int b43_nphy_selectchannel(struct b43_wldev *dev, u8 channel)
/* Tune the hardware to a new channel. */
static int nphy_channel_switch(struct b43_wldev *dev, unsigned int channel)
{
const struct b43_nphy_channeltab_entry *tabent;
......@@ -162,7 +161,7 @@ static void b43_radio_init2055_post(struct b43_wldev *dev)
msleep(1);
b43_radio_mask(dev, B2055_CAL_LPOCTL, 0xFF7F);
msleep(1);
b43_radio_selectchannel(dev, dev->phy.channel, 0);
nphy_channel_switch(dev, dev->phy.channel);
b43_radio_write16(dev, B2055_C1_RX_BB_LPF, 0x9);
b43_radio_write16(dev, B2055_C2_RX_BB_LPF, 0x9);
b43_radio_write16(dev, B2055_C1_RX_BB_MIDACHP, 0x83);
......@@ -484,3 +483,139 @@ int b43_phy_initn(struct b43_wldev *dev)
b43err(dev->wl, "IEEE 802.11n devices are not supported, yet.\n");
return 0;
}
static int b43_nphy_op_allocate(struct b43_wldev *dev)
{
struct b43_phy_n *nphy;
nphy = kzalloc(sizeof(*nphy), GFP_KERNEL);
if (!nphy)
return -ENOMEM;
dev->phy.n = nphy;
//TODO init struct b43_phy_n
return 0;
}
static int b43_nphy_op_init(struct b43_wldev *dev)
{
struct b43_phy_n *nphy = dev->phy.n;
int err;
err = b43_phy_initn(dev);
if (err)
return err;
nphy->initialised = 1;
return 0;
}
static void b43_nphy_op_exit(struct b43_wldev *dev)
{
struct b43_phy_n *nphy = dev->phy.n;
if (nphy->initialised) {
//TODO
nphy->initialised = 0;
}
//TODO
kfree(nphy);
dev->phy.n = NULL;
}
static inline void check_phyreg(struct b43_wldev *dev, u16 offset)
{
#if B43_DEBUG
if ((offset & B43_PHYROUTE) == B43_PHYROUTE_OFDM_GPHY) {
/* OFDM registers are onnly available on A/G-PHYs */
b43err(dev->wl, "Invalid OFDM PHY access at "
"0x%04X on N-PHY\n", offset);
dump_stack();
}
if ((offset & B43_PHYROUTE) == B43_PHYROUTE_EXT_GPHY) {
/* Ext-G registers are only available on G-PHYs */
b43err(dev->wl, "Invalid EXT-G PHY access at "
"0x%04X on N-PHY\n", offset);
dump_stack();
}
#endif /* B43_DEBUG */
}
static u16 b43_nphy_op_read(struct b43_wldev *dev, u16 reg)
{
check_phyreg(dev, reg);
b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
return b43_read16(dev, B43_MMIO_PHY_DATA);
}
static void b43_nphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
{
check_phyreg(dev, reg);
b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
b43_write16(dev, B43_MMIO_PHY_DATA, value);
}
static u16 b43_nphy_op_radio_read(struct b43_wldev *dev, u16 reg)
{
/* Register 1 is a 32-bit register. */
B43_WARN_ON(reg == 1);
/* N-PHY needs 0x100 for read access */
reg |= 0x100;
b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
}
static void b43_nphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
{
/* Register 1 is a 32-bit register. */
B43_WARN_ON(reg == 1);
b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
}
static void b43_nphy_op_software_rfkill(struct b43_wldev *dev,
enum rfkill_state state)
{//TODO
}
static int b43_nphy_op_switch_channel(struct b43_wldev *dev,
unsigned int new_channel)
{
if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
if ((new_channel < 1) || (new_channel > 14))
return -EINVAL;
} else {
if (new_channel > 200)
return -EINVAL;
}
return nphy_channel_switch(dev, new_channel);
}
static unsigned int b43_nphy_op_get_default_chan(struct b43_wldev *dev)
{
if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
return 1;
return 36;
}
static void b43_nphy_op_xmitpower(struct b43_wldev *dev)
{//TODO
}
const struct b43_phy_operations b43_phyops_n = {
.allocate = b43_nphy_op_allocate,
.init = b43_nphy_op_init,
.exit = b43_nphy_op_exit,
.phy_read = b43_nphy_op_read,
.phy_write = b43_nphy_op_write,
.radio_read = b43_nphy_op_radio_read,
.radio_write = b43_nphy_op_radio_write,
.software_rfkill = b43_nphy_op_software_rfkill,
.switch_channel = b43_nphy_op_switch_channel,
.get_default_chan = b43_nphy_op_get_default_chan,
.xmitpower = b43_nphy_op_xmitpower,
};
#ifndef B43_NPHY_H_
#define B43_NPHY_H_
#include "phy.h"
#include "phy_common.h"
/* N-PHY registers. */
......@@ -919,54 +919,14 @@
struct b43_wldev;
struct b43_phy_n {
bool initialised;
#ifdef CONFIG_B43_NPHY
/* N-PHY support enabled */
//TODO lots of missing stuff
};
int b43_phy_initn(struct b43_wldev *dev);
void b43_nphy_radio_turn_on(struct b43_wldev *dev);
void b43_nphy_radio_turn_off(struct b43_wldev *dev);
struct b43_phy_operations;
extern const struct b43_phy_operations b43_phyops_n;
int b43_nphy_selectchannel(struct b43_wldev *dev, u8 channel);
void b43_nphy_xmitpower(struct b43_wldev *dev);
void b43_nphy_set_rxantenna(struct b43_wldev *dev, int antenna);
#else /* CONFIG_B43_NPHY */
/* N-PHY support disabled */
static inline
int b43_phy_initn(struct b43_wldev *dev)
{
return -EOPNOTSUPP;
}
static inline
void b43_nphy_radio_turn_on(struct b43_wldev *dev)
{
}
static inline
void b43_nphy_radio_turn_off(struct b43_wldev *dev)
{
}
static inline
int b43_nphy_selectchannel(struct b43_wldev *dev, u8 channel)
{
return -ENOSYS;
}
static inline
void b43_nphy_xmitpower(struct b43_wldev *dev)
{
}
static inline
void b43_nphy_set_rxantenna(struct b43_wldev *dev, int antenna)
{
}
#endif /* CONFIG_B43_NPHY */
#endif /* B43_NPHY_H_ */
This source diff could not be displayed because it is too large. You can view the blob instead.
/*
Broadcom B43 wireless driver
IEEE 802.11a PHY driver
Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
Copyright (c) 2005-2007 Stefano Brivio <stefano.brivio@polimi.it>
Copyright (c) 2005-2008 Michael Buesch <mb@bu3sch.de>
Copyright (c) 2005, 2006 Danny van Dyk <kugelfang@gentoo.org>
Copyright (c) 2005, 2006 Andreas Jaggi <andreas.jaggi@waterwave.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "b43.h"
#include "phy_a.h"
#include "phy_common.h"
#include "wa.h"
#include "tables.h"
#include "main.h"
/* Get the freq, as it has to be written to the device. */
static inline u16 channel2freq_a(u8 channel)
{
B43_WARN_ON(channel > 200);
return (5000 + 5 * channel);
}
static inline u16 freq_r3A_value(u16 frequency)
{
u16 value;
if (frequency < 5091)
value = 0x0040;
else if (frequency < 5321)
value = 0x0000;
else if (frequency < 5806)
value = 0x0080;
else
value = 0x0040;
return value;
}
void b43_radio_set_tx_iq(struct b43_wldev *dev)
{
static const u8 data_high[5] = { 0x00, 0x40, 0x80, 0x90, 0xD0 };
static const u8 data_low[5] = { 0x00, 0x01, 0x05, 0x06, 0x0A };
u16 tmp = b43_radio_read16(dev, 0x001E);
int i, j;
for (i = 0; i < 5; i++) {
for (j = 0; j < 5; j++) {
if (tmp == (data_high[i] << 4 | data_low[j])) {
b43_phy_write(dev, 0x0069,
(i - j) << 8 | 0x00C0);
return;
}
}
}
}
static void aphy_channel_switch(struct b43_wldev *dev, unsigned int channel)
{
u16 freq, r8, tmp;
freq = channel2freq_a(channel);
r8 = b43_radio_read16(dev, 0x0008);
b43_write16(dev, 0x03F0, freq);
b43_radio_write16(dev, 0x0008, r8);
//TODO: write max channel TX power? to Radio 0x2D
tmp = b43_radio_read16(dev, 0x002E);
tmp &= 0x0080;
//TODO: OR tmp with the Power out estimation for this channel?
b43_radio_write16(dev, 0x002E, tmp);
if (freq >= 4920 && freq <= 5500) {
/*
* r8 = (((freq * 15 * 0xE1FC780F) >> 32) / 29) & 0x0F;
* = (freq * 0.025862069
*/
r8 = 3 * freq / 116; /* is equal to r8 = freq * 0.025862 */
}
b43_radio_write16(dev, 0x0007, (r8 << 4) | r8);
b43_radio_write16(dev, 0x0020, (r8 << 4) | r8);
b43_radio_write16(dev, 0x0021, (r8 << 4) | r8);
b43_radio_write16(dev, 0x0022, (b43_radio_read16(dev, 0x0022)
& 0x000F) | (r8 << 4));
b43_radio_write16(dev, 0x002A, (r8 << 4));
b43_radio_write16(dev, 0x002B, (r8 << 4));
b43_radio_write16(dev, 0x0008, (b43_radio_read16(dev, 0x0008)
& 0x00F0) | (r8 << 4));
b43_radio_write16(dev, 0x0029, (b43_radio_read16(dev, 0x0029)
& 0xFF0F) | 0x00B0);
b43_radio_write16(dev, 0x0035, 0x00AA);
b43_radio_write16(dev, 0x0036, 0x0085);
b43_radio_write16(dev, 0x003A, (b43_radio_read16(dev, 0x003A)
& 0xFF20) |
freq_r3A_value(freq));
b43_radio_write16(dev, 0x003D,
b43_radio_read16(dev, 0x003D) & 0x00FF);
b43_radio_write16(dev, 0x0081, (b43_radio_read16(dev, 0x0081)
& 0xFF7F) | 0x0080);
b43_radio_write16(dev, 0x0035,
b43_radio_read16(dev, 0x0035) & 0xFFEF);
b43_radio_write16(dev, 0x0035, (b43_radio_read16(dev, 0x0035)
& 0xFFEF) | 0x0010);
b43_radio_set_tx_iq(dev);
//TODO: TSSI2dbm workaround
//FIXME b43_phy_xmitpower(dev);
}
void b43_radio_init2060(struct b43_wldev *dev)
{
b43_radio_write16(dev, 0x0004, 0x00C0);
b43_radio_write16(dev, 0x0005, 0x0008);
b43_radio_write16(dev, 0x0009, 0x0040);
b43_radio_write16(dev, 0x0005, 0x00AA);
b43_radio_write16(dev, 0x0032, 0x008F);
b43_radio_write16(dev, 0x0006, 0x008F);
b43_radio_write16(dev, 0x0034, 0x008F);
b43_radio_write16(dev, 0x002C, 0x0007);
b43_radio_write16(dev, 0x0082, 0x0080);
b43_radio_write16(dev, 0x0080, 0x0000);
b43_radio_write16(dev, 0x003F, 0x00DA);
b43_radio_write16(dev, 0x0005, b43_radio_read16(dev, 0x0005) & ~0x0008);
b43_radio_write16(dev, 0x0081, b43_radio_read16(dev, 0x0081) & ~0x0010);
b43_radio_write16(dev, 0x0081, b43_radio_read16(dev, 0x0081) & ~0x0020);
b43_radio_write16(dev, 0x0081, b43_radio_read16(dev, 0x0081) & ~0x0020);
msleep(1); /* delay 400usec */
b43_radio_write16(dev, 0x0081,
(b43_radio_read16(dev, 0x0081) & ~0x0020) | 0x0010);
msleep(1); /* delay 400usec */
b43_radio_write16(dev, 0x0005,
(b43_radio_read16(dev, 0x0005) & ~0x0008) | 0x0008);
b43_radio_write16(dev, 0x0085, b43_radio_read16(dev, 0x0085) & ~0x0010);
b43_radio_write16(dev, 0x0005, b43_radio_read16(dev, 0x0005) & ~0x0008);
b43_radio_write16(dev, 0x0081, b43_radio_read16(dev, 0x0081) & ~0x0040);
b43_radio_write16(dev, 0x0081,
(b43_radio_read16(dev, 0x0081) & ~0x0040) | 0x0040);
b43_radio_write16(dev, 0x0005,
(b43_radio_read16(dev, 0x0081) & ~0x0008) | 0x0008);
b43_phy_write(dev, 0x0063, 0xDDC6);
b43_phy_write(dev, 0x0069, 0x07BE);
b43_phy_write(dev, 0x006A, 0x0000);
aphy_channel_switch(dev, dev->phy.ops->get_default_chan(dev));
msleep(1);
}
static void b43_phy_rssiagc(struct b43_wldev *dev, u8 enable)
{
int i;
if (dev->phy.rev < 3) {
if (enable)
for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++) {
b43_ofdmtab_write16(dev,
B43_OFDMTAB_LNAHPFGAIN1, i, 0xFFF8);
b43_ofdmtab_write16(dev,
B43_OFDMTAB_WRSSI, i, 0xFFF8);
}
else
for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++) {
b43_ofdmtab_write16(dev,
B43_OFDMTAB_LNAHPFGAIN1, i, b43_tab_rssiagc1[i]);
b43_ofdmtab_write16(dev,
B43_OFDMTAB_WRSSI, i, b43_tab_rssiagc1[i]);
}
} else {
if (enable)
for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++)
b43_ofdmtab_write16(dev,
B43_OFDMTAB_WRSSI, i, 0x0820);
else
for (i = 0; i < B43_TAB_RSSIAGC2_SIZE; i++)
b43_ofdmtab_write16(dev,
B43_OFDMTAB_WRSSI, i, b43_tab_rssiagc2[i]);
}
}
static void b43_phy_ww(struct b43_wldev *dev)
{
u16 b, curr_s, best_s = 0xFFFF;
int i;
b43_phy_write(dev, B43_PHY_CRS0,
b43_phy_read(dev, B43_PHY_CRS0) & ~B43_PHY_CRS0_EN);
b43_phy_write(dev, B43_PHY_OFDM(0x1B),
b43_phy_read(dev, B43_PHY_OFDM(0x1B)) | 0x1000);
b43_phy_write(dev, B43_PHY_OFDM(0x82),
(b43_phy_read(dev, B43_PHY_OFDM(0x82)) & 0xF0FF) | 0x0300);
b43_radio_write16(dev, 0x0009,
b43_radio_read16(dev, 0x0009) | 0x0080);
b43_radio_write16(dev, 0x0012,
(b43_radio_read16(dev, 0x0012) & 0xFFFC) | 0x0002);
b43_wa_initgains(dev);
b43_phy_write(dev, B43_PHY_OFDM(0xBA), 0x3ED5);
b = b43_phy_read(dev, B43_PHY_PWRDOWN);
b43_phy_write(dev, B43_PHY_PWRDOWN, (b & 0xFFF8) | 0x0005);
b43_radio_write16(dev, 0x0004,
b43_radio_read16(dev, 0x0004) | 0x0004);
for (i = 0x10; i <= 0x20; i++) {
b43_radio_write16(dev, 0x0013, i);
curr_s = b43_phy_read(dev, B43_PHY_OTABLEQ) & 0x00FF;
if (!curr_s) {
best_s = 0x0000;
break;
} else if (curr_s >= 0x0080)
curr_s = 0x0100 - curr_s;
if (curr_s < best_s)
best_s = curr_s;
}
b43_phy_write(dev, B43_PHY_PWRDOWN, b);
b43_radio_write16(dev, 0x0004,
b43_radio_read16(dev, 0x0004) & 0xFFFB);
b43_radio_write16(dev, 0x0013, best_s);
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1_R1, 0, 0xFFEC);
b43_phy_write(dev, B43_PHY_OFDM(0xB7), 0x1E80);
b43_phy_write(dev, B43_PHY_OFDM(0xB6), 0x1C00);
b43_phy_write(dev, B43_PHY_OFDM(0xB5), 0x0EC0);
b43_phy_write(dev, B43_PHY_OFDM(0xB2), 0x00C0);
b43_phy_write(dev, B43_PHY_OFDM(0xB9), 0x1FFF);
b43_phy_write(dev, B43_PHY_OFDM(0xBB),
(b43_phy_read(dev, B43_PHY_OFDM(0xBB)) & 0xF000) | 0x0053);
b43_phy_write(dev, B43_PHY_OFDM61,
(b43_phy_read(dev, B43_PHY_OFDM61) & 0xFE1F) | 0x0120);
b43_phy_write(dev, B43_PHY_OFDM(0x13),
(b43_phy_read(dev, B43_PHY_OFDM(0x13)) & 0x0FFF) | 0x3000);
b43_phy_write(dev, B43_PHY_OFDM(0x14),
(b43_phy_read(dev, B43_PHY_OFDM(0x14)) & 0x0FFF) | 0x3000);
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 6, 0x0017);
for (i = 0; i < 6; i++)
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, i, 0x000F);
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0D, 0x000E);
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0E, 0x0011);
b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0F, 0x0013);
b43_phy_write(dev, B43_PHY_OFDM(0x33), 0x5030);
b43_phy_write(dev, B43_PHY_CRS0,
b43_phy_read(dev, B43_PHY_CRS0) | B43_PHY_CRS0_EN);
}
static void hardware_pctl_init_aphy(struct b43_wldev *dev)
{
//TODO
}
void b43_phy_inita(struct b43_wldev *dev)
{
struct ssb_bus *bus = dev->dev->bus;
struct b43_phy *phy = &dev->phy;
/* This lowlevel A-PHY init is also called from G-PHY init.
* So we must not access phy->a, if called from G-PHY code.
*/
B43_WARN_ON((phy->type != B43_PHYTYPE_A) &&
(phy->type != B43_PHYTYPE_G));
might_sleep();
if (phy->rev >= 6) {
if (phy->type == B43_PHYTYPE_A)
b43_phy_write(dev, B43_PHY_OFDM(0x1B),
b43_phy_read(dev, B43_PHY_OFDM(0x1B)) & ~0x1000);
if (b43_phy_read(dev, B43_PHY_ENCORE) & B43_PHY_ENCORE_EN)
b43_phy_write(dev, B43_PHY_ENCORE,
b43_phy_read(dev, B43_PHY_ENCORE) | 0x0010);
else
b43_phy_write(dev, B43_PHY_ENCORE,
b43_phy_read(dev, B43_PHY_ENCORE) & ~0x1010);
}
b43_wa_all(dev);
if (phy->type == B43_PHYTYPE_A) {
if (phy->gmode && (phy->rev < 3))
b43_phy_write(dev, 0x0034,
b43_phy_read(dev, 0x0034) | 0x0001);
b43_phy_rssiagc(dev, 0);
b43_phy_write(dev, B43_PHY_CRS0,
b43_phy_read(dev, B43_PHY_CRS0) | B43_PHY_CRS0_EN);
b43_radio_init2060(dev);
if ((bus->boardinfo.vendor == SSB_BOARDVENDOR_BCM) &&
((bus->boardinfo.type == SSB_BOARD_BU4306) ||
(bus->boardinfo.type == SSB_BOARD_BU4309))) {
; //TODO: A PHY LO
}
if (phy->rev >= 3)
b43_phy_ww(dev);
hardware_pctl_init_aphy(dev);
//TODO: radar detection
}
if ((phy->type == B43_PHYTYPE_G) &&
(dev->dev->bus->sprom.boardflags_lo & B43_BFL_PACTRL)) {
b43_phy_write(dev, B43_PHY_OFDM(0x6E),
(b43_phy_read(dev, B43_PHY_OFDM(0x6E))
& 0xE000) | 0x3CF);
}
}
static int b43_aphy_op_allocate(struct b43_wldev *dev)
{
struct b43_phy_a *aphy;
aphy = kzalloc(sizeof(*aphy), GFP_KERNEL);
if (!aphy)
return -ENOMEM;
dev->phy.a = aphy;
//TODO init struct b43_phy_a
return 0;
}
static int b43_aphy_op_init(struct b43_wldev *dev)
{
struct b43_phy_a *aphy = dev->phy.a;
b43_phy_inita(dev);
aphy->initialised = 1;
return 0;
}
static void b43_aphy_op_exit(struct b43_wldev *dev)
{
struct b43_phy_a *aphy = dev->phy.a;
if (aphy->initialised) {
//TODO
aphy->initialised = 0;
}
//TODO
kfree(aphy);
dev->phy.a = NULL;
}
static inline u16 adjust_phyreg(struct b43_wldev *dev, u16 offset)
{
/* OFDM registers are base-registers for the A-PHY. */
if ((offset & B43_PHYROUTE) == B43_PHYROUTE_OFDM_GPHY) {
offset &= ~B43_PHYROUTE;
offset |= B43_PHYROUTE_BASE;
}
#if B43_DEBUG
if ((offset & B43_PHYROUTE) == B43_PHYROUTE_EXT_GPHY) {
/* Ext-G registers are only available on G-PHYs */
b43err(dev->wl, "Invalid EXT-G PHY access at "
"0x%04X on A-PHY\n", offset);
dump_stack();
}
if ((offset & B43_PHYROUTE) == B43_PHYROUTE_N_BMODE) {
/* N-BMODE registers are only available on N-PHYs */
b43err(dev->wl, "Invalid N-BMODE PHY access at "
"0x%04X on A-PHY\n", offset);
dump_stack();
}
#endif /* B43_DEBUG */
return offset;
}
static u16 b43_aphy_op_read(struct b43_wldev *dev, u16 reg)
{
reg = adjust_phyreg(dev, reg);
b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
return b43_read16(dev, B43_MMIO_PHY_DATA);
}
static void b43_aphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
{
reg = adjust_phyreg(dev, reg);
b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
b43_write16(dev, B43_MMIO_PHY_DATA, value);
}
static u16 b43_aphy_op_radio_read(struct b43_wldev *dev, u16 reg)
{
/* Register 1 is a 32-bit register. */
B43_WARN_ON(reg == 1);
/* A-PHY needs 0x40 for read access */
reg |= 0x40;
b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
}
static void b43_aphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
{
/* Register 1 is a 32-bit register. */
B43_WARN_ON(reg == 1);
b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
}
static bool b43_aphy_op_supports_hwpctl(struct b43_wldev *dev)
{
return (dev->phy.rev >= 5);
}
static void b43_aphy_op_software_rfkill(struct b43_wldev *dev,
enum rfkill_state state)
{//TODO
}
static int b43_aphy_op_switch_channel(struct b43_wldev *dev,
unsigned int new_channel)
{
if (new_channel > 200)
return -EINVAL;
aphy_channel_switch(dev, new_channel);
return 0;
}
static unsigned int b43_aphy_op_get_default_chan(struct b43_wldev *dev)
{
return 36; /* Default to channel 36 */
}
static void b43_aphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
{//TODO
struct b43_phy *phy = &dev->phy;
u64 hf;
u16 tmp;
int autodiv = 0;
if (antenna == B43_ANTENNA_AUTO0 || antenna == B43_ANTENNA_AUTO1)
autodiv = 1;
hf = b43_hf_read(dev);
hf &= ~B43_HF_ANTDIVHELP;
b43_hf_write(dev, hf);
tmp = b43_phy_read(dev, B43_PHY_BBANDCFG);
tmp &= ~B43_PHY_BBANDCFG_RXANT;
tmp |= (autodiv ? B43_ANTENNA_AUTO0 : antenna)
<< B43_PHY_BBANDCFG_RXANT_SHIFT;
b43_phy_write(dev, B43_PHY_BBANDCFG, tmp);
if (autodiv) {
tmp = b43_phy_read(dev, B43_PHY_ANTDWELL);
if (antenna == B43_ANTENNA_AUTO0)
tmp &= ~B43_PHY_ANTDWELL_AUTODIV1;
else
tmp |= B43_PHY_ANTDWELL_AUTODIV1;
b43_phy_write(dev, B43_PHY_ANTDWELL, tmp);
}
if (phy->rev < 3) {
tmp = b43_phy_read(dev, B43_PHY_ANTDWELL);
tmp = (tmp & 0xFF00) | 0x24;
b43_phy_write(dev, B43_PHY_ANTDWELL, tmp);
} else {
tmp = b43_phy_read(dev, B43_PHY_OFDM61);
tmp |= 0x10;
b43_phy_write(dev, B43_PHY_OFDM61, tmp);
if (phy->analog == 3) {
b43_phy_write(dev, B43_PHY_CLIPPWRDOWNT,
0x1D);
b43_phy_write(dev, B43_PHY_ADIVRELATED,
8);
} else {
b43_phy_write(dev, B43_PHY_CLIPPWRDOWNT,
0x3A);
tmp =
b43_phy_read(dev,
B43_PHY_ADIVRELATED);
tmp = (tmp & 0xFF00) | 8;
b43_phy_write(dev, B43_PHY_ADIVRELATED,
tmp);
}
}
hf |= B43_HF_ANTDIVHELP;
b43_hf_write(dev, hf);
}
static void b43_aphy_op_xmitpower(struct b43_wldev *dev)
{//TODO
}
static void b43_aphy_op_pwork_15sec(struct b43_wldev *dev)
{//TODO
}
static void b43_aphy_op_pwork_60sec(struct b43_wldev *dev)
{//TODO
}
const struct b43_phy_operations b43_phyops_a = {
.allocate = b43_aphy_op_allocate,
.init = b43_aphy_op_init,
.exit = b43_aphy_op_exit,
.phy_read = b43_aphy_op_read,
.phy_write = b43_aphy_op_write,
.radio_read = b43_aphy_op_radio_read,
.radio_write = b43_aphy_op_radio_write,
.supports_hwpctl = b43_aphy_op_supports_hwpctl,
.software_rfkill = b43_aphy_op_software_rfkill,
.switch_channel = b43_aphy_op_switch_channel,
.get_default_chan = b43_aphy_op_get_default_chan,
.set_rx_antenna = b43_aphy_op_set_rx_antenna,
.xmitpower = b43_aphy_op_xmitpower,
.pwork_15sec = b43_aphy_op_pwork_15sec,
.pwork_60sec = b43_aphy_op_pwork_60sec,
};
#ifndef B43_PHY_H_
#define B43_PHY_H_
#ifndef LINUX_B43_PHY_A_H_
#define LINUX_B43_PHY_A_H_
#include <linux/types.h>
#include "phy_common.h"
struct b43_wldev;
struct b43_phy;
/*** PHY Registers ***/
/* Routing */
#define B43_PHYROUTE 0x0C00 /* PHY register routing bits mask */
#define B43_PHYROUTE_BASE 0x0000 /* Base registers */
#define B43_PHYROUTE_OFDM_GPHY 0x0400 /* OFDM register routing for G-PHYs */
#define B43_PHYROUTE_EXT_GPHY 0x0800 /* Extended G-PHY registers */
#define B43_PHYROUTE_N_BMODE 0x0C00 /* N-PHY BMODE registers */
/* CCK (B-PHY) registers. */
#define B43_PHY_CCK(reg) ((reg) | B43_PHYROUTE_BASE)
/* N-PHY registers. */
#define B43_PHY_N(reg) ((reg) | B43_PHYROUTE_BASE)
/* N-PHY BMODE registers. */
#define B43_PHY_N_BMODE(reg) ((reg) | B43_PHYROUTE_N_BMODE)
/* OFDM (A-PHY) registers. */
#define B43_PHY_OFDM(reg) ((reg) | B43_PHYROUTE_OFDM_GPHY)
/* Extended G-PHY registers. */
#define B43_PHY_EXTG(reg) ((reg) | B43_PHYROUTE_EXT_GPHY)
/* OFDM (A) PHY Registers */
#define B43_PHY_VERSION_OFDM B43_PHY_OFDM(0x00) /* Versioning register for A-PHY */
......@@ -82,46 +60,6 @@ struct b43_phy;
#define B43_PHY_DC_LTBASE B43_PHY_OFDM(0x3A0) /* DC lookup table base */
#define B43_PHY_GAIN_LTBASE B43_PHY_OFDM(0x3C0) /* Gain lookup table base */
/* CCK (B) PHY Registers */
#define B43_PHY_VERSION_CCK B43_PHY_CCK(0x00) /* Versioning register for B-PHY */
#define B43_PHY_CCKBBANDCFG B43_PHY_CCK(0x01) /* Contains antenna 0/1 control bit */
#define B43_PHY_PGACTL B43_PHY_CCK(0x15) /* PGA control */
#define B43_PHY_PGACTL_LPF 0x1000 /* Low pass filter (?) */
#define B43_PHY_PGACTL_LOWBANDW 0x0040 /* Low bandwidth flag */
#define B43_PHY_PGACTL_UNKNOWN 0xEFA0
#define B43_PHY_FBCTL1 B43_PHY_CCK(0x18) /* Frequency bandwidth control 1 */
#define B43_PHY_ITSSI B43_PHY_CCK(0x29) /* Idle TSSI */
#define B43_PHY_LO_LEAKAGE B43_PHY_CCK(0x2D) /* Measured LO leakage */
#define B43_PHY_ENERGY B43_PHY_CCK(0x33) /* Energy */
#define B43_PHY_SYNCCTL B43_PHY_CCK(0x35)
#define B43_PHY_FBCTL2 B43_PHY_CCK(0x38) /* Frequency bandwidth control 2 */
#define B43_PHY_DACCTL B43_PHY_CCK(0x60) /* DAC control */
#define B43_PHY_RCCALOVER B43_PHY_CCK(0x78) /* RC calibration override */
/* Extended G-PHY Registers */
#define B43_PHY_CLASSCTL B43_PHY_EXTG(0x02) /* Classify control */
#define B43_PHY_GTABCTL B43_PHY_EXTG(0x03) /* G-PHY table control (see below) */
#define B43_PHY_GTABOFF 0x03FF /* G-PHY table offset (see below) */
#define B43_PHY_GTABNR 0xFC00 /* G-PHY table number (see below) */
#define B43_PHY_GTABNR_SHIFT 10
#define B43_PHY_GTABDATA B43_PHY_EXTG(0x04) /* G-PHY table data */
#define B43_PHY_LO_MASK B43_PHY_EXTG(0x0F) /* Local Oscillator control mask */
#define B43_PHY_LO_CTL B43_PHY_EXTG(0x10) /* Local Oscillator control */
#define B43_PHY_RFOVER B43_PHY_EXTG(0x11) /* RF override */
#define B43_PHY_RFOVERVAL B43_PHY_EXTG(0x12) /* RF override value */
#define B43_PHY_RFOVERVAL_EXTLNA 0x8000
#define B43_PHY_RFOVERVAL_LNA 0x7000
#define B43_PHY_RFOVERVAL_LNA_SHIFT 12
#define B43_PHY_RFOVERVAL_PGA 0x0F00
#define B43_PHY_RFOVERVAL_PGA_SHIFT 8
#define B43_PHY_RFOVERVAL_UNK 0x0010 /* Unknown, always set. */
#define B43_PHY_RFOVERVAL_TRSWRX 0x00E0
#define B43_PHY_RFOVERVAL_BW 0x0003 /* Bandwidth flags */
#define B43_PHY_RFOVERVAL_BW_LPF 0x0001 /* Low Pass Filter */
#define B43_PHY_RFOVERVAL_BW_LBW 0x0002 /* Low Bandwidth (when set), high when unset */
#define B43_PHY_ANALOGOVER B43_PHY_EXTG(0x14) /* Analog override */
#define B43_PHY_ANALOGOVERVAL B43_PHY_EXTG(0x15) /* Analog override value */
/*** OFDM table numbers ***/
#define B43_OFDMTAB(number, offset) (((number) << B43_PHY_OTABLENR_SHIFT) | (offset))
#define B43_OFDMTAB_AGC1 B43_OFDMTAB(0x00, 0)
......@@ -163,178 +101,24 @@ u32 b43_ofdmtab_read32(struct b43_wldev *dev, u16 table, u16 offset);
void b43_ofdmtab_write32(struct b43_wldev *dev, u16 table,
u16 offset, u32 value);
/*** G-PHY table numbers */
#define B43_GTAB(number, offset) (((number) << B43_PHY_GTABNR_SHIFT) | (offset))
#define B43_GTAB_NRSSI B43_GTAB(0x00, 0)
#define B43_GTAB_TRFEMW B43_GTAB(0x0C, 0x120)
#define B43_GTAB_ORIGTR B43_GTAB(0x2E, 0x298)
u16 b43_gtab_read(struct b43_wldev *dev, u16 table, u16 offset); //TODO implement
void b43_gtab_write(struct b43_wldev *dev, u16 table, u16 offset, u16 value); //TODO implement
#define B43_DEFAULT_CHANNEL_A 36
#define B43_DEFAULT_CHANNEL_BG 6
enum {
B43_ANTENNA0, /* Antenna 0 */
B43_ANTENNA1, /* Antenna 0 */
B43_ANTENNA_AUTO1, /* Automatic, starting with antenna 1 */
B43_ANTENNA_AUTO0, /* Automatic, starting with antenna 0 */
B43_ANTENNA2,
B43_ANTENNA3 = 8,
B43_ANTENNA_AUTO = B43_ANTENNA_AUTO0,
B43_ANTENNA_DEFAULT = B43_ANTENNA_AUTO,
};
enum {
B43_INTERFMODE_NONE,
B43_INTERFMODE_NONWLAN,
B43_INTERFMODE_MANUALWLAN,
B43_INTERFMODE_AUTOWLAN,
};
/* Masks for the different PHY versioning registers. */
#define B43_PHYVER_ANALOG 0xF000
#define B43_PHYVER_ANALOG_SHIFT 12
#define B43_PHYVER_TYPE 0x0F00
#define B43_PHYVER_TYPE_SHIFT 8
#define B43_PHYVER_VERSION 0x00FF
void b43_phy_lock(struct b43_wldev *dev);
void b43_phy_unlock(struct b43_wldev *dev);
/* Read a value from a PHY register */
u16 b43_phy_read(struct b43_wldev *dev, u16 offset);
/* Write a value to a PHY register */
void b43_phy_write(struct b43_wldev *dev, u16 offset, u16 val);
/* Mask a PHY register with a mask */
void b43_phy_mask(struct b43_wldev *dev, u16 offset, u16 mask);
/* OR a PHY register with a bitmap */
void b43_phy_set(struct b43_wldev *dev, u16 offset, u16 set);
/* Mask and OR a PHY register with a mask and bitmap */
void b43_phy_maskset(struct b43_wldev *dev, u16 offset, u16 mask, u16 set);
int b43_phy_init_tssi2dbm_table(struct b43_wldev *dev);
void b43_phy_early_init(struct b43_wldev *dev);
int b43_phy_init(struct b43_wldev *dev);
void b43_set_rx_antenna(struct b43_wldev *dev, int antenna);
void b43_phy_xmitpower(struct b43_wldev *dev);
struct b43_phy_a {
bool initialised;
/* Returns the boolean whether the board has HardwarePowerControl */
bool b43_has_hardware_pctl(struct b43_phy *phy);
/* Returns the boolean whether "TX Magnification" is enabled. */
#define has_tx_magnification(phy) \
(((phy)->rev >= 2) && \
((phy)->radio_ver == 0x2050) && \
((phy)->radio_rev == 8))
/* Card uses the loopback gain stuff */
#define has_loopback_gain(phy) \
(((phy)->rev > 1) || ((phy)->gmode))
/* A-PHY TX Power control value. */
u16 txpwr_offset;
/* Radio Attenuation (RF Attenuation) */
struct b43_rfatt {
u8 att; /* Attenuation value */
bool with_padmix; /* Flag, PAD Mixer enabled. */
//TODO lots of missing stuff
};
struct b43_rfatt_list {
/* Attenuation values list */
const struct b43_rfatt *list;
u8 len;
/* Minimum/Maximum attenuation values */
u8 min_val;
u8 max_val;
};
/* Returns true, if the values are the same. */
static inline bool b43_compare_rfatt(const struct b43_rfatt *a,
const struct b43_rfatt *b)
{
return ((a->att == b->att) &&
(a->with_padmix == b->with_padmix));
}
/* Baseband Attenuation */
struct b43_bbatt {
u8 att; /* Attenuation value */
};
struct b43_bbatt_list {
/* Attenuation values list */
const struct b43_bbatt *list;
u8 len;
/* Minimum/Maximum attenuation values */
u8 min_val;
u8 max_val;
};
/* Returns true, if the values are the same. */
static inline bool b43_compare_bbatt(const struct b43_bbatt *a,
const struct b43_bbatt *b)
{
return (a->att == b->att);
}
/* tx_control bits. */
#define B43_TXCTL_PA3DB 0x40 /* PA Gain 3dB */
#define B43_TXCTL_PA2DB 0x20 /* PA Gain 2dB */
#define B43_TXCTL_TXMIX 0x10 /* TX Mixer Gain */
/* Write BasebandAttenuation value to the device. */
void b43_phy_set_baseband_attenuation(struct b43_wldev *dev,
u16 baseband_attenuation);
extern const u8 b43_radio_channel_codes_bg[];
void b43_radio_lock(struct b43_wldev *dev);
void b43_radio_unlock(struct b43_wldev *dev);
/* Read a value from a 16bit radio register */
u16 b43_radio_read16(struct b43_wldev *dev, u16 offset);
/* Write a value to a 16bit radio register */
void b43_radio_write16(struct b43_wldev *dev, u16 offset, u16 val);
/* Mask a 16bit radio register with a mask */
void b43_radio_mask(struct b43_wldev *dev, u16 offset, u16 mask);
/* OR a 16bit radio register with a bitmap */
void b43_radio_set(struct b43_wldev *dev, u16 offset, u16 set);
/* Mask and OR a PHY register with a mask and bitmap */
void b43_radio_maskset(struct b43_wldev *dev, u16 offset, u16 mask, u16 set);
u16 b43_radio_init2050(struct b43_wldev *dev);
void b43_radio_init2060(struct b43_wldev *dev);
void b43_radio_turn_on(struct b43_wldev *dev);
void b43_radio_turn_off(struct b43_wldev *dev, bool force);
int b43_radio_selectchannel(struct b43_wldev *dev, u8 channel,
int synthetic_pu_workaround);
u8 b43_radio_aci_detect(struct b43_wldev *dev, u8 channel);
u8 b43_radio_aci_scan(struct b43_wldev *dev);
int b43_radio_set_interference_mitigation(struct b43_wldev *dev, int mode);
void b43_calc_nrssi_slope(struct b43_wldev *dev);
void b43_calc_nrssi_threshold(struct b43_wldev *dev);
s16 b43_nrssi_hw_read(struct b43_wldev *dev, u16 offset);
void b43_nrssi_hw_write(struct b43_wldev *dev, u16 offset, s16 val);
void b43_nrssi_hw_update(struct b43_wldev *dev, u16 val);
void b43_nrssi_mem_update(struct b43_wldev *dev);
void b43_radio_set_tx_iq(struct b43_wldev *dev);
u16 b43_radio_calibrationvalue(struct b43_wldev *dev);
/**
* b43_phy_inita - Lowlevel A-PHY init routine.
* This is _only_ used by the G-PHY code.
*/
void b43_phy_inita(struct b43_wldev *dev);
void b43_put_attenuation_into_ranges(struct b43_wldev *dev,
int *_bbatt, int *_rfatt);
void b43_set_txpower_g(struct b43_wldev *dev,
const struct b43_bbatt *bbatt,
const struct b43_rfatt *rfatt, u8 tx_control);
struct b43_phy_operations;
extern const struct b43_phy_operations b43_phyops_a;
#endif /* B43_PHY_H_ */
#endif /* LINUX_B43_PHY_A_H_ */
/*
Broadcom B43 wireless driver
Common PHY routines
Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
Copyright (c) 2005-2007 Stefano Brivio <stefano.brivio@polimi.it>
Copyright (c) 2005-2008 Michael Buesch <mb@bu3sch.de>
Copyright (c) 2005, 2006 Danny van Dyk <kugelfang@gentoo.org>
Copyright (c) 2005, 2006 Andreas Jaggi <andreas.jaggi@waterwave.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "phy_common.h"
#include "phy_g.h"
#include "phy_a.h"
#include "nphy.h"
#include "b43.h"
#include "main.h"
int b43_phy_operations_setup(struct b43_wldev *dev)
{
struct b43_phy *phy = &(dev->phy);
int err;
phy->ops = NULL;
switch (phy->type) {
case B43_PHYTYPE_A:
phy->ops = &b43_phyops_a;
break;
case B43_PHYTYPE_G:
phy->ops = &b43_phyops_g;
break;
case B43_PHYTYPE_N:
#ifdef CONFIG_B43_NPHY
phy->ops = &b43_phyops_n;
#endif
break;
case B43_PHYTYPE_LP:
/* FIXME: Not yet */
break;
}
if (B43_WARN_ON(!phy->ops))
return -ENODEV;
err = phy->ops->allocate(dev);
if (err)
phy->ops = NULL;
return err;
}
int b43_phy_init(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
const struct b43_phy_operations *ops = phy->ops;
int err;
phy->channel = ops->get_default_chan(dev);
ops->software_rfkill(dev, RFKILL_STATE_UNBLOCKED);
err = ops->init(dev);
if (err) {
b43err(dev->wl, "PHY init failed\n");
goto err_block_rf;
}
/* Make sure to switch hardware and firmware (SHM) to
* the default channel. */
err = b43_switch_channel(dev, ops->get_default_chan(dev));
if (err) {
b43err(dev->wl, "PHY init: Channel switch to default failed\n");
goto err_phy_exit;
}
return 0;
err_phy_exit:
if (ops->exit)
ops->exit(dev);
err_block_rf:
ops->software_rfkill(dev, RFKILL_STATE_SOFT_BLOCKED);
return err;
}
void b43_phy_exit(struct b43_wldev *dev)
{
const struct b43_phy_operations *ops = dev->phy.ops;
ops->software_rfkill(dev, RFKILL_STATE_SOFT_BLOCKED);
if (ops->exit)
ops->exit(dev);
}
bool b43_has_hardware_pctl(struct b43_wldev *dev)
{
if (!dev->phy.hardware_power_control)
return 0;
if (!dev->phy.ops->supports_hwpctl)
return 0;
return dev->phy.ops->supports_hwpctl(dev);
}
void b43_radio_lock(struct b43_wldev *dev)
{
u32 macctl;
macctl = b43_read32(dev, B43_MMIO_MACCTL);
B43_WARN_ON(macctl & B43_MACCTL_RADIOLOCK);
macctl |= B43_MACCTL_RADIOLOCK;
b43_write32(dev, B43_MMIO_MACCTL, macctl);
/* Commit the write and wait for the device
* to exit any radio register access. */
b43_read32(dev, B43_MMIO_MACCTL);
udelay(10);
}
void b43_radio_unlock(struct b43_wldev *dev)
{
u32 macctl;
/* Commit any write */
b43_read16(dev, B43_MMIO_PHY_VER);
/* unlock */
macctl = b43_read32(dev, B43_MMIO_MACCTL);
B43_WARN_ON(!(macctl & B43_MACCTL_RADIOLOCK));
macctl &= ~B43_MACCTL_RADIOLOCK;
b43_write32(dev, B43_MMIO_MACCTL, macctl);
}
void b43_phy_lock(struct b43_wldev *dev)
{
#if B43_DEBUG
B43_WARN_ON(dev->phy.phy_locked);
dev->phy.phy_locked = 1;
#endif
B43_WARN_ON(dev->dev->id.revision < 3);
if (!b43_is_mode(dev->wl, IEEE80211_IF_TYPE_AP))
b43_power_saving_ctl_bits(dev, B43_PS_AWAKE);
}
void b43_phy_unlock(struct b43_wldev *dev)
{
#if B43_DEBUG
B43_WARN_ON(!dev->phy.phy_locked);
dev->phy.phy_locked = 0;
#endif
B43_WARN_ON(dev->dev->id.revision < 3);
if (!b43_is_mode(dev->wl, IEEE80211_IF_TYPE_AP))
b43_power_saving_ctl_bits(dev, 0);
}
u16 b43_radio_read(struct b43_wldev *dev, u16 reg)
{
return dev->phy.ops->radio_read(dev, reg);
}
void b43_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
{
dev->phy.ops->radio_write(dev, reg, value);
}
void b43_radio_mask(struct b43_wldev *dev, u16 offset, u16 mask)
{
b43_radio_write16(dev, offset,
b43_radio_read16(dev, offset) & mask);
}
void b43_radio_set(struct b43_wldev *dev, u16 offset, u16 set)
{
b43_radio_write16(dev, offset,
b43_radio_read16(dev, offset) | set);
}
void b43_radio_maskset(struct b43_wldev *dev, u16 offset, u16 mask, u16 set)
{
b43_radio_write16(dev, offset,
(b43_radio_read16(dev, offset) & mask) | set);
}
u16 b43_phy_read(struct b43_wldev *dev, u16 reg)
{
return dev->phy.ops->phy_read(dev, reg);
}
void b43_phy_write(struct b43_wldev *dev, u16 reg, u16 value)
{
dev->phy.ops->phy_write(dev, reg, value);
}
void b43_phy_mask(struct b43_wldev *dev, u16 offset, u16 mask)
{
b43_phy_write(dev, offset,
b43_phy_read(dev, offset) & mask);
}
void b43_phy_set(struct b43_wldev *dev, u16 offset, u16 set)
{
b43_phy_write(dev, offset,
b43_phy_read(dev, offset) | set);
}
void b43_phy_maskset(struct b43_wldev *dev, u16 offset, u16 mask, u16 set)
{
b43_phy_write(dev, offset,
(b43_phy_read(dev, offset) & mask) | set);
}
int b43_switch_channel(struct b43_wldev *dev, unsigned int new_channel)
{
struct b43_phy *phy = &(dev->phy);
u16 channelcookie, savedcookie;
int err;
if (new_channel == B43_DEFAULT_CHANNEL)
new_channel = phy->ops->get_default_chan(dev);
/* First we set the channel radio code to prevent the
* firmware from sending ghost packets.
*/
channelcookie = new_channel;
if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ)
channelcookie |= 0x100;
//FIXME set 40Mhz flag if required
savedcookie = b43_shm_read16(dev, B43_SHM_SHARED, B43_SHM_SH_CHAN);
b43_shm_write16(dev, B43_SHM_SHARED, B43_SHM_SH_CHAN, channelcookie);
/* Now try to switch the PHY hardware channel. */
err = phy->ops->switch_channel(dev, new_channel);
if (err)
goto err_restore_cookie;
dev->phy.channel = new_channel;
/* Wait for the radio to tune to the channel and stabilize. */
msleep(8);
return 0;
err_restore_cookie:
b43_shm_write16(dev, B43_SHM_SHARED,
B43_SHM_SH_CHAN, savedcookie);
return err;
}
void b43_software_rfkill(struct b43_wldev *dev, enum rfkill_state state)
{
struct b43_phy *phy = &dev->phy;
if (state == RFKILL_STATE_HARD_BLOCKED) {
/* We cannot hardware-block the device */
state = RFKILL_STATE_SOFT_BLOCKED;
}
phy->ops->software_rfkill(dev, state);
phy->radio_on = (state == RFKILL_STATE_UNBLOCKED);
}
#ifndef LINUX_B43_PHY_COMMON_H_
#define LINUX_B43_PHY_COMMON_H_
#include <linux/rfkill.h>
struct b43_wldev;
/* PHY register routing bits */
#define B43_PHYROUTE 0x0C00 /* PHY register routing bits mask */
#define B43_PHYROUTE_BASE 0x0000 /* Base registers */
#define B43_PHYROUTE_OFDM_GPHY 0x0400 /* OFDM register routing for G-PHYs */
#define B43_PHYROUTE_EXT_GPHY 0x0800 /* Extended G-PHY registers */
#define B43_PHYROUTE_N_BMODE 0x0C00 /* N-PHY BMODE registers */
/* CCK (B-PHY) registers. */
#define B43_PHY_CCK(reg) ((reg) | B43_PHYROUTE_BASE)
/* N-PHY registers. */
#define B43_PHY_N(reg) ((reg) | B43_PHYROUTE_BASE)
/* N-PHY BMODE registers. */
#define B43_PHY_N_BMODE(reg) ((reg) | B43_PHYROUTE_N_BMODE)
/* OFDM (A-PHY) registers. */
#define B43_PHY_OFDM(reg) ((reg) | B43_PHYROUTE_OFDM_GPHY)
/* Extended G-PHY registers. */
#define B43_PHY_EXTG(reg) ((reg) | B43_PHYROUTE_EXT_GPHY)
/* Masks for the PHY versioning registers. */
#define B43_PHYVER_ANALOG 0xF000
#define B43_PHYVER_ANALOG_SHIFT 12
#define B43_PHYVER_TYPE 0x0F00
#define B43_PHYVER_TYPE_SHIFT 8
#define B43_PHYVER_VERSION 0x00FF
/**
* enum b43_interference_mitigation - Interference Mitigation mode
*
* @B43_INTERFMODE_NONE: Disabled
* @B43_INTERFMODE_NONWLAN: Non-WLAN Interference Mitigation
* @B43_INTERFMODE_MANUALWLAN: WLAN Interference Mitigation
* @B43_INTERFMODE_AUTOWLAN: Automatic WLAN Interference Mitigation
*/
enum b43_interference_mitigation {
B43_INTERFMODE_NONE,
B43_INTERFMODE_NONWLAN,
B43_INTERFMODE_MANUALWLAN,
B43_INTERFMODE_AUTOWLAN,
};
/* Antenna identifiers */
enum {
B43_ANTENNA0, /* Antenna 0 */
B43_ANTENNA1, /* Antenna 0 */
B43_ANTENNA_AUTO1, /* Automatic, starting with antenna 1 */
B43_ANTENNA_AUTO0, /* Automatic, starting with antenna 0 */
B43_ANTENNA2,
B43_ANTENNA3 = 8,
B43_ANTENNA_AUTO = B43_ANTENNA_AUTO0,
B43_ANTENNA_DEFAULT = B43_ANTENNA_AUTO,
};
/**
* struct b43_phy_operations - Function pointers for PHY ops.
*
* @prepare: Prepare the PHY. This is called before @init.
* Can be NULL, if not required.
* @init: Initialize the PHY.
* Must not be NULL.
* @exit: Shutdown the PHY and free all data structures.
* Can be NULL, if not required.
*
* @phy_read: Read from a PHY register.
* Must not be NULL.
* @phy_write: Write to a PHY register.
* Must not be NULL.
* @radio_read: Read from a Radio register.
* Must not be NULL.
* @radio_write: Write to a Radio register.
* Must not be NULL.
*
* @supports_hwpctl: Returns a boolean whether Hardware Power Control
* is supported or not.
* If NULL, hwpctl is assumed to be never supported.
* @software_rfkill: Turn the radio ON or OFF.
* Possible state values are
* RFKILL_STATE_SOFT_BLOCKED or
* RFKILL_STATE_UNBLOCKED
* Must not be NULL.
* @switch_channel: Switch the radio to another channel.
* Must not be NULL.
* @get_default_chan: Just returns the default channel number.
* Must not be NULL.
* @set_rx_antenna: Set the antenna used for RX.
* Can be NULL, if not supported.
* @interf_mitigation: Switch the Interference Mitigation mode.
* Can be NULL, if not supported.
*
* @xmitpower: FIXME REMOVEME
* Must not be NULL.
*
* @pwork_15sec: Periodic work. Called every 15 seconds.
* Can be NULL, if not required.
* @pwork_60sec: Periodic work. Called every 60 seconds.
* Can be NULL, if not required.
*/
struct b43_phy_operations {
/* Initialisation */
int (*allocate)(struct b43_wldev *dev);
int (*prepare)(struct b43_wldev *dev);
int (*init)(struct b43_wldev *dev);
void (*exit)(struct b43_wldev *dev);
/* Register access */
u16 (*phy_read)(struct b43_wldev *dev, u16 reg);
void (*phy_write)(struct b43_wldev *dev, u16 reg, u16 value);
u16 (*radio_read)(struct b43_wldev *dev, u16 reg);
void (*radio_write)(struct b43_wldev *dev, u16 reg, u16 value);
/* Radio */
bool (*supports_hwpctl)(struct b43_wldev *dev);
void (*software_rfkill)(struct b43_wldev *dev, enum rfkill_state state);
int (*switch_channel)(struct b43_wldev *dev, unsigned int new_channel);
unsigned int (*get_default_chan)(struct b43_wldev *dev);
void (*set_rx_antenna)(struct b43_wldev *dev, int antenna);
int (*interf_mitigation)(struct b43_wldev *dev,
enum b43_interference_mitigation new_mode);
/* Transmission power adjustment */
void (*xmitpower)(struct b43_wldev *dev);
/* Misc */
void (*pwork_15sec)(struct b43_wldev *dev);
void (*pwork_60sec)(struct b43_wldev *dev);
};
struct b43_phy_a;
struct b43_phy_g;
struct b43_phy_n;
struct b43_phy {
/* Hardware operation callbacks. */
const struct b43_phy_operations *ops;
/* Most hardware context information is stored in the standard-
* specific data structures pointed to by the pointers below.
* Only one of them is valid (the currently enabled PHY). */
#ifdef CONFIG_B43_DEBUG
/* No union for debug build to force NULL derefs in buggy code. */
struct {
#else
union {
#endif
/* A-PHY specific information */
struct b43_phy_a *a;
/* G-PHY specific information */
struct b43_phy_g *g;
/* N-PHY specific information */
struct b43_phy_n *n;
};
/* Band support flags. */
bool supports_2ghz;
bool supports_5ghz;
/* GMODE bit enabled? */
bool gmode;
/* Analog Type */
u8 analog;
/* B43_PHYTYPE_ */
u8 type;
/* PHY revision number. */
u8 rev;
/* Radio versioning */
u16 radio_manuf; /* Radio manufacturer */
u16 radio_ver; /* Radio version */
u8 radio_rev; /* Radio revision */
/* Software state of the radio */
bool radio_on;
/* Desired TX power level (in dBm).
* This is set by the user and adjusted in b43_phy_xmitpower(). */
u8 power_level;
/* Hardware Power Control enabled? */
bool hardware_power_control;
/* current channel */
unsigned int channel;
/* PHY TX errors counter. */
atomic_t txerr_cnt;
#ifdef CONFIG_B43_DEBUG
/* PHY registers locked by b43_phy_lock()? */
bool phy_locked;
#endif /* B43_DEBUG */
};
/**
* b43_phy_operations_setup - Initialize the PHY operations datastructure
* based on the current PHY type.
*/
int b43_phy_operations_setup(struct b43_wldev *dev);
/**
* b43_phy_init - Initialise the PHY
*/
int b43_phy_init(struct b43_wldev *dev);
/**
* b43_phy_exit - Cleanup PHY
*/
void b43_phy_exit(struct b43_wldev *dev);
/**
* b43_has_hardware_pctl - Hardware Power Control supported?
* Returns a boolean, whether hardware power control is supported.
*/
bool b43_has_hardware_pctl(struct b43_wldev *dev);
/**
* b43_phy_read - 16bit PHY register read access
*/
u16 b43_phy_read(struct b43_wldev *dev, u16 reg);
/**
* b43_phy_write - 16bit PHY register write access
*/
void b43_phy_write(struct b43_wldev *dev, u16 reg, u16 value);
/**
* b43_phy_mask - Mask a PHY register with a mask
*/
void b43_phy_mask(struct b43_wldev *dev, u16 offset, u16 mask);
/**
* b43_phy_set - OR a PHY register with a bitmap
*/
void b43_phy_set(struct b43_wldev *dev, u16 offset, u16 set);
/**
* b43_phy_maskset - Mask and OR a PHY register with a mask and bitmap
*/
void b43_phy_maskset(struct b43_wldev *dev, u16 offset, u16 mask, u16 set);
/**
* b43_radio_read - 16bit Radio register read access
*/
u16 b43_radio_read(struct b43_wldev *dev, u16 reg);
#define b43_radio_read16 b43_radio_read /* DEPRECATED */
/**
* b43_radio_write - 16bit Radio register write access
*/
void b43_radio_write(struct b43_wldev *dev, u16 reg, u16 value);
#define b43_radio_write16 b43_radio_write /* DEPRECATED */
/**
* b43_radio_mask - Mask a 16bit radio register with a mask
*/
void b43_radio_mask(struct b43_wldev *dev, u16 offset, u16 mask);
/**
* b43_radio_set - OR a 16bit radio register with a bitmap
*/
void b43_radio_set(struct b43_wldev *dev, u16 offset, u16 set);
/**
* b43_radio_maskset - Mask and OR a radio register with a mask and bitmap
*/
void b43_radio_maskset(struct b43_wldev *dev, u16 offset, u16 mask, u16 set);
/**
* b43_radio_lock - Lock firmware radio register access
*/
void b43_radio_lock(struct b43_wldev *dev);
/**
* b43_radio_unlock - Unlock firmware radio register access
*/
void b43_radio_unlock(struct b43_wldev *dev);
/**
* b43_phy_lock - Lock firmware PHY register access
*/
void b43_phy_lock(struct b43_wldev *dev);
/**
* b43_phy_unlock - Unlock firmware PHY register access
*/
void b43_phy_unlock(struct b43_wldev *dev);
/**
* b43_switch_channel - Switch to another channel
*/
int b43_switch_channel(struct b43_wldev *dev, unsigned int new_channel);
/**
* B43_DEFAULT_CHANNEL - Switch to the default channel.
*/
#define B43_DEFAULT_CHANNEL UINT_MAX
/**
* b43_software_rfkill - Turn the radio ON or OFF in software.
*/
void b43_software_rfkill(struct b43_wldev *dev, enum rfkill_state state);
#endif /* LINUX_B43_PHY_COMMON_H_ */
/*
Broadcom B43 wireless driver
IEEE 802.11g PHY driver
Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
Copyright (c) 2005-2007 Stefano Brivio <stefano.brivio@polimi.it>
Copyright (c) 2005-2008 Michael Buesch <mb@bu3sch.de>
Copyright (c) 2005, 2006 Danny van Dyk <kugelfang@gentoo.org>
Copyright (c) 2005, 2006 Andreas Jaggi <andreas.jaggi@waterwave.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "b43.h"
#include "phy_g.h"
#include "phy_common.h"
#include "lo.h"
#include "main.h"
#include <linux/bitrev.h>
static const s8 b43_tssi2dbm_g_table[] = {
77, 77, 77, 76,
76, 76, 75, 75,
74, 74, 73, 73,
73, 72, 72, 71,
71, 70, 70, 69,
68, 68, 67, 67,
66, 65, 65, 64,
63, 63, 62, 61,
60, 59, 58, 57,
56, 55, 54, 53,
52, 50, 49, 47,
45, 43, 40, 37,
33, 28, 22, 14,
5, -7, -20, -20,
-20, -20, -20, -20,
-20, -20, -20, -20,
};
const u8 b43_radio_channel_codes_bg[] = {
12, 17, 22, 27,
32, 37, 42, 47,
52, 57, 62, 67,
72, 84,
};
static void b43_calc_nrssi_threshold(struct b43_wldev *dev);
#define bitrev4(tmp) (bitrev8(tmp) >> 4)
/* Get the freq, as it has to be written to the device. */
static inline u16 channel2freq_bg(u8 channel)
{
B43_WARN_ON(!(channel >= 1 && channel <= 14));
return b43_radio_channel_codes_bg[channel - 1];
}
static void generate_rfatt_list(struct b43_wldev *dev,
struct b43_rfatt_list *list)
{
struct b43_phy *phy = &dev->phy;
/* APHY.rev < 5 || GPHY.rev < 6 */
static const struct b43_rfatt rfatt_0[] = {
{.att = 3,.with_padmix = 0,},
{.att = 1,.with_padmix = 0,},
{.att = 5,.with_padmix = 0,},
{.att = 7,.with_padmix = 0,},
{.att = 9,.with_padmix = 0,},
{.att = 2,.with_padmix = 0,},
{.att = 0,.with_padmix = 0,},
{.att = 4,.with_padmix = 0,},
{.att = 6,.with_padmix = 0,},
{.att = 8,.with_padmix = 0,},
{.att = 1,.with_padmix = 1,},
{.att = 2,.with_padmix = 1,},
{.att = 3,.with_padmix = 1,},
{.att = 4,.with_padmix = 1,},
};
/* Radio.rev == 8 && Radio.version == 0x2050 */
static const struct b43_rfatt rfatt_1[] = {
{.att = 2,.with_padmix = 1,},
{.att = 4,.with_padmix = 1,},
{.att = 6,.with_padmix = 1,},
{.att = 8,.with_padmix = 1,},
{.att = 10,.with_padmix = 1,},
{.att = 12,.with_padmix = 1,},
{.att = 14,.with_padmix = 1,},
};
/* Otherwise */
static const struct b43_rfatt rfatt_2[] = {
{.att = 0,.with_padmix = 1,},
{.att = 2,.with_padmix = 1,},
{.att = 4,.with_padmix = 1,},
{.att = 6,.with_padmix = 1,},
{.att = 8,.with_padmix = 1,},
{.att = 9,.with_padmix = 1,},
{.att = 9,.with_padmix = 1,},
};
if (!b43_has_hardware_pctl(dev)) {
/* Software pctl */
list->list = rfatt_0;
list->len = ARRAY_SIZE(rfatt_0);
list->min_val = 0;
list->max_val = 9;
return;
}
if (phy->radio_ver == 0x2050 && phy->radio_rev == 8) {
/* Hardware pctl */
list->list = rfatt_1;
list->len = ARRAY_SIZE(rfatt_1);
list->min_val = 0;
list->max_val = 14;
return;
}
/* Hardware pctl */
list->list = rfatt_2;
list->len = ARRAY_SIZE(rfatt_2);
list->min_val = 0;
list->max_val = 9;
}
static void generate_bbatt_list(struct b43_wldev *dev,
struct b43_bbatt_list *list)
{
static const struct b43_bbatt bbatt_0[] = {
{.att = 0,},
{.att = 1,},
{.att = 2,},
{.att = 3,},
{.att = 4,},
{.att = 5,},
{.att = 6,},
{.att = 7,},
{.att = 8,},
};
list->list = bbatt_0;
list->len = ARRAY_SIZE(bbatt_0);
list->min_val = 0;
list->max_val = 8;
}
static void b43_shm_clear_tssi(struct b43_wldev *dev)
{
b43_shm_write16(dev, B43_SHM_SHARED, 0x0058, 0x7F7F);
b43_shm_write16(dev, B43_SHM_SHARED, 0x005a, 0x7F7F);
b43_shm_write16(dev, B43_SHM_SHARED, 0x0070, 0x7F7F);
b43_shm_write16(dev, B43_SHM_SHARED, 0x0072, 0x7F7F);
}
/* Synthetic PU workaround */
static void b43_synth_pu_workaround(struct b43_wldev *dev, u8 channel)
{
struct b43_phy *phy = &dev->phy;
might_sleep();
if (phy->radio_ver != 0x2050 || phy->radio_rev >= 6) {
/* We do not need the workaround. */
return;
}
if (channel <= 10) {
b43_write16(dev, B43_MMIO_CHANNEL,
channel2freq_bg(channel + 4));
} else {
b43_write16(dev, B43_MMIO_CHANNEL, channel2freq_bg(1));
}
msleep(1);
b43_write16(dev, B43_MMIO_CHANNEL, channel2freq_bg(channel));
}
/* Set the baseband attenuation value on chip. */
void b43_gphy_set_baseband_attenuation(struct b43_wldev *dev,
u16 baseband_attenuation)
{
struct b43_phy *phy = &dev->phy;
if (phy->analog == 0) {
b43_write16(dev, B43_MMIO_PHY0, (b43_read16(dev, B43_MMIO_PHY0)
& 0xFFF0) |
baseband_attenuation);
} else if (phy->analog > 1) {
b43_phy_write(dev, B43_PHY_DACCTL,
(b43_phy_read(dev, B43_PHY_DACCTL)
& 0xFFC3) | (baseband_attenuation << 2));
} else {
b43_phy_write(dev, B43_PHY_DACCTL,
(b43_phy_read(dev, B43_PHY_DACCTL)
& 0xFF87) | (baseband_attenuation << 3));
}
}
/* Adjust the transmission power output (G-PHY) */
void b43_set_txpower_g(struct b43_wldev *dev,
const struct b43_bbatt *bbatt,
const struct b43_rfatt *rfatt, u8 tx_control)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
u16 bb, rf;
u16 tx_bias, tx_magn;
bb = bbatt->att;
rf = rfatt->att;
tx_bias = lo->tx_bias;
tx_magn = lo->tx_magn;
if (unlikely(tx_bias == 0xFF))
tx_bias = 0;
/* Save the values for later */
gphy->tx_control = tx_control;
memcpy(&gphy->rfatt, rfatt, sizeof(*rfatt));
gphy->rfatt.with_padmix = !!(tx_control & B43_TXCTL_TXMIX);
memcpy(&gphy->bbatt, bbatt, sizeof(*bbatt));
if (b43_debug(dev, B43_DBG_XMITPOWER)) {
b43dbg(dev->wl, "Tuning TX-power to bbatt(%u), "
"rfatt(%u), tx_control(0x%02X), "
"tx_bias(0x%02X), tx_magn(0x%02X)\n",
bb, rf, tx_control, tx_bias, tx_magn);
}
b43_gphy_set_baseband_attenuation(dev, bb);
b43_shm_write16(dev, B43_SHM_SHARED, B43_SHM_SH_RFATT, rf);
if (phy->radio_ver == 0x2050 && phy->radio_rev == 8) {
b43_radio_write16(dev, 0x43,
(rf & 0x000F) | (tx_control & 0x0070));
} else {
b43_radio_write16(dev, 0x43, (b43_radio_read16(dev, 0x43)
& 0xFFF0) | (rf & 0x000F));
b43_radio_write16(dev, 0x52, (b43_radio_read16(dev, 0x52)
& ~0x0070) | (tx_control &
0x0070));
}
if (has_tx_magnification(phy)) {
b43_radio_write16(dev, 0x52, tx_magn | tx_bias);
} else {
b43_radio_write16(dev, 0x52, (b43_radio_read16(dev, 0x52)
& 0xFFF0) | (tx_bias & 0x000F));
}
b43_lo_g_adjust(dev);
}
/* GPHY_TSSI_Power_Lookup_Table_Init */
static void b43_gphy_tssi_power_lt_init(struct b43_wldev *dev)
{
struct b43_phy_g *gphy = dev->phy.g;
int i;
u16 value;
for (i = 0; i < 32; i++)
b43_ofdmtab_write16(dev, 0x3C20, i, gphy->tssi2dbm[i]);
for (i = 32; i < 64; i++)
b43_ofdmtab_write16(dev, 0x3C00, i - 32, gphy->tssi2dbm[i]);
for (i = 0; i < 64; i += 2) {
value = (u16) gphy->tssi2dbm[i];
value |= ((u16) gphy->tssi2dbm[i + 1]) << 8;
b43_phy_write(dev, 0x380 + (i / 2), value);
}
}
/* GPHY_Gain_Lookup_Table_Init */
static void b43_gphy_gain_lt_init(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
u16 nr_written = 0;
u16 tmp;
u8 rf, bb;
for (rf = 0; rf < lo->rfatt_list.len; rf++) {
for (bb = 0; bb < lo->bbatt_list.len; bb++) {
if (nr_written >= 0x40)
return;
tmp = lo->bbatt_list.list[bb].att;
tmp <<= 8;
if (phy->radio_rev == 8)
tmp |= 0x50;
else
tmp |= 0x40;
tmp |= lo->rfatt_list.list[rf].att;
b43_phy_write(dev, 0x3C0 + nr_written, tmp);
nr_written++;
}
}
}
static void b43_set_all_gains(struct b43_wldev *dev,
s16 first, s16 second, s16 third)
{
struct b43_phy *phy = &dev->phy;
u16 i;
u16 start = 0x08, end = 0x18;
u16 tmp;
u16 table;
if (phy->rev <= 1) {
start = 0x10;
end = 0x20;
}
table = B43_OFDMTAB_GAINX;
if (phy->rev <= 1)
table = B43_OFDMTAB_GAINX_R1;
for (i = 0; i < 4; i++)
b43_ofdmtab_write16(dev, table, i, first);
for (i = start; i < end; i++)
b43_ofdmtab_write16(dev, table, i, second);
if (third != -1) {
tmp = ((u16) third << 14) | ((u16) third << 6);
b43_phy_write(dev, 0x04A0,
(b43_phy_read(dev, 0x04A0) & 0xBFBF) | tmp);
b43_phy_write(dev, 0x04A1,
(b43_phy_read(dev, 0x04A1) & 0xBFBF) | tmp);
b43_phy_write(dev, 0x04A2,
(b43_phy_read(dev, 0x04A2) & 0xBFBF) | tmp);
}
b43_dummy_transmission(dev);
}
static void b43_set_original_gains(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
u16 i, tmp;
u16 table;
u16 start = 0x0008, end = 0x0018;
if (phy->rev <= 1) {
start = 0x0010;
end = 0x0020;
}
table = B43_OFDMTAB_GAINX;
if (phy->rev <= 1)
table = B43_OFDMTAB_GAINX_R1;
for (i = 0; i < 4; i++) {
tmp = (i & 0xFFFC);
tmp |= (i & 0x0001) << 1;
tmp |= (i & 0x0002) >> 1;
b43_ofdmtab_write16(dev, table, i, tmp);
}
for (i = start; i < end; i++)
b43_ofdmtab_write16(dev, table, i, i - start);
b43_phy_write(dev, 0x04A0,
(b43_phy_read(dev, 0x04A0) & 0xBFBF) | 0x4040);
b43_phy_write(dev, 0x04A1,
(b43_phy_read(dev, 0x04A1) & 0xBFBF) | 0x4040);
b43_phy_write(dev, 0x04A2,
(b43_phy_read(dev, 0x04A2) & 0xBFBF) | 0x4000);
b43_dummy_transmission(dev);
}
/* http://bcm-specs.sipsolutions.net/NRSSILookupTable */
void b43_nrssi_hw_write(struct b43_wldev *dev, u16 offset, s16 val)
{
b43_phy_write(dev, B43_PHY_NRSSILT_CTRL, offset);
mmiowb();
b43_phy_write(dev, B43_PHY_NRSSILT_DATA, (u16) val);
}
/* http://bcm-specs.sipsolutions.net/NRSSILookupTable */
s16 b43_nrssi_hw_read(struct b43_wldev *dev, u16 offset)
{
u16 val;
b43_phy_write(dev, B43_PHY_NRSSILT_CTRL, offset);
val = b43_phy_read(dev, B43_PHY_NRSSILT_DATA);
return (s16) val;
}
/* http://bcm-specs.sipsolutions.net/NRSSILookupTable */
void b43_nrssi_hw_update(struct b43_wldev *dev, u16 val)
{
u16 i;
s16 tmp;
for (i = 0; i < 64; i++) {
tmp = b43_nrssi_hw_read(dev, i);
tmp -= val;
tmp = clamp_val(tmp, -32, 31);
b43_nrssi_hw_write(dev, i, tmp);
}
}
/* http://bcm-specs.sipsolutions.net/NRSSILookupTable */
void b43_nrssi_mem_update(struct b43_wldev *dev)
{
struct b43_phy_g *gphy = dev->phy.g;
s16 i, delta;
s32 tmp;
delta = 0x1F - gphy->nrssi[0];
for (i = 0; i < 64; i++) {
tmp = (i - delta) * gphy->nrssislope;
tmp /= 0x10000;
tmp += 0x3A;
tmp = clamp_val(tmp, 0, 0x3F);
gphy->nrssi_lt[i] = tmp;
}
}
static void b43_calc_nrssi_offset(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
u16 backup[20] = { 0 };
s16 v47F;
u16 i;
u16 saved = 0xFFFF;
backup[0] = b43_phy_read(dev, 0x0001);
backup[1] = b43_phy_read(dev, 0x0811);
backup[2] = b43_phy_read(dev, 0x0812);
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
backup[3] = b43_phy_read(dev, 0x0814);
backup[4] = b43_phy_read(dev, 0x0815);
}
backup[5] = b43_phy_read(dev, 0x005A);
backup[6] = b43_phy_read(dev, 0x0059);
backup[7] = b43_phy_read(dev, 0x0058);
backup[8] = b43_phy_read(dev, 0x000A);
backup[9] = b43_phy_read(dev, 0x0003);
backup[10] = b43_radio_read16(dev, 0x007A);
backup[11] = b43_radio_read16(dev, 0x0043);
b43_phy_write(dev, 0x0429, b43_phy_read(dev, 0x0429) & 0x7FFF);
b43_phy_write(dev, 0x0001,
(b43_phy_read(dev, 0x0001) & 0x3FFF) | 0x4000);
b43_phy_write(dev, 0x0811, b43_phy_read(dev, 0x0811) | 0x000C);
b43_phy_write(dev, 0x0812,
(b43_phy_read(dev, 0x0812) & 0xFFF3) | 0x0004);
b43_phy_write(dev, 0x0802, b43_phy_read(dev, 0x0802) & ~(0x1 | 0x2));
if (phy->rev >= 6) {
backup[12] = b43_phy_read(dev, 0x002E);
backup[13] = b43_phy_read(dev, 0x002F);
backup[14] = b43_phy_read(dev, 0x080F);
backup[15] = b43_phy_read(dev, 0x0810);
backup[16] = b43_phy_read(dev, 0x0801);
backup[17] = b43_phy_read(dev, 0x0060);
backup[18] = b43_phy_read(dev, 0x0014);
backup[19] = b43_phy_read(dev, 0x0478);
b43_phy_write(dev, 0x002E, 0);
b43_phy_write(dev, 0x002F, 0);
b43_phy_write(dev, 0x080F, 0);
b43_phy_write(dev, 0x0810, 0);
b43_phy_write(dev, 0x0478, b43_phy_read(dev, 0x0478) | 0x0100);
b43_phy_write(dev, 0x0801, b43_phy_read(dev, 0x0801) | 0x0040);
b43_phy_write(dev, 0x0060, b43_phy_read(dev, 0x0060) | 0x0040);
b43_phy_write(dev, 0x0014, b43_phy_read(dev, 0x0014) | 0x0200);
}
b43_radio_write16(dev, 0x007A, b43_radio_read16(dev, 0x007A) | 0x0070);
b43_radio_write16(dev, 0x007A, b43_radio_read16(dev, 0x007A) | 0x0080);
udelay(30);
v47F = (s16) ((b43_phy_read(dev, 0x047F) >> 8) & 0x003F);
if (v47F >= 0x20)
v47F -= 0x40;
if (v47F == 31) {
for (i = 7; i >= 4; i--) {
b43_radio_write16(dev, 0x007B, i);
udelay(20);
v47F =
(s16) ((b43_phy_read(dev, 0x047F) >> 8) & 0x003F);
if (v47F >= 0x20)
v47F -= 0x40;
if (v47F < 31 && saved == 0xFFFF)
saved = i;
}
if (saved == 0xFFFF)
saved = 4;
} else {
b43_radio_write16(dev, 0x007A,
b43_radio_read16(dev, 0x007A) & 0x007F);
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_write(dev, 0x0814,
b43_phy_read(dev, 0x0814) | 0x0001);
b43_phy_write(dev, 0x0815,
b43_phy_read(dev, 0x0815) & 0xFFFE);
}
b43_phy_write(dev, 0x0811, b43_phy_read(dev, 0x0811) | 0x000C);
b43_phy_write(dev, 0x0812, b43_phy_read(dev, 0x0812) | 0x000C);
b43_phy_write(dev, 0x0811, b43_phy_read(dev, 0x0811) | 0x0030);
b43_phy_write(dev, 0x0812, b43_phy_read(dev, 0x0812) | 0x0030);
b43_phy_write(dev, 0x005A, 0x0480);
b43_phy_write(dev, 0x0059, 0x0810);
b43_phy_write(dev, 0x0058, 0x000D);
if (phy->rev == 0) {
b43_phy_write(dev, 0x0003, 0x0122);
} else {
b43_phy_write(dev, 0x000A, b43_phy_read(dev, 0x000A)
| 0x2000);
}
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_write(dev, 0x0814,
b43_phy_read(dev, 0x0814) | 0x0004);
b43_phy_write(dev, 0x0815,
b43_phy_read(dev, 0x0815) & 0xFFFB);
}
b43_phy_write(dev, 0x0003, (b43_phy_read(dev, 0x0003) & 0xFF9F)
| 0x0040);
b43_radio_write16(dev, 0x007A,
b43_radio_read16(dev, 0x007A) | 0x000F);
b43_set_all_gains(dev, 3, 0, 1);
b43_radio_write16(dev, 0x0043, (b43_radio_read16(dev, 0x0043)
& 0x00F0) | 0x000F);
udelay(30);
v47F = (s16) ((b43_phy_read(dev, 0x047F) >> 8) & 0x003F);
if (v47F >= 0x20)
v47F -= 0x40;
if (v47F == -32) {
for (i = 0; i < 4; i++) {
b43_radio_write16(dev, 0x007B, i);
udelay(20);
v47F =
(s16) ((b43_phy_read(dev, 0x047F) >> 8) &
0x003F);
if (v47F >= 0x20)
v47F -= 0x40;
if (v47F > -31 && saved == 0xFFFF)
saved = i;
}
if (saved == 0xFFFF)
saved = 3;
} else
saved = 0;
}
b43_radio_write16(dev, 0x007B, saved);
if (phy->rev >= 6) {
b43_phy_write(dev, 0x002E, backup[12]);
b43_phy_write(dev, 0x002F, backup[13]);
b43_phy_write(dev, 0x080F, backup[14]);
b43_phy_write(dev, 0x0810, backup[15]);
}
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_write(dev, 0x0814, backup[3]);
b43_phy_write(dev, 0x0815, backup[4]);
}
b43_phy_write(dev, 0x005A, backup[5]);
b43_phy_write(dev, 0x0059, backup[6]);
b43_phy_write(dev, 0x0058, backup[7]);
b43_phy_write(dev, 0x000A, backup[8]);
b43_phy_write(dev, 0x0003, backup[9]);
b43_radio_write16(dev, 0x0043, backup[11]);
b43_radio_write16(dev, 0x007A, backup[10]);
b43_phy_write(dev, 0x0802, b43_phy_read(dev, 0x0802) | 0x1 | 0x2);
b43_phy_write(dev, 0x0429, b43_phy_read(dev, 0x0429) | 0x8000);
b43_set_original_gains(dev);
if (phy->rev >= 6) {
b43_phy_write(dev, 0x0801, backup[16]);
b43_phy_write(dev, 0x0060, backup[17]);
b43_phy_write(dev, 0x0014, backup[18]);
b43_phy_write(dev, 0x0478, backup[19]);
}
b43_phy_write(dev, 0x0001, backup[0]);
b43_phy_write(dev, 0x0812, backup[2]);
b43_phy_write(dev, 0x0811, backup[1]);
}
void b43_calc_nrssi_slope(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 backup[18] = { 0 };
u16 tmp;
s16 nrssi0, nrssi1;
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
if (phy->radio_rev >= 9)
return;
if (phy->radio_rev == 8)
b43_calc_nrssi_offset(dev);
b43_phy_write(dev, B43_PHY_G_CRS,
b43_phy_read(dev, B43_PHY_G_CRS) & 0x7FFF);
b43_phy_write(dev, 0x0802, b43_phy_read(dev, 0x0802) & 0xFFFC);
backup[7] = b43_read16(dev, 0x03E2);
b43_write16(dev, 0x03E2, b43_read16(dev, 0x03E2) | 0x8000);
backup[0] = b43_radio_read16(dev, 0x007A);
backup[1] = b43_radio_read16(dev, 0x0052);
backup[2] = b43_radio_read16(dev, 0x0043);
backup[3] = b43_phy_read(dev, 0x0015);
backup[4] = b43_phy_read(dev, 0x005A);
backup[5] = b43_phy_read(dev, 0x0059);
backup[6] = b43_phy_read(dev, 0x0058);
backup[8] = b43_read16(dev, 0x03E6);
backup[9] = b43_read16(dev, B43_MMIO_CHANNEL_EXT);
if (phy->rev >= 3) {
backup[10] = b43_phy_read(dev, 0x002E);
backup[11] = b43_phy_read(dev, 0x002F);
backup[12] = b43_phy_read(dev, 0x080F);
backup[13] = b43_phy_read(dev, B43_PHY_G_LO_CONTROL);
backup[14] = b43_phy_read(dev, 0x0801);
backup[15] = b43_phy_read(dev, 0x0060);
backup[16] = b43_phy_read(dev, 0x0014);
backup[17] = b43_phy_read(dev, 0x0478);
b43_phy_write(dev, 0x002E, 0);
b43_phy_write(dev, B43_PHY_G_LO_CONTROL, 0);
switch (phy->rev) {
case 4:
case 6:
case 7:
b43_phy_write(dev, 0x0478,
b43_phy_read(dev, 0x0478)
| 0x0100);
b43_phy_write(dev, 0x0801,
b43_phy_read(dev, 0x0801)
| 0x0040);
break;
case 3:
case 5:
b43_phy_write(dev, 0x0801,
b43_phy_read(dev, 0x0801)
& 0xFFBF);
break;
}
b43_phy_write(dev, 0x0060, b43_phy_read(dev, 0x0060)
| 0x0040);
b43_phy_write(dev, 0x0014, b43_phy_read(dev, 0x0014)
| 0x0200);
}
b43_radio_write16(dev, 0x007A,
b43_radio_read16(dev, 0x007A) | 0x0070);
b43_set_all_gains(dev, 0, 8, 0);
b43_radio_write16(dev, 0x007A,
b43_radio_read16(dev, 0x007A) & 0x00F7);
if (phy->rev >= 2) {
b43_phy_write(dev, 0x0811,
(b43_phy_read(dev, 0x0811) & 0xFFCF) |
0x0030);
b43_phy_write(dev, 0x0812,
(b43_phy_read(dev, 0x0812) & 0xFFCF) |
0x0010);
}
b43_radio_write16(dev, 0x007A,
b43_radio_read16(dev, 0x007A) | 0x0080);
udelay(20);
nrssi0 = (s16) ((b43_phy_read(dev, 0x047F) >> 8) & 0x003F);
if (nrssi0 >= 0x0020)
nrssi0 -= 0x0040;
b43_radio_write16(dev, 0x007A,
b43_radio_read16(dev, 0x007A) & 0x007F);
if (phy->rev >= 2) {
b43_phy_write(dev, 0x0003, (b43_phy_read(dev, 0x0003)
& 0xFF9F) | 0x0040);
}
b43_write16(dev, B43_MMIO_CHANNEL_EXT,
b43_read16(dev, B43_MMIO_CHANNEL_EXT)
| 0x2000);
b43_radio_write16(dev, 0x007A,
b43_radio_read16(dev, 0x007A) | 0x000F);
b43_phy_write(dev, 0x0015, 0xF330);
if (phy->rev >= 2) {
b43_phy_write(dev, 0x0812,
(b43_phy_read(dev, 0x0812) & 0xFFCF) |
0x0020);
b43_phy_write(dev, 0x0811,
(b43_phy_read(dev, 0x0811) & 0xFFCF) |
0x0020);
}
b43_set_all_gains(dev, 3, 0, 1);
if (phy->radio_rev == 8) {
b43_radio_write16(dev, 0x0043, 0x001F);
} else {
tmp = b43_radio_read16(dev, 0x0052) & 0xFF0F;
b43_radio_write16(dev, 0x0052, tmp | 0x0060);
tmp = b43_radio_read16(dev, 0x0043) & 0xFFF0;
b43_radio_write16(dev, 0x0043, tmp | 0x0009);
}
b43_phy_write(dev, 0x005A, 0x0480);
b43_phy_write(dev, 0x0059, 0x0810);
b43_phy_write(dev, 0x0058, 0x000D);
udelay(20);
nrssi1 = (s16) ((b43_phy_read(dev, 0x047F) >> 8) & 0x003F);
if (nrssi1 >= 0x0020)
nrssi1 -= 0x0040;
if (nrssi0 == nrssi1)
gphy->nrssislope = 0x00010000;
else
gphy->nrssislope = 0x00400000 / (nrssi0 - nrssi1);
if (nrssi0 >= -4) {
gphy->nrssi[0] = nrssi1;
gphy->nrssi[1] = nrssi0;
}
if (phy->rev >= 3) {
b43_phy_write(dev, 0x002E, backup[10]);
b43_phy_write(dev, 0x002F, backup[11]);
b43_phy_write(dev, 0x080F, backup[12]);
b43_phy_write(dev, B43_PHY_G_LO_CONTROL, backup[13]);
}
if (phy->rev >= 2) {
b43_phy_write(dev, 0x0812,
b43_phy_read(dev, 0x0812) & 0xFFCF);
b43_phy_write(dev, 0x0811,
b43_phy_read(dev, 0x0811) & 0xFFCF);
}
b43_radio_write16(dev, 0x007A, backup[0]);
b43_radio_write16(dev, 0x0052, backup[1]);
b43_radio_write16(dev, 0x0043, backup[2]);
b43_write16(dev, 0x03E2, backup[7]);
b43_write16(dev, 0x03E6, backup[8]);
b43_write16(dev, B43_MMIO_CHANNEL_EXT, backup[9]);
b43_phy_write(dev, 0x0015, backup[3]);
b43_phy_write(dev, 0x005A, backup[4]);
b43_phy_write(dev, 0x0059, backup[5]);
b43_phy_write(dev, 0x0058, backup[6]);
b43_synth_pu_workaround(dev, phy->channel);
b43_phy_write(dev, 0x0802,
b43_phy_read(dev, 0x0802) | (0x0001 | 0x0002));
b43_set_original_gains(dev);
b43_phy_write(dev, B43_PHY_G_CRS,
b43_phy_read(dev, B43_PHY_G_CRS) | 0x8000);
if (phy->rev >= 3) {
b43_phy_write(dev, 0x0801, backup[14]);
b43_phy_write(dev, 0x0060, backup[15]);
b43_phy_write(dev, 0x0014, backup[16]);
b43_phy_write(dev, 0x0478, backup[17]);
}
b43_nrssi_mem_update(dev);
b43_calc_nrssi_threshold(dev);
}
static void b43_calc_nrssi_threshold(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
s32 a, b;
s16 tmp16;
u16 tmp_u16;
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
if (!phy->gmode ||
!(dev->dev->bus->sprom.boardflags_lo & B43_BFL_RSSI)) {
tmp16 = b43_nrssi_hw_read(dev, 0x20);
if (tmp16 >= 0x20)
tmp16 -= 0x40;
if (tmp16 < 3) {
b43_phy_write(dev, 0x048A,
(b43_phy_read(dev, 0x048A)
& 0xF000) | 0x09EB);
} else {
b43_phy_write(dev, 0x048A,
(b43_phy_read(dev, 0x048A)
& 0xF000) | 0x0AED);
}
} else {
if (gphy->interfmode == B43_INTERFMODE_NONWLAN) {
a = 0xE;
b = 0xA;
} else if (!gphy->aci_wlan_automatic && gphy->aci_enable) {
a = 0x13;
b = 0x12;
} else {
a = 0xE;
b = 0x11;
}
a = a * (gphy->nrssi[1] - gphy->nrssi[0]);
a += (gphy->nrssi[0] << 6);
if (a < 32)
a += 31;
else
a += 32;
a = a >> 6;
a = clamp_val(a, -31, 31);
b = b * (gphy->nrssi[1] - gphy->nrssi[0]);
b += (gphy->nrssi[0] << 6);
if (b < 32)
b += 31;
else
b += 32;
b = b >> 6;
b = clamp_val(b, -31, 31);
tmp_u16 = b43_phy_read(dev, 0x048A) & 0xF000;
tmp_u16 |= ((u32) b & 0x0000003F);
tmp_u16 |= (((u32) a & 0x0000003F) << 6);
b43_phy_write(dev, 0x048A, tmp_u16);
}
}
/* Stack implementation to save/restore values from the
* interference mitigation code.
* It is save to restore values in random order.
*/
static void _stack_save(u32 * _stackptr, size_t * stackidx,
u8 id, u16 offset, u16 value)
{
u32 *stackptr = &(_stackptr[*stackidx]);
B43_WARN_ON(offset & 0xF000);
B43_WARN_ON(id & 0xF0);
*stackptr = offset;
*stackptr |= ((u32) id) << 12;
*stackptr |= ((u32) value) << 16;
(*stackidx)++;
B43_WARN_ON(*stackidx >= B43_INTERFSTACK_SIZE);
}
static u16 _stack_restore(u32 * stackptr, u8 id, u16 offset)
{
size_t i;
B43_WARN_ON(offset & 0xF000);
B43_WARN_ON(id & 0xF0);
for (i = 0; i < B43_INTERFSTACK_SIZE; i++, stackptr++) {
if ((*stackptr & 0x00000FFF) != offset)
continue;
if (((*stackptr & 0x0000F000) >> 12) != id)
continue;
return ((*stackptr & 0xFFFF0000) >> 16);
}
B43_WARN_ON(1);
return 0;
}
#define phy_stacksave(offset) \
do { \
_stack_save(stack, &stackidx, 0x1, (offset), \
b43_phy_read(dev, (offset))); \
} while (0)
#define phy_stackrestore(offset) \
do { \
b43_phy_write(dev, (offset), \
_stack_restore(stack, 0x1, \
(offset))); \
} while (0)
#define radio_stacksave(offset) \
do { \
_stack_save(stack, &stackidx, 0x2, (offset), \
b43_radio_read16(dev, (offset))); \
} while (0)
#define radio_stackrestore(offset) \
do { \
b43_radio_write16(dev, (offset), \
_stack_restore(stack, 0x2, \
(offset))); \
} while (0)
#define ofdmtab_stacksave(table, offset) \
do { \
_stack_save(stack, &stackidx, 0x3, (offset)|(table), \
b43_ofdmtab_read16(dev, (table), (offset))); \
} while (0)
#define ofdmtab_stackrestore(table, offset) \
do { \
b43_ofdmtab_write16(dev, (table), (offset), \
_stack_restore(stack, 0x3, \
(offset)|(table))); \
} while (0)
static void
b43_radio_interference_mitigation_enable(struct b43_wldev *dev, int mode)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 tmp, flipped;
size_t stackidx = 0;
u32 *stack = gphy->interfstack;
switch (mode) {
case B43_INTERFMODE_NONWLAN:
if (phy->rev != 1) {
b43_phy_write(dev, 0x042B,
b43_phy_read(dev, 0x042B) | 0x0800);
b43_phy_write(dev, B43_PHY_G_CRS,
b43_phy_read(dev,
B43_PHY_G_CRS) & ~0x4000);
break;
}
radio_stacksave(0x0078);
tmp = (b43_radio_read16(dev, 0x0078) & 0x001E);
B43_WARN_ON(tmp > 15);
flipped = bitrev4(tmp);
if (flipped < 10 && flipped >= 8)
flipped = 7;
else if (flipped >= 10)
flipped -= 3;
flipped = (bitrev4(flipped) << 1) | 0x0020;
b43_radio_write16(dev, 0x0078, flipped);
b43_calc_nrssi_threshold(dev);
phy_stacksave(0x0406);
b43_phy_write(dev, 0x0406, 0x7E28);
b43_phy_write(dev, 0x042B, b43_phy_read(dev, 0x042B) | 0x0800);
b43_phy_write(dev, B43_PHY_RADIO_BITFIELD,
b43_phy_read(dev,
B43_PHY_RADIO_BITFIELD) | 0x1000);
phy_stacksave(0x04A0);
b43_phy_write(dev, 0x04A0,
(b43_phy_read(dev, 0x04A0) & 0xC0C0) | 0x0008);
phy_stacksave(0x04A1);
b43_phy_write(dev, 0x04A1,
(b43_phy_read(dev, 0x04A1) & 0xC0C0) | 0x0605);
phy_stacksave(0x04A2);
b43_phy_write(dev, 0x04A2,
(b43_phy_read(dev, 0x04A2) & 0xC0C0) | 0x0204);
phy_stacksave(0x04A8);
b43_phy_write(dev, 0x04A8,
(b43_phy_read(dev, 0x04A8) & 0xC0C0) | 0x0803);
phy_stacksave(0x04AB);
b43_phy_write(dev, 0x04AB,
(b43_phy_read(dev, 0x04AB) & 0xC0C0) | 0x0605);
phy_stacksave(0x04A7);
b43_phy_write(dev, 0x04A7, 0x0002);
phy_stacksave(0x04A3);
b43_phy_write(dev, 0x04A3, 0x287A);
phy_stacksave(0x04A9);
b43_phy_write(dev, 0x04A9, 0x2027);
phy_stacksave(0x0493);
b43_phy_write(dev, 0x0493, 0x32F5);
phy_stacksave(0x04AA);
b43_phy_write(dev, 0x04AA, 0x2027);
phy_stacksave(0x04AC);
b43_phy_write(dev, 0x04AC, 0x32F5);
break;
case B43_INTERFMODE_MANUALWLAN:
if (b43_phy_read(dev, 0x0033) & 0x0800)
break;
gphy->aci_enable = 1;
phy_stacksave(B43_PHY_RADIO_BITFIELD);
phy_stacksave(B43_PHY_G_CRS);
if (phy->rev < 2) {
phy_stacksave(0x0406);
} else {
phy_stacksave(0x04C0);
phy_stacksave(0x04C1);
}
phy_stacksave(0x0033);
phy_stacksave(0x04A7);
phy_stacksave(0x04A3);
phy_stacksave(0x04A9);
phy_stacksave(0x04AA);
phy_stacksave(0x04AC);
phy_stacksave(0x0493);
phy_stacksave(0x04A1);
phy_stacksave(0x04A0);
phy_stacksave(0x04A2);
phy_stacksave(0x048A);
phy_stacksave(0x04A8);
phy_stacksave(0x04AB);
if (phy->rev == 2) {
phy_stacksave(0x04AD);
phy_stacksave(0x04AE);
} else if (phy->rev >= 3) {
phy_stacksave(0x04AD);
phy_stacksave(0x0415);
phy_stacksave(0x0416);
phy_stacksave(0x0417);
ofdmtab_stacksave(0x1A00, 0x2);
ofdmtab_stacksave(0x1A00, 0x3);
}
phy_stacksave(0x042B);
phy_stacksave(0x048C);
b43_phy_write(dev, B43_PHY_RADIO_BITFIELD,
b43_phy_read(dev, B43_PHY_RADIO_BITFIELD)
& ~0x1000);
b43_phy_write(dev, B43_PHY_G_CRS,
(b43_phy_read(dev, B43_PHY_G_CRS)
& 0xFFFC) | 0x0002);
b43_phy_write(dev, 0x0033, 0x0800);
b43_phy_write(dev, 0x04A3, 0x2027);
b43_phy_write(dev, 0x04A9, 0x1CA8);
b43_phy_write(dev, 0x0493, 0x287A);
b43_phy_write(dev, 0x04AA, 0x1CA8);
b43_phy_write(dev, 0x04AC, 0x287A);
b43_phy_write(dev, 0x04A0, (b43_phy_read(dev, 0x04A0)
& 0xFFC0) | 0x001A);
b43_phy_write(dev, 0x04A7, 0x000D);
if (phy->rev < 2) {
b43_phy_write(dev, 0x0406, 0xFF0D);
} else if (phy->rev == 2) {
b43_phy_write(dev, 0x04C0, 0xFFFF);
b43_phy_write(dev, 0x04C1, 0x00A9);
} else {
b43_phy_write(dev, 0x04C0, 0x00C1);
b43_phy_write(dev, 0x04C1, 0x0059);
}
b43_phy_write(dev, 0x04A1, (b43_phy_read(dev, 0x04A1)
& 0xC0FF) | 0x1800);
b43_phy_write(dev, 0x04A1, (b43_phy_read(dev, 0x04A1)
& 0xFFC0) | 0x0015);
b43_phy_write(dev, 0x04A8, (b43_phy_read(dev, 0x04A8)
& 0xCFFF) | 0x1000);
b43_phy_write(dev, 0x04A8, (b43_phy_read(dev, 0x04A8)
& 0xF0FF) | 0x0A00);
b43_phy_write(dev, 0x04AB, (b43_phy_read(dev, 0x04AB)
& 0xCFFF) | 0x1000);
b43_phy_write(dev, 0x04AB, (b43_phy_read(dev, 0x04AB)
& 0xF0FF) | 0x0800);
b43_phy_write(dev, 0x04AB, (b43_phy_read(dev, 0x04AB)
& 0xFFCF) | 0x0010);
b43_phy_write(dev, 0x04AB, (b43_phy_read(dev, 0x04AB)
& 0xFFF0) | 0x0005);
b43_phy_write(dev, 0x04A8, (b43_phy_read(dev, 0x04A8)
& 0xFFCF) | 0x0010);
b43_phy_write(dev, 0x04A8, (b43_phy_read(dev, 0x04A8)
& 0xFFF0) | 0x0006);
b43_phy_write(dev, 0x04A2, (b43_phy_read(dev, 0x04A2)
& 0xF0FF) | 0x0800);
b43_phy_write(dev, 0x04A0, (b43_phy_read(dev, 0x04A0)
& 0xF0FF) | 0x0500);
b43_phy_write(dev, 0x04A2, (b43_phy_read(dev, 0x04A2)
& 0xFFF0) | 0x000B);
if (phy->rev >= 3) {
b43_phy_write(dev, 0x048A, b43_phy_read(dev, 0x048A)
& ~0x8000);
b43_phy_write(dev, 0x0415, (b43_phy_read(dev, 0x0415)
& 0x8000) | 0x36D8);
b43_phy_write(dev, 0x0416, (b43_phy_read(dev, 0x0416)
& 0x8000) | 0x36D8);
b43_phy_write(dev, 0x0417, (b43_phy_read(dev, 0x0417)
& 0xFE00) | 0x016D);
} else {
b43_phy_write(dev, 0x048A, b43_phy_read(dev, 0x048A)
| 0x1000);
b43_phy_write(dev, 0x048A, (b43_phy_read(dev, 0x048A)
& 0x9FFF) | 0x2000);
b43_hf_write(dev, b43_hf_read(dev) | B43_HF_ACIW);
}
if (phy->rev >= 2) {
b43_phy_write(dev, 0x042B, b43_phy_read(dev, 0x042B)
| 0x0800);
}
b43_phy_write(dev, 0x048C, (b43_phy_read(dev, 0x048C)
& 0xF0FF) | 0x0200);
if (phy->rev == 2) {
b43_phy_write(dev, 0x04AE, (b43_phy_read(dev, 0x04AE)
& 0xFF00) | 0x007F);
b43_phy_write(dev, 0x04AD, (b43_phy_read(dev, 0x04AD)
& 0x00FF) | 0x1300);
} else if (phy->rev >= 6) {
b43_ofdmtab_write16(dev, 0x1A00, 0x3, 0x007F);
b43_ofdmtab_write16(dev, 0x1A00, 0x2, 0x007F);
b43_phy_write(dev, 0x04AD, b43_phy_read(dev, 0x04AD)
& 0x00FF);
}
b43_calc_nrssi_slope(dev);
break;
default:
B43_WARN_ON(1);
}
}
static void
b43_radio_interference_mitigation_disable(struct b43_wldev *dev, int mode)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u32 *stack = gphy->interfstack;
switch (mode) {
case B43_INTERFMODE_NONWLAN:
if (phy->rev != 1) {
b43_phy_write(dev, 0x042B,
b43_phy_read(dev, 0x042B) & ~0x0800);
b43_phy_write(dev, B43_PHY_G_CRS,
b43_phy_read(dev,
B43_PHY_G_CRS) | 0x4000);
break;
}
radio_stackrestore(0x0078);
b43_calc_nrssi_threshold(dev);
phy_stackrestore(0x0406);
b43_phy_write(dev, 0x042B, b43_phy_read(dev, 0x042B) & ~0x0800);
if (!dev->bad_frames_preempt) {
b43_phy_write(dev, B43_PHY_RADIO_BITFIELD,
b43_phy_read(dev, B43_PHY_RADIO_BITFIELD)
& ~(1 << 11));
}
b43_phy_write(dev, B43_PHY_G_CRS,
b43_phy_read(dev, B43_PHY_G_CRS) | 0x4000);
phy_stackrestore(0x04A0);
phy_stackrestore(0x04A1);
phy_stackrestore(0x04A2);
phy_stackrestore(0x04A8);
phy_stackrestore(0x04AB);
phy_stackrestore(0x04A7);
phy_stackrestore(0x04A3);
phy_stackrestore(0x04A9);
phy_stackrestore(0x0493);
phy_stackrestore(0x04AA);
phy_stackrestore(0x04AC);
break;
case B43_INTERFMODE_MANUALWLAN:
if (!(b43_phy_read(dev, 0x0033) & 0x0800))
break;
gphy->aci_enable = 0;
phy_stackrestore(B43_PHY_RADIO_BITFIELD);
phy_stackrestore(B43_PHY_G_CRS);
phy_stackrestore(0x0033);
phy_stackrestore(0x04A3);
phy_stackrestore(0x04A9);
phy_stackrestore(0x0493);
phy_stackrestore(0x04AA);
phy_stackrestore(0x04AC);
phy_stackrestore(0x04A0);
phy_stackrestore(0x04A7);
if (phy->rev >= 2) {
phy_stackrestore(0x04C0);
phy_stackrestore(0x04C1);
} else
phy_stackrestore(0x0406);
phy_stackrestore(0x04A1);
phy_stackrestore(0x04AB);
phy_stackrestore(0x04A8);
if (phy->rev == 2) {
phy_stackrestore(0x04AD);
phy_stackrestore(0x04AE);
} else if (phy->rev >= 3) {
phy_stackrestore(0x04AD);
phy_stackrestore(0x0415);
phy_stackrestore(0x0416);
phy_stackrestore(0x0417);
ofdmtab_stackrestore(0x1A00, 0x2);
ofdmtab_stackrestore(0x1A00, 0x3);
}
phy_stackrestore(0x04A2);
phy_stackrestore(0x048A);
phy_stackrestore(0x042B);
phy_stackrestore(0x048C);
b43_hf_write(dev, b43_hf_read(dev) & ~B43_HF_ACIW);
b43_calc_nrssi_slope(dev);
break;
default:
B43_WARN_ON(1);
}
}
#undef phy_stacksave
#undef phy_stackrestore
#undef radio_stacksave
#undef radio_stackrestore
#undef ofdmtab_stacksave
#undef ofdmtab_stackrestore
static u16 b43_radio_core_calibration_value(struct b43_wldev *dev)
{
u16 reg, index, ret;
static const u8 rcc_table[] = {
0x02, 0x03, 0x01, 0x0F,
0x06, 0x07, 0x05, 0x0F,
0x0A, 0x0B, 0x09, 0x0F,
0x0E, 0x0F, 0x0D, 0x0F,
};
reg = b43_radio_read16(dev, 0x60);
index = (reg & 0x001E) >> 1;
ret = rcc_table[index] << 1;
ret |= (reg & 0x0001);
ret |= 0x0020;
return ret;
}
#define LPD(L, P, D) (((L) << 2) | ((P) << 1) | ((D) << 0))
static u16 radio2050_rfover_val(struct b43_wldev *dev,
u16 phy_register, unsigned int lpd)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct ssb_sprom *sprom = &(dev->dev->bus->sprom);
if (!phy->gmode)
return 0;
if (has_loopback_gain(phy)) {
int max_lb_gain = gphy->max_lb_gain;
u16 extlna;
u16 i;
if (phy->radio_rev == 8)
max_lb_gain += 0x3E;
else
max_lb_gain += 0x26;
if (max_lb_gain >= 0x46) {
extlna = 0x3000;
max_lb_gain -= 0x46;
} else if (max_lb_gain >= 0x3A) {
extlna = 0x1000;
max_lb_gain -= 0x3A;
} else if (max_lb_gain >= 0x2E) {
extlna = 0x2000;
max_lb_gain -= 0x2E;
} else {
extlna = 0;
max_lb_gain -= 0x10;
}
for (i = 0; i < 16; i++) {
max_lb_gain -= (i * 6);
if (max_lb_gain < 6)
break;
}
if ((phy->rev < 7) ||
!(sprom->boardflags_lo & B43_BFL_EXTLNA)) {
if (phy_register == B43_PHY_RFOVER) {
return 0x1B3;
} else if (phy_register == B43_PHY_RFOVERVAL) {
extlna |= (i << 8);
switch (lpd) {
case LPD(0, 1, 1):
return 0x0F92;
case LPD(0, 0, 1):
case LPD(1, 0, 1):
return (0x0092 | extlna);
case LPD(1, 0, 0):
return (0x0093 | extlna);
}
B43_WARN_ON(1);
}
B43_WARN_ON(1);
} else {
if (phy_register == B43_PHY_RFOVER) {
return 0x9B3;
} else if (phy_register == B43_PHY_RFOVERVAL) {
if (extlna)
extlna |= 0x8000;
extlna |= (i << 8);
switch (lpd) {
case LPD(0, 1, 1):
return 0x8F92;
case LPD(0, 0, 1):
return (0x8092 | extlna);
case LPD(1, 0, 1):
return (0x2092 | extlna);
case LPD(1, 0, 0):
return (0x2093 | extlna);
}
B43_WARN_ON(1);
}
B43_WARN_ON(1);
}
} else {
if ((phy->rev < 7) ||
!(sprom->boardflags_lo & B43_BFL_EXTLNA)) {
if (phy_register == B43_PHY_RFOVER) {
return 0x1B3;
} else if (phy_register == B43_PHY_RFOVERVAL) {
switch (lpd) {
case LPD(0, 1, 1):
return 0x0FB2;
case LPD(0, 0, 1):
return 0x00B2;
case LPD(1, 0, 1):
return 0x30B2;
case LPD(1, 0, 0):
return 0x30B3;
}
B43_WARN_ON(1);
}
B43_WARN_ON(1);
} else {
if (phy_register == B43_PHY_RFOVER) {
return 0x9B3;
} else if (phy_register == B43_PHY_RFOVERVAL) {
switch (lpd) {
case LPD(0, 1, 1):
return 0x8FB2;
case LPD(0, 0, 1):
return 0x80B2;
case LPD(1, 0, 1):
return 0x20B2;
case LPD(1, 0, 0):
return 0x20B3;
}
B43_WARN_ON(1);
}
B43_WARN_ON(1);
}
}
return 0;
}
struct init2050_saved_values {
/* Core registers */
u16 reg_3EC;
u16 reg_3E6;
u16 reg_3F4;
/* Radio registers */
u16 radio_43;
u16 radio_51;
u16 radio_52;
/* PHY registers */
u16 phy_pgactl;
u16 phy_cck_5A;
u16 phy_cck_59;
u16 phy_cck_58;
u16 phy_cck_30;
u16 phy_rfover;
u16 phy_rfoverval;
u16 phy_analogover;
u16 phy_analogoverval;
u16 phy_crs0;
u16 phy_classctl;
u16 phy_lo_mask;
u16 phy_lo_ctl;
u16 phy_syncctl;
};
u16 b43_radio_init2050(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct init2050_saved_values sav;
u16 rcc;
u16 radio78;
u16 ret;
u16 i, j;
u32 tmp1 = 0, tmp2 = 0;
memset(&sav, 0, sizeof(sav)); /* get rid of "may be used uninitialized..." */
sav.radio_43 = b43_radio_read16(dev, 0x43);
sav.radio_51 = b43_radio_read16(dev, 0x51);
sav.radio_52 = b43_radio_read16(dev, 0x52);
sav.phy_pgactl = b43_phy_read(dev, B43_PHY_PGACTL);
sav.phy_cck_5A = b43_phy_read(dev, B43_PHY_CCK(0x5A));
sav.phy_cck_59 = b43_phy_read(dev, B43_PHY_CCK(0x59));
sav.phy_cck_58 = b43_phy_read(dev, B43_PHY_CCK(0x58));
if (phy->type == B43_PHYTYPE_B) {
sav.phy_cck_30 = b43_phy_read(dev, B43_PHY_CCK(0x30));
sav.reg_3EC = b43_read16(dev, 0x3EC);
b43_phy_write(dev, B43_PHY_CCK(0x30), 0xFF);
b43_write16(dev, 0x3EC, 0x3F3F);
} else if (phy->gmode || phy->rev >= 2) {
sav.phy_rfover = b43_phy_read(dev, B43_PHY_RFOVER);
sav.phy_rfoverval = b43_phy_read(dev, B43_PHY_RFOVERVAL);
sav.phy_analogover = b43_phy_read(dev, B43_PHY_ANALOGOVER);
sav.phy_analogoverval =
b43_phy_read(dev, B43_PHY_ANALOGOVERVAL);
sav.phy_crs0 = b43_phy_read(dev, B43_PHY_CRS0);
sav.phy_classctl = b43_phy_read(dev, B43_PHY_CLASSCTL);
b43_phy_write(dev, B43_PHY_ANALOGOVER,
b43_phy_read(dev, B43_PHY_ANALOGOVER)
| 0x0003);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL,
b43_phy_read(dev, B43_PHY_ANALOGOVERVAL)
& 0xFFFC);
b43_phy_write(dev, B43_PHY_CRS0, b43_phy_read(dev, B43_PHY_CRS0)
& 0x7FFF);
b43_phy_write(dev, B43_PHY_CLASSCTL,
b43_phy_read(dev, B43_PHY_CLASSCTL)
& 0xFFFC);
if (has_loopback_gain(phy)) {
sav.phy_lo_mask = b43_phy_read(dev, B43_PHY_LO_MASK);
sav.phy_lo_ctl = b43_phy_read(dev, B43_PHY_LO_CTL);
if (phy->rev >= 3)
b43_phy_write(dev, B43_PHY_LO_MASK, 0xC020);
else
b43_phy_write(dev, B43_PHY_LO_MASK, 0x8020);
b43_phy_write(dev, B43_PHY_LO_CTL, 0);
}
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev, B43_PHY_RFOVERVAL,
LPD(0, 1, 1)));
b43_phy_write(dev, B43_PHY_RFOVER,
radio2050_rfover_val(dev, B43_PHY_RFOVER, 0));
}
b43_write16(dev, 0x3E2, b43_read16(dev, 0x3E2) | 0x8000);
sav.phy_syncctl = b43_phy_read(dev, B43_PHY_SYNCCTL);
b43_phy_write(dev, B43_PHY_SYNCCTL, b43_phy_read(dev, B43_PHY_SYNCCTL)
& 0xFF7F);
sav.reg_3E6 = b43_read16(dev, 0x3E6);
sav.reg_3F4 = b43_read16(dev, 0x3F4);
if (phy->analog == 0) {
b43_write16(dev, 0x03E6, 0x0122);
} else {
if (phy->analog >= 2) {
b43_phy_write(dev, B43_PHY_CCK(0x03),
(b43_phy_read(dev, B43_PHY_CCK(0x03))
& 0xFFBF) | 0x40);
}
b43_write16(dev, B43_MMIO_CHANNEL_EXT,
(b43_read16(dev, B43_MMIO_CHANNEL_EXT) | 0x2000));
}
rcc = b43_radio_core_calibration_value(dev);
if (phy->type == B43_PHYTYPE_B)
b43_radio_write16(dev, 0x78, 0x26);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev, B43_PHY_RFOVERVAL,
LPD(0, 1, 1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xBFAF);
b43_phy_write(dev, B43_PHY_CCK(0x2B), 0x1403);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev, B43_PHY_RFOVERVAL,
LPD(0, 0, 1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xBFA0);
b43_radio_write16(dev, 0x51, b43_radio_read16(dev, 0x51)
| 0x0004);
if (phy->radio_rev == 8) {
b43_radio_write16(dev, 0x43, 0x1F);
} else {
b43_radio_write16(dev, 0x52, 0);
b43_radio_write16(dev, 0x43, (b43_radio_read16(dev, 0x43)
& 0xFFF0) | 0x0009);
}
b43_phy_write(dev, B43_PHY_CCK(0x58), 0);
for (i = 0; i < 16; i++) {
b43_phy_write(dev, B43_PHY_CCK(0x5A), 0x0480);
b43_phy_write(dev, B43_PHY_CCK(0x59), 0xC810);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0x000D);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0, 1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xAFB0);
udelay(10);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0, 1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xEFB0);
udelay(10);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0, 0)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xFFF0);
udelay(20);
tmp1 += b43_phy_read(dev, B43_PHY_LO_LEAKAGE);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0, 1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xAFB0);
}
udelay(10);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0);
tmp1++;
tmp1 >>= 9;
for (i = 0; i < 16; i++) {
radio78 = (bitrev4(i) << 1) | 0x0020;
b43_radio_write16(dev, 0x78, radio78);
udelay(10);
for (j = 0; j < 16; j++) {
b43_phy_write(dev, B43_PHY_CCK(0x5A), 0x0D80);
b43_phy_write(dev, B43_PHY_CCK(0x59), 0xC810);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0x000D);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0,
1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xAFB0);
udelay(10);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0,
1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xEFB0);
udelay(10);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0,
0)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xFFF0);
udelay(10);
tmp2 += b43_phy_read(dev, B43_PHY_LO_LEAKAGE);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0);
if (phy->gmode || phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
radio2050_rfover_val(dev,
B43_PHY_RFOVERVAL,
LPD(1, 0,
1)));
}
b43_phy_write(dev, B43_PHY_PGACTL, 0xAFB0);
}
tmp2++;
tmp2 >>= 8;
if (tmp1 < tmp2)
break;
}
/* Restore the registers */
b43_phy_write(dev, B43_PHY_PGACTL, sav.phy_pgactl);
b43_radio_write16(dev, 0x51, sav.radio_51);
b43_radio_write16(dev, 0x52, sav.radio_52);
b43_radio_write16(dev, 0x43, sav.radio_43);
b43_phy_write(dev, B43_PHY_CCK(0x5A), sav.phy_cck_5A);
b43_phy_write(dev, B43_PHY_CCK(0x59), sav.phy_cck_59);
b43_phy_write(dev, B43_PHY_CCK(0x58), sav.phy_cck_58);
b43_write16(dev, 0x3E6, sav.reg_3E6);
if (phy->analog != 0)
b43_write16(dev, 0x3F4, sav.reg_3F4);
b43_phy_write(dev, B43_PHY_SYNCCTL, sav.phy_syncctl);
b43_synth_pu_workaround(dev, phy->channel);
if (phy->type == B43_PHYTYPE_B) {
b43_phy_write(dev, B43_PHY_CCK(0x30), sav.phy_cck_30);
b43_write16(dev, 0x3EC, sav.reg_3EC);
} else if (phy->gmode) {
b43_write16(dev, B43_MMIO_PHY_RADIO,
b43_read16(dev, B43_MMIO_PHY_RADIO)
& 0x7FFF);
b43_phy_write(dev, B43_PHY_RFOVER, sav.phy_rfover);
b43_phy_write(dev, B43_PHY_RFOVERVAL, sav.phy_rfoverval);
b43_phy_write(dev, B43_PHY_ANALOGOVER, sav.phy_analogover);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL,
sav.phy_analogoverval);
b43_phy_write(dev, B43_PHY_CRS0, sav.phy_crs0);
b43_phy_write(dev, B43_PHY_CLASSCTL, sav.phy_classctl);
if (has_loopback_gain(phy)) {
b43_phy_write(dev, B43_PHY_LO_MASK, sav.phy_lo_mask);
b43_phy_write(dev, B43_PHY_LO_CTL, sav.phy_lo_ctl);
}
}
if (i > 15)
ret = radio78;
else
ret = rcc;
return ret;
}
static void b43_phy_initb5(struct b43_wldev *dev)
{
struct ssb_bus *bus = dev->dev->bus;
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 offset, value;
u8 old_channel;
if (phy->analog == 1) {
b43_radio_write16(dev, 0x007A, b43_radio_read16(dev, 0x007A)
| 0x0050);
}
if ((bus->boardinfo.vendor != SSB_BOARDVENDOR_BCM) &&
(bus->boardinfo.type != SSB_BOARD_BU4306)) {
value = 0x2120;
for (offset = 0x00A8; offset < 0x00C7; offset++) {
b43_phy_write(dev, offset, value);
value += 0x202;
}
}
b43_phy_write(dev, 0x0035, (b43_phy_read(dev, 0x0035) & 0xF0FF)
| 0x0700);
if (phy->radio_ver == 0x2050)
b43_phy_write(dev, 0x0038, 0x0667);
if (phy->gmode || phy->rev >= 2) {
if (phy->radio_ver == 0x2050) {
b43_radio_write16(dev, 0x007A,
b43_radio_read16(dev, 0x007A)
| 0x0020);
b43_radio_write16(dev, 0x0051,
b43_radio_read16(dev, 0x0051)
| 0x0004);
}
b43_write16(dev, B43_MMIO_PHY_RADIO, 0x0000);
b43_phy_write(dev, 0x0802, b43_phy_read(dev, 0x0802) | 0x0100);
b43_phy_write(dev, 0x042B, b43_phy_read(dev, 0x042B) | 0x2000);
b43_phy_write(dev, 0x001C, 0x186A);
b43_phy_write(dev, 0x0013,
(b43_phy_read(dev, 0x0013) & 0x00FF) | 0x1900);
b43_phy_write(dev, 0x0035,
(b43_phy_read(dev, 0x0035) & 0xFFC0) | 0x0064);
b43_phy_write(dev, 0x005D,
(b43_phy_read(dev, 0x005D) & 0xFF80) | 0x000A);
}
if (dev->bad_frames_preempt) {
b43_phy_write(dev, B43_PHY_RADIO_BITFIELD,
b43_phy_read(dev,
B43_PHY_RADIO_BITFIELD) | (1 << 11));
}
if (phy->analog == 1) {
b43_phy_write(dev, 0x0026, 0xCE00);
b43_phy_write(dev, 0x0021, 0x3763);
b43_phy_write(dev, 0x0022, 0x1BC3);
b43_phy_write(dev, 0x0023, 0x06F9);
b43_phy_write(dev, 0x0024, 0x037E);
} else
b43_phy_write(dev, 0x0026, 0xCC00);
b43_phy_write(dev, 0x0030, 0x00C6);
b43_write16(dev, 0x03EC, 0x3F22);
if (phy->analog == 1)
b43_phy_write(dev, 0x0020, 0x3E1C);
else
b43_phy_write(dev, 0x0020, 0x301C);
if (phy->analog == 0)
b43_write16(dev, 0x03E4, 0x3000);
old_channel = phy->channel;
/* Force to channel 7, even if not supported. */
b43_gphy_channel_switch(dev, 7, 0);
if (phy->radio_ver != 0x2050) {
b43_radio_write16(dev, 0x0075, 0x0080);
b43_radio_write16(dev, 0x0079, 0x0081);
}
b43_radio_write16(dev, 0x0050, 0x0020);
b43_radio_write16(dev, 0x0050, 0x0023);
if (phy->radio_ver == 0x2050) {
b43_radio_write16(dev, 0x0050, 0x0020);
b43_radio_write16(dev, 0x005A, 0x0070);
}
b43_radio_write16(dev, 0x005B, 0x007B);
b43_radio_write16(dev, 0x005C, 0x00B0);
b43_radio_write16(dev, 0x007A, b43_radio_read16(dev, 0x007A) | 0x0007);
b43_gphy_channel_switch(dev, old_channel, 0);
b43_phy_write(dev, 0x0014, 0x0080);
b43_phy_write(dev, 0x0032, 0x00CA);
b43_phy_write(dev, 0x002A, 0x88A3);
b43_set_txpower_g(dev, &gphy->bbatt, &gphy->rfatt, gphy->tx_control);
if (phy->radio_ver == 0x2050)
b43_radio_write16(dev, 0x005D, 0x000D);
b43_write16(dev, 0x03E4, (b43_read16(dev, 0x03E4) & 0xFFC0) | 0x0004);
}
static void b43_phy_initb6(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 offset, val;
u8 old_channel;
b43_phy_write(dev, 0x003E, 0x817A);
b43_radio_write16(dev, 0x007A,
(b43_radio_read16(dev, 0x007A) | 0x0058));
if (phy->radio_rev == 4 || phy->radio_rev == 5) {
b43_radio_write16(dev, 0x51, 0x37);
b43_radio_write16(dev, 0x52, 0x70);
b43_radio_write16(dev, 0x53, 0xB3);
b43_radio_write16(dev, 0x54, 0x9B);
b43_radio_write16(dev, 0x5A, 0x88);
b43_radio_write16(dev, 0x5B, 0x88);
b43_radio_write16(dev, 0x5D, 0x88);
b43_radio_write16(dev, 0x5E, 0x88);
b43_radio_write16(dev, 0x7D, 0x88);
b43_hf_write(dev, b43_hf_read(dev)
| B43_HF_TSSIRPSMW);
}
B43_WARN_ON(phy->radio_rev == 6 || phy->radio_rev == 7); /* We had code for these revs here... */
if (phy->radio_rev == 8) {
b43_radio_write16(dev, 0x51, 0);
b43_radio_write16(dev, 0x52, 0x40);
b43_radio_write16(dev, 0x53, 0xB7);
b43_radio_write16(dev, 0x54, 0x98);
b43_radio_write16(dev, 0x5A, 0x88);
b43_radio_write16(dev, 0x5B, 0x6B);
b43_radio_write16(dev, 0x5C, 0x0F);
if (dev->dev->bus->sprom.boardflags_lo & B43_BFL_ALTIQ) {
b43_radio_write16(dev, 0x5D, 0xFA);
b43_radio_write16(dev, 0x5E, 0xD8);
} else {
b43_radio_write16(dev, 0x5D, 0xF5);
b43_radio_write16(dev, 0x5E, 0xB8);
}
b43_radio_write16(dev, 0x0073, 0x0003);
b43_radio_write16(dev, 0x007D, 0x00A8);
b43_radio_write16(dev, 0x007C, 0x0001);
b43_radio_write16(dev, 0x007E, 0x0008);
}
val = 0x1E1F;
for (offset = 0x0088; offset < 0x0098; offset++) {
b43_phy_write(dev, offset, val);
val -= 0x0202;
}
val = 0x3E3F;
for (offset = 0x0098; offset < 0x00A8; offset++) {
b43_phy_write(dev, offset, val);
val -= 0x0202;
}
val = 0x2120;
for (offset = 0x00A8; offset < 0x00C8; offset++) {
b43_phy_write(dev, offset, (val & 0x3F3F));
val += 0x0202;
}
if (phy->type == B43_PHYTYPE_G) {
b43_radio_write16(dev, 0x007A,
b43_radio_read16(dev, 0x007A) | 0x0020);
b43_radio_write16(dev, 0x0051,
b43_radio_read16(dev, 0x0051) | 0x0004);
b43_phy_write(dev, 0x0802, b43_phy_read(dev, 0x0802) | 0x0100);
b43_phy_write(dev, 0x042B, b43_phy_read(dev, 0x042B) | 0x2000);
b43_phy_write(dev, 0x5B, 0);
b43_phy_write(dev, 0x5C, 0);
}
old_channel = phy->channel;
if (old_channel >= 8)
b43_gphy_channel_switch(dev, 1, 0);
else
b43_gphy_channel_switch(dev, 13, 0);
b43_radio_write16(dev, 0x0050, 0x0020);
b43_radio_write16(dev, 0x0050, 0x0023);
udelay(40);
if (phy->radio_rev < 6 || phy->radio_rev == 8) {
b43_radio_write16(dev, 0x7C, (b43_radio_read16(dev, 0x7C)
| 0x0002));
b43_radio_write16(dev, 0x50, 0x20);
}
if (phy->radio_rev <= 2) {
b43_radio_write16(dev, 0x7C, 0x20);
b43_radio_write16(dev, 0x5A, 0x70);
b43_radio_write16(dev, 0x5B, 0x7B);
b43_radio_write16(dev, 0x5C, 0xB0);
}
b43_radio_write16(dev, 0x007A,
(b43_radio_read16(dev, 0x007A) & 0x00F8) | 0x0007);
b43_gphy_channel_switch(dev, old_channel, 0);
b43_phy_write(dev, 0x0014, 0x0200);
if (phy->radio_rev >= 6)
b43_phy_write(dev, 0x2A, 0x88C2);
else
b43_phy_write(dev, 0x2A, 0x8AC0);
b43_phy_write(dev, 0x0038, 0x0668);
b43_set_txpower_g(dev, &gphy->bbatt, &gphy->rfatt, gphy->tx_control);
if (phy->radio_rev <= 5) {
b43_phy_write(dev, 0x5D, (b43_phy_read(dev, 0x5D)
& 0xFF80) | 0x0003);
}
if (phy->radio_rev <= 2)
b43_radio_write16(dev, 0x005D, 0x000D);
if (phy->analog == 4) {
b43_write16(dev, 0x3E4, 9);
b43_phy_write(dev, 0x61, b43_phy_read(dev, 0x61)
& 0x0FFF);
} else {
b43_phy_write(dev, 0x0002, (b43_phy_read(dev, 0x0002) & 0xFFC0)
| 0x0004);
}
if (phy->type == B43_PHYTYPE_B)
B43_WARN_ON(1);
else if (phy->type == B43_PHYTYPE_G)
b43_write16(dev, 0x03E6, 0x0);
}
static void b43_calc_loopback_gain(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 backup_phy[16] = { 0 };
u16 backup_radio[3];
u16 backup_bband;
u16 i, j, loop_i_max;
u16 trsw_rx;
u16 loop1_outer_done, loop1_inner_done;
backup_phy[0] = b43_phy_read(dev, B43_PHY_CRS0);
backup_phy[1] = b43_phy_read(dev, B43_PHY_CCKBBANDCFG);
backup_phy[2] = b43_phy_read(dev, B43_PHY_RFOVER);
backup_phy[3] = b43_phy_read(dev, B43_PHY_RFOVERVAL);
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
backup_phy[4] = b43_phy_read(dev, B43_PHY_ANALOGOVER);
backup_phy[5] = b43_phy_read(dev, B43_PHY_ANALOGOVERVAL);
}
backup_phy[6] = b43_phy_read(dev, B43_PHY_CCK(0x5A));
backup_phy[7] = b43_phy_read(dev, B43_PHY_CCK(0x59));
backup_phy[8] = b43_phy_read(dev, B43_PHY_CCK(0x58));
backup_phy[9] = b43_phy_read(dev, B43_PHY_CCK(0x0A));
backup_phy[10] = b43_phy_read(dev, B43_PHY_CCK(0x03));
backup_phy[11] = b43_phy_read(dev, B43_PHY_LO_MASK);
backup_phy[12] = b43_phy_read(dev, B43_PHY_LO_CTL);
backup_phy[13] = b43_phy_read(dev, B43_PHY_CCK(0x2B));
backup_phy[14] = b43_phy_read(dev, B43_PHY_PGACTL);
backup_phy[15] = b43_phy_read(dev, B43_PHY_LO_LEAKAGE);
backup_bband = gphy->bbatt.att;
backup_radio[0] = b43_radio_read16(dev, 0x52);
backup_radio[1] = b43_radio_read16(dev, 0x43);
backup_radio[2] = b43_radio_read16(dev, 0x7A);
b43_phy_write(dev, B43_PHY_CRS0,
b43_phy_read(dev, B43_PHY_CRS0) & 0x3FFF);
b43_phy_write(dev, B43_PHY_CCKBBANDCFG,
b43_phy_read(dev, B43_PHY_CCKBBANDCFG) | 0x8000);
b43_phy_write(dev, B43_PHY_RFOVER,
b43_phy_read(dev, B43_PHY_RFOVER) | 0x0002);
b43_phy_write(dev, B43_PHY_RFOVERVAL,
b43_phy_read(dev, B43_PHY_RFOVERVAL) & 0xFFFD);
b43_phy_write(dev, B43_PHY_RFOVER,
b43_phy_read(dev, B43_PHY_RFOVER) | 0x0001);
b43_phy_write(dev, B43_PHY_RFOVERVAL,
b43_phy_read(dev, B43_PHY_RFOVERVAL) & 0xFFFE);
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_write(dev, B43_PHY_ANALOGOVER,
b43_phy_read(dev, B43_PHY_ANALOGOVER) | 0x0001);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL,
b43_phy_read(dev,
B43_PHY_ANALOGOVERVAL) & 0xFFFE);
b43_phy_write(dev, B43_PHY_ANALOGOVER,
b43_phy_read(dev, B43_PHY_ANALOGOVER) | 0x0002);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL,
b43_phy_read(dev,
B43_PHY_ANALOGOVERVAL) & 0xFFFD);
}
b43_phy_write(dev, B43_PHY_RFOVER,
b43_phy_read(dev, B43_PHY_RFOVER) | 0x000C);
b43_phy_write(dev, B43_PHY_RFOVERVAL,
b43_phy_read(dev, B43_PHY_RFOVERVAL) | 0x000C);
b43_phy_write(dev, B43_PHY_RFOVER,
b43_phy_read(dev, B43_PHY_RFOVER) | 0x0030);
b43_phy_write(dev, B43_PHY_RFOVERVAL,
(b43_phy_read(dev, B43_PHY_RFOVERVAL)
& 0xFFCF) | 0x10);
b43_phy_write(dev, B43_PHY_CCK(0x5A), 0x0780);
b43_phy_write(dev, B43_PHY_CCK(0x59), 0xC810);
b43_phy_write(dev, B43_PHY_CCK(0x58), 0x000D);
b43_phy_write(dev, B43_PHY_CCK(0x0A),
b43_phy_read(dev, B43_PHY_CCK(0x0A)) | 0x2000);
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_write(dev, B43_PHY_ANALOGOVER,
b43_phy_read(dev, B43_PHY_ANALOGOVER) | 0x0004);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL,
b43_phy_read(dev,
B43_PHY_ANALOGOVERVAL) & 0xFFFB);
}
b43_phy_write(dev, B43_PHY_CCK(0x03),
(b43_phy_read(dev, B43_PHY_CCK(0x03))
& 0xFF9F) | 0x40);
if (phy->radio_rev == 8) {
b43_radio_write16(dev, 0x43, 0x000F);
} else {
b43_radio_write16(dev, 0x52, 0);
b43_radio_write16(dev, 0x43, (b43_radio_read16(dev, 0x43)
& 0xFFF0) | 0x9);
}
b43_gphy_set_baseband_attenuation(dev, 11);
if (phy->rev >= 3)
b43_phy_write(dev, B43_PHY_LO_MASK, 0xC020);
else
b43_phy_write(dev, B43_PHY_LO_MASK, 0x8020);
b43_phy_write(dev, B43_PHY_LO_CTL, 0);
b43_phy_write(dev, B43_PHY_CCK(0x2B),
(b43_phy_read(dev, B43_PHY_CCK(0x2B))
& 0xFFC0) | 0x01);
b43_phy_write(dev, B43_PHY_CCK(0x2B),
(b43_phy_read(dev, B43_PHY_CCK(0x2B))
& 0xC0FF) | 0x800);
b43_phy_write(dev, B43_PHY_RFOVER,
b43_phy_read(dev, B43_PHY_RFOVER) | 0x0100);
b43_phy_write(dev, B43_PHY_RFOVERVAL,
b43_phy_read(dev, B43_PHY_RFOVERVAL) & 0xCFFF);
if (dev->dev->bus->sprom.boardflags_lo & B43_BFL_EXTLNA) {
if (phy->rev >= 7) {
b43_phy_write(dev, B43_PHY_RFOVER,
b43_phy_read(dev, B43_PHY_RFOVER)
| 0x0800);
b43_phy_write(dev, B43_PHY_RFOVERVAL,
b43_phy_read(dev, B43_PHY_RFOVERVAL)
| 0x8000);
}
}
b43_radio_write16(dev, 0x7A, b43_radio_read16(dev, 0x7A)
& 0x00F7);
j = 0;
loop_i_max = (phy->radio_rev == 8) ? 15 : 9;
for (i = 0; i < loop_i_max; i++) {
for (j = 0; j < 16; j++) {
b43_radio_write16(dev, 0x43, i);
b43_phy_write(dev, B43_PHY_RFOVERVAL,
(b43_phy_read(dev, B43_PHY_RFOVERVAL)
& 0xF0FF) | (j << 8));
b43_phy_write(dev, B43_PHY_PGACTL,
(b43_phy_read(dev, B43_PHY_PGACTL)
& 0x0FFF) | 0xA000);
b43_phy_write(dev, B43_PHY_PGACTL,
b43_phy_read(dev, B43_PHY_PGACTL)
| 0xF000);
udelay(20);
if (b43_phy_read(dev, B43_PHY_LO_LEAKAGE) >= 0xDFC)
goto exit_loop1;
}
}
exit_loop1:
loop1_outer_done = i;
loop1_inner_done = j;
if (j >= 8) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
b43_phy_read(dev, B43_PHY_RFOVERVAL)
| 0x30);
trsw_rx = 0x1B;
for (j = j - 8; j < 16; j++) {
b43_phy_write(dev, B43_PHY_RFOVERVAL,
(b43_phy_read(dev, B43_PHY_RFOVERVAL)
& 0xF0FF) | (j << 8));
b43_phy_write(dev, B43_PHY_PGACTL,
(b43_phy_read(dev, B43_PHY_PGACTL)
& 0x0FFF) | 0xA000);
b43_phy_write(dev, B43_PHY_PGACTL,
b43_phy_read(dev, B43_PHY_PGACTL)
| 0xF000);
udelay(20);
trsw_rx -= 3;
if (b43_phy_read(dev, B43_PHY_LO_LEAKAGE) >= 0xDFC)
goto exit_loop2;
}
} else
trsw_rx = 0x18;
exit_loop2:
if (phy->rev != 1) { /* Not in specs, but needed to prevent PPC machine check */
b43_phy_write(dev, B43_PHY_ANALOGOVER, backup_phy[4]);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL, backup_phy[5]);
}
b43_phy_write(dev, B43_PHY_CCK(0x5A), backup_phy[6]);
b43_phy_write(dev, B43_PHY_CCK(0x59), backup_phy[7]);
b43_phy_write(dev, B43_PHY_CCK(0x58), backup_phy[8]);
b43_phy_write(dev, B43_PHY_CCK(0x0A), backup_phy[9]);
b43_phy_write(dev, B43_PHY_CCK(0x03), backup_phy[10]);
b43_phy_write(dev, B43_PHY_LO_MASK, backup_phy[11]);
b43_phy_write(dev, B43_PHY_LO_CTL, backup_phy[12]);
b43_phy_write(dev, B43_PHY_CCK(0x2B), backup_phy[13]);
b43_phy_write(dev, B43_PHY_PGACTL, backup_phy[14]);
b43_gphy_set_baseband_attenuation(dev, backup_bband);
b43_radio_write16(dev, 0x52, backup_radio[0]);
b43_radio_write16(dev, 0x43, backup_radio[1]);
b43_radio_write16(dev, 0x7A, backup_radio[2]);
b43_phy_write(dev, B43_PHY_RFOVER, backup_phy[2] | 0x0003);
udelay(10);
b43_phy_write(dev, B43_PHY_RFOVER, backup_phy[2]);
b43_phy_write(dev, B43_PHY_RFOVERVAL, backup_phy[3]);
b43_phy_write(dev, B43_PHY_CRS0, backup_phy[0]);
b43_phy_write(dev, B43_PHY_CCKBBANDCFG, backup_phy[1]);
gphy->max_lb_gain =
((loop1_inner_done * 6) - (loop1_outer_done * 4)) - 11;
gphy->trsw_rx_gain = trsw_rx * 2;
}
static void b43_hardware_pctl_early_init(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
if (!b43_has_hardware_pctl(dev)) {
b43_phy_write(dev, 0x047A, 0xC111);
return;
}
b43_phy_write(dev, 0x0036, b43_phy_read(dev, 0x0036) & 0xFEFF);
b43_phy_write(dev, 0x002F, 0x0202);
b43_phy_write(dev, 0x047C, b43_phy_read(dev, 0x047C) | 0x0002);
b43_phy_write(dev, 0x047A, b43_phy_read(dev, 0x047A) | 0xF000);
if (phy->radio_ver == 0x2050 && phy->radio_rev == 8) {
b43_phy_write(dev, 0x047A, (b43_phy_read(dev, 0x047A)
& 0xFF0F) | 0x0010);
b43_phy_write(dev, 0x005D, b43_phy_read(dev, 0x005D)
| 0x8000);
b43_phy_write(dev, 0x004E, (b43_phy_read(dev, 0x004E)
& 0xFFC0) | 0x0010);
b43_phy_write(dev, 0x002E, 0xC07F);
b43_phy_write(dev, 0x0036, b43_phy_read(dev, 0x0036)
| 0x0400);
} else {
b43_phy_write(dev, 0x0036, b43_phy_read(dev, 0x0036)
| 0x0200);
b43_phy_write(dev, 0x0036, b43_phy_read(dev, 0x0036)
| 0x0400);
b43_phy_write(dev, 0x005D, b43_phy_read(dev, 0x005D)
& 0x7FFF);
b43_phy_write(dev, 0x004F, b43_phy_read(dev, 0x004F)
& 0xFFFE);
b43_phy_write(dev, 0x004E, (b43_phy_read(dev, 0x004E)
& 0xFFC0) | 0x0010);
b43_phy_write(dev, 0x002E, 0xC07F);
b43_phy_write(dev, 0x047A, (b43_phy_read(dev, 0x047A)
& 0xFF0F) | 0x0010);
}
}
/* Hardware power control for G-PHY */
static void b43_hardware_pctl_init_gphy(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
if (!b43_has_hardware_pctl(dev)) {
/* No hardware power control */
b43_hf_write(dev, b43_hf_read(dev) & ~B43_HF_HWPCTL);
return;
}
b43_phy_write(dev, 0x0036, (b43_phy_read(dev, 0x0036) & 0xFFC0)
| (gphy->tgt_idle_tssi - gphy->cur_idle_tssi));
b43_phy_write(dev, 0x0478, (b43_phy_read(dev, 0x0478) & 0xFF00)
| (gphy->tgt_idle_tssi - gphy->cur_idle_tssi));
b43_gphy_tssi_power_lt_init(dev);
b43_gphy_gain_lt_init(dev);
b43_phy_write(dev, 0x0060, b43_phy_read(dev, 0x0060) & 0xFFBF);
b43_phy_write(dev, 0x0014, 0x0000);
B43_WARN_ON(phy->rev < 6);
b43_phy_write(dev, 0x0478, b43_phy_read(dev, 0x0478)
| 0x0800);
b43_phy_write(dev, 0x0478, b43_phy_read(dev, 0x0478)
& 0xFEFF);
b43_phy_write(dev, 0x0801, b43_phy_read(dev, 0x0801)
& 0xFFBF);
b43_gphy_dc_lt_init(dev, 1);
/* Enable hardware pctl in firmware. */
b43_hf_write(dev, b43_hf_read(dev) | B43_HF_HWPCTL);
}
/* Intialize B/G PHY power control */
static void b43_phy_init_pctl(struct b43_wldev *dev)
{
struct ssb_bus *bus = dev->dev->bus;
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_rfatt old_rfatt;
struct b43_bbatt old_bbatt;
u8 old_tx_control = 0;
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
if ((bus->boardinfo.vendor == SSB_BOARDVENDOR_BCM) &&
(bus->boardinfo.type == SSB_BOARD_BU4306))
return;
b43_phy_write(dev, 0x0028, 0x8018);
/* This does something with the Analog... */
b43_write16(dev, B43_MMIO_PHY0, b43_read16(dev, B43_MMIO_PHY0)
& 0xFFDF);
if (!phy->gmode)
return;
b43_hardware_pctl_early_init(dev);
if (gphy->cur_idle_tssi == 0) {
if (phy->radio_ver == 0x2050 && phy->analog == 0) {
b43_radio_write16(dev, 0x0076,
(b43_radio_read16(dev, 0x0076)
& 0x00F7) | 0x0084);
} else {
struct b43_rfatt rfatt;
struct b43_bbatt bbatt;
memcpy(&old_rfatt, &gphy->rfatt, sizeof(old_rfatt));
memcpy(&old_bbatt, &gphy->bbatt, sizeof(old_bbatt));
old_tx_control = gphy->tx_control;
bbatt.att = 11;
if (phy->radio_rev == 8) {
rfatt.att = 15;
rfatt.with_padmix = 1;
} else {
rfatt.att = 9;
rfatt.with_padmix = 0;
}
b43_set_txpower_g(dev, &bbatt, &rfatt, 0);
}
b43_dummy_transmission(dev);
gphy->cur_idle_tssi = b43_phy_read(dev, B43_PHY_ITSSI);
if (B43_DEBUG) {
/* Current-Idle-TSSI sanity check. */
if (abs(gphy->cur_idle_tssi - gphy->tgt_idle_tssi) >= 20) {
b43dbg(dev->wl,
"!WARNING! Idle-TSSI phy->cur_idle_tssi "
"measuring failed. (cur=%d, tgt=%d). Disabling TX power "
"adjustment.\n", gphy->cur_idle_tssi,
gphy->tgt_idle_tssi);
gphy->cur_idle_tssi = 0;
}
}
if (phy->radio_ver == 0x2050 && phy->analog == 0) {
b43_radio_write16(dev, 0x0076,
b43_radio_read16(dev, 0x0076)
& 0xFF7B);
} else {
b43_set_txpower_g(dev, &old_bbatt,
&old_rfatt, old_tx_control);
}
}
b43_hardware_pctl_init_gphy(dev);
b43_shm_clear_tssi(dev);
}
static void b43_phy_initg(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 tmp;
if (phy->rev == 1)
b43_phy_initb5(dev);
else
b43_phy_initb6(dev);
if (phy->rev >= 2 || phy->gmode)
b43_phy_inita(dev);
if (phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_ANALOGOVER, 0);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL, 0);
}
if (phy->rev == 2) {
b43_phy_write(dev, B43_PHY_RFOVER, 0);
b43_phy_write(dev, B43_PHY_PGACTL, 0xC0);
}
if (phy->rev > 5) {
b43_phy_write(dev, B43_PHY_RFOVER, 0x400);
b43_phy_write(dev, B43_PHY_PGACTL, 0xC0);
}
if (phy->gmode || phy->rev >= 2) {
tmp = b43_phy_read(dev, B43_PHY_VERSION_OFDM);
tmp &= B43_PHYVER_VERSION;
if (tmp == 3 || tmp == 5) {
b43_phy_write(dev, B43_PHY_OFDM(0xC2), 0x1816);
b43_phy_write(dev, B43_PHY_OFDM(0xC3), 0x8006);
}
if (tmp == 5) {
b43_phy_write(dev, B43_PHY_OFDM(0xCC),
(b43_phy_read(dev, B43_PHY_OFDM(0xCC))
& 0x00FF) | 0x1F00);
}
}
if ((phy->rev <= 2 && phy->gmode) || phy->rev >= 2)
b43_phy_write(dev, B43_PHY_OFDM(0x7E), 0x78);
if (phy->radio_rev == 8) {
b43_phy_write(dev, B43_PHY_EXTG(0x01),
b43_phy_read(dev, B43_PHY_EXTG(0x01))
| 0x80);
b43_phy_write(dev, B43_PHY_OFDM(0x3E),
b43_phy_read(dev, B43_PHY_OFDM(0x3E))
| 0x4);
}
if (has_loopback_gain(phy))
b43_calc_loopback_gain(dev);
if (phy->radio_rev != 8) {
if (gphy->initval == 0xFFFF)
gphy->initval = b43_radio_init2050(dev);
else
b43_radio_write16(dev, 0x0078, gphy->initval);
}
b43_lo_g_init(dev);
if (has_tx_magnification(phy)) {
b43_radio_write16(dev, 0x52,
(b43_radio_read16(dev, 0x52) & 0xFF00)
| gphy->lo_control->tx_bias | gphy->
lo_control->tx_magn);
} else {
b43_radio_write16(dev, 0x52,
(b43_radio_read16(dev, 0x52) & 0xFFF0)
| gphy->lo_control->tx_bias);
}
if (phy->rev >= 6) {
b43_phy_write(dev, B43_PHY_CCK(0x36),
(b43_phy_read(dev, B43_PHY_CCK(0x36))
& 0x0FFF) | (gphy->lo_control->
tx_bias << 12));
}
if (dev->dev->bus->sprom.boardflags_lo & B43_BFL_PACTRL)
b43_phy_write(dev, B43_PHY_CCK(0x2E), 0x8075);
else
b43_phy_write(dev, B43_PHY_CCK(0x2E), 0x807F);
if (phy->rev < 2)
b43_phy_write(dev, B43_PHY_CCK(0x2F), 0x101);
else
b43_phy_write(dev, B43_PHY_CCK(0x2F), 0x202);
if (phy->gmode || phy->rev >= 2) {
b43_lo_g_adjust(dev);
b43_phy_write(dev, B43_PHY_LO_MASK, 0x8078);
}
if (!(dev->dev->bus->sprom.boardflags_lo & B43_BFL_RSSI)) {
/* The specs state to update the NRSSI LT with
* the value 0x7FFFFFFF here. I think that is some weird
* compiler optimization in the original driver.
* Essentially, what we do here is resetting all NRSSI LT
* entries to -32 (see the clamp_val() in nrssi_hw_update())
*/
b43_nrssi_hw_update(dev, 0xFFFF); //FIXME?
b43_calc_nrssi_threshold(dev);
} else if (phy->gmode || phy->rev >= 2) {
if (gphy->nrssi[0] == -1000) {
B43_WARN_ON(gphy->nrssi[1] != -1000);
b43_calc_nrssi_slope(dev);
} else
b43_calc_nrssi_threshold(dev);
}
if (phy->radio_rev == 8)
b43_phy_write(dev, B43_PHY_EXTG(0x05), 0x3230);
b43_phy_init_pctl(dev);
/* FIXME: The spec says in the following if, the 0 should be replaced
'if OFDM may not be used in the current locale'
but OFDM is legal everywhere */
if ((dev->dev->bus->chip_id == 0x4306
&& dev->dev->bus->chip_package == 2) || 0) {
b43_phy_write(dev, B43_PHY_CRS0, b43_phy_read(dev, B43_PHY_CRS0)
& 0xBFFF);
b43_phy_write(dev, B43_PHY_OFDM(0xC3),
b43_phy_read(dev, B43_PHY_OFDM(0xC3))
& 0x7FFF);
}
}
void b43_gphy_channel_switch(struct b43_wldev *dev,
unsigned int channel,
bool synthetic_pu_workaround)
{
if (synthetic_pu_workaround)
b43_synth_pu_workaround(dev, channel);
b43_write16(dev, B43_MMIO_CHANNEL, channel2freq_bg(channel));
if (channel == 14) {
if (dev->dev->bus->sprom.country_code ==
SSB_SPROM1CCODE_JAPAN)
b43_hf_write(dev,
b43_hf_read(dev) & ~B43_HF_ACPR);
else
b43_hf_write(dev,
b43_hf_read(dev) | B43_HF_ACPR);
b43_write16(dev, B43_MMIO_CHANNEL_EXT,
b43_read16(dev, B43_MMIO_CHANNEL_EXT)
| (1 << 11));
} else {
b43_write16(dev, B43_MMIO_CHANNEL_EXT,
b43_read16(dev, B43_MMIO_CHANNEL_EXT)
& 0xF7BF);
}
}
static void default_baseband_attenuation(struct b43_wldev *dev,
struct b43_bbatt *bb)
{
struct b43_phy *phy = &dev->phy;
if (phy->radio_ver == 0x2050 && phy->radio_rev < 6)
bb->att = 0;
else
bb->att = 2;
}
static void default_radio_attenuation(struct b43_wldev *dev,
struct b43_rfatt *rf)
{
struct ssb_bus *bus = dev->dev->bus;
struct b43_phy *phy = &dev->phy;
rf->with_padmix = 0;
if (bus->boardinfo.vendor == SSB_BOARDVENDOR_BCM &&
bus->boardinfo.type == SSB_BOARD_BCM4309G) {
if (bus->boardinfo.rev < 0x43) {
rf->att = 2;
return;
} else if (bus->boardinfo.rev < 0x51) {
rf->att = 3;
return;
}
}
if (phy->type == B43_PHYTYPE_A) {
rf->att = 0x60;
return;
}
switch (phy->radio_ver) {
case 0x2053:
switch (phy->radio_rev) {
case 1:
rf->att = 6;
return;
}
break;
case 0x2050:
switch (phy->radio_rev) {
case 0:
rf->att = 5;
return;
case 1:
if (phy->type == B43_PHYTYPE_G) {
if (bus->boardinfo.vendor == SSB_BOARDVENDOR_BCM
&& bus->boardinfo.type == SSB_BOARD_BCM4309G
&& bus->boardinfo.rev >= 30)
rf->att = 3;
else if (bus->boardinfo.vendor ==
SSB_BOARDVENDOR_BCM
&& bus->boardinfo.type ==
SSB_BOARD_BU4306)
rf->att = 3;
else
rf->att = 1;
} else {
if (bus->boardinfo.vendor == SSB_BOARDVENDOR_BCM
&& bus->boardinfo.type == SSB_BOARD_BCM4309G
&& bus->boardinfo.rev >= 30)
rf->att = 7;
else
rf->att = 6;
}
return;
case 2:
if (phy->type == B43_PHYTYPE_G) {
if (bus->boardinfo.vendor == SSB_BOARDVENDOR_BCM
&& bus->boardinfo.type == SSB_BOARD_BCM4309G
&& bus->boardinfo.rev >= 30)
rf->att = 3;
else if (bus->boardinfo.vendor ==
SSB_BOARDVENDOR_BCM
&& bus->boardinfo.type ==
SSB_BOARD_BU4306)
rf->att = 5;
else if (bus->chip_id == 0x4320)
rf->att = 4;
else
rf->att = 3;
} else
rf->att = 6;
return;
case 3:
rf->att = 5;
return;
case 4:
case 5:
rf->att = 1;
return;
case 6:
case 7:
rf->att = 5;
return;
case 8:
rf->att = 0xA;
rf->with_padmix = 1;
return;
case 9:
default:
rf->att = 5;
return;
}
}
rf->att = 5;
}
static u16 default_tx_control(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
if (phy->radio_ver != 0x2050)
return 0;
if (phy->radio_rev == 1)
return B43_TXCTL_PA2DB | B43_TXCTL_TXMIX;
if (phy->radio_rev < 6)
return B43_TXCTL_PA2DB;
if (phy->radio_rev == 8)
return B43_TXCTL_TXMIX;
return 0;
}
static u8 b43_gphy_aci_detect(struct b43_wldev *dev, u8 channel)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u8 ret = 0;
u16 saved, rssi, temp;
int i, j = 0;
saved = b43_phy_read(dev, 0x0403);
b43_switch_channel(dev, channel);
b43_phy_write(dev, 0x0403, (saved & 0xFFF8) | 5);
if (gphy->aci_hw_rssi)
rssi = b43_phy_read(dev, 0x048A) & 0x3F;
else
rssi = saved & 0x3F;
/* clamp temp to signed 5bit */
if (rssi > 32)
rssi -= 64;
for (i = 0; i < 100; i++) {
temp = (b43_phy_read(dev, 0x047F) >> 8) & 0x3F;
if (temp > 32)
temp -= 64;
if (temp < rssi)
j++;
if (j >= 20)
ret = 1;
}
b43_phy_write(dev, 0x0403, saved);
return ret;
}
static u8 b43_gphy_aci_scan(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
u8 ret[13];
unsigned int channel = phy->channel;
unsigned int i, j, start, end;
if (!((phy->type == B43_PHYTYPE_G) && (phy->rev > 0)))
return 0;
b43_phy_lock(dev);
b43_radio_lock(dev);
b43_phy_write(dev, 0x0802, b43_phy_read(dev, 0x0802) & 0xFFFC);
b43_phy_write(dev, B43_PHY_G_CRS,
b43_phy_read(dev, B43_PHY_G_CRS) & 0x7FFF);
b43_set_all_gains(dev, 3, 8, 1);
start = (channel - 5 > 0) ? channel - 5 : 1;
end = (channel + 5 < 14) ? channel + 5 : 13;
for (i = start; i <= end; i++) {
if (abs(channel - i) > 2)
ret[i - 1] = b43_gphy_aci_detect(dev, i);
}
b43_switch_channel(dev, channel);
b43_phy_write(dev, 0x0802,
(b43_phy_read(dev, 0x0802) & 0xFFFC) | 0x0003);
b43_phy_write(dev, 0x0403, b43_phy_read(dev, 0x0403) & 0xFFF8);
b43_phy_write(dev, B43_PHY_G_CRS,
b43_phy_read(dev, B43_PHY_G_CRS) | 0x8000);
b43_set_original_gains(dev);
for (i = 0; i < 13; i++) {
if (!ret[i])
continue;
end = (i + 5 < 13) ? i + 5 : 13;
for (j = i; j < end; j++)
ret[j] = 1;
}
b43_radio_unlock(dev);
b43_phy_unlock(dev);
return ret[channel - 1];
}
static s32 b43_tssi2dbm_ad(s32 num, s32 den)
{
if (num < 0)
return num / den;
else
return (num + den / 2) / den;
}
static s8 b43_tssi2dbm_entry(s8 entry[], u8 index,
s16 pab0, s16 pab1, s16 pab2)
{
s32 m1, m2, f = 256, q, delta;
s8 i = 0;
m1 = b43_tssi2dbm_ad(16 * pab0 + index * pab1, 32);
m2 = max(b43_tssi2dbm_ad(32768 + index * pab2, 256), 1);
do {
if (i > 15)
return -EINVAL;
q = b43_tssi2dbm_ad(f * 4096 -
b43_tssi2dbm_ad(m2 * f, 16) * f, 2048);
delta = abs(q - f);
f = q;
i++;
} while (delta >= 2);
entry[index] = clamp_val(b43_tssi2dbm_ad(m1 * f, 8192), -127, 128);
return 0;
}
u8 * b43_generate_dyn_tssi2dbm_tab(struct b43_wldev *dev,
s16 pab0, s16 pab1, s16 pab2)
{
unsigned int i;
u8 *tab;
int err;
tab = kmalloc(64, GFP_KERNEL);
if (!tab) {
b43err(dev->wl, "Could not allocate memory "
"for tssi2dbm table\n");
return NULL;
}
for (i = 0; i < 64; i++) {
err = b43_tssi2dbm_entry(tab, i, pab0, pab1, pab2);
if (err) {
b43err(dev->wl, "Could not generate "
"tssi2dBm table\n");
kfree(tab);
return NULL;
}
}
return tab;
}
/* Initialise the TSSI->dBm lookup table */
static int b43_gphy_init_tssi2dbm_table(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
s16 pab0, pab1, pab2;
pab0 = (s16) (dev->dev->bus->sprom.pa0b0);
pab1 = (s16) (dev->dev->bus->sprom.pa0b1);
pab2 = (s16) (dev->dev->bus->sprom.pa0b2);
B43_WARN_ON((dev->dev->bus->chip_id == 0x4301) &&
(phy->radio_ver != 0x2050)); /* Not supported anymore */
gphy->dyn_tssi_tbl = 0;
if (pab0 != 0 && pab1 != 0 && pab2 != 0 &&
pab0 != -1 && pab1 != -1 && pab2 != -1) {
/* The pabX values are set in SPROM. Use them. */
if ((s8) dev->dev->bus->sprom.itssi_bg != 0 &&
(s8) dev->dev->bus->sprom.itssi_bg != -1) {
gphy->tgt_idle_tssi =
(s8) (dev->dev->bus->sprom.itssi_bg);
} else
gphy->tgt_idle_tssi = 62;
gphy->tssi2dbm = b43_generate_dyn_tssi2dbm_tab(dev, pab0,
pab1, pab2);
if (!gphy->tssi2dbm)
return -ENOMEM;
gphy->dyn_tssi_tbl = 1;
} else {
/* pabX values not set in SPROM. */
gphy->tgt_idle_tssi = 52;
gphy->tssi2dbm = b43_tssi2dbm_g_table;
}
return 0;
}
static int b43_gphy_op_allocate(struct b43_wldev *dev)
{
struct b43_phy_g *gphy;
struct b43_txpower_lo_control *lo;
int err, i;
gphy = kzalloc(sizeof(*gphy), GFP_KERNEL);
if (!gphy) {
err = -ENOMEM;
goto error;
}
dev->phy.g = gphy;
memset(gphy->minlowsig, 0xFF, sizeof(gphy->minlowsig));
/* NRSSI */
for (i = 0; i < ARRAY_SIZE(gphy->nrssi); i++)
gphy->nrssi[i] = -1000;
for (i = 0; i < ARRAY_SIZE(gphy->nrssi_lt); i++)
gphy->nrssi_lt[i] = i;
gphy->lofcal = 0xFFFF;
gphy->initval = 0xFFFF;
gphy->interfmode = B43_INTERFMODE_NONE;
/* OFDM-table address caching. */
gphy->ofdmtab_addr_direction = B43_OFDMTAB_DIRECTION_UNKNOWN;
lo = kzalloc(sizeof(*lo), GFP_KERNEL);
if (!lo) {
err = -ENOMEM;
goto err_free_gphy;
}
gphy->lo_control = lo;
lo->tx_bias = 0xFF;
INIT_LIST_HEAD(&lo->calib_list);
err = b43_gphy_init_tssi2dbm_table(dev);
if (err)
goto err_free_lo;
return 0;
err_free_lo:
kfree(lo);
err_free_gphy:
kfree(gphy);
error:
return err;
}
static int b43_gphy_op_prepare(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
default_baseband_attenuation(dev, &gphy->bbatt);
default_radio_attenuation(dev, &gphy->rfatt);
gphy->tx_control = (default_tx_control(dev) << 4);
generate_rfatt_list(dev, &lo->rfatt_list);
generate_bbatt_list(dev, &lo->bbatt_list);
/* Commit previous writes */
b43_read32(dev, B43_MMIO_MACCTL);
if (phy->rev == 1) {
/* Workaround: Temporarly disable gmode through the early init
* phase, as the gmode stuff is not needed for phy rev 1 */
phy->gmode = 0;
b43_wireless_core_reset(dev, 0);
b43_phy_initg(dev);
phy->gmode = 1;
b43_wireless_core_reset(dev, B43_TMSLOW_GMODE);
}
return 0;
}
static int b43_gphy_op_init(struct b43_wldev *dev)
{
struct b43_phy_g *gphy = dev->phy.g;
b43_phy_initg(dev);
gphy->initialised = 1;
return 0;
}
static void b43_gphy_op_exit(struct b43_wldev *dev)
{
struct b43_phy_g *gphy = dev->phy.g;
if (gphy->initialised) {
//TODO
gphy->initialised = 0;
}
b43_lo_g_cleanup(dev);
kfree(gphy->lo_control);
if (gphy->dyn_tssi_tbl)
kfree(gphy->tssi2dbm);
kfree(gphy);
dev->phy.g = NULL;
}
static u16 b43_gphy_op_read(struct b43_wldev *dev, u16 reg)
{
b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
return b43_read16(dev, B43_MMIO_PHY_DATA);
}
static void b43_gphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
{
b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
b43_write16(dev, B43_MMIO_PHY_DATA, value);
}
static u16 b43_gphy_op_radio_read(struct b43_wldev *dev, u16 reg)
{
/* Register 1 is a 32-bit register. */
B43_WARN_ON(reg == 1);
/* G-PHY needs 0x80 for read access. */
reg |= 0x80;
b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
}
static void b43_gphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
{
/* Register 1 is a 32-bit register. */
B43_WARN_ON(reg == 1);
b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
}
static bool b43_gphy_op_supports_hwpctl(struct b43_wldev *dev)
{
return (dev->phy.rev >= 6);
}
static void b43_gphy_op_software_rfkill(struct b43_wldev *dev,
enum rfkill_state state)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
unsigned int channel;
might_sleep();
if (state == RFKILL_STATE_UNBLOCKED) {
/* Turn radio ON */
if (phy->radio_on)
return;
b43_phy_write(dev, 0x0015, 0x8000);
b43_phy_write(dev, 0x0015, 0xCC00);
b43_phy_write(dev, 0x0015, (phy->gmode ? 0x00C0 : 0x0000));
if (gphy->radio_off_context.valid) {
/* Restore the RFover values. */
b43_phy_write(dev, B43_PHY_RFOVER,
gphy->radio_off_context.rfover);
b43_phy_write(dev, B43_PHY_RFOVERVAL,
gphy->radio_off_context.rfoverval);
gphy->radio_off_context.valid = 0;
}
channel = phy->channel;
b43_gphy_channel_switch(dev, 6, 1);
b43_gphy_channel_switch(dev, channel, 0);
} else {
/* Turn radio OFF */
u16 rfover, rfoverval;
rfover = b43_phy_read(dev, B43_PHY_RFOVER);
rfoverval = b43_phy_read(dev, B43_PHY_RFOVERVAL);
gphy->radio_off_context.rfover = rfover;
gphy->radio_off_context.rfoverval = rfoverval;
gphy->radio_off_context.valid = 1;
b43_phy_write(dev, B43_PHY_RFOVER, rfover | 0x008C);
b43_phy_write(dev, B43_PHY_RFOVERVAL, rfoverval & 0xFF73);
}
}
static int b43_gphy_op_switch_channel(struct b43_wldev *dev,
unsigned int new_channel)
{
if ((new_channel < 1) || (new_channel > 14))
return -EINVAL;
b43_gphy_channel_switch(dev, new_channel, 0);
return 0;
}
static unsigned int b43_gphy_op_get_default_chan(struct b43_wldev *dev)
{
return 1; /* Default to channel 1 */
}
static void b43_gphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
{
struct b43_phy *phy = &dev->phy;
u64 hf;
u16 tmp;
int autodiv = 0;
if (antenna == B43_ANTENNA_AUTO0 || antenna == B43_ANTENNA_AUTO1)
autodiv = 1;
hf = b43_hf_read(dev);
hf &= ~B43_HF_ANTDIVHELP;
b43_hf_write(dev, hf);
tmp = b43_phy_read(dev, B43_PHY_BBANDCFG);
tmp &= ~B43_PHY_BBANDCFG_RXANT;
tmp |= (autodiv ? B43_ANTENNA_AUTO0 : antenna)
<< B43_PHY_BBANDCFG_RXANT_SHIFT;
b43_phy_write(dev, B43_PHY_BBANDCFG, tmp);
if (autodiv) {
tmp = b43_phy_read(dev, B43_PHY_ANTDWELL);
if (antenna == B43_ANTENNA_AUTO0)
tmp &= ~B43_PHY_ANTDWELL_AUTODIV1;
else
tmp |= B43_PHY_ANTDWELL_AUTODIV1;
b43_phy_write(dev, B43_PHY_ANTDWELL, tmp);
}
tmp = b43_phy_read(dev, B43_PHY_ANTWRSETT);
if (autodiv)
tmp |= B43_PHY_ANTWRSETT_ARXDIV;
else
tmp &= ~B43_PHY_ANTWRSETT_ARXDIV;
b43_phy_write(dev, B43_PHY_ANTWRSETT, tmp);
if (phy->rev >= 2) {
tmp = b43_phy_read(dev, B43_PHY_OFDM61);
tmp |= B43_PHY_OFDM61_10;
b43_phy_write(dev, B43_PHY_OFDM61, tmp);
tmp =
b43_phy_read(dev, B43_PHY_DIVSRCHGAINBACK);
tmp = (tmp & 0xFF00) | 0x15;
b43_phy_write(dev, B43_PHY_DIVSRCHGAINBACK,
tmp);
if (phy->rev == 2) {
b43_phy_write(dev, B43_PHY_ADIVRELATED,
8);
} else {
tmp =
b43_phy_read(dev,
B43_PHY_ADIVRELATED);
tmp = (tmp & 0xFF00) | 8;
b43_phy_write(dev, B43_PHY_ADIVRELATED,
tmp);
}
}
if (phy->rev >= 6)
b43_phy_write(dev, B43_PHY_OFDM9B, 0xDC);
hf |= B43_HF_ANTDIVHELP;
b43_hf_write(dev, hf);
}
static int b43_gphy_op_interf_mitigation(struct b43_wldev *dev,
enum b43_interference_mitigation mode)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
int currentmode;
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
if ((phy->rev == 0) || (!phy->gmode))
return -ENODEV;
gphy->aci_wlan_automatic = 0;
switch (mode) {
case B43_INTERFMODE_AUTOWLAN:
gphy->aci_wlan_automatic = 1;
if (gphy->aci_enable)
mode = B43_INTERFMODE_MANUALWLAN;
else
mode = B43_INTERFMODE_NONE;
break;
case B43_INTERFMODE_NONE:
case B43_INTERFMODE_NONWLAN:
case B43_INTERFMODE_MANUALWLAN:
break;
default:
return -EINVAL;
}
currentmode = gphy->interfmode;
if (currentmode == mode)
return 0;
if (currentmode != B43_INTERFMODE_NONE)
b43_radio_interference_mitigation_disable(dev, currentmode);
if (mode == B43_INTERFMODE_NONE) {
gphy->aci_enable = 0;
gphy->aci_hw_rssi = 0;
} else
b43_radio_interference_mitigation_enable(dev, mode);
gphy->interfmode = mode;
return 0;
}
/* http://bcm-specs.sipsolutions.net/EstimatePowerOut
* This function converts a TSSI value to dBm in Q5.2
*/
static s8 b43_gphy_estimate_power_out(struct b43_wldev *dev, s8 tssi)
{
struct b43_phy_g *gphy = dev->phy.g;
s8 dbm;
s32 tmp;
tmp = (gphy->tgt_idle_tssi - gphy->cur_idle_tssi + tssi);
tmp = clamp_val(tmp, 0x00, 0x3F);
dbm = gphy->tssi2dbm[tmp];
return dbm;
}
static void b43_put_attenuation_into_ranges(struct b43_wldev *dev,
int *_bbatt, int *_rfatt)
{
int rfatt = *_rfatt;
int bbatt = *_bbatt;
struct b43_txpower_lo_control *lo = dev->phy.g->lo_control;
/* Get baseband and radio attenuation values into their permitted ranges.
* Radio attenuation affects power level 4 times as much as baseband. */
/* Range constants */
const int rf_min = lo->rfatt_list.min_val;
const int rf_max = lo->rfatt_list.max_val;
const int bb_min = lo->bbatt_list.min_val;
const int bb_max = lo->bbatt_list.max_val;
while (1) {
if (rfatt > rf_max && bbatt > bb_max - 4)
break; /* Can not get it into ranges */
if (rfatt < rf_min && bbatt < bb_min + 4)
break; /* Can not get it into ranges */
if (bbatt > bb_max && rfatt > rf_max - 1)
break; /* Can not get it into ranges */
if (bbatt < bb_min && rfatt < rf_min + 1)
break; /* Can not get it into ranges */
if (bbatt > bb_max) {
bbatt -= 4;
rfatt += 1;
continue;
}
if (bbatt < bb_min) {
bbatt += 4;
rfatt -= 1;
continue;
}
if (rfatt > rf_max) {
rfatt -= 1;
bbatt += 4;
continue;
}
if (rfatt < rf_min) {
rfatt += 1;
bbatt -= 4;
continue;
}
break;
}
*_rfatt = clamp_val(rfatt, rf_min, rf_max);
*_bbatt = clamp_val(bbatt, bb_min, bb_max);
}
static void b43_gphy_op_xmitpower(struct b43_wldev *dev)
{
struct ssb_bus *bus = dev->dev->bus;
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 tmp;
s8 v0, v1, v2, v3;
s8 average;
int max_pwr;
int desired_pwr, estimated_pwr, pwr_adjust;
int rfatt_delta, bbatt_delta;
int rfatt, bbatt;
u8 tx_control;
if (gphy->cur_idle_tssi == 0)
return;
if ((bus->boardinfo.vendor == SSB_BOARDVENDOR_BCM) &&
(bus->boardinfo.type == SSB_BOARD_BU4306))
return;
tmp = b43_shm_read16(dev, B43_SHM_SHARED, 0x0058);
v0 = (s8) (tmp & 0x00FF);
v1 = (s8) ((tmp & 0xFF00) >> 8);
tmp = b43_shm_read16(dev, B43_SHM_SHARED, 0x005A);
v2 = (s8) (tmp & 0x00FF);
v3 = (s8) ((tmp & 0xFF00) >> 8);
tmp = 0;
if (v0 == 0x7F || v1 == 0x7F || v2 == 0x7F
|| v3 == 0x7F) {
tmp = b43_shm_read16(dev, B43_SHM_SHARED, 0x0070);
v0 = (s8) (tmp & 0x00FF);
v1 = (s8) ((tmp & 0xFF00) >> 8);
tmp = b43_shm_read16(dev, B43_SHM_SHARED, 0x0072);
v2 = (s8) (tmp & 0x00FF);
v3 = (s8) ((tmp & 0xFF00) >> 8);
if (v0 == 0x7F || v1 == 0x7F || v2 == 0x7F
|| v3 == 0x7F)
return;
v0 = (v0 + 0x20) & 0x3F;
v1 = (v1 + 0x20) & 0x3F;
v2 = (v2 + 0x20) & 0x3F;
v3 = (v3 + 0x20) & 0x3F;
tmp = 1;
}
b43_shm_clear_tssi(dev);
average = (v0 + v1 + v2 + v3 + 2) / 4;
if (tmp && (b43_shm_read16(dev, B43_SHM_SHARED, 0x005E) & 0x8))
average -= 13;
estimated_pwr = b43_gphy_estimate_power_out(dev, average);
max_pwr = dev->dev->bus->sprom.maxpwr_bg;
if ((dev->dev->bus->sprom.boardflags_lo
& B43_BFL_PACTRL) && (phy->type == B43_PHYTYPE_G))
max_pwr -= 0x3;
if (unlikely(max_pwr <= 0)) {
b43warn(dev->wl,
"Invalid max-TX-power value in SPROM.\n");
max_pwr = 60; /* fake it */
dev->dev->bus->sprom.maxpwr_bg = max_pwr;
}
/*TODO:
max_pwr = min(REG - dev->dev->bus->sprom.antennagain_bgphy - 0x6, max_pwr)
where REG is the max power as per the regulatory domain
*/
/* Get desired power (in Q5.2) */
desired_pwr = INT_TO_Q52(phy->power_level);
/* And limit it. max_pwr already is Q5.2 */
desired_pwr = clamp_val(desired_pwr, 0, max_pwr);
if (b43_debug(dev, B43_DBG_XMITPOWER)) {
b43dbg(dev->wl,
"Current TX power output: " Q52_FMT
" dBm, " "Desired TX power output: "
Q52_FMT " dBm\n", Q52_ARG(estimated_pwr),
Q52_ARG(desired_pwr));
}
/* Calculate the adjustment delta. */
pwr_adjust = desired_pwr - estimated_pwr;
/* RF attenuation delta. */
rfatt_delta = ((pwr_adjust + 7) / 8);
/* Lower attenuation => Bigger power output. Negate it. */
rfatt_delta = -rfatt_delta;
/* Baseband attenuation delta. */
bbatt_delta = pwr_adjust / 2;
/* Lower attenuation => Bigger power output. Negate it. */
bbatt_delta = -bbatt_delta;
/* RF att affects power level 4 times as much as
* Baseband attennuation. Subtract it. */
bbatt_delta -= 4 * rfatt_delta;
/* So do we finally need to adjust something? */
if ((rfatt_delta == 0) && (bbatt_delta == 0))
return;
/* Calculate the new attenuation values. */
bbatt = gphy->bbatt.att;
bbatt += bbatt_delta;
rfatt = gphy->rfatt.att;
rfatt += rfatt_delta;
b43_put_attenuation_into_ranges(dev, &bbatt, &rfatt);
tx_control = gphy->tx_control;
if ((phy->radio_ver == 0x2050) && (phy->radio_rev == 2)) {
if (rfatt <= 1) {
if (tx_control == 0) {
tx_control =
B43_TXCTL_PA2DB |
B43_TXCTL_TXMIX;
rfatt += 2;
bbatt += 2;
} else if (dev->dev->bus->sprom.
boardflags_lo &
B43_BFL_PACTRL) {
bbatt += 4 * (rfatt - 2);
rfatt = 2;
}
} else if (rfatt > 4 && tx_control) {
tx_control = 0;
if (bbatt < 3) {
rfatt -= 3;
bbatt += 2;
} else {
rfatt -= 2;
bbatt -= 2;
}
}
}
/* Save the control values */
gphy->tx_control = tx_control;
b43_put_attenuation_into_ranges(dev, &bbatt, &rfatt);
gphy->rfatt.att = rfatt;
gphy->bbatt.att = bbatt;
/* Adjust the hardware */
b43_phy_lock(dev);
b43_radio_lock(dev);
b43_set_txpower_g(dev, &gphy->bbatt, &gphy->rfatt,
gphy->tx_control);
b43_radio_unlock(dev);
b43_phy_unlock(dev);
}
static void b43_gphy_op_pwork_15sec(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
//TODO: update_aci_moving_average
if (gphy->aci_enable && gphy->aci_wlan_automatic) {
b43_mac_suspend(dev);
if (!gphy->aci_enable && 1 /*TODO: not scanning? */ ) {
if (0 /*TODO: bunch of conditions */ ) {
phy->ops->interf_mitigation(dev,
B43_INTERFMODE_MANUALWLAN);
}
} else if (0 /*TODO*/) {
if (/*(aci_average > 1000) &&*/ !b43_gphy_aci_scan(dev))
phy->ops->interf_mitigation(dev, B43_INTERFMODE_NONE);
}
b43_mac_enable(dev);
} else if (gphy->interfmode == B43_INTERFMODE_NONWLAN &&
phy->rev == 1) {
//TODO: implement rev1 workaround
}
b43_lo_g_maintanance_work(dev);
}
static void b43_gphy_op_pwork_60sec(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
if (!(dev->dev->bus->sprom.boardflags_lo & B43_BFL_RSSI))
return;
b43_mac_suspend(dev);
b43_calc_nrssi_slope(dev);
if ((phy->radio_ver == 0x2050) && (phy->radio_rev == 8)) {
u8 old_chan = phy->channel;
/* VCO Calibration */
if (old_chan >= 8)
b43_switch_channel(dev, 1);
else
b43_switch_channel(dev, 13);
b43_switch_channel(dev, old_chan);
}
b43_mac_enable(dev);
}
const struct b43_phy_operations b43_phyops_g = {
.allocate = b43_gphy_op_allocate,
.prepare = b43_gphy_op_prepare,
.init = b43_gphy_op_init,
.exit = b43_gphy_op_exit,
.phy_read = b43_gphy_op_read,
.phy_write = b43_gphy_op_write,
.radio_read = b43_gphy_op_radio_read,
.radio_write = b43_gphy_op_radio_write,
.supports_hwpctl = b43_gphy_op_supports_hwpctl,
.software_rfkill = b43_gphy_op_software_rfkill,
.switch_channel = b43_gphy_op_switch_channel,
.get_default_chan = b43_gphy_op_get_default_chan,
.set_rx_antenna = b43_gphy_op_set_rx_antenna,
.interf_mitigation = b43_gphy_op_interf_mitigation,
.xmitpower = b43_gphy_op_xmitpower,
.pwork_15sec = b43_gphy_op_pwork_15sec,
.pwork_60sec = b43_gphy_op_pwork_60sec,
};
#ifndef LINUX_B43_PHY_G_H_
#define LINUX_B43_PHY_G_H_
/* OFDM PHY registers are defined in the A-PHY header. */
#include "phy_a.h"
/* CCK (B) PHY Registers */
#define B43_PHY_VERSION_CCK B43_PHY_CCK(0x00) /* Versioning register for B-PHY */
#define B43_PHY_CCKBBANDCFG B43_PHY_CCK(0x01) /* Contains antenna 0/1 control bit */
#define B43_PHY_PGACTL B43_PHY_CCK(0x15) /* PGA control */
#define B43_PHY_PGACTL_LPF 0x1000 /* Low pass filter (?) */
#define B43_PHY_PGACTL_LOWBANDW 0x0040 /* Low bandwidth flag */
#define B43_PHY_PGACTL_UNKNOWN 0xEFA0
#define B43_PHY_FBCTL1 B43_PHY_CCK(0x18) /* Frequency bandwidth control 1 */
#define B43_PHY_ITSSI B43_PHY_CCK(0x29) /* Idle TSSI */
#define B43_PHY_LO_LEAKAGE B43_PHY_CCK(0x2D) /* Measured LO leakage */
#define B43_PHY_ENERGY B43_PHY_CCK(0x33) /* Energy */
#define B43_PHY_SYNCCTL B43_PHY_CCK(0x35)
#define B43_PHY_FBCTL2 B43_PHY_CCK(0x38) /* Frequency bandwidth control 2 */
#define B43_PHY_DACCTL B43_PHY_CCK(0x60) /* DAC control */
#define B43_PHY_RCCALOVER B43_PHY_CCK(0x78) /* RC calibration override */
/* Extended G-PHY Registers */
#define B43_PHY_CLASSCTL B43_PHY_EXTG(0x02) /* Classify control */
#define B43_PHY_GTABCTL B43_PHY_EXTG(0x03) /* G-PHY table control (see below) */
#define B43_PHY_GTABOFF 0x03FF /* G-PHY table offset (see below) */
#define B43_PHY_GTABNR 0xFC00 /* G-PHY table number (see below) */
#define B43_PHY_GTABNR_SHIFT 10
#define B43_PHY_GTABDATA B43_PHY_EXTG(0x04) /* G-PHY table data */
#define B43_PHY_LO_MASK B43_PHY_EXTG(0x0F) /* Local Oscillator control mask */
#define B43_PHY_LO_CTL B43_PHY_EXTG(0x10) /* Local Oscillator control */
#define B43_PHY_RFOVER B43_PHY_EXTG(0x11) /* RF override */
#define B43_PHY_RFOVERVAL B43_PHY_EXTG(0x12) /* RF override value */
#define B43_PHY_RFOVERVAL_EXTLNA 0x8000
#define B43_PHY_RFOVERVAL_LNA 0x7000
#define B43_PHY_RFOVERVAL_LNA_SHIFT 12
#define B43_PHY_RFOVERVAL_PGA 0x0F00
#define B43_PHY_RFOVERVAL_PGA_SHIFT 8
#define B43_PHY_RFOVERVAL_UNK 0x0010 /* Unknown, always set. */
#define B43_PHY_RFOVERVAL_TRSWRX 0x00E0
#define B43_PHY_RFOVERVAL_BW 0x0003 /* Bandwidth flags */
#define B43_PHY_RFOVERVAL_BW_LPF 0x0001 /* Low Pass Filter */
#define B43_PHY_RFOVERVAL_BW_LBW 0x0002 /* Low Bandwidth (when set), high when unset */
#define B43_PHY_ANALOGOVER B43_PHY_EXTG(0x14) /* Analog override */
#define B43_PHY_ANALOGOVERVAL B43_PHY_EXTG(0x15) /* Analog override value */
/*** G-PHY table numbers */
#define B43_GTAB(number, offset) (((number) << B43_PHY_GTABNR_SHIFT) | (offset))
#define B43_GTAB_NRSSI B43_GTAB(0x00, 0)
#define B43_GTAB_TRFEMW B43_GTAB(0x0C, 0x120)
#define B43_GTAB_ORIGTR B43_GTAB(0x2E, 0x298)
u16 b43_gtab_read(struct b43_wldev *dev, u16 table, u16 offset);
void b43_gtab_write(struct b43_wldev *dev, u16 table, u16 offset, u16 value);
/* Returns the boolean whether "TX Magnification" is enabled. */
#define has_tx_magnification(phy) \
(((phy)->rev >= 2) && \
((phy)->radio_ver == 0x2050) && \
((phy)->radio_rev == 8))
/* Card uses the loopback gain stuff */
#define has_loopback_gain(phy) \
(((phy)->rev > 1) || ((phy)->gmode))
/* Radio Attenuation (RF Attenuation) */
struct b43_rfatt {
u8 att; /* Attenuation value */
bool with_padmix; /* Flag, PAD Mixer enabled. */
};
struct b43_rfatt_list {
/* Attenuation values list */
const struct b43_rfatt *list;
u8 len;
/* Minimum/Maximum attenuation values */
u8 min_val;
u8 max_val;
};
/* Returns true, if the values are the same. */
static inline bool b43_compare_rfatt(const struct b43_rfatt *a,
const struct b43_rfatt *b)
{
return ((a->att == b->att) &&
(a->with_padmix == b->with_padmix));
}
/* Baseband Attenuation */
struct b43_bbatt {
u8 att; /* Attenuation value */
};
struct b43_bbatt_list {
/* Attenuation values list */
const struct b43_bbatt *list;
u8 len;
/* Minimum/Maximum attenuation values */
u8 min_val;
u8 max_val;
};
/* Returns true, if the values are the same. */
static inline bool b43_compare_bbatt(const struct b43_bbatt *a,
const struct b43_bbatt *b)
{
return (a->att == b->att);
}
/* tx_control bits. */
#define B43_TXCTL_PA3DB 0x40 /* PA Gain 3dB */
#define B43_TXCTL_PA2DB 0x20 /* PA Gain 2dB */
#define B43_TXCTL_TXMIX 0x10 /* TX Mixer Gain */
struct b43_txpower_lo_control;
struct b43_phy_g {
bool initialised;
bool dyn_tssi_tbl; /* tssi2dbm is kmalloc()ed. */
/* ACI (adjacent channel interference) flags. */
bool aci_enable;
bool aci_wlan_automatic;
bool aci_hw_rssi;
/* Radio switched on/off */
bool radio_on;
struct {
/* Values saved when turning the radio off.
* They are needed when turning it on again. */
bool valid;
u16 rfover;
u16 rfoverval;
} radio_off_context;
u16 minlowsig[2];
u16 minlowsigpos[2];
/* TSSI to dBm table in use */
const s8 *tssi2dbm;
/* Target idle TSSI */
int tgt_idle_tssi;
/* Current idle TSSI */
int cur_idle_tssi;
/* LocalOscillator control values. */
struct b43_txpower_lo_control *lo_control;
/* Values from b43_calc_loopback_gain() */
s16 max_lb_gain; /* Maximum Loopback gain in hdB */
s16 trsw_rx_gain; /* TRSW RX gain in hdB */
s16 lna_lod_gain; /* LNA lod */
s16 lna_gain; /* LNA */
s16 pga_gain; /* PGA */
/* Current TX power level attenuation control values */
struct b43_bbatt bbatt;
struct b43_rfatt rfatt;
u8 tx_control; /* B43_TXCTL_XXX */
/* Current Interference Mitigation mode */
int interfmode;
/* Stack of saved values from the Interference Mitigation code.
* Each value in the stack is layed out as follows:
* bit 0-11: offset
* bit 12-15: register ID
* bit 16-32: value
* register ID is: 0x1 PHY, 0x2 Radio, 0x3 ILT
*/
#define B43_INTERFSTACK_SIZE 26
u32 interfstack[B43_INTERFSTACK_SIZE]; //FIXME: use a data structure
/* Saved values from the NRSSI Slope calculation */
s16 nrssi[2];
s32 nrssislope;
/* In memory nrssi lookup table. */
s8 nrssi_lt[64];
u16 lofcal;
u16 initval; //FIXME rename?
/* The device does address auto increment for the OFDM tables.
* We cache the previously used address here and omit the address
* write on the next table access, if possible. */
u16 ofdmtab_addr; /* The address currently set in hardware. */
enum { /* The last data flow direction. */
B43_OFDMTAB_DIRECTION_UNKNOWN = 0,
B43_OFDMTAB_DIRECTION_READ,
B43_OFDMTAB_DIRECTION_WRITE,
} ofdmtab_addr_direction;
};
void b43_gphy_set_baseband_attenuation(struct b43_wldev *dev,
u16 baseband_attenuation);
void b43_gphy_channel_switch(struct b43_wldev *dev,
unsigned int channel,
bool synthetic_pu_workaround);
struct b43_phy_operations;
extern const struct b43_phy_operations b43_phyops_g;
#endif /* LINUX_B43_PHY_G_H_ */
......@@ -24,6 +24,7 @@
#include "rfkill.h"
#include "b43.h"
#include "phy_common.h"
#include <linux/kmod.h>
......@@ -114,11 +115,11 @@ static int b43_rfkill_soft_toggle(void *data, enum rfkill_state state)
goto out_unlock;
}
if (!dev->phy.radio_on)
b43_radio_turn_on(dev);
b43_software_rfkill(dev, state);
break;
case RFKILL_STATE_SOFT_BLOCKED:
if (dev->phy.radio_on)
b43_radio_turn_off(dev, 0);
b43_software_rfkill(dev, state);
break;
default:
b43warn(wl, "Received unexpected rfkill state %d.\n", state);
......
......@@ -29,7 +29,7 @@
#include "b43.h"
#include "sysfs.h"
#include "main.h"
#include "phy.h"
#include "phy_common.h"
#define GENERIC_FILESIZE 64
......@@ -59,7 +59,12 @@ static ssize_t b43_attr_interfmode_show(struct device *dev,
mutex_lock(&wldev->wl->mutex);
switch (wldev->phy.interfmode) {
if (wldev->phy.type != B43_PHYTYPE_G) {
mutex_unlock(&wldev->wl->mutex);
return -ENOSYS;
}
switch (wldev->phy.g->interfmode) {
case B43_INTERFMODE_NONE:
count =
snprintf(buf, PAGE_SIZE,
......@@ -117,11 +122,15 @@ static ssize_t b43_attr_interfmode_store(struct device *dev,
mutex_lock(&wldev->wl->mutex);
spin_lock_irqsave(&wldev->wl->irq_lock, flags);
err = b43_radio_set_interference_mitigation(wldev, mode);
if (err) {
b43err(wldev->wl, "Interference Mitigation not "
"supported by device\n");
}
if (wldev->phy.ops->interf_mitigation) {
err = wldev->phy.ops->interf_mitigation(wldev, mode);
if (err) {
b43err(wldev->wl, "Interference Mitigation not "
"supported by device\n");
}
} else
err = -ENOSYS;
mmiowb();
spin_unlock_irqrestore(&wldev->wl->irq_lock, flags);
mutex_unlock(&wldev->wl->mutex);
......
......@@ -27,7 +27,8 @@
#include "b43.h"
#include "tables.h"
#include "phy.h"
#include "phy_g.h"
const u32 b43_tab_rotor[] = {
0xFEB93FFD, 0xFEC63FFD, /* 0 */
......@@ -377,17 +378,17 @@ static inline void assert_sizes(void)
u16 b43_ofdmtab_read16(struct b43_wldev *dev, u16 table, u16 offset)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = dev->phy.g;
u16 addr;
addr = table + offset;
if ((phy->ofdmtab_addr_direction != B43_OFDMTAB_DIRECTION_READ) ||
(addr - 1 != phy->ofdmtab_addr)) {
if ((gphy->ofdmtab_addr_direction != B43_OFDMTAB_DIRECTION_READ) ||
(addr - 1 != gphy->ofdmtab_addr)) {
/* The hardware has a different address in memory. Update it. */
b43_phy_write(dev, B43_PHY_OTABLECTL, addr);
phy->ofdmtab_addr_direction = B43_OFDMTAB_DIRECTION_READ;
gphy->ofdmtab_addr_direction = B43_OFDMTAB_DIRECTION_READ;
}
phy->ofdmtab_addr = addr;
gphy->ofdmtab_addr = addr;
return b43_phy_read(dev, B43_PHY_OTABLEI);
......@@ -398,34 +399,34 @@ u16 b43_ofdmtab_read16(struct b43_wldev *dev, u16 table, u16 offset)
void b43_ofdmtab_write16(struct b43_wldev *dev, u16 table,
u16 offset, u16 value)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = dev->phy.g;
u16 addr;
addr = table + offset;
if ((phy->ofdmtab_addr_direction != B43_OFDMTAB_DIRECTION_WRITE) ||
(addr - 1 != phy->ofdmtab_addr)) {
if ((gphy->ofdmtab_addr_direction != B43_OFDMTAB_DIRECTION_WRITE) ||
(addr - 1 != gphy->ofdmtab_addr)) {
/* The hardware has a different address in memory. Update it. */
b43_phy_write(dev, B43_PHY_OTABLECTL, addr);
phy->ofdmtab_addr_direction = B43_OFDMTAB_DIRECTION_WRITE;
gphy->ofdmtab_addr_direction = B43_OFDMTAB_DIRECTION_WRITE;
}
phy->ofdmtab_addr = addr;
gphy->ofdmtab_addr = addr;
b43_phy_write(dev, B43_PHY_OTABLEI, value);
}
u32 b43_ofdmtab_read32(struct b43_wldev *dev, u16 table, u16 offset)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = dev->phy.g;
u32 ret;
u16 addr;
addr = table + offset;
if ((phy->ofdmtab_addr_direction != B43_OFDMTAB_DIRECTION_READ) ||
(addr - 1 != phy->ofdmtab_addr)) {
if ((gphy->ofdmtab_addr_direction != B43_OFDMTAB_DIRECTION_READ) ||
(addr - 1 != gphy->ofdmtab_addr)) {
/* The hardware has a different address in memory. Update it. */
b43_phy_write(dev, B43_PHY_OTABLECTL, addr);
phy->ofdmtab_addr_direction = B43_OFDMTAB_DIRECTION_READ;
gphy->ofdmtab_addr_direction = B43_OFDMTAB_DIRECTION_READ;
}
phy->ofdmtab_addr = addr;
gphy->ofdmtab_addr = addr;
ret = b43_phy_read(dev, B43_PHY_OTABLEQ);
ret <<= 16;
ret |= b43_phy_read(dev, B43_PHY_OTABLEI);
......@@ -436,17 +437,17 @@ u32 b43_ofdmtab_read32(struct b43_wldev *dev, u16 table, u16 offset)
void b43_ofdmtab_write32(struct b43_wldev *dev, u16 table,
u16 offset, u32 value)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = dev->phy.g;
u16 addr;
addr = table + offset;
if ((phy->ofdmtab_addr_direction != B43_OFDMTAB_DIRECTION_WRITE) ||
(addr - 1 != phy->ofdmtab_addr)) {
if ((gphy->ofdmtab_addr_direction != B43_OFDMTAB_DIRECTION_WRITE) ||
(addr - 1 != gphy->ofdmtab_addr)) {
/* The hardware has a different address in memory. Update it. */
b43_phy_write(dev, B43_PHY_OTABLECTL, addr);
phy->ofdmtab_addr_direction = B43_OFDMTAB_DIRECTION_WRITE;
gphy->ofdmtab_addr_direction = B43_OFDMTAB_DIRECTION_WRITE;
}
phy->ofdmtab_addr = addr;
gphy->ofdmtab_addr = addr;
b43_phy_write(dev, B43_PHY_OTABLEI, value);
b43_phy_write(dev, B43_PHY_OTABLEQ, (value >> 16));
......
......@@ -24,7 +24,7 @@
#include "b43.h"
#include "tables_nphy.h"
#include "phy.h"
#include "phy_common.h"
#include "nphy.h"
......
......@@ -27,7 +27,7 @@
#include "b43.h"
#include "main.h"
#include "tables.h"
#include "phy.h"
#include "phy_common.h"
#include "wa.h"
static void b43_wa_papd(struct b43_wldev *dev)
......
......@@ -28,7 +28,7 @@
*/
#include "xmit.h"
#include "phy.h"
#include "phy_common.h"
#include "dma.h"
#include "pio.h"
......@@ -431,6 +431,7 @@ static s8 b43_rssi_postprocess(struct b43_wldev *dev,
int adjust_2053, int adjust_2050)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
s32 tmp;
switch (phy->radio_ver) {
......@@ -450,7 +451,8 @@ static s8 b43_rssi_postprocess(struct b43_wldev *dev,
boardflags_lo & B43_BFL_RSSI) {
if (in_rssi > 63)
in_rssi = 63;
tmp = phy->nrssi_lt[in_rssi];
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
tmp = gphy->nrssi_lt[in_rssi];
tmp = 31 - tmp;
tmp *= -131;
tmp /= 128;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment