Commit f0690a25 authored by Guenter Roeck's avatar Guenter Roeck Committed by Greg Kroah-Hartman

staging: typec: USB Type-C Port Manager (tcpm)

This driver implements the USB Type-C Power Delivery state machine
for both source and sink ports. Alternate mode support is not
fully implemented.

The driver attaches to the USB Type-C class code implemented in
the following patches.

	usb: typec: add driver for Intel Whiskey Cove PMIC USB Type-C PHY
	usb: USB Type-C connector class

This driver only implements the state machine. Lower level drivers are
responsible for
- Reporting VBUS status and activating VBUS
- Setting CC lines and providing CC line status
- Setting line polarity
- Activating and deactivating VCONN
- Setting the current limit
- Activating and deactivating PD message transfers
- Sending and receiving PD messages

The driver provides both a functional API as well as callbacks for
lower level drivers.
Signed-off-by: default avatarGuenter Roeck <groeck@chromium.org>
Signed-off-by: default avatarGuenter Roeck <linux@roeck-us.net>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent d852ed98
......@@ -104,4 +104,6 @@ source "drivers/staging/vc04_services/Kconfig"
source "drivers/staging/bcm2835-audio/Kconfig"
source "drivers/staging/typec/Kconfig"
endif # STAGING
# Makefile for staging directory
obj-y += media/
obj-y += typec/
obj-$(CONFIG_PRISM2_USB) += wlan-ng/
obj-$(CONFIG_COMEDI) += comedi/
obj-$(CONFIG_FB_OLPC_DCON) += olpc_dcon/
......@@ -41,4 +42,3 @@ obj-$(CONFIG_KS7010) += ks7010/
obj-$(CONFIG_GREYBUS) += greybus/
obj-$(CONFIG_BCM2835_VCHIQ) += vc04_services/
obj-$(CONFIG_SND_BCM2835) += bcm2835-audio/
menu "USB Power Delivery and Type-C drivers"
config TYPEC_TCPM
tristate "USB Type-C Port Controller Manager"
depends on USB
select TYPEC
help
The Type-C Port Controller Manager provides a USB PD and USB Type-C
state machine for use with Type-C Port Controllers.
endmenu
obj-$(CONFIG_TYPEC_TCPM) += tcpm.o
tcpm:
- Add documentation (at the very least for the API to low level drivers)
- Split PD code into separate file
- Check if it makes sense to use tracepoints instead of debugfs for debug logs
- Implement Alternate Mode handling
- Address "#if 0" code if not addressed with the above
- Validate all comments marked with "XXX"; either address or remove comments
- Add support for USB PD 3.0. While not mandatory, at least fast role swap
as well as authentication support would be very desirable.
Please send patches to Guenter Roeck <linux@roeck-us.net> and copy
Heikki Krogerus <heikki.krogerus@linux.intel.com>.
/*
* Copyright 2015-2017 Google, Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __LINUX_USB_PD_H
#define __LINUX_USB_PD_H
#include <linux/types.h>
#include <linux/usb/typec.h>
/* USB PD Messages */
enum pd_ctrl_msg_type {
/* 0 Reserved */
PD_CTRL_GOOD_CRC = 1,
PD_CTRL_GOTO_MIN = 2,
PD_CTRL_ACCEPT = 3,
PD_CTRL_REJECT = 4,
PD_CTRL_PING = 5,
PD_CTRL_PS_RDY = 6,
PD_CTRL_GET_SOURCE_CAP = 7,
PD_CTRL_GET_SINK_CAP = 8,
PD_CTRL_DR_SWAP = 9,
PD_CTRL_PR_SWAP = 10,
PD_CTRL_VCONN_SWAP = 11,
PD_CTRL_WAIT = 12,
PD_CTRL_SOFT_RESET = 13,
/* 14-15 Reserved */
};
enum pd_data_msg_type {
/* 0 Reserved */
PD_DATA_SOURCE_CAP = 1,
PD_DATA_REQUEST = 2,
PD_DATA_BIST = 3,
PD_DATA_SINK_CAP = 4,
/* 5-14 Reserved */
PD_DATA_VENDOR_DEF = 15,
};
#define PD_REV10 0x0
#define PD_REV20 0x1
#define PD_HEADER_CNT_SHIFT 12
#define PD_HEADER_CNT_MASK 0x7
#define PD_HEADER_ID_SHIFT 9
#define PD_HEADER_ID_MASK 0x7
#define PD_HEADER_PWR_ROLE BIT(8)
#define PD_HEADER_REV_SHIFT 6
#define PD_HEADER_REV_MASK 0x3
#define PD_HEADER_DATA_ROLE BIT(5)
#define PD_HEADER_TYPE_SHIFT 0
#define PD_HEADER_TYPE_MASK 0xf
#define PD_HEADER(type, pwr, data, id, cnt) \
((((type) & PD_HEADER_TYPE_MASK) << PD_HEADER_TYPE_SHIFT) | \
((pwr) == TYPEC_SOURCE ? PD_HEADER_PWR_ROLE : 0) | \
((data) == TYPEC_HOST ? PD_HEADER_DATA_ROLE : 0) | \
(PD_REV20 << PD_HEADER_REV_SHIFT) | \
(((id) & PD_HEADER_ID_MASK) << PD_HEADER_ID_SHIFT) | \
(((cnt) & PD_HEADER_CNT_MASK) << PD_HEADER_CNT_SHIFT))
#define PD_HEADER_LE(type, pwr, data, id, cnt) \
cpu_to_le16(PD_HEADER((type), (pwr), (data), (id), (cnt)))
static inline unsigned int pd_header_cnt(u16 header)
{
return (header >> PD_HEADER_CNT_SHIFT) & PD_HEADER_CNT_MASK;
}
static inline unsigned int pd_header_cnt_le(__le16 header)
{
return pd_header_cnt(le16_to_cpu(header));
}
static inline unsigned int pd_header_type(u16 header)
{
return (header >> PD_HEADER_TYPE_SHIFT) & PD_HEADER_TYPE_MASK;
}
static inline unsigned int pd_header_type_le(__le16 header)
{
return pd_header_type(le16_to_cpu(header));
}
#define PD_MAX_PAYLOAD 7
struct pd_message {
__le16 header;
__le32 payload[PD_MAX_PAYLOAD];
} __packed;
/* PDO: Power Data Object */
#define PDO_MAX_OBJECTS 7
enum pd_pdo_type {
PDO_TYPE_FIXED = 0,
PDO_TYPE_BATT = 1,
PDO_TYPE_VAR = 2,
};
#define PDO_TYPE_SHIFT 30
#define PDO_TYPE_MASK 0x3
#define PDO_TYPE(t) ((t) << PDO_TYPE_SHIFT)
#define PDO_VOLT_MASK 0x3ff
#define PDO_CURR_MASK 0x3ff
#define PDO_PWR_MASK 0x3ff
#define PDO_FIXED_DUAL_ROLE BIT(29) /* Power role swap supported */
#define PDO_FIXED_SUSPEND BIT(28) /* USB Suspend supported (Source) */
#define PDO_FIXED_HIGHER_CAP BIT(28) /* Requires more than vSafe5V (Sink) */
#define PDO_FIXED_EXTPOWER BIT(27) /* Externally powered */
#define PDO_FIXED_USB_COMM BIT(26) /* USB communications capable */
#define PDO_FIXED_DATA_SWAP BIT(25) /* Data role swap supported */
#define PDO_FIXED_VOLT_SHIFT 10 /* 50mV units */
#define PDO_FIXED_CURR_SHIFT 0 /* 10mA units */
#define PDO_FIXED_VOLT(mv) ((((mv) / 50) & PDO_VOLT_MASK) << PDO_FIXED_VOLT_SHIFT)
#define PDO_FIXED_CURR(ma) ((((ma) / 10) & PDO_CURR_MASK) << PDO_FIXED_CURR_SHIFT)
#define PDO_FIXED(mv, ma, flags) \
(PDO_TYPE(PDO_TYPE_FIXED) | (flags) | \
PDO_FIXED_VOLT(mv) | PDO_FIXED_CURR(ma))
#define PDO_BATT_MAX_VOLT_SHIFT 20 /* 50mV units */
#define PDO_BATT_MIN_VOLT_SHIFT 10 /* 50mV units */
#define PDO_BATT_MAX_PWR_SHIFT 0 /* 250mW units */
#define PDO_BATT_MIN_VOLT(mv) ((((mv) / 50) & PDO_VOLT_MASK) << PDO_BATT_MIN_VOLT_SHIFT)
#define PDO_BATT_MAX_VOLT(mv) ((((mv) / 50) & PDO_VOLT_MASK) << PDO_BATT_MAX_VOLT_SHIFT)
#define PDO_BATT_MAX_POWER(mw) ((((mw) / 250) & PDO_PWR_MASK) << PDO_BATT_MAX_PWR_SHIFT)
#define PDO_BATT(min_mv, max_mv, max_mw) \
(PDO_TYPE(PDO_TYPE_BATT) | PDO_BATT_MIN_VOLT(min_mv) | \
PDO_BATT_MAX_VOLT(max_mv) | PDO_BATT_MAX_POWER(max_mw))
#define PDO_VAR_MAX_VOLT_SHIFT 20 /* 50mV units */
#define PDO_VAR_MIN_VOLT_SHIFT 10 /* 50mV units */
#define PDO_VAR_MAX_CURR_SHIFT 0 /* 10mA units */
#define PDO_VAR_MIN_VOLT(mv) ((((mv) / 50) & PDO_VOLT_MASK) << PDO_VAR_MIN_VOLT_SHIFT)
#define PDO_VAR_MAX_VOLT(mv) ((((mv) / 50) & PDO_VOLT_MASK) << PDO_VAR_MAX_VOLT_SHIFT)
#define PDO_VAR_MAX_CURR(ma) ((((ma) / 10) & PDO_CURR_MASK) << PDO_VAR_MAX_CURR_SHIFT)
#define PDO_VAR(min_mv, max_mv, max_ma) \
(PDO_TYPE(PDO_TYPE_VAR) | PDO_VAR_MIN_VOLT(min_mv) | \
PDO_VAR_MAX_VOLT(max_mv) | PDO_VAR_MAX_CURR(max_ma))
static inline enum pd_pdo_type pdo_type(u32 pdo)
{
return (pdo >> PDO_TYPE_SHIFT) & PDO_TYPE_MASK;
}
static inline unsigned int pdo_fixed_voltage(u32 pdo)
{
return ((pdo >> PDO_FIXED_VOLT_SHIFT) & PDO_VOLT_MASK) * 50;
}
static inline unsigned int pdo_min_voltage(u32 pdo)
{
return ((pdo >> PDO_VAR_MIN_VOLT_SHIFT) & PDO_VOLT_MASK) * 50;
}
static inline unsigned int pdo_max_voltage(u32 pdo)
{
return ((pdo >> PDO_VAR_MAX_VOLT_SHIFT) & PDO_VOLT_MASK) * 50;
}
static inline unsigned int pdo_max_current(u32 pdo)
{
return ((pdo >> PDO_VAR_MAX_CURR_SHIFT) & PDO_CURR_MASK) * 10;
}
static inline unsigned int pdo_max_power(u32 pdo)
{
return ((pdo >> PDO_BATT_MAX_PWR_SHIFT) & PDO_PWR_MASK) * 250;
}
/* RDO: Request Data Object */
#define RDO_OBJ_POS_SHIFT 28
#define RDO_OBJ_POS_MASK 0x7
#define RDO_GIVE_BACK BIT(27) /* Supports reduced operating current */
#define RDO_CAP_MISMATCH BIT(26) /* Not satisfied by source caps */
#define RDO_USB_COMM BIT(25) /* USB communications capable */
#define RDO_NO_SUSPEND BIT(24) /* USB Suspend not supported */
#define RDO_PWR_MASK 0x3ff
#define RDO_CURR_MASK 0x3ff
#define RDO_FIXED_OP_CURR_SHIFT 10
#define RDO_FIXED_MAX_CURR_SHIFT 0
#define RDO_OBJ(idx) (((idx) & RDO_OBJ_POS_MASK) << RDO_OBJ_POS_SHIFT)
#define PDO_FIXED_OP_CURR(ma) ((((ma) / 10) & RDO_CURR_MASK) << RDO_FIXED_OP_CURR_SHIFT)
#define PDO_FIXED_MAX_CURR(ma) ((((ma) / 10) & RDO_CURR_MASK) << RDO_FIXED_MAX_CURR_SHIFT)
#define RDO_FIXED(idx, op_ma, max_ma, flags) \
(RDO_OBJ(idx) | (flags) | \
PDO_FIXED_OP_CURR(op_ma) | PDO_FIXED_MAX_CURR(max_ma))
#define RDO_BATT_OP_PWR_SHIFT 10 /* 250mW units */
#define RDO_BATT_MAX_PWR_SHIFT 0 /* 250mW units */
#define RDO_BATT_OP_PWR(mw) ((((mw) / 250) & RDO_PWR_MASK) << RDO_BATT_OP_PWR_SHIFT)
#define RDO_BATT_MAX_PWR(mw) ((((mw) / 250) & RDO_PWR_MASK) << RDO_BATT_MAX_PWR_SHIFT)
#define RDO_BATT(idx, op_mw, max_mw, flags) \
(RDO_OBJ(idx) | (flags) | \
RDO_BATT_OP_PWR(op_mw) | RDO_BATT_MAX_PWR(max_mw))
static inline unsigned int rdo_index(u32 rdo)
{
return (rdo >> RDO_OBJ_POS_SHIFT) & RDO_OBJ_POS_MASK;
}
static inline unsigned int rdo_op_current(u32 rdo)
{
return ((rdo >> RDO_FIXED_OP_CURR_SHIFT) & RDO_CURR_MASK) * 10;
}
static inline unsigned int rdo_max_current(u32 rdo)
{
return ((rdo >> RDO_FIXED_MAX_CURR_SHIFT) &
RDO_CURR_MASK) * 10;
}
static inline unsigned int rdo_op_power(u32 rdo)
{
return ((rdo >> RDO_BATT_OP_PWR_SHIFT) & RDO_PWR_MASK) * 250;
}
static inline unsigned int rdo_max_power(u32 rdo)
{
return ((rdo >> RDO_BATT_MAX_PWR_SHIFT) & RDO_PWR_MASK) * 250;
}
/* USB PD timers and counters */
#define PD_T_NO_RESPONSE 5000 /* 4.5 - 5.5 seconds */
#define PD_T_DB_DETECT 10000 /* 10 - 15 seconds */
#define PD_T_SEND_SOURCE_CAP 150 /* 100 - 200 ms */
#define PD_T_SENDER_RESPONSE 60 /* 24 - 30 ms, relaxed */
#define PD_T_SOURCE_ACTIVITY 45
#define PD_T_SINK_ACTIVITY 135
#define PD_T_SINK_WAIT_CAP 240
#define PD_T_PS_TRANSITION 500
#define PD_T_SRC_TRANSITION 35
#define PD_T_DRP_SNK 40
#define PD_T_DRP_SRC 30
#define PD_T_PS_SOURCE_OFF 920
#define PD_T_PS_SOURCE_ON 480
#define PD_T_PS_HARD_RESET 30
#define PD_T_SRC_RECOVER 760
#define PD_T_SRC_RECOVER_MAX 1000
#define PD_T_SRC_TURN_ON 275
#define PD_T_SAFE_0V 650
#define PD_T_VCONN_SOURCE_ON 100
#define PD_T_SINK_REQUEST 100 /* 100 ms minimum */
#define PD_T_ERROR_RECOVERY 100 /* minimum 25 is insufficient */
#define PD_T_DRP_TRY 100 /* 75 - 150 ms */
#define PD_T_DRP_TRYWAIT 600 /* 400 - 800 ms */
#define PD_T_CC_DEBOUNCE 200 /* 100 - 200 ms */
#define PD_T_PD_DEBOUNCE 20 /* 10 - 20 ms */
#define PD_N_CAPS_COUNT (PD_T_NO_RESPONSE / PD_T_SEND_SOURCE_CAP)
#define PD_N_HARD_RESET_COUNT 2
#endif /* __LINUX_USB_PD_H */
/*
* Copyright 2015-2017 Google, Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __LINUX_USB_PD_BDO_H
#define __LINUX_USB_PD_BDO_H
/* BDO : BIST Data Object */
#define BDO_MODE_RECV (0 << 28)
#define BDO_MODE_TRANSMIT (1 << 28)
#define BDO_MODE_COUNTERS (2 << 28)
#define BDO_MODE_CARRIER0 (3 << 28)
#define BDO_MODE_CARRIER1 (4 << 28)
#define BDO_MODE_CARRIER2 (5 << 28)
#define BDO_MODE_CARRIER3 (6 << 28)
#define BDO_MODE_EYE (7 << 28)
#define BDO_MODE_TESTDATA (8 << 28)
#define BDO_MODE_MASK(mode) ((mode) & 0xf0000000)
#endif
/*
* Copyright 2015-2017 Google, Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __LINUX_USB_PD_VDO_H
#define __LINUX_USB_PD_VDO_H
#include "pd.h"
/*
* VDO : Vendor Defined Message Object
* VDM object is minimum of VDM header + 6 additional data objects.
*/
/*
* VDM header
* ----------
* <31:16> :: SVID
* <15> :: VDM type ( 1b == structured, 0b == unstructured )
* <14:13> :: Structured VDM version (can only be 00 == 1.0 currently)
* <12:11> :: reserved
* <10:8> :: object position (1-7 valid ... used for enter/exit mode only)
* <7:6> :: command type (SVDM only?)
* <5> :: reserved (SVDM), command type (UVDM)
* <4:0> :: command
*/
#define VDO_MAX_SIZE 7
#define VDO(vid, type, custom) \
(((vid) << 16) | \
((type) << 15) | \
((custom) & 0x7FFF))
#define VDO_SVDM_TYPE (1 << 15)
#define VDO_SVDM_VERS(x) ((x) << 13)
#define VDO_OPOS(x) ((x) << 8)
#define VDO_CMDT(x) ((x) << 6)
#define VDO_OPOS_MASK VDO_OPOS(0x7)
#define VDO_CMDT_MASK VDO_CMDT(0x3)
#define CMDT_INIT 0
#define CMDT_RSP_ACK 1
#define CMDT_RSP_NAK 2
#define CMDT_RSP_BUSY 3
/* reserved for SVDM ... for Google UVDM */
#define VDO_SRC_INITIATOR (0 << 5)
#define VDO_SRC_RESPONDER (1 << 5)
#define CMD_DISCOVER_IDENT 1
#define CMD_DISCOVER_SVID 2
#define CMD_DISCOVER_MODES 3
#define CMD_ENTER_MODE 4
#define CMD_EXIT_MODE 5
#define CMD_ATTENTION 6
#define VDO_CMD_VENDOR(x) (((10 + (x)) & 0x1f))
/* ChromeOS specific commands */
#define VDO_CMD_VERSION VDO_CMD_VENDOR(0)
#define VDO_CMD_SEND_INFO VDO_CMD_VENDOR(1)
#define VDO_CMD_READ_INFO VDO_CMD_VENDOR(2)
#define VDO_CMD_REBOOT VDO_CMD_VENDOR(5)
#define VDO_CMD_FLASH_ERASE VDO_CMD_VENDOR(6)
#define VDO_CMD_FLASH_WRITE VDO_CMD_VENDOR(7)
#define VDO_CMD_ERASE_SIG VDO_CMD_VENDOR(8)
#define VDO_CMD_PING_ENABLE VDO_CMD_VENDOR(10)
#define VDO_CMD_CURRENT VDO_CMD_VENDOR(11)
#define VDO_CMD_FLIP VDO_CMD_VENDOR(12)
#define VDO_CMD_GET_LOG VDO_CMD_VENDOR(13)
#define VDO_CMD_CCD_EN VDO_CMD_VENDOR(14)
#define PD_VDO_VID(vdo) ((vdo) >> 16)
#define PD_VDO_SVDM(vdo) (((vdo) >> 15) & 1)
#define PD_VDO_OPOS(vdo) (((vdo) >> 8) & 0x7)
#define PD_VDO_CMD(vdo) ((vdo) & 0x1f)
#define PD_VDO_CMDT(vdo) (((vdo) >> 6) & 0x3)
/*
* SVDM Identity request -> response
*
* Request is simply properly formatted SVDM header
*
* Response is 4 data objects:
* [0] :: SVDM header
* [1] :: Identitiy header
* [2] :: Cert Stat VDO
* [3] :: (Product | Cable) VDO
* [4] :: AMA VDO
*
*/
#define VDO_INDEX_HDR 0
#define VDO_INDEX_IDH 1
#define VDO_INDEX_CSTAT 2
#define VDO_INDEX_CABLE 3
#define VDO_INDEX_PRODUCT 3
#define VDO_INDEX_AMA 4
/*
* SVDM Identity Header
* --------------------
* <31> :: data capable as a USB host
* <30> :: data capable as a USB device
* <29:27> :: product type
* <26> :: modal operation supported (1b == yes)
* <25:16> :: Reserved, Shall be set to zero
* <15:0> :: USB-IF assigned VID for this cable vendor
*/
#define IDH_PTYPE_UNDEF 0
#define IDH_PTYPE_HUB 1
#define IDH_PTYPE_PERIPH 2
#define IDH_PTYPE_PCABLE 3
#define IDH_PTYPE_ACABLE 4
#define IDH_PTYPE_AMA 5
#define VDO_IDH(usbh, usbd, ptype, is_modal, vid) \
((usbh) << 31 | (usbd) << 30 | ((ptype) & 0x7) << 27 \
| (is_modal) << 26 | ((vid) & 0xffff))
#define PD_IDH_PTYPE(vdo) (((vdo) >> 27) & 0x7)
#define PD_IDH_VID(vdo) ((vdo) & 0xffff)
#define PD_IDH_MODAL_SUPP(vdo) ((vdo) & (1 << 26))
/*
* Cert Stat VDO
* -------------
* <31:0> : USB-IF assigned XID for this cable
*/
#define PD_CSTAT_XID(vdo) (vdo)
/*
* Product VDO
* -----------
* <31:16> : USB Product ID
* <15:0> : USB bcdDevice
*/
#define VDO_PRODUCT(pid, bcd) (((pid) & 0xffff) << 16 | ((bcd) & 0xffff))
#define PD_PRODUCT_PID(vdo) (((vdo) >> 16) & 0xffff)
/*
* Cable VDO
* ---------
* <31:28> :: Cable HW version
* <27:24> :: Cable FW version
* <23:20> :: Reserved, Shall be set to zero
* <19:18> :: type-C to Type-A/B/C (00b == A, 01 == B, 10 == C)
* <17> :: Type-C to Plug/Receptacle (0b == plug, 1b == receptacle)
* <16:13> :: cable latency (0001 == <10ns(~1m length))
* <12:11> :: cable termination type (11b == both ends active VCONN req)
* <10> :: SSTX1 Directionality support (0b == fixed, 1b == cfgable)
* <9> :: SSTX2 Directionality support
* <8> :: SSRX1 Directionality support
* <7> :: SSRX2 Directionality support
* <6:5> :: Vbus current handling capability
* <4> :: Vbus through cable (0b == no, 1b == yes)
* <3> :: SOP" controller present? (0b == no, 1b == yes)
* <2:0> :: USB SS Signaling support
*/
#define CABLE_ATYPE 0
#define CABLE_BTYPE 1
#define CABLE_CTYPE 2
#define CABLE_PLUG 0
#define CABLE_RECEPTACLE 1
#define CABLE_CURR_1A5 0
#define CABLE_CURR_3A 1
#define CABLE_CURR_5A 2
#define CABLE_USBSS_U2_ONLY 0
#define CABLE_USBSS_U31_GEN1 1
#define CABLE_USBSS_U31_GEN2 2
#define VDO_CABLE(hw, fw, cbl, gdr, lat, term, tx1d, tx2d, rx1d, rx2d, cur,\
vps, sopp, usbss) \
(((hw) & 0x7) << 28 | ((fw) & 0x7) << 24 | ((cbl) & 0x3) << 18 \
| (gdr) << 17 | ((lat) & 0x7) << 13 | ((term) & 0x3) << 11 \
| (tx1d) << 10 | (tx2d) << 9 | (rx1d) << 8 | (rx2d) << 7 \
| ((cur) & 0x3) << 5 | (vps) << 4 | (sopp) << 3 \
| ((usbss) & 0x7))
/*
* AMA VDO
* ---------
* <31:28> :: Cable HW version
* <27:24> :: Cable FW version
* <23:12> :: Reserved, Shall be set to zero
* <11> :: SSTX1 Directionality support (0b == fixed, 1b == cfgable)
* <10> :: SSTX2 Directionality support
* <9> :: SSRX1 Directionality support
* <8> :: SSRX2 Directionality support
* <7:5> :: Vconn power
* <4> :: Vconn power required
* <3> :: Vbus power required
* <2:0> :: USB SS Signaling support
*/
#define VDO_AMA(hw, fw, tx1d, tx2d, rx1d, rx2d, vcpwr, vcr, vbr, usbss) \
(((hw) & 0x7) << 28 | ((fw) & 0x7) << 24 \
| (tx1d) << 11 | (tx2d) << 10 | (rx1d) << 9 | (rx2d) << 8 \
| ((vcpwr) & 0x7) << 5 | (vcr) << 4 | (vbr) << 3 \
| ((usbss) & 0x7))
#define PD_VDO_AMA_VCONN_REQ(vdo) (((vdo) >> 4) & 1)
#define PD_VDO_AMA_VBUS_REQ(vdo) (((vdo) >> 3) & 1)
#define AMA_VCONN_PWR_1W 0
#define AMA_VCONN_PWR_1W5 1
#define AMA_VCONN_PWR_2W 2
#define AMA_VCONN_PWR_3W 3
#define AMA_VCONN_PWR_4W 4
#define AMA_VCONN_PWR_5W 5
#define AMA_VCONN_PWR_6W 6
#define AMA_USBSS_U2_ONLY 0
#define AMA_USBSS_U31_GEN1 1
#define AMA_USBSS_U31_GEN2 2
#define AMA_USBSS_BBONLY 3
/*
* SVDM Discover SVIDs request -> response
*
* Request is properly formatted VDM Header with discover SVIDs command.
* Response is a set of SVIDs of all all supported SVIDs with all zero's to
* mark the end of SVIDs. If more than 12 SVIDs are supported command SHOULD be
* repeated.
*/
#define VDO_SVID(svid0, svid1) (((svid0) & 0xffff) << 16 | ((svid1) & 0xffff))
#define PD_VDO_SVID_SVID0(vdo) ((vdo) >> 16)
#define PD_VDO_SVID_SVID1(vdo) ((vdo) & 0xffff)
/* USB-IF SIDs */
#define USB_SID_PD 0xff00 /* power delivery */
#define USB_SID_DISPLAYPORT 0xff01
#define USB_SID_MHL 0xff02 /* Mobile High-Definition Link */
/* VDM command timeouts (in ms) */
#define PD_T_VDM_UNSTRUCTURED 500
#define PD_T_VDM_BUSY 100
#define PD_T_VDM_WAIT_MODE_E 100
#define PD_T_VDM_SNDR_RSP 30
#define PD_T_VDM_E_MODE 25
#define PD_T_VDM_RCVR_RSP 15
#endif /* __LINUX_USB_PD_VDO_H */
/*
* Copyright 2015-2017 Google, Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* USB Power Delivery protocol stack.
*/
#include <linux/completion.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/sched/clock.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/usb/typec.h>
#include <linux/workqueue.h>
#include "pd.h"
#include "pd_vdo.h"
#include "pd_bdo.h"
#include "tcpm.h"
#define FOREACH_STATE(S) \
S(INVALID_STATE), \
S(DRP_TOGGLING), \
S(SRC_UNATTACHED), \
S(SRC_ATTACH_WAIT), \
S(SRC_ATTACHED), \
S(SRC_STARTUP), \
S(SRC_SEND_CAPABILITIES), \
S(SRC_NEGOTIATE_CAPABILITIES), \
S(SRC_TRANSITION_SUPPLY), \
S(SRC_READY), \
S(SRC_WAIT_NEW_CAPABILITIES), \
\
S(SNK_UNATTACHED), \
S(SNK_ATTACH_WAIT), \
S(SNK_DEBOUNCED), \
S(SNK_ATTACHED), \
S(SNK_STARTUP), \
S(SNK_DISCOVERY), \
S(SNK_DISCOVERY_DEBOUNCE), \
S(SNK_DISCOVERY_DEBOUNCE_DONE), \
S(SNK_WAIT_CAPABILITIES), \
S(SNK_NEGOTIATE_CAPABILITIES), \
S(SNK_TRANSITION_SINK), \
S(SNK_TRANSITION_SINK_VBUS), \
S(SNK_READY), \
\
S(ACC_UNATTACHED), \
S(DEBUG_ACC_ATTACHED), \
S(AUDIO_ACC_ATTACHED), \
S(AUDIO_ACC_DEBOUNCE), \
\
S(HARD_RESET_SEND), \
S(HARD_RESET_START), \
S(SRC_HARD_RESET_VBUS_OFF), \
S(SRC_HARD_RESET_VBUS_ON), \
S(SNK_HARD_RESET_SINK_OFF), \
S(SNK_HARD_RESET_WAIT_VBUS), \
S(SNK_HARD_RESET_SINK_ON), \
\
S(SOFT_RESET), \
S(SOFT_RESET_SEND), \
\
S(DR_SWAP_ACCEPT), \
S(DR_SWAP_SEND), \
S(DR_SWAP_SEND_TIMEOUT), \
S(DR_SWAP_CANCEL), \
S(DR_SWAP_CHANGE_DR), \
\
S(PR_SWAP_ACCEPT), \
S(PR_SWAP_SEND), \
S(PR_SWAP_SEND_TIMEOUT), \
S(PR_SWAP_CANCEL), \
S(PR_SWAP_START), \
S(PR_SWAP_SRC_SNK_TRANSITION_OFF), \
S(PR_SWAP_SRC_SNK_SOURCE_OFF), \
S(PR_SWAP_SRC_SNK_SINK_ON), \
S(PR_SWAP_SNK_SRC_SINK_OFF), \
S(PR_SWAP_SNK_SRC_SOURCE_ON), \
\
S(VCONN_SWAP_ACCEPT), \
S(VCONN_SWAP_SEND), \
S(VCONN_SWAP_SEND_TIMEOUT), \
S(VCONN_SWAP_CANCEL), \
S(VCONN_SWAP_START), \
S(VCONN_SWAP_WAIT_FOR_VCONN), \
S(VCONN_SWAP_TURN_ON_VCONN), \
S(VCONN_SWAP_TURN_OFF_VCONN), \
\
S(SNK_TRY), \
S(SNK_TRY_WAIT), \
S(SRC_TRYWAIT), \
S(SRC_TRYWAIT_UNATTACHED), \
\
S(SRC_TRY), \
S(SRC_TRY_DEBOUNCE), \
S(SNK_TRYWAIT), \
S(SNK_TRYWAIT_DEBOUNCE), \
S(SNK_TRYWAIT_VBUS), \
S(BIST_RX), \
\
S(ERROR_RECOVERY), \
S(ERROR_RECOVERY_WAIT_OFF)
#define GENERATE_ENUM(e) e
#define GENERATE_STRING(s) #s
enum tcpm_state {
FOREACH_STATE(GENERATE_ENUM)
};
static const char * const tcpm_states[] = {
FOREACH_STATE(GENERATE_STRING)
};
enum vdm_states {
VDM_STATE_ERR_BUSY = -3,
VDM_STATE_ERR_SEND = -2,
VDM_STATE_ERR_TMOUT = -1,
VDM_STATE_DONE = 0,
/* Anything >0 represents an active state */
VDM_STATE_READY = 1,
VDM_STATE_BUSY = 2,
VDM_STATE_WAIT_RSP_BUSY = 3,
};
enum pd_msg_request {
PD_MSG_NONE = 0,
PD_MSG_CTRL_REJECT,
PD_MSG_CTRL_WAIT,
PD_MSG_DATA_SINK_CAP,
PD_MSG_DATA_SOURCE_CAP,
};
/* Events from low level driver */
#define TCPM_CC_EVENT BIT(0)
#define TCPM_VBUS_EVENT BIT(1)
#define TCPM_RESET_EVENT BIT(2)
#define LOG_BUFFER_ENTRIES 1024
#define LOG_BUFFER_ENTRY_SIZE 128
/* Alternate mode support */
#define SVID_DISCOVERY_MAX 16
struct pd_mode_data {
int svid_index; /* current SVID index */
int nsvids;
u16 svids[SVID_DISCOVERY_MAX];
int altmodes; /* number of alternate modes */
struct typec_altmode_desc altmode_desc[SVID_DISCOVERY_MAX];
};
struct tcpm_port {
struct device *dev;
struct mutex lock; /* tcpm state machine lock */
struct workqueue_struct *wq;
struct typec_capability typec_caps;
struct typec_port *typec_port;
struct tcpc_dev *tcpc;
enum typec_role vconn_role;
enum typec_role pwr_role;
enum typec_data_role data_role;
enum typec_pwr_opmode pwr_opmode;
struct usb_pd_identity partner_ident;
struct typec_partner_desc partner_desc;
struct typec_partner *partner;
enum typec_cc_status cc_req;
enum typec_cc_status cc1;
enum typec_cc_status cc2;
enum typec_cc_polarity polarity;
bool attached;
bool connected;
bool vbus_present;
bool vbus_never_low;
bool vbus_source;
bool vbus_charge;
bool send_discover;
bool op_vsafe5v;
int try_role;
int try_snk_count;
int try_src_count;
enum pd_msg_request queued_message;
enum tcpm_state enter_state;
enum tcpm_state prev_state;
enum tcpm_state state;
enum tcpm_state delayed_state;
unsigned long delayed_runtime;
unsigned long delay_ms;
spinlock_t pd_event_lock;
u32 pd_events;
struct work_struct event_work;
struct delayed_work state_machine;
struct delayed_work vdm_state_machine;
bool state_machine_running;
struct completion tx_complete;
enum tcpm_transmit_status tx_status;
struct mutex swap_lock; /* swap command lock */
bool swap_pending;
struct completion swap_complete;
int swap_status;
unsigned int message_id;
unsigned int caps_count;
unsigned int hard_reset_count;
bool pd_capable;
bool explicit_contract;
/* Partner capabilities/requests */
u32 sink_request;
u32 source_caps[PDO_MAX_OBJECTS];
unsigned int nr_source_caps;
u32 sink_caps[PDO_MAX_OBJECTS];
unsigned int nr_sink_caps;
/* Local capabilities */
u32 src_pdo[PDO_MAX_OBJECTS];
unsigned int nr_src_pdo;
u32 snk_pdo[PDO_MAX_OBJECTS];
unsigned int nr_snk_pdo;
unsigned int max_snk_mv;
unsigned int max_snk_ma;
unsigned int max_snk_mw;
unsigned int operating_snk_mw;
/* Requested current / voltage */
u32 current_limit;
u32 supply_voltage;
u32 bist_request;
/* PD state for Vendor Defined Messages */
enum vdm_states vdm_state;
u32 vdm_retries;
/* next Vendor Defined Message to send */
u32 vdo_data[VDO_MAX_SIZE];
u8 vdo_count;
/* VDO to retry if UFP responder replied busy */
u32 vdo_retry;
/* Alternate mode data */
struct pd_mode_data mode_data;
struct typec_altmode *partner_altmode[SVID_DISCOVERY_MAX];
struct typec_altmode *port_altmode[SVID_DISCOVERY_MAX];
#ifdef CONFIG_DEBUG_FS
struct dentry *dentry;
struct mutex logbuffer_lock; /* log buffer access lock */
int logbuffer_head;
int logbuffer_tail;
u8 *logbuffer[LOG_BUFFER_ENTRIES];
#endif
};
struct pd_rx_event {
struct work_struct work;
struct tcpm_port *port;
struct pd_message msg;
};
#define tcpm_cc_is_sink(cc) \
((cc) == TYPEC_CC_RP_DEF || (cc) == TYPEC_CC_RP_1_5 || \
(cc) == TYPEC_CC_RP_3_0)
#define tcpm_port_is_sink(port) \
((tcpm_cc_is_sink((port)->cc1) && !tcpm_cc_is_sink((port)->cc2)) || \
(tcpm_cc_is_sink((port)->cc2) && !tcpm_cc_is_sink((port)->cc1)))
#define tcpm_cc_is_source(cc) ((cc) == TYPEC_CC_RD)
#define tcpm_cc_is_audio(cc) ((cc) == TYPEC_CC_RA)
#define tcpm_cc_is_open(cc) ((cc) == TYPEC_CC_OPEN)
#define tcpm_port_is_source(port) \
((tcpm_cc_is_source((port)->cc1) && \
!tcpm_cc_is_source((port)->cc2)) || \
(tcpm_cc_is_source((port)->cc2) && \
!tcpm_cc_is_source((port)->cc1)))
#define tcpm_port_is_debug(port) \
(tcpm_cc_is_source((port)->cc1) && tcpm_cc_is_source((port)->cc2))
#define tcpm_port_is_audio(port) \
(tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_audio((port)->cc2))
#define tcpm_port_is_audio_detached(port) \
((tcpm_cc_is_audio((port)->cc1) && tcpm_cc_is_open((port)->cc2)) || \
(tcpm_cc_is_audio((port)->cc2) && tcpm_cc_is_open((port)->cc1)))
#define tcpm_try_snk(port) \
((port)->try_snk_count == 0 && (port)->try_role == TYPEC_SINK)
#define tcpm_try_src(port) \
((port)->try_src_count == 0 && (port)->try_role == TYPEC_SOURCE)
static enum tcpm_state tcpm_default_state(struct tcpm_port *port)
{
if (port->try_role == TYPEC_SINK)
return SNK_UNATTACHED;
else if (port->try_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
else if (port->tcpc->config->default_role == TYPEC_SINK)
return SNK_UNATTACHED;
return SRC_UNATTACHED;
}
static inline
struct tcpm_port *typec_cap_to_tcpm(const struct typec_capability *cap)
{
return container_of(cap, struct tcpm_port, typec_caps);
}
static bool tcpm_port_is_disconnected(struct tcpm_port *port)
{
return (!port->attached && port->cc1 == TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN) ||
(port->attached && ((port->polarity == TYPEC_POLARITY_CC1 &&
port->cc1 == TYPEC_CC_OPEN) ||
(port->polarity == TYPEC_POLARITY_CC2 &&
port->cc2 == TYPEC_CC_OPEN)));
}
/*
* Logging
*/
#ifdef CONFIG_DEBUG_FS
static bool tcpm_log_full(struct tcpm_port *port)
{
return port->logbuffer_tail ==
(port->logbuffer_head + 1) % LOG_BUFFER_ENTRIES;
}
static void _tcpm_log(struct tcpm_port *port, const char *fmt, va_list args)
{
char tmpbuffer[LOG_BUFFER_ENTRY_SIZE];
u64 ts_nsec = local_clock();
unsigned long rem_nsec;
if (!port->logbuffer[port->logbuffer_head]) {
port->logbuffer[port->logbuffer_head] =
kzalloc(LOG_BUFFER_ENTRY_SIZE, GFP_KERNEL);
if (!port->logbuffer[port->logbuffer_head])
return;
}
vsnprintf(tmpbuffer, sizeof(tmpbuffer), fmt, args);
mutex_lock(&port->logbuffer_lock);
if (tcpm_log_full(port)) {
port->logbuffer_head = max(port->logbuffer_head - 1, 0);
strcpy(tmpbuffer, "overflow");
}
if (port->logbuffer_head < 0 ||
port->logbuffer_head >= LOG_BUFFER_ENTRIES) {
dev_warn(port->dev,
"Bad log buffer index %d\n", port->logbuffer_head);
goto abort;
}
if (!port->logbuffer[port->logbuffer_head]) {
dev_warn(port->dev,
"Log buffer index %d is NULL\n", port->logbuffer_head);
goto abort;
}
rem_nsec = do_div(ts_nsec, 1000000000);
scnprintf(port->logbuffer[port->logbuffer_head],
LOG_BUFFER_ENTRY_SIZE, "[%5lu.%06lu] %s",
(unsigned long)ts_nsec, rem_nsec / 1000,
tmpbuffer);
port->logbuffer_head = (port->logbuffer_head + 1) % LOG_BUFFER_ENTRIES;
abort:
mutex_unlock(&port->logbuffer_lock);
}
static void tcpm_log(struct tcpm_port *port, const char *fmt, ...)
{
va_list args;
/* Do not log while disconnected and unattached */
if (tcpm_port_is_disconnected(port) &&
(port->state == SRC_UNATTACHED || port->state == SNK_UNATTACHED ||
port->state == DRP_TOGGLING))
return;
va_start(args, fmt);
_tcpm_log(port, fmt, args);
va_end(args);
}
static void tcpm_log_force(struct tcpm_port *port, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
_tcpm_log(port, fmt, args);
va_end(args);
}
static void tcpm_log_source_caps(struct tcpm_port *port)
{
int i;
for (i = 0; i < port->nr_source_caps; i++) {
u32 pdo = port->source_caps[i];
enum pd_pdo_type type = pdo_type(pdo);
char msg[64];
switch (type) {
case PDO_TYPE_FIXED:
scnprintf(msg, sizeof(msg),
"%u mV, %u mA [%s%s%s%s%s%s]",
pdo_fixed_voltage(pdo),
pdo_max_current(pdo),
(pdo & PDO_FIXED_DUAL_ROLE) ?
"R" : "",
(pdo & PDO_FIXED_SUSPEND) ?
"S" : "",
(pdo & PDO_FIXED_HIGHER_CAP) ?
"H" : "",
(pdo & PDO_FIXED_USB_COMM) ?
"U" : "",
(pdo & PDO_FIXED_DATA_SWAP) ?
"D" : "",
(pdo & PDO_FIXED_EXTPOWER) ?
"E" : "");
break;
case PDO_TYPE_VAR:
scnprintf(msg, sizeof(msg),
"%u-%u mV, %u mA",
pdo_min_voltage(pdo),
pdo_max_voltage(pdo),
pdo_max_current(pdo));
break;
case PDO_TYPE_BATT:
scnprintf(msg, sizeof(msg),
"%u-%u mV, %u mW",
pdo_min_voltage(pdo),
pdo_max_voltage(pdo),
pdo_max_power(pdo));
break;
default:
strcpy(msg, "undefined");
break;
}
tcpm_log(port, " PDO %d: type %d, %s",
i, type, msg);
}
}
static int tcpm_seq_show(struct seq_file *s, void *v)
{
struct tcpm_port *port = (struct tcpm_port *)s->private;
int tail;
mutex_lock(&port->logbuffer_lock);
tail = port->logbuffer_tail;
while (tail != port->logbuffer_head) {
seq_printf(s, "%s\n", port->logbuffer[tail]);
tail = (tail + 1) % LOG_BUFFER_ENTRIES;
}
if (!seq_has_overflowed(s))
port->logbuffer_tail = tail;
mutex_unlock(&port->logbuffer_lock);
return 0;
}
static int tcpm_debug_open(struct inode *inode, struct file *file)
{
return single_open(file, tcpm_seq_show, inode->i_private);
}
static const struct file_operations tcpm_debug_operations = {
.open = tcpm_debug_open,
.llseek = seq_lseek,
.read = seq_read,
.release = single_release,
};
static struct dentry *rootdir;
static int tcpm_debugfs_init(struct tcpm_port *port)
{
mutex_init(&port->logbuffer_lock);
/* /sys/kernel/debug/tcpm/usbcX */
if (!rootdir) {
rootdir = debugfs_create_dir("tcpm", NULL);
if (!rootdir)
return -ENOMEM;
}
port->dentry = debugfs_create_file(dev_name(port->dev),
S_IFREG | 0444, rootdir,
port, &tcpm_debug_operations);
return 0;
}
static void tcpm_debugfs_exit(struct tcpm_port *port)
{
debugfs_remove(port->dentry);
}
#else
static void tcpm_log(const struct tcpm_port *port, const char *fmt, ...) { }
static void tcpm_log_force(struct tcpm_port *port, const char *fmt, ...) { }
static void tcpm_log_source_caps(struct tcpm_port *port) { }
static int tcpm_debugfs_init(const struct tcpm_port *port) { return 0; }
static void tcpm_debugfs_exit(const struct tcpm_port *port) { }
#endif
static int tcpm_pd_transmit(struct tcpm_port *port,
enum tcpm_transmit_type type,
const struct pd_message *msg)
{
unsigned long timeout;
int ret;
if (msg)
tcpm_log(port, "PD TX, header: %#x", le16_to_cpu(msg->header));
else
tcpm_log(port, "PD TX, type: %#x", type);
reinit_completion(&port->tx_complete);
ret = port->tcpc->pd_transmit(port->tcpc, type, msg);
if (ret < 0)
return ret;
mutex_unlock(&port->lock);
timeout = wait_for_completion_timeout(&port->tx_complete,
msecs_to_jiffies(PD_T_TCPC_TX_TIMEOUT));
mutex_lock(&port->lock);
if (!timeout)
return -ETIMEDOUT;
switch (port->tx_status) {
case TCPC_TX_SUCCESS:
port->message_id = (port->message_id + 1) & PD_HEADER_ID_MASK;
return 0;
case TCPC_TX_DISCARDED:
return -EAGAIN;
case TCPC_TX_FAILED:
default:
return -EIO;
}
}
void tcpm_pd_transmit_complete(struct tcpm_port *port,
enum tcpm_transmit_status status)
{
tcpm_log(port, "PD TX complete, status: %u", status);
port->tx_status = status;
complete(&port->tx_complete);
}
EXPORT_SYMBOL_GPL(tcpm_pd_transmit_complete);
static int tcpm_mux_set(struct tcpm_port *port, enum tcpc_mux_mode mode,
enum tcpc_usb_switch config)
{
int ret = 0;
tcpm_log(port, "Requesting mux mode %d, config %d, polarity %d",
mode, config, port->polarity);
if (port->tcpc->mux)
ret = port->tcpc->mux->set(port->tcpc->mux, mode, config,
port->polarity);
return ret;
}
static int tcpm_set_polarity(struct tcpm_port *port,
enum typec_cc_polarity polarity)
{
int ret;
tcpm_log(port, "polarity %d", polarity);
ret = port->tcpc->set_polarity(port->tcpc, polarity);
if (ret < 0)
return ret;
port->polarity = polarity;
return 0;
}
static int tcpm_set_vconn(struct tcpm_port *port, bool enable)
{
int ret;
tcpm_log(port, "vconn:=%d", enable);
ret = port->tcpc->set_vconn(port->tcpc, enable);
if (!ret) {
port->vconn_role = enable ? TYPEC_SOURCE : TYPEC_SINK;
typec_set_vconn_role(port->typec_port, port->vconn_role);
}
return ret;
}
static u32 tcpm_get_current_limit(struct tcpm_port *port)
{
enum typec_cc_status cc;
u32 limit;
cc = port->polarity ? port->cc2 : port->cc1;
switch (cc) {
case TYPEC_CC_RP_1_5:
limit = 1500;
break;
case TYPEC_CC_RP_3_0:
limit = 3000;
break;
case TYPEC_CC_RP_DEF:
default:
limit = 0;
break;
}
return limit;
}
static int tcpm_set_current_limit(struct tcpm_port *port, u32 max_ma, u32 mv)
{
int ret = -EOPNOTSUPP;
tcpm_log(port, "Setting voltage/current limit %u mV %u mA", mv, max_ma);
if (port->tcpc->set_current_limit)
ret = port->tcpc->set_current_limit(port->tcpc, max_ma, mv);
return ret;
}
/*
* Determine RP value to set based on maximum current supported
* by a port if configured as source.
* Returns CC value to report to link partner.
*/
static enum typec_cc_status tcpm_rp_cc(struct tcpm_port *port)
{
const u32 *src_pdo = port->src_pdo;
int nr_pdo = port->nr_src_pdo;
int i;
/*
* Search for first entry with matching voltage.
* It should report the maximum supported current.
*/
for (i = 0; i < nr_pdo; i++) {
const u32 pdo = src_pdo[i];
if (pdo_type(pdo) == PDO_TYPE_FIXED &&
pdo_fixed_voltage(pdo) == 5000) {
unsigned int curr = pdo_max_current(pdo);
if (curr >= 3000)
return TYPEC_CC_RP_3_0;
else if (curr >= 1500)
return TYPEC_CC_RP_1_5;
return TYPEC_CC_RP_DEF;
}
}
return TYPEC_CC_RP_DEF;
}
static int tcpm_set_attached_state(struct tcpm_port *port, bool attached)
{
return port->tcpc->set_roles(port->tcpc, attached, port->pwr_role,
port->data_role);
}
static int tcpm_set_roles(struct tcpm_port *port, bool attached,
enum typec_role role, enum typec_data_role data)
{
int ret;
if (data == TYPEC_HOST)
ret = tcpm_mux_set(port, TYPEC_MUX_USB,
TCPC_USB_SWITCH_CONNECT);
else
ret = tcpm_mux_set(port, TYPEC_MUX_NONE,
TCPC_USB_SWITCH_DISCONNECT);
if (ret < 0)
return ret;
ret = port->tcpc->set_roles(port->tcpc, attached, role, data);
if (ret < 0)
return ret;
port->pwr_role = role;
port->data_role = data;
typec_set_data_role(port->typec_port, data);
typec_set_pwr_role(port->typec_port, role);
return 0;
}
static int tcpm_set_pwr_role(struct tcpm_port *port, enum typec_role role)
{
int ret;
ret = port->tcpc->set_roles(port->tcpc, true, role,
port->data_role);
if (ret < 0)
return ret;
port->pwr_role = role;
typec_set_pwr_role(port->typec_port, role);
return 0;
}
static int tcpm_pd_send_source_caps(struct tcpm_port *port)
{
struct pd_message msg;
int i;
memset(&msg, 0, sizeof(msg));
if (!port->nr_src_pdo) {
/* No source capabilities defined, sink only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SOURCE_CAP,
port->pwr_role,
port->data_role,
port->message_id,
port->nr_src_pdo);
}
for (i = 0; i < port->nr_src_pdo; i++)
msg.payload[i] = cpu_to_le32(port->src_pdo[i]);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static int tcpm_pd_send_sink_caps(struct tcpm_port *port)
{
struct pd_message msg;
int i;
memset(&msg, 0, sizeof(msg));
if (!port->nr_snk_pdo) {
/* No sink capabilities defined, source only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SINK_CAP,
port->pwr_role,
port->data_role,
port->message_id,
port->nr_snk_pdo);
}
for (i = 0; i < port->nr_snk_pdo; i++)
msg.payload[i] = cpu_to_le32(port->snk_pdo[i]);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static void tcpm_set_state(struct tcpm_port *port, enum tcpm_state state,
unsigned int delay_ms)
{
if (delay_ms) {
tcpm_log(port, "pending state change %s -> %s @ %u ms",
tcpm_states[port->state], tcpm_states[state],
delay_ms);
port->delayed_state = state;
mod_delayed_work(port->wq, &port->state_machine,
msecs_to_jiffies(delay_ms));
port->delayed_runtime = jiffies + msecs_to_jiffies(delay_ms);
port->delay_ms = delay_ms;
} else {
tcpm_log(port, "state change %s -> %s",
tcpm_states[port->state], tcpm_states[state]);
port->delayed_state = INVALID_STATE;
port->prev_state = port->state;
port->state = state;
/*
* Don't re-queue the state machine work item if we're currently
* in the state machine and we're immediately changing states.
* tcpm_state_machine_work() will continue running the state
* machine.
*/
if (!port->state_machine_running)
mod_delayed_work(port->wq, &port->state_machine, 0);
}
}
static void tcpm_set_state_cond(struct tcpm_port *port, enum tcpm_state state,
unsigned int delay_ms)
{
if (port->enter_state == port->state)
tcpm_set_state(port, state, delay_ms);
else
tcpm_log(port,
"skipped %sstate change %s -> %s [%u ms], context state %s",
delay_ms ? "delayed " : "",
tcpm_states[port->state], tcpm_states[state],
delay_ms, tcpm_states[port->enter_state]);
}
static void tcpm_queue_message(struct tcpm_port *port,
enum pd_msg_request message)
{
port->queued_message = message;
mod_delayed_work(port->wq, &port->state_machine, 0);
}
/*
* VDM/VDO handling functions
*/
static void tcpm_queue_vdm(struct tcpm_port *port, const u32 header,
const u32 *data, int cnt)
{
port->vdo_count = cnt + 1;
port->vdo_data[0] = header;
memcpy(&port->vdo_data[1], data, sizeof(u32) * cnt);
/* Set ready, vdm state machine will actually send */
port->vdm_retries = 0;
port->vdm_state = VDM_STATE_READY;
}
static void svdm_consume_identity(struct tcpm_port *port, const __le32 *payload,
int cnt)
{
u32 vdo = le32_to_cpu(payload[VDO_INDEX_IDH]);
u32 product = le32_to_cpu(payload[VDO_INDEX_PRODUCT]);
memset(&port->mode_data, 0, sizeof(port->mode_data));
#if 0 /* Not really a match */
switch (PD_IDH_PTYPE(vdo)) {
case IDH_PTYPE_UNDEF:
port->partner.type = TYPEC_PARTNER_NONE; /* no longer exists */
break;
case IDH_PTYPE_HUB:
break;
case IDH_PTYPE_PERIPH:
break;
case IDH_PTYPE_PCABLE:
break;
case IDH_PTYPE_ACABLE:
break;
case IDH_PTYPE_AMA:
port->partner.type = TYPEC_PARTNER_ALTMODE;
break;
default:
break;
}
#endif
port->partner_ident.id_header = vdo;
port->partner_ident.cert_stat = le32_to_cpu(payload[VDO_INDEX_CSTAT]);
port->partner_ident.product = product;
typec_partner_set_identity(port->partner);
tcpm_log(port, "Identity: %04x:%04x.%04x",
PD_IDH_VID(vdo),
PD_PRODUCT_PID(product), product & 0xffff);
}
static bool svdm_consume_svids(struct tcpm_port *port, const __le32 *payload,
int cnt)
{
struct pd_mode_data *pmdata = &port->mode_data;
int i;
for (i = 1; i < cnt; i++) {
u32 p = le32_to_cpu(payload[i]);
u16 svid;
svid = (p >> 16) & 0xffff;
if (!svid)
return false;
if (pmdata->nsvids >= SVID_DISCOVERY_MAX)
goto abort;
pmdata->svids[pmdata->nsvids++] = svid;
tcpm_log(port, "SVID %d: 0x%x", pmdata->nsvids, svid);
svid = p & 0xffff;
if (!svid)
return false;
if (pmdata->nsvids >= SVID_DISCOVERY_MAX)
goto abort;
pmdata->svids[pmdata->nsvids++] = svid;
tcpm_log(port, "SVID %d: 0x%x", pmdata->nsvids, svid);
}
return true;
abort:
tcpm_log(port, "SVID_DISCOVERY_MAX(%d) too low!", SVID_DISCOVERY_MAX);
return false;
}
static void svdm_consume_modes(struct tcpm_port *port, const __le32 *payload,
int cnt)
{
struct pd_mode_data *pmdata = &port->mode_data;
struct typec_altmode_desc *paltmode;
struct typec_mode_desc *pmode;
int i;
if (pmdata->altmodes >= ARRAY_SIZE(port->partner_altmode)) {
/* Already logged in svdm_consume_svids() */
return;
}
paltmode = &pmdata->altmode_desc[pmdata->altmodes];
memset(paltmode, 0, sizeof(*paltmode));
paltmode->svid = pmdata->svids[pmdata->svid_index];
tcpm_log(port, " Alternate mode %d: SVID 0x%04x",
pmdata->altmodes, paltmode->svid);
for (i = 1; i < cnt && paltmode->n_modes < ALTMODE_MAX_MODES; i++) {
pmode = &paltmode->modes[paltmode->n_modes];
memset(pmode, 0, sizeof(*pmode));
pmode->vdo = le32_to_cpu(payload[i]);
pmode->index = i - 1;
paltmode->n_modes++;
tcpm_log(port, " VDO %d: 0x%08x",
pmode->index, pmode->vdo);
}
port->partner_altmode[pmdata->altmodes] =
typec_partner_register_altmode(port->partner, paltmode);
if (port->partner_altmode[pmdata->altmodes] == NULL) {
tcpm_log(port,
"Failed to register alternate modes for SVID 0x%04x",
paltmode->svid);
return;
}
pmdata->altmodes++;
}
#define supports_modal(port) PD_IDH_MODAL_SUPP((port)->partner_ident.id_header)
static int tcpm_pd_svdm(struct tcpm_port *port, const __le32 *payload, int cnt,
u32 *response)
{
u32 p0 = le32_to_cpu(payload[0]);
int cmd_type = PD_VDO_CMDT(p0);
int cmd = PD_VDO_CMD(p0);
struct pd_mode_data *modep;
int rlen = 0;
u16 svid;
tcpm_log(port, "Rx VDM cmd 0x%x type %d cmd %d len %d",
p0, cmd_type, cmd, cnt);
modep = &port->mode_data;
switch (cmd_type) {
case CMDT_INIT:
switch (cmd) {
case CMD_DISCOVER_IDENT:
break;
case CMD_DISCOVER_SVID:
break;
case CMD_DISCOVER_MODES:
break;
case CMD_ENTER_MODE:
break;
case CMD_EXIT_MODE:
break;
case CMD_ATTENTION:
break;
default:
break;
}
if (rlen >= 1) {
response[0] = p0 | VDO_CMDT(CMDT_RSP_ACK);
} else if (rlen == 0) {
response[0] = p0 | VDO_CMDT(CMDT_RSP_NAK);
rlen = 1;
} else {
response[0] = p0 | VDO_CMDT(CMDT_RSP_BUSY);
rlen = 1;
}
break;
case CMDT_RSP_ACK:
/* silently drop message if we are not connected */
if (!port->partner)
break;
switch (cmd) {
case CMD_DISCOVER_IDENT:
/* 6.4.4.3.1 */
svdm_consume_identity(port, payload, cnt);
response[0] = VDO(USB_SID_PD, 1, CMD_DISCOVER_SVID);
rlen = 1;
break;
case CMD_DISCOVER_SVID:
/* 6.4.4.3.2 */
if (svdm_consume_svids(port, payload, cnt)) {
response[0] = VDO(USB_SID_PD, 1,
CMD_DISCOVER_SVID);
rlen = 1;
} else if (modep->nsvids && supports_modal(port)) {
response[0] = VDO(modep->svids[0], 1,
CMD_DISCOVER_MODES);
rlen = 1;
}
break;
case CMD_DISCOVER_MODES:
/* 6.4.4.3.3 */
svdm_consume_modes(port, payload, cnt);
modep->svid_index++;
if (modep->svid_index < modep->nsvids) {
svid = modep->svids[modep->svid_index];
response[0] = VDO(svid, 1, CMD_DISCOVER_MODES);
rlen = 1;
} else {
#if 0
response[0] = pd_dfp_enter_mode(port, 0, 0);
if (response[0])
rlen = 1;
#endif
}
break;
case CMD_ENTER_MODE:
break;
default:
break;
}
break;
default:
break;
}
return rlen;
}
static void tcpm_handle_vdm_request(struct tcpm_port *port,
const __le32 *payload, int cnt)
{
int rlen = 0;
u32 response[8] = { };
u32 p0 = le32_to_cpu(payload[0]);
if (port->vdm_state == VDM_STATE_BUSY) {
/* If UFP responded busy retry after timeout */
if (PD_VDO_CMDT(p0) == CMDT_RSP_BUSY) {
port->vdm_state = VDM_STATE_WAIT_RSP_BUSY;
port->vdo_retry = (p0 & ~VDO_CMDT_MASK) |
CMDT_INIT;
mod_delayed_work(port->wq, &port->vdm_state_machine,
msecs_to_jiffies(PD_T_VDM_BUSY));
return;
}
port->vdm_state = VDM_STATE_DONE;
}
if (PD_VDO_SVDM(p0))
rlen = tcpm_pd_svdm(port, payload, cnt, response);
#if 0
else
rlen = tcpm_pd_custom_vdm(port, cnt, payload, response);
#endif
if (rlen > 0) {
tcpm_queue_vdm(port, response[0], &response[1], rlen - 1);
mod_delayed_work(port->wq, &port->vdm_state_machine, 0);
}
}
static void tcpm_send_vdm(struct tcpm_port *port, u32 vid, int cmd,
const u32 *data, int count)
{
u32 header;
if (WARN_ON(count > VDO_MAX_SIZE - 1))
count = VDO_MAX_SIZE - 1;
/* set VDM header with VID & CMD */
header = VDO(vid, ((vid & USB_SID_PD) == USB_SID_PD) ?
1 : (PD_VDO_CMD(cmd) <= CMD_ATTENTION), cmd);
tcpm_queue_vdm(port, header, data, count);
mod_delayed_work(port->wq, &port->vdm_state_machine, 0);
}
static unsigned int vdm_ready_timeout(u32 vdm_hdr)
{
unsigned int timeout;
int cmd = PD_VDO_CMD(vdm_hdr);
/* its not a structured VDM command */
if (!PD_VDO_SVDM(vdm_hdr))
return PD_T_VDM_UNSTRUCTURED;
switch (PD_VDO_CMDT(vdm_hdr)) {
case CMDT_INIT:
if (cmd == CMD_ENTER_MODE || cmd == CMD_EXIT_MODE)
timeout = PD_T_VDM_WAIT_MODE_E;
else
timeout = PD_T_VDM_SNDR_RSP;
break;
default:
if (cmd == CMD_ENTER_MODE || cmd == CMD_EXIT_MODE)
timeout = PD_T_VDM_E_MODE;
else
timeout = PD_T_VDM_RCVR_RSP;
break;
}
return timeout;
}
static void vdm_run_state_machine(struct tcpm_port *port)
{
struct pd_message msg;
int i, res;
switch (port->vdm_state) {
case VDM_STATE_READY:
/* Only transmit VDM if attached */
if (!port->attached) {
port->vdm_state = VDM_STATE_ERR_BUSY;
break;
}
/*
* if there's traffic or we're not in PDO ready state don't send
* a VDM.
*/
if (port->state != SRC_READY && port->state != SNK_READY)
break;
/* Prepare and send VDM */
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(PD_DATA_VENDOR_DEF,
port->pwr_role,
port->data_role,
port->message_id, port->vdo_count);
for (i = 0; i < port->vdo_count; i++)
msg.payload[i] = cpu_to_le32(port->vdo_data[i]);
res = tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
if (res < 0) {
port->vdm_state = VDM_STATE_ERR_SEND;
} else {
unsigned long timeout;
port->vdm_retries = 0;
port->vdm_state = VDM_STATE_BUSY;
timeout = vdm_ready_timeout(port->vdo_data[0]);
mod_delayed_work(port->wq, &port->vdm_state_machine,
timeout);
}
break;
case VDM_STATE_WAIT_RSP_BUSY:
port->vdo_data[0] = port->vdo_retry;
port->vdo_count = 1;
port->vdm_state = VDM_STATE_READY;
break;
case VDM_STATE_BUSY:
port->vdm_state = VDM_STATE_ERR_TMOUT;
break;
case VDM_STATE_ERR_SEND:
/*
* A partner which does not support USB PD will not reply,
* so this is not a fatal error. At the same time, some
* devices may not return GoodCRC under some circumstances,
* so we need to retry.
*/
if (port->vdm_retries < 3) {
tcpm_log(port, "VDM Tx error, retry");
port->vdm_retries++;
port->vdm_state = VDM_STATE_READY;
}
break;
default:
break;
}
}
static void vdm_state_machine_work(struct work_struct *work)
{
struct tcpm_port *port = container_of(work, struct tcpm_port,
vdm_state_machine.work);
enum vdm_states prev_state;
mutex_lock(&port->lock);
/*
* Continue running as long as the port is not busy and there was
* a state change.
*/
do {
prev_state = port->vdm_state;
vdm_run_state_machine(port);
} while (port->vdm_state != prev_state &&
port->vdm_state != VDM_STATE_BUSY);
mutex_unlock(&port->lock);
}
/*
* PD (data, control) command handling functions
*/
static void tcpm_pd_data_request(struct tcpm_port *port,
const struct pd_message *msg)
{
enum pd_data_msg_type type = pd_header_type_le(msg->header);
unsigned int cnt = pd_header_cnt_le(msg->header);
unsigned int i;
switch (type) {
case PD_DATA_SOURCE_CAP:
if (port->pwr_role != TYPEC_SINK)
break;
for (i = 0; i < cnt; i++)
port->source_caps[i] = le32_to_cpu(msg->payload[i]);
port->nr_source_caps = cnt;
tcpm_log_source_caps(port);
/*
* This message may be received even if VBUS is not
* present. This is quite unexpected; see USB PD
* specification, sections 8.3.3.6.3.1 and 8.3.3.6.3.2.
* However, at the same time, we must be ready to
* receive this message and respond to it 15ms after
* receiving PS_RDY during power swap operations, no matter
* if VBUS is available or not (USB PD specification,
* section 6.5.9.2).
* So we need to accept the message either way,
* but be prepared to keep waiting for VBUS after it was
* handled.
*/
tcpm_set_state(port, SNK_NEGOTIATE_CAPABILITIES, 0);
break;
case PD_DATA_REQUEST:
if (port->pwr_role != TYPEC_SOURCE ||
cnt != 1) {
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
port->sink_request = le32_to_cpu(msg->payload[0]);
tcpm_set_state(port, SRC_NEGOTIATE_CAPABILITIES, 0);
break;
case PD_DATA_SINK_CAP:
/* We don't do anything with this at the moment... */
for (i = 0; i < cnt; i++)
port->sink_caps[i] = le32_to_cpu(msg->payload[i]);
port->nr_sink_caps = cnt;
break;
case PD_DATA_VENDOR_DEF:
tcpm_handle_vdm_request(port, msg->payload, cnt);
break;
case PD_DATA_BIST:
if (port->state == SRC_READY || port->state == SNK_READY) {
port->bist_request = le32_to_cpu(msg->payload[0]);
tcpm_set_state(port, BIST_RX, 0);
}
break;
default:
tcpm_log(port, "Unhandled data message type %#x", type);
break;
}
}
static void tcpm_pd_ctrl_request(struct tcpm_port *port,
const struct pd_message *msg)
{
enum pd_ctrl_msg_type type = pd_header_type_le(msg->header);
enum tcpm_state next_state;
switch (type) {
case PD_CTRL_GOOD_CRC:
case PD_CTRL_PING:
break;
case PD_CTRL_GET_SOURCE_CAP:
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_queue_message(port, PD_MSG_DATA_SOURCE_CAP);
break;
default:
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
break;
case PD_CTRL_GET_SINK_CAP:
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_queue_message(port, PD_MSG_DATA_SINK_CAP);
break;
default:
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
break;
case PD_CTRL_GOTO_MIN:
break;
case PD_CTRL_PS_RDY:
switch (port->state) {
case SNK_TRANSITION_SINK:
if (port->vbus_present) {
tcpm_set_current_limit(port,
port->current_limit,
port->supply_voltage);
tcpm_set_state(port, SNK_READY, 0);
} else {
/*
* Seen after power swap. Keep waiting for VBUS
* in a transitional state.
*/
tcpm_set_state(port,
SNK_TRANSITION_SINK_VBUS, 0);
}
break;
case PR_SWAP_SRC_SNK_SOURCE_OFF:
tcpm_set_state(port, PR_SWAP_SRC_SNK_SINK_ON, 0);
break;
case PR_SWAP_SNK_SRC_SINK_OFF:
tcpm_set_state(port, PR_SWAP_SNK_SRC_SOURCE_ON, 0);
break;
case VCONN_SWAP_WAIT_FOR_VCONN:
tcpm_set_state(port, VCONN_SWAP_TURN_OFF_VCONN, 0);
break;
default:
break;
}
break;
case PD_CTRL_REJECT:
case PD_CTRL_WAIT:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
/* USB PD specification, Figure 8-43 */
if (port->explicit_contract)
next_state = SNK_READY;
else
next_state = SNK_WAIT_CAPABILITIES;
tcpm_set_state(port, next_state, 0);
break;
case DR_SWAP_SEND:
port->swap_status = (type == PD_CTRL_WAIT ?
-EAGAIN : -EOPNOTSUPP);
tcpm_set_state(port, DR_SWAP_CANCEL, 0);
break;
case PR_SWAP_SEND:
port->swap_status = (type == PD_CTRL_WAIT ?
-EAGAIN : -EOPNOTSUPP);
tcpm_set_state(port, PR_SWAP_CANCEL, 0);
break;
case VCONN_SWAP_SEND:
port->swap_status = (type == PD_CTRL_WAIT ?
-EAGAIN : -EOPNOTSUPP);
tcpm_set_state(port, VCONN_SWAP_CANCEL, 0);
break;
default:
break;
}
break;
case PD_CTRL_ACCEPT:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
tcpm_set_state(port, SNK_TRANSITION_SINK, 0);
break;
case SOFT_RESET_SEND:
port->message_id = 0;
if (port->pwr_role == TYPEC_SOURCE)
next_state = SRC_SEND_CAPABILITIES;
else
next_state = SNK_WAIT_CAPABILITIES;
tcpm_set_state(port, next_state, 0);
break;
case DR_SWAP_SEND:
tcpm_set_state(port, DR_SWAP_CHANGE_DR, 0);
break;
case PR_SWAP_SEND:
tcpm_set_state(port, PR_SWAP_START, 0);
break;
case VCONN_SWAP_SEND:
tcpm_set_state(port, VCONN_SWAP_START, 0);
break;
default:
break;
}
break;
case PD_CTRL_SOFT_RESET:
tcpm_set_state(port, SOFT_RESET, 0);
break;
case PD_CTRL_DR_SWAP:
if (port->typec_caps.type != TYPEC_PORT_DRP) {
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
/*
* XXX
* 6.3.9: If an alternate mode is active, a request to swap
* alternate modes shall trigger a port reset.
*/
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_set_state(port, DR_SWAP_ACCEPT, 0);
break;
default:
tcpm_queue_message(port, PD_MSG_CTRL_WAIT);
break;
}
break;
case PD_CTRL_PR_SWAP:
if (port->typec_caps.type != TYPEC_PORT_DRP) {
tcpm_queue_message(port, PD_MSG_CTRL_REJECT);
break;
}
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_set_state(port, PR_SWAP_ACCEPT, 0);
break;
default:
tcpm_queue_message(port, PD_MSG_CTRL_WAIT);
break;
}
break;
case PD_CTRL_VCONN_SWAP:
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_set_state(port, VCONN_SWAP_ACCEPT, 0);
break;
default:
tcpm_queue_message(port, PD_MSG_CTRL_WAIT);
break;
}
break;
default:
tcpm_log(port, "Unhandled ctrl message type %#x", type);
break;
}
}
static void tcpm_pd_rx_handler(struct work_struct *work)
{
struct pd_rx_event *event = container_of(work,
struct pd_rx_event, work);
const struct pd_message *msg = &event->msg;
unsigned int cnt = pd_header_cnt_le(msg->header);
struct tcpm_port *port = event->port;
mutex_lock(&port->lock);
tcpm_log(port, "PD RX, header: %#x [%d]", le16_to_cpu(msg->header),
port->attached);
if (port->attached) {
/*
* If both ends believe to be DFP/host, we have a data role
* mismatch.
*/
if (!!(le16_to_cpu(msg->header) & PD_HEADER_DATA_ROLE) ==
(port->data_role == TYPEC_HOST)) {
tcpm_log(port,
"Data role mismatch, initiating error recovery");
tcpm_set_state(port, ERROR_RECOVERY, 0);
} else {
if (cnt)
tcpm_pd_data_request(port, msg);
else
tcpm_pd_ctrl_request(port, msg);
}
}
mutex_unlock(&port->lock);
kfree(event);
}
void tcpm_pd_receive(struct tcpm_port *port, const struct pd_message *msg)
{
struct pd_rx_event *event;
event = kzalloc(sizeof(*event), GFP_ATOMIC);
if (!event)
return;
INIT_WORK(&event->work, tcpm_pd_rx_handler);
event->port = port;
memcpy(&event->msg, msg, sizeof(*msg));
queue_work(port->wq, &event->work);
}
EXPORT_SYMBOL_GPL(tcpm_pd_receive);
static int tcpm_pd_send_control(struct tcpm_port *port,
enum pd_ctrl_msg_type type)
{
struct pd_message msg;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(type, port->pwr_role,
port->data_role,
port->message_id, 0);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
/*
* Send queued message without affecting state.
* Return true if state machine should go back to sleep,
* false otherwise.
*/
static bool tcpm_send_queued_message(struct tcpm_port *port)
{
enum pd_msg_request queued_message;
do {
queued_message = port->queued_message;
port->queued_message = PD_MSG_NONE;
switch (queued_message) {
case PD_MSG_CTRL_WAIT:
tcpm_pd_send_control(port, PD_CTRL_WAIT);
break;
case PD_MSG_CTRL_REJECT:
tcpm_pd_send_control(port, PD_CTRL_REJECT);
break;
case PD_MSG_DATA_SINK_CAP:
tcpm_pd_send_sink_caps(port);
break;
case PD_MSG_DATA_SOURCE_CAP:
tcpm_pd_send_source_caps(port);
break;
default:
break;
}
} while (port->queued_message != PD_MSG_NONE);
if (port->delayed_state != INVALID_STATE) {
if (time_is_after_jiffies(port->delayed_runtime)) {
mod_delayed_work(port->wq, &port->state_machine,
port->delayed_runtime - jiffies);
return true;
}
port->delayed_state = INVALID_STATE;
}
return false;
}
static int tcpm_pd_check_request(struct tcpm_port *port)
{
u32 pdo, rdo = port->sink_request;
unsigned int max, op, pdo_max, index;
enum pd_pdo_type type;
index = rdo_index(rdo);
if (!index || index > port->nr_src_pdo)
return -EINVAL;
pdo = port->src_pdo[index - 1];
type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
case PDO_TYPE_VAR:
max = rdo_max_current(rdo);
op = rdo_op_current(rdo);
pdo_max = pdo_max_current(pdo);
if (op > pdo_max)
return -EINVAL;
if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH))
return -EINVAL;
if (type == PDO_TYPE_FIXED)
tcpm_log(port,
"Requested %u mV, %u mA for %u / %u mA",
pdo_fixed_voltage(pdo), pdo_max, op, max);
else
tcpm_log(port,
"Requested %u -> %u mV, %u mA for %u / %u mA",
pdo_min_voltage(pdo), pdo_max_voltage(pdo),
pdo_max, op, max);
break;
case PDO_TYPE_BATT:
max = rdo_max_power(rdo);
op = rdo_op_power(rdo);
pdo_max = pdo_max_power(pdo);
if (op > pdo_max)
return -EINVAL;
if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH))
return -EINVAL;
tcpm_log(port,
"Requested %u -> %u mV, %u mW for %u / %u mW",
pdo_min_voltage(pdo), pdo_max_voltage(pdo),
pdo_max, op, max);
break;
default:
return -EINVAL;
}
port->op_vsafe5v = index == 1;
return 0;
}
static int tcpm_pd_select_pdo(struct tcpm_port *port)
{
unsigned int i, max_mw = 0, max_mv = 0;
int ret = -EINVAL;
/*
* Select the source PDO providing the most power while staying within
* the board's voltage limits. Prefer PDO providing exp
*/
for (i = 0; i < port->nr_source_caps; i++) {
u32 pdo = port->source_caps[i];
enum pd_pdo_type type = pdo_type(pdo);
unsigned int mv, ma, mw;
if (type == PDO_TYPE_FIXED)
mv = pdo_fixed_voltage(pdo);
else
mv = pdo_min_voltage(pdo);
if (type == PDO_TYPE_BATT) {
mw = pdo_max_power(pdo);
} else {
ma = min(pdo_max_current(pdo),
port->max_snk_ma);
mw = ma * mv / 1000;
}
/* Perfer higher voltages if available */
if ((mw > max_mw || (mw == max_mw && mv > max_mv)) &&
mv <= port->max_snk_mv) {
ret = i;
max_mw = mw;
max_mv = mv;
}
}
return ret;
}
static int tcpm_pd_build_request(struct tcpm_port *port, u32 *rdo)
{
unsigned int mv, ma, mw, flags;
unsigned int max_ma, max_mw;
enum pd_pdo_type type;
int index;
u32 pdo;
index = tcpm_pd_select_pdo(port);
if (index < 0)
return -EINVAL;
pdo = port->source_caps[index];
type = pdo_type(pdo);
if (type == PDO_TYPE_FIXED)
mv = pdo_fixed_voltage(pdo);
else
mv = pdo_min_voltage(pdo);
/* Select maximum available current within the board's power limit */
if (type == PDO_TYPE_BATT) {
mw = pdo_max_power(pdo);
ma = 1000 * min(mw, port->max_snk_mw) / mv;
} else {
ma = min(pdo_max_current(pdo),
1000 * port->max_snk_mw / mv);
}
ma = min(ma, port->max_snk_ma);
/* XXX: Any other flags need to be set? */
flags = 0;
/* Set mismatch bit if offered power is less than operating power */
mw = ma * mv / 1000;
max_ma = ma;
max_mw = mw;
if (mw < port->operating_snk_mw) {
flags |= RDO_CAP_MISMATCH;
max_mw = port->operating_snk_mw;
max_ma = max_mw * 1000 / mv;
}
tcpm_log(port, "cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d",
port->cc_req, port->cc1, port->cc2, port->vbus_source,
port->vconn_role == TYPEC_SOURCE ? "source" : "sink",
port->polarity);
if (type == PDO_TYPE_BATT) {
*rdo = RDO_BATT(index + 1, mw, max_mw, flags);
tcpm_log(port, "Requesting PDO %d: %u mV, %u mW%s",
index, mv, mw,
flags & RDO_CAP_MISMATCH ? " [mismatch]" : "");
} else {
*rdo = RDO_FIXED(index + 1, ma, max_ma, flags);
tcpm_log(port, "Requesting PDO %d: %u mV, %u mA%s",
index, mv, ma,
flags & RDO_CAP_MISMATCH ? " [mismatch]" : "");
}
port->current_limit = ma;
port->supply_voltage = mv;
return 0;
}
static int tcpm_pd_send_request(struct tcpm_port *port)
{
struct pd_message msg;
int ret;
u32 rdo;
ret = tcpm_pd_build_request(port, &rdo);
if (ret < 0)
return ret;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(PD_DATA_REQUEST,
port->pwr_role,
port->data_role,
port->message_id, 1);
msg.payload[0] = cpu_to_le32(rdo);
return tcpm_pd_transmit(port, TCPC_TX_SOP, &msg);
}
static int tcpm_set_vbus(struct tcpm_port *port, bool enable)
{
int ret;
if (enable && port->vbus_charge)
return -EINVAL;
tcpm_log(port, "vbus:=%d charge=%d", enable, port->vbus_charge);
ret = port->tcpc->set_vbus(port->tcpc, enable, port->vbus_charge);
if (ret < 0)
return ret;
port->vbus_source = enable;
return 0;
}
static int tcpm_set_charge(struct tcpm_port *port, bool charge)
{
int ret;
if (charge && port->vbus_source)
return -EINVAL;
if (charge != port->vbus_charge) {
tcpm_log(port, "vbus=%d charge:=%d", port->vbus_source, charge);
ret = port->tcpc->set_vbus(port->tcpc, port->vbus_source,
charge);
if (ret < 0)
return ret;
}
port->vbus_charge = charge;
return 0;
}
static bool tcpm_start_drp_toggling(struct tcpm_port *port)
{
int ret;
if (port->tcpc->start_drp_toggling &&
port->typec_caps.type == TYPEC_PORT_DRP) {
tcpm_log_force(port, "Start DRP toggling");
ret = port->tcpc->start_drp_toggling(port->tcpc,
tcpm_rp_cc(port));
if (!ret)
return true;
}
return false;
}
static void tcpm_set_cc(struct tcpm_port *port, enum typec_cc_status cc)
{
tcpm_log(port, "cc:=%d", cc);
port->cc_req = cc;
port->tcpc->set_cc(port->tcpc, cc);
}
static int tcpm_init_vbus(struct tcpm_port *port)
{
int ret;
ret = port->tcpc->set_vbus(port->tcpc, false, false);
port->vbus_source = false;
port->vbus_charge = false;
return ret;
}
static int tcpm_init_vconn(struct tcpm_port *port)
{
int ret;
ret = port->tcpc->set_vconn(port->tcpc, false);
port->vconn_role = TYPEC_SINK;
return ret;
}
static void tcpm_typec_connect(struct tcpm_port *port)
{
if (!port->connected) {
/* Make sure we don't report stale identity information */
memset(&port->partner_ident, 0, sizeof(port->partner_ident));
port->partner_desc.usb_pd = port->pd_capable;
if (tcpm_port_is_debug(port))
port->partner_desc.accessory = TYPEC_ACCESSORY_DEBUG;
else if (tcpm_port_is_audio(port))
port->partner_desc.accessory = TYPEC_ACCESSORY_AUDIO;
else
port->partner_desc.accessory = TYPEC_ACCESSORY_NONE;
port->partner = typec_register_partner(port->typec_port,
&port->partner_desc);
port->connected = true;
}
}
static int tcpm_src_attach(struct tcpm_port *port)
{
enum typec_cc_polarity polarity =
port->cc2 == TYPEC_CC_RD ? TYPEC_POLARITY_CC2
: TYPEC_POLARITY_CC1;
int ret;
if (port->attached)
return 0;
ret = tcpm_set_polarity(port, polarity);
if (ret < 0)
return ret;
ret = tcpm_set_roles(port, true, TYPEC_SOURCE, TYPEC_HOST);
if (ret < 0)
return ret;
ret = port->tcpc->set_pd_rx(port->tcpc, true);
if (ret < 0)
goto out_disable_mux;
/*
* USB Type-C specification, version 1.2,
* chapter 4.5.2.2.8.1 (Attached.SRC Requirements)
* Enable VCONN only if the non-RD port is set to RA.
*/
if ((polarity == TYPEC_POLARITY_CC1 && port->cc2 == TYPEC_CC_RA) ||
(polarity == TYPEC_POLARITY_CC2 && port->cc1 == TYPEC_CC_RA)) {
ret = tcpm_set_vconn(port, true);
if (ret < 0)
goto out_disable_pd;
}
ret = tcpm_set_vbus(port, true);
if (ret < 0)
goto out_disable_vconn;
port->pd_capable = false;
port->partner = NULL;
port->attached = true;
port->send_discover = true;
return 0;
out_disable_vconn:
tcpm_set_vconn(port, false);
out_disable_pd:
port->tcpc->set_pd_rx(port->tcpc, false);
out_disable_mux:
tcpm_mux_set(port, TYPEC_MUX_NONE, TCPC_USB_SWITCH_DISCONNECT);
return ret;
}
static void tcpm_typec_disconnect(struct tcpm_port *port)
{
if (port->connected) {
typec_unregister_partner(port->partner);
port->partner = NULL;
port->connected = false;
}
}
static void tcpm_unregister_altmodes(struct tcpm_port *port)
{
struct pd_mode_data *modep = &port->mode_data;
int i;
for (i = 0; i < modep->altmodes; i++) {
typec_unregister_altmode(port->partner_altmode[i]);
port->partner_altmode[i] = NULL;
}
memset(modep, 0, sizeof(*modep));
}
static void tcpm_reset_port(struct tcpm_port *port)
{
tcpm_unregister_altmodes(port);
tcpm_typec_disconnect(port);
port->attached = false;
port->pd_capable = false;
port->tcpc->set_pd_rx(port->tcpc, false);
tcpm_init_vbus(port); /* also disables charging */
tcpm_init_vconn(port);
tcpm_set_current_limit(port, 0, 0);
tcpm_set_polarity(port, TYPEC_POLARITY_CC1);
tcpm_set_attached_state(port, false);
port->try_src_count = 0;
port->try_snk_count = 0;
}
static void tcpm_detach(struct tcpm_port *port)
{
if (!port->attached)
return;
if (tcpm_port_is_disconnected(port))
port->hard_reset_count = 0;
tcpm_reset_port(port);
}
static void tcpm_src_detach(struct tcpm_port *port)
{
tcpm_detach(port);
}
static int tcpm_snk_attach(struct tcpm_port *port)
{
int ret;
if (port->attached)
return 0;
ret = tcpm_set_polarity(port, port->cc2 != TYPEC_CC_OPEN ?
TYPEC_POLARITY_CC2 : TYPEC_POLARITY_CC1);
if (ret < 0)
return ret;
ret = tcpm_set_roles(port, true, TYPEC_SINK, TYPEC_DEVICE);
if (ret < 0)
return ret;
port->pd_capable = false;
port->partner = NULL;
port->attached = true;
port->send_discover = true;
return 0;
}
static void tcpm_snk_detach(struct tcpm_port *port)
{
tcpm_detach(port);
/* XXX: (Dis)connect SuperSpeed mux? */
}
static int tcpm_acc_attach(struct tcpm_port *port)
{
int ret;
if (port->attached)
return 0;
ret = tcpm_set_roles(port, true, TYPEC_SOURCE, TYPEC_HOST);
if (ret < 0)
return ret;
port->partner = NULL;
tcpm_typec_connect(port);
port->attached = true;
return 0;
}
static void tcpm_acc_detach(struct tcpm_port *port)
{
tcpm_detach(port);
}
static inline enum tcpm_state hard_reset_state(struct tcpm_port *port)
{
if (port->hard_reset_count < PD_N_HARD_RESET_COUNT)
return HARD_RESET_SEND;
if (port->pd_capable)
return ERROR_RECOVERY;
if (port->pwr_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
if (port->state == SNK_WAIT_CAPABILITIES)
return SNK_READY;
return SNK_UNATTACHED;
}
static inline enum tcpm_state ready_state(struct tcpm_port *port)
{
if (port->pwr_role == TYPEC_SOURCE)
return SRC_READY;
else
return SNK_READY;
}
static inline enum tcpm_state unattached_state(struct tcpm_port *port)
{
if (port->pwr_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
else
return SNK_UNATTACHED;
}
static void tcpm_check_send_discover(struct tcpm_port *port)
{
if (port->data_role == TYPEC_HOST && port->send_discover &&
port->pd_capable) {
tcpm_send_vdm(port, USB_SID_PD, CMD_DISCOVER_IDENT, NULL, 0);
port->send_discover = false;
}
}
static void tcpm_swap_complete(struct tcpm_port *port, int result)
{
if (port->swap_pending) {
port->swap_status = result;
port->swap_pending = false;
complete(&port->swap_complete);
}
}
static void run_state_machine(struct tcpm_port *port)
{
int ret;
port->enter_state = port->state;
switch (port->state) {
case DRP_TOGGLING:
break;
/* SRC states */
case SRC_UNATTACHED:
tcpm_swap_complete(port, -ENOTCONN);
tcpm_src_detach(port);
if (tcpm_start_drp_toggling(port)) {
tcpm_set_state(port, DRP_TOGGLING, 0);
break;
}
tcpm_set_cc(port, tcpm_rp_cc(port));
if (port->typec_caps.type == TYPEC_PORT_DRP)
tcpm_set_state(port, SNK_UNATTACHED, PD_T_DRP_SNK);
break;
case SRC_ATTACH_WAIT:
if (tcpm_port_is_debug(port))
tcpm_set_state(port, DEBUG_ACC_ATTACHED,
PD_T_CC_DEBOUNCE);
else if (tcpm_port_is_audio(port))
tcpm_set_state(port, AUDIO_ACC_ATTACHED,
PD_T_CC_DEBOUNCE);
else if (tcpm_port_is_source(port))
tcpm_set_state(port,
tcpm_try_snk(port) ? SNK_TRY
: SRC_ATTACHED,
PD_T_CC_DEBOUNCE);
break;
case SNK_TRY:
port->try_snk_count++;
/*
* Requirements:
* - Do not drive vconn or vbus
* - Terminate CC pins (both) to Rd
* Action:
* - Wait for tDRPTry (PD_T_DRP_TRY).
* Until then, ignore any state changes.
*/
tcpm_set_cc(port, TYPEC_CC_RD);
tcpm_set_state(port, SNK_TRY_WAIT, PD_T_DRP_TRY);
break;
case SNK_TRY_WAIT:
if (port->vbus_present && tcpm_port_is_sink(port)) {
tcpm_set_state(port, SNK_ATTACHED, 0);
break;
}
if (!tcpm_port_is_sink(port)) {
tcpm_set_state(port, SRC_TRYWAIT,
PD_T_PD_DEBOUNCE);
break;
}
/* No vbus, cc state is sink or open */
tcpm_set_state(port, SRC_TRYWAIT_UNATTACHED, PD_T_DRP_TRYWAIT);
break;
case SRC_TRYWAIT:
tcpm_set_cc(port, tcpm_rp_cc(port));
if (!port->vbus_present && tcpm_port_is_source(port))
tcpm_set_state(port, SRC_ATTACHED, PD_T_CC_DEBOUNCE);
else
tcpm_set_state(port, SRC_TRYWAIT_UNATTACHED,
PD_T_DRP_TRY);
break;
case SRC_TRYWAIT_UNATTACHED:
tcpm_set_state(port, SNK_UNATTACHED, 0);
break;
case SRC_ATTACHED:
ret = tcpm_src_attach(port);
tcpm_set_state(port, SRC_UNATTACHED,
ret < 0 ? 0 : PD_T_PS_SOURCE_ON);
break;
case SRC_STARTUP:
typec_set_pwr_opmode(port->typec_port, TYPEC_PWR_MODE_USB);
port->pwr_opmode = TYPEC_PWR_MODE_USB;
port->caps_count = 0;
port->message_id = 0;
port->explicit_contract = false;
tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0);
break;
case SRC_SEND_CAPABILITIES:
port->caps_count++;
if (port->caps_count > PD_N_CAPS_COUNT) {
tcpm_set_state(port, SRC_READY, 0);
break;
}
ret = tcpm_pd_send_source_caps(port);
if (ret < 0) {
tcpm_set_state(port, SRC_SEND_CAPABILITIES,
PD_T_SEND_SOURCE_CAP);
} else {
/*
* Per standard, we should clear the reset counter here.
* However, that can result in state machine hang-ups.
* Reset it only in READY state to improve stability.
*/
/* port->hard_reset_count = 0; */
port->caps_count = 0;
port->pd_capable = true;
tcpm_set_state_cond(port, hard_reset_state(port),
PD_T_SEND_SOURCE_CAP);
}
break;
case SRC_NEGOTIATE_CAPABILITIES:
ret = tcpm_pd_check_request(port);
if (ret < 0) {
tcpm_pd_send_control(port, PD_CTRL_REJECT);
if (!port->explicit_contract) {
tcpm_set_state(port,
SRC_WAIT_NEW_CAPABILITIES, 0);
} else {
tcpm_set_state(port, SRC_READY, 0);
}
} else {
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
tcpm_set_state(port, SRC_TRANSITION_SUPPLY,
PD_T_SRC_TRANSITION);
}
break;
case SRC_TRANSITION_SUPPLY:
/* XXX: regulator_set_voltage(vbus, ...) */
tcpm_pd_send_control(port, PD_CTRL_PS_RDY);
port->explicit_contract = true;
typec_set_pwr_opmode(port->typec_port, TYPEC_PWR_MODE_PD);
port->pwr_opmode = TYPEC_PWR_MODE_PD;
tcpm_set_state_cond(port, SRC_READY, 0);
break;
case SRC_READY:
#if 1
port->hard_reset_count = 0;
#endif
port->try_src_count = 0;
tcpm_typec_connect(port);
tcpm_check_send_discover(port);
/*
* 6.3.5
* Sending ping messages is not necessary if
* - the source operates at vSafe5V
* or
* - The system is not operating in PD mode
* or
* - Both partners are connected using a Type-C connector
* XXX How do we know that ?
*/
if (port->pwr_opmode == TYPEC_PWR_MODE_PD &&
!port->op_vsafe5v) {
tcpm_pd_send_control(port, PD_CTRL_PING);
tcpm_set_state_cond(port, SRC_READY,
PD_T_SOURCE_ACTIVITY);
}
break;
case SRC_WAIT_NEW_CAPABILITIES:
/* Nothing to do... */
break;
/* SNK states */
case SNK_UNATTACHED:
tcpm_swap_complete(port, -ENOTCONN);
tcpm_snk_detach(port);
if (tcpm_start_drp_toggling(port)) {
tcpm_set_state(port, DRP_TOGGLING, 0);
break;
}
tcpm_set_cc(port, TYPEC_CC_RD);
if (port->typec_caps.type == TYPEC_PORT_DRP)
tcpm_set_state(port, SRC_UNATTACHED, PD_T_DRP_SRC);
break;
case SNK_ATTACH_WAIT:
if ((port->cc1 == TYPEC_CC_OPEN &&
port->cc2 != TYPEC_CC_OPEN) ||
(port->cc1 != TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN))
tcpm_set_state(port, SNK_DEBOUNCED,
PD_T_CC_DEBOUNCE);
else if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, SNK_UNATTACHED,
PD_T_PD_DEBOUNCE);
break;
case SNK_DEBOUNCED:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, SNK_UNATTACHED,
PD_T_PD_DEBOUNCE);
else if (port->vbus_present)
tcpm_set_state(port,
tcpm_try_src(port) ? SRC_TRY
: SNK_ATTACHED,
0);
else
/* Wait for VBUS, but not forever */
tcpm_set_state(port, SNK_UNATTACHED, PD_T_PS_SOURCE_ON);
break;
case SRC_TRY:
port->try_src_count++;
tcpm_set_cc(port, tcpm_rp_cc(port));
tcpm_set_state(port, SNK_TRYWAIT, PD_T_DRP_TRY);
break;
case SRC_TRY_DEBOUNCE:
tcpm_set_state(port, SRC_ATTACHED, PD_T_PD_DEBOUNCE);
break;
case SNK_TRYWAIT:
tcpm_set_cc(port, TYPEC_CC_RD);
tcpm_set_state(port, SNK_TRYWAIT_DEBOUNCE, PD_T_CC_DEBOUNCE);
break;
case SNK_TRYWAIT_DEBOUNCE:
if (port->vbus_present) {
tcpm_set_state(port, SNK_ATTACHED, 0);
break;
}
if (tcpm_port_is_disconnected(port)) {
tcpm_set_state(port, SNK_UNATTACHED,
PD_T_PD_DEBOUNCE);
break;
}
if (tcpm_port_is_source(port))
tcpm_set_state(port, SRC_ATTACHED, 0);
/* XXX Are we supposed to stay in this state ? */
break;
case SNK_TRYWAIT_VBUS:
tcpm_set_state(port, SNK_ATTACHED, PD_T_CC_DEBOUNCE);
break;
case SNK_ATTACHED:
ret = tcpm_snk_attach(port);
if (ret < 0)
tcpm_set_state(port, SNK_UNATTACHED, 0);
else
tcpm_set_state(port, SNK_STARTUP, 0);
break;
case SNK_STARTUP:
/* XXX: callback into infrastructure */
typec_set_pwr_opmode(port->typec_port, TYPEC_PWR_MODE_USB);
port->pwr_opmode = TYPEC_PWR_MODE_USB;
port->message_id = 0;
port->explicit_contract = false;
tcpm_set_state(port, SNK_DISCOVERY, 0);
break;
case SNK_DISCOVERY:
if (port->vbus_present) {
tcpm_set_current_limit(port,
tcpm_get_current_limit(port),
5000);
tcpm_set_charge(port, true);
tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0);
break;
}
/*
* For DRP, timeouts differ. Also, handling is supposed to be
* different and much more complex (dead battery detection;
* see USB power delivery specification, section 8.3.3.6.1.5.1).
*/
tcpm_set_state(port, hard_reset_state(port),
port->typec_caps.type == TYPEC_PORT_DRP ?
PD_T_DB_DETECT : PD_T_NO_RESPONSE);
break;
case SNK_DISCOVERY_DEBOUNCE:
tcpm_set_state(port, SNK_DISCOVERY_DEBOUNCE_DONE,
PD_T_CC_DEBOUNCE);
break;
case SNK_DISCOVERY_DEBOUNCE_DONE:
if (!tcpm_port_is_disconnected(port) &&
tcpm_port_is_sink(port) &&
time_is_after_jiffies(port->delayed_runtime)) {
tcpm_set_state(port, SNK_DISCOVERY,
port->delayed_runtime - jiffies);
break;
}
tcpm_set_state(port, unattached_state(port), 0);
break;
case SNK_WAIT_CAPABILITIES:
ret = port->tcpc->set_pd_rx(port->tcpc, true);
if (ret < 0) {
tcpm_set_state(port, SNK_READY, 0);
break;
}
/*
* If VBUS has never been low, and we time out waiting
* for source cap, try a soft reset first, in case we
* were already in a stable contract before this boot.
* Do this only once.
*/
if (port->vbus_never_low) {
port->vbus_never_low = false;
tcpm_set_state(port, SOFT_RESET_SEND,
PD_T_SINK_WAIT_CAP);
} else {
tcpm_set_state(port, hard_reset_state(port),
PD_T_SINK_WAIT_CAP);
}
break;
case SNK_NEGOTIATE_CAPABILITIES:
port->pd_capable = true;
port->hard_reset_count = 0;
ret = tcpm_pd_send_request(port);
if (ret < 0) {
/* Let the Source send capabilities again. */
tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0);
} else {
tcpm_set_state_cond(port, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
}
break;
case SNK_TRANSITION_SINK:
case SNK_TRANSITION_SINK_VBUS:
tcpm_set_state(port, hard_reset_state(port),
PD_T_PS_TRANSITION);
break;
case SNK_READY:
port->try_snk_count = 0;
port->explicit_contract = true;
typec_set_pwr_opmode(port->typec_port, TYPEC_PWR_MODE_PD);
port->pwr_opmode = TYPEC_PWR_MODE_PD;
tcpm_typec_connect(port);
tcpm_check_send_discover(port);
break;
/* Accessory states */
case ACC_UNATTACHED:
tcpm_acc_detach(port);
tcpm_set_state(port, SRC_UNATTACHED, 0);
break;
case DEBUG_ACC_ATTACHED:
case AUDIO_ACC_ATTACHED:
ret = tcpm_acc_attach(port);
if (ret < 0)
tcpm_set_state(port, ACC_UNATTACHED, 0);
break;
case AUDIO_ACC_DEBOUNCE:
tcpm_set_state(port, ACC_UNATTACHED, PD_T_CC_DEBOUNCE);
break;
/* Hard_Reset states */
case HARD_RESET_SEND:
tcpm_pd_transmit(port, TCPC_TX_HARD_RESET, NULL);
tcpm_set_state(port, HARD_RESET_START, 0);
break;
case HARD_RESET_START:
port->hard_reset_count++;
port->tcpc->set_pd_rx(port->tcpc, false);
tcpm_unregister_altmodes(port);
port->send_discover = true;
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(port, SRC_HARD_RESET_VBUS_OFF,
PD_T_PS_HARD_RESET);
else
tcpm_set_state(port, SNK_HARD_RESET_SINK_OFF, 0);
break;
case SRC_HARD_RESET_VBUS_OFF:
tcpm_set_vconn(port, true);
tcpm_set_vbus(port, false);
tcpm_set_roles(port, false, TYPEC_SOURCE, TYPEC_HOST);
tcpm_set_state(port, SRC_HARD_RESET_VBUS_ON, PD_T_SRC_RECOVER);
break;
case SRC_HARD_RESET_VBUS_ON:
tcpm_set_vbus(port, true);
port->tcpc->set_pd_rx(port->tcpc, true);
tcpm_set_attached_state(port, true);
tcpm_set_state(port, SRC_UNATTACHED, PD_T_PS_SOURCE_ON);
break;
case SNK_HARD_RESET_SINK_OFF:
tcpm_set_vconn(port, false);
tcpm_set_charge(port, false);
tcpm_set_roles(port, false, TYPEC_SINK, TYPEC_DEVICE);
/*
* VBUS may or may not toggle, depending on the adapter.
* If it doesn't toggle, transition to SNK_HARD_RESET_SINK_ON
* directly after timeout.
*/
tcpm_set_state(port, SNK_HARD_RESET_SINK_ON, PD_T_SAFE_0V);
break;
case SNK_HARD_RESET_WAIT_VBUS:
/* Assume we're disconnected if VBUS doesn't come back. */
tcpm_set_state(port, SNK_UNATTACHED,
PD_T_SRC_RECOVER_MAX + PD_T_SRC_TURN_ON);
break;
case SNK_HARD_RESET_SINK_ON:
/* Note: There is no guarantee that VBUS is on in this state */
/*
* XXX:
* The specification suggests that dual mode ports in sink
* mode should transition to state PE_SRC_Transition_to_default.
* See USB power delivery specification chapter 8.3.3.6.1.3.
* This would mean to to
* - turn off VCONN, reset power supply
* - request hardware reset
* - turn on VCONN
* - Transition to state PE_Src_Startup
* SNK only ports shall transition to state Snk_Startup
* (see chapter 8.3.3.3.8).
* Similar, dual-mode ports in source mode should transition
* to PE_SNK_Transition_to_default.
*/
tcpm_set_attached_state(port, true);
tcpm_set_state(port, SNK_STARTUP, 0);
break;
/* Soft_Reset states */
case SOFT_RESET:
port->message_id = 0;
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0);
else
tcpm_set_state(port, SNK_WAIT_CAPABILITIES, 0);
break;
case SOFT_RESET_SEND:
port->message_id = 0;
if (tcpm_pd_send_control(port, PD_CTRL_SOFT_RESET))
tcpm_set_state_cond(port, hard_reset_state(port), 0);
else
tcpm_set_state_cond(port, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
break;
/* DR_Swap states */
case DR_SWAP_SEND:
tcpm_pd_send_control(port, PD_CTRL_DR_SWAP);
tcpm_set_state_cond(port, DR_SWAP_SEND_TIMEOUT,
PD_T_SENDER_RESPONSE);
break;
case DR_SWAP_ACCEPT:
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
tcpm_set_state_cond(port, DR_SWAP_CHANGE_DR, 0);
break;
case DR_SWAP_SEND_TIMEOUT:
tcpm_swap_complete(port, -ETIMEDOUT);
tcpm_set_state(port, ready_state(port), 0);
break;
case DR_SWAP_CHANGE_DR:
if (port->data_role == TYPEC_HOST) {
tcpm_unregister_altmodes(port);
tcpm_set_roles(port, true, port->pwr_role,
TYPEC_DEVICE);
} else {
tcpm_set_roles(port, true, port->pwr_role,
TYPEC_HOST);
port->send_discover = true;
}
tcpm_swap_complete(port, 0);
tcpm_set_state(port, ready_state(port), 0);
break;
/* PR_Swap states */
case PR_SWAP_ACCEPT:
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
tcpm_set_state(port, PR_SWAP_START, 0);
break;
case PR_SWAP_SEND:
tcpm_pd_send_control(port, PD_CTRL_PR_SWAP);
tcpm_set_state_cond(port, PR_SWAP_SEND_TIMEOUT,
PD_T_SENDER_RESPONSE);
break;
case PR_SWAP_SEND_TIMEOUT:
tcpm_swap_complete(port, -ETIMEDOUT);
tcpm_set_state(port, ready_state(port), 0);
break;
case PR_SWAP_START:
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(port, PR_SWAP_SRC_SNK_TRANSITION_OFF,
PD_T_SRC_TRANSITION);
else
tcpm_set_state(port, PR_SWAP_SNK_SRC_SINK_OFF, 0);
break;
case PR_SWAP_SRC_SNK_TRANSITION_OFF:
tcpm_set_vbus(port, false);
port->explicit_contract = false;
tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF,
PD_T_PS_SOURCE_OFF);
break;
case PR_SWAP_SRC_SNK_SOURCE_OFF:
tcpm_set_cc(port, TYPEC_CC_RD);
if (tcpm_pd_send_control(port, PD_CTRL_PS_RDY)) {
tcpm_set_state(port, ERROR_RECOVERY, 0);
break;
}
tcpm_set_state_cond(port, SNK_UNATTACHED, PD_T_PS_SOURCE_ON);
break;
case PR_SWAP_SRC_SNK_SINK_ON:
tcpm_set_pwr_role(port, TYPEC_SINK);
tcpm_swap_complete(port, 0);
tcpm_set_state(port, SNK_STARTUP, 0);
break;
case PR_SWAP_SNK_SRC_SINK_OFF:
tcpm_set_charge(port, false);
tcpm_set_state(port, hard_reset_state(port),
PD_T_PS_SOURCE_OFF);
break;
case PR_SWAP_SNK_SRC_SOURCE_ON:
tcpm_set_cc(port, tcpm_rp_cc(port));
tcpm_set_vbus(port, true);
tcpm_pd_send_control(port, PD_CTRL_PS_RDY);
tcpm_set_pwr_role(port, TYPEC_SOURCE);
tcpm_swap_complete(port, 0);
tcpm_set_state(port, SRC_STARTUP, 0);
break;
case VCONN_SWAP_ACCEPT:
tcpm_pd_send_control(port, PD_CTRL_ACCEPT);
tcpm_set_state(port, VCONN_SWAP_START, 0);
break;
case VCONN_SWAP_SEND:
tcpm_pd_send_control(port, PD_CTRL_VCONN_SWAP);
tcpm_set_state(port, VCONN_SWAP_SEND_TIMEOUT,
PD_T_SENDER_RESPONSE);
break;
case VCONN_SWAP_SEND_TIMEOUT:
tcpm_swap_complete(port, -ETIMEDOUT);
tcpm_set_state(port, ready_state(port), 0);
break;
case VCONN_SWAP_START:
if (port->vconn_role == TYPEC_SOURCE)
tcpm_set_state(port, VCONN_SWAP_WAIT_FOR_VCONN, 0);
else
tcpm_set_state(port, VCONN_SWAP_TURN_ON_VCONN, 0);
break;
case VCONN_SWAP_WAIT_FOR_VCONN:
tcpm_set_state(port, hard_reset_state(port),
PD_T_VCONN_SOURCE_ON);
break;
case VCONN_SWAP_TURN_ON_VCONN:
tcpm_set_vconn(port, true);
tcpm_pd_send_control(port, PD_CTRL_PS_RDY);
tcpm_swap_complete(port, 0);
tcpm_set_state(port, ready_state(port), 0);
break;
case VCONN_SWAP_TURN_OFF_VCONN:
tcpm_set_vconn(port, false);
tcpm_swap_complete(port, 0);
tcpm_set_state(port, ready_state(port), 0);
break;
case DR_SWAP_CANCEL:
case PR_SWAP_CANCEL:
case VCONN_SWAP_CANCEL:
tcpm_swap_complete(port, port->swap_status);
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(port, SRC_READY, 0);
else
tcpm_set_state(port, SNK_READY, 0);
break;
case BIST_RX:
switch (BDO_MODE_MASK(port->bist_request)) {
case BDO_MODE_CARRIER2:
tcpm_pd_transmit(port, TCPC_TX_BIST_MODE_2, NULL);
break;
default:
break;
}
/* Always switch to unattached state */
tcpm_set_state(port, unattached_state(port), 0);
break;
case ERROR_RECOVERY:
tcpm_swap_complete(port, -EPROTO);
tcpm_reset_port(port);
tcpm_set_cc(port, TYPEC_CC_OPEN);
tcpm_set_state(port, ERROR_RECOVERY_WAIT_OFF,
PD_T_ERROR_RECOVERY);
break;
case ERROR_RECOVERY_WAIT_OFF:
tcpm_set_state(port,
tcpm_default_state(port),
port->vbus_present ? PD_T_PS_SOURCE_OFF : 0);
break;
default:
WARN(1, "Unexpected port state %d\n", port->state);
break;
}
}
static void tcpm_state_machine_work(struct work_struct *work)
{
struct tcpm_port *port = container_of(work, struct tcpm_port,
state_machine.work);
enum tcpm_state prev_state;
mutex_lock(&port->lock);
port->state_machine_running = true;
if (port->queued_message && tcpm_send_queued_message(port))
goto done;
/* If we were queued due to a delayed state change, update it now */
if (port->delayed_state) {
tcpm_log(port, "state change %s -> %s [delayed %ld ms]",
tcpm_states[port->state],
tcpm_states[port->delayed_state], port->delay_ms);
port->prev_state = port->state;
port->state = port->delayed_state;
port->delayed_state = INVALID_STATE;
}
/*
* Continue running as long as we have (non-delayed) state changes
* to make.
*/
do {
prev_state = port->state;
run_state_machine(port);
if (port->queued_message)
tcpm_send_queued_message(port);
} while (port->state != prev_state && !port->delayed_state);
done:
port->state_machine_running = false;
mutex_unlock(&port->lock);
}
static void _tcpm_cc_change(struct tcpm_port *port, enum typec_cc_status cc1,
enum typec_cc_status cc2)
{
enum typec_cc_status old_cc1, old_cc2;
enum tcpm_state new_state;
old_cc1 = port->cc1;
old_cc2 = port->cc2;
port->cc1 = cc1;
port->cc2 = cc2;
tcpm_log_force(port,
"CC1: %u -> %u, CC2: %u -> %u [state %s, polarity %d, %s]",
old_cc1, cc1, old_cc2, cc2, tcpm_states[port->state],
port->polarity,
tcpm_port_is_disconnected(port) ? "disconnected"
: "connected");
switch (port->state) {
case DRP_TOGGLING:
if (tcpm_port_is_debug(port) || tcpm_port_is_audio(port) ||
tcpm_port_is_source(port))
tcpm_set_state(port, SRC_ATTACH_WAIT, 0);
else if (tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_ATTACH_WAIT, 0);
break;
case SRC_UNATTACHED:
case ACC_UNATTACHED:
if (tcpm_port_is_debug(port) || tcpm_port_is_audio(port) ||
tcpm_port_is_source(port))
tcpm_set_state(port, SRC_ATTACH_WAIT, 0);
break;
case SRC_ATTACH_WAIT:
if (tcpm_port_is_disconnected(port) ||
tcpm_port_is_audio_detached(port))
tcpm_set_state(port, SRC_UNATTACHED, 0);
else if (cc1 != old_cc1 || cc2 != old_cc2)
tcpm_set_state(port, SRC_ATTACH_WAIT, 0);
break;
case SRC_ATTACHED:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, SRC_UNATTACHED, 0);
break;
case SNK_UNATTACHED:
if (tcpm_port_is_sink(port))
tcpm_set_state(port, SNK_ATTACH_WAIT, 0);
break;
case SNK_ATTACH_WAIT:
if ((port->cc1 == TYPEC_CC_OPEN &&
port->cc2 != TYPEC_CC_OPEN) ||
(port->cc1 != TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN))
new_state = SNK_DEBOUNCED;
else if (tcpm_port_is_disconnected(port))
new_state = SNK_UNATTACHED;
else
break;
if (new_state != port->delayed_state)
tcpm_set_state(port, SNK_ATTACH_WAIT, 0);
break;
case SNK_DEBOUNCED:
if (tcpm_port_is_disconnected(port))
new_state = SNK_UNATTACHED;
else if (port->vbus_present)
new_state = tcpm_try_src(port) ? SRC_TRY : SNK_ATTACHED;
else
new_state = SNK_UNATTACHED;
if (new_state != port->delayed_state)
tcpm_set_state(port, SNK_DEBOUNCED, 0);
break;
case SNK_READY:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, unattached_state(port), 0);
else if (!port->pd_capable &&
(cc1 != old_cc1 || cc2 != old_cc2))
tcpm_set_current_limit(port,
tcpm_get_current_limit(port),
5000);
break;
case AUDIO_ACC_ATTACHED:
if (cc1 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_OPEN)
tcpm_set_state(port, AUDIO_ACC_DEBOUNCE, 0);
break;
case AUDIO_ACC_DEBOUNCE:
if (tcpm_port_is_audio(port))
tcpm_set_state(port, AUDIO_ACC_ATTACHED, 0);
break;
case DEBUG_ACC_ATTACHED:
if (cc1 == TYPEC_CC_OPEN || cc2 == TYPEC_CC_OPEN)
tcpm_set_state(port, ACC_UNATTACHED, 0);
break;
case SNK_TRY:
/* Do nothing, waiting for timeout */
break;
case SNK_DISCOVERY:
/* CC line is unstable, wait for debounce */
if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, SNK_DISCOVERY_DEBOUNCE, 0);
break;
case SNK_DISCOVERY_DEBOUNCE:
break;
case SRC_TRYWAIT:
/* Hand over to state machine if needed */
if (!port->vbus_present && tcpm_port_is_source(port))
new_state = SRC_ATTACHED;
else
new_state = SRC_TRYWAIT_UNATTACHED;
if (new_state != port->delayed_state)
tcpm_set_state(port, SRC_TRYWAIT, 0);
break;
case SNK_TRY_WAIT:
if (port->vbus_present && tcpm_port_is_sink(port)) {
tcpm_set_state(port, SNK_ATTACHED, 0);
break;
}
if (!tcpm_port_is_sink(port))
new_state = SRC_TRYWAIT;
else
new_state = SRC_TRYWAIT_UNATTACHED;
if (new_state != port->delayed_state)
tcpm_set_state(port, SNK_TRY_WAIT, 0);
break;
case SRC_TRY:
tcpm_set_state(port, SRC_TRY_DEBOUNCE, 0);
break;
case SRC_TRY_DEBOUNCE:
tcpm_set_state(port, SRC_TRY, 0);
break;
case SNK_TRYWAIT_DEBOUNCE:
if (port->vbus_present) {
tcpm_set_state(port, SNK_ATTACHED, 0);
break;
}
if (tcpm_port_is_source(port)) {
tcpm_set_state(port, SRC_ATTACHED, 0);
break;
}
if (tcpm_port_is_disconnected(port) &&
port->delayed_state != SNK_UNATTACHED)
tcpm_set_state(port, SNK_TRYWAIT_DEBOUNCE, 0);
break;
case PR_SWAP_SNK_SRC_SINK_OFF:
case PR_SWAP_SRC_SNK_TRANSITION_OFF:
case PR_SWAP_SRC_SNK_SOURCE_OFF:
/*
* CC state change is expected here; we just turned off power.
* Ignore it.
*/
break;
default:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(port, unattached_state(port), 0);
break;
}
}
static void _tcpm_pd_vbus_on(struct tcpm_port *port)
{
enum tcpm_state new_state;
tcpm_log_force(port, "VBUS on");
port->vbus_present = true;
switch (port->state) {
case SNK_TRANSITION_SINK_VBUS:
tcpm_set_state(port, SNK_READY, 0);
break;
case SNK_DISCOVERY:
tcpm_set_state(port, SNK_DISCOVERY, 0);
break;
case SNK_DEBOUNCED:
tcpm_set_state(port, tcpm_try_src(port) ? SRC_TRY
: SNK_ATTACHED,
0);
break;
case SNK_HARD_RESET_WAIT_VBUS:
tcpm_set_state(port, SNK_HARD_RESET_SINK_ON, 0);
break;
case SRC_ATTACHED:
tcpm_set_state(port, SRC_STARTUP, 0);
break;
case SRC_HARD_RESET_VBUS_ON:
tcpm_set_state(port, SRC_STARTUP, 0);
break;
case SNK_TRY:
/* Do nothing, waiting for timeout */
break;
case SRC_TRYWAIT:
/* Hand over to state machine if needed */
if (port->delayed_state != SRC_TRYWAIT_UNATTACHED)
tcpm_set_state(port, SRC_TRYWAIT, 0);
break;
case SNK_TRY_WAIT:
if (tcpm_port_is_sink(port)) {
tcpm_set_state(port, SNK_ATTACHED, 0);
break;
}
if (!tcpm_port_is_sink(port))
new_state = SRC_TRYWAIT;
else
new_state = SRC_TRYWAIT_UNATTACHED;
if (new_state != port->delayed_state)
tcpm_set_state(port, SNK_TRY_WAIT, 0);
break;
case SNK_TRYWAIT:
tcpm_set_state(port, SNK_TRYWAIT_VBUS, 0);
break;
default:
break;
}
}
static void _tcpm_pd_vbus_off(struct tcpm_port *port)
{
enum tcpm_state new_state;
tcpm_log_force(port, "VBUS off");
port->vbus_present = false;
port->vbus_never_low = false;
switch (port->state) {
case SNK_HARD_RESET_SINK_OFF:
tcpm_set_state(port, SNK_HARD_RESET_WAIT_VBUS, 0);
break;
case SRC_HARD_RESET_VBUS_OFF:
tcpm_set_state(port, SRC_HARD_RESET_VBUS_ON, 0);
break;
case HARD_RESET_SEND:
break;
case SNK_TRY:
/* Do nothing, waiting for timeout */
break;
case SRC_TRYWAIT:
/* Hand over to state machine if needed */
if (tcpm_port_is_source(port))
new_state = SRC_ATTACHED;
else
new_state = SRC_TRYWAIT_UNATTACHED;
if (new_state != port->delayed_state)
tcpm_set_state(port, SRC_TRYWAIT, 0);
break;
case SNK_TRY_WAIT:
if (!tcpm_port_is_sink(port))
new_state = SRC_TRYWAIT;
else
new_state = SRC_TRYWAIT_UNATTACHED;
if (new_state != port->delayed_state)
tcpm_set_state(port, SNK_TRY_WAIT, 0);
break;
case SNK_TRYWAIT_VBUS:
tcpm_set_state(port, SNK_TRYWAIT, 0);
break;
case SNK_ATTACH_WAIT:
tcpm_set_state(port, SNK_UNATTACHED, 0);
break;
case SNK_NEGOTIATE_CAPABILITIES:
break;
case PR_SWAP_SRC_SNK_TRANSITION_OFF:
tcpm_set_state(port, PR_SWAP_SRC_SNK_SOURCE_OFF, 0);
break;
case PR_SWAP_SNK_SRC_SINK_OFF:
/* Do nothing, expected */
break;
case ERROR_RECOVERY_WAIT_OFF:
tcpm_set_state(port,
port->pwr_role == TYPEC_SOURCE ?
SRC_UNATTACHED : SNK_UNATTACHED,
0);
break;
default:
if (port->pwr_role == TYPEC_SINK &&
port->attached)
tcpm_set_state(port, SNK_UNATTACHED, 0);
break;
}
}
static void _tcpm_pd_hard_reset(struct tcpm_port *port)
{
tcpm_log_force(port, "Received hard reset");
/*
* If we keep receiving hard reset requests, executing the hard reset
* must have failed. Revert to error recovery if that happens.
*/
tcpm_set_state(port,
port->hard_reset_count < PD_N_HARD_RESET_COUNT ?
HARD_RESET_START : ERROR_RECOVERY,
0);
}
static void tcpm_pd_event_handler(struct work_struct *work)
{
struct tcpm_port *port = container_of(work, struct tcpm_port,
event_work);
u32 events;
mutex_lock(&port->lock);
spin_lock(&port->pd_event_lock);
while (port->pd_events) {
events = port->pd_events;
port->pd_events = 0;
spin_unlock(&port->pd_event_lock);
if (events & TCPM_RESET_EVENT)
_tcpm_pd_hard_reset(port);
if (events & TCPM_VBUS_EVENT) {
bool vbus;
vbus = port->tcpc->get_vbus(port->tcpc);
if (vbus)
_tcpm_pd_vbus_on(port);
else
_tcpm_pd_vbus_off(port);
}
if (events & TCPM_CC_EVENT) {
enum typec_cc_status cc1, cc2;
if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0)
_tcpm_cc_change(port, cc1, cc2);
}
spin_lock(&port->pd_event_lock);
}
spin_unlock(&port->pd_event_lock);
mutex_unlock(&port->lock);
}
void tcpm_cc_change(struct tcpm_port *port)
{
spin_lock(&port->pd_event_lock);
port->pd_events |= TCPM_CC_EVENT;
spin_unlock(&port->pd_event_lock);
queue_work(port->wq, &port->event_work);
}
EXPORT_SYMBOL_GPL(tcpm_cc_change);
void tcpm_vbus_change(struct tcpm_port *port)
{
spin_lock(&port->pd_event_lock);
port->pd_events |= TCPM_VBUS_EVENT;
spin_unlock(&port->pd_event_lock);
queue_work(port->wq, &port->event_work);
}
EXPORT_SYMBOL_GPL(tcpm_vbus_change);
void tcpm_pd_hard_reset(struct tcpm_port *port)
{
spin_lock(&port->pd_event_lock);
port->pd_events = TCPM_RESET_EVENT;
spin_unlock(&port->pd_event_lock);
queue_work(port->wq, &port->event_work);
}
EXPORT_SYMBOL_GPL(tcpm_pd_hard_reset);
static int tcpm_dr_set(const struct typec_capability *cap,
enum typec_data_role data)
{
struct tcpm_port *port = typec_cap_to_tcpm(cap);
int ret;
mutex_lock(&port->swap_lock);
mutex_lock(&port->lock);
if (port->typec_caps.type != TYPEC_PORT_DRP || !port->pd_capable) {
ret = -EINVAL;
goto port_unlock;
}
if (port->state != SRC_READY && port->state != SNK_READY) {
ret = -EAGAIN;
goto port_unlock;
}
if (port->data_role == data) {
ret = 0;
goto port_unlock;
}
/*
* XXX
* 6.3.9: If an alternate mode is active, a request to swap
* alternate modes shall trigger a port reset.
* Reject data role swap request in this case.
*/
port->swap_status = 0;
port->swap_pending = true;
reinit_completion(&port->swap_complete);
tcpm_set_state(port, DR_SWAP_SEND, 0);
mutex_unlock(&port->lock);
wait_for_completion(&port->swap_complete);
ret = port->swap_status;
goto swap_unlock;
port_unlock:
mutex_unlock(&port->lock);
swap_unlock:
mutex_unlock(&port->swap_lock);
return ret;
}
static int tcpm_pr_set(const struct typec_capability *cap,
enum typec_role role)
{
struct tcpm_port *port = typec_cap_to_tcpm(cap);
int ret;
mutex_lock(&port->swap_lock);
mutex_lock(&port->lock);
if (port->typec_caps.type != TYPEC_PORT_DRP) {
ret = -EINVAL;
goto port_unlock;
}
if (port->state != SRC_READY && port->state != SNK_READY) {
ret = -EAGAIN;
goto port_unlock;
}
if (role == port->pwr_role) {
ret = 0;
goto port_unlock;
}
if (!port->pd_capable) {
/*
* If the partner is not PD capable, reset the port to
* trigger a role change. This can only work if a preferred
* role is configured, and if it matches the requested role.
*/
if (port->try_role == TYPEC_NO_PREFERRED_ROLE ||
port->try_role == port->pwr_role) {
ret = -EINVAL;
goto port_unlock;
}
tcpm_set_state(port, HARD_RESET_SEND, 0);
ret = 0;
goto port_unlock;
}
port->swap_status = 0;
port->swap_pending = true;
reinit_completion(&port->swap_complete);
tcpm_set_state(port, PR_SWAP_SEND, 0);
mutex_unlock(&port->lock);
wait_for_completion(&port->swap_complete);
ret = port->swap_status;
goto swap_unlock;
port_unlock:
mutex_unlock(&port->lock);
swap_unlock:
mutex_unlock(&port->swap_lock);
return ret;
}
static int tcpm_vconn_set(const struct typec_capability *cap,
enum typec_role role)
{
struct tcpm_port *port = typec_cap_to_tcpm(cap);
int ret;
mutex_lock(&port->swap_lock);
mutex_lock(&port->lock);
if (port->state != SRC_READY && port->state != SNK_READY) {
ret = -EAGAIN;
goto port_unlock;
}
if (role == port->vconn_role) {
ret = 0;
goto port_unlock;
}
port->swap_status = 0;
port->swap_pending = true;
reinit_completion(&port->swap_complete);
tcpm_set_state(port, VCONN_SWAP_SEND, 0);
mutex_unlock(&port->lock);
wait_for_completion(&port->swap_complete);
ret = port->swap_status;
goto swap_unlock;
port_unlock:
mutex_unlock(&port->lock);
swap_unlock:
mutex_unlock(&port->swap_lock);
return ret;
}
static int tcpm_try_role(const struct typec_capability *cap, int role)
{
struct tcpm_port *port = typec_cap_to_tcpm(cap);
struct tcpc_dev *tcpc = port->tcpc;
int ret = 0;
mutex_lock(&port->lock);
if (tcpc->try_role)
ret = tcpc->try_role(tcpc, role);
if (!ret && !tcpc->config->try_role_hw)
port->try_role = role;
port->try_src_count = 0;
port->try_snk_count = 0;
mutex_unlock(&port->lock);
return ret;
}
static void tcpm_init(struct tcpm_port *port)
{
enum typec_cc_status cc1, cc2;
port->tcpc->init(port->tcpc);
tcpm_reset_port(port);
/*
* XXX
* Should possibly wait for VBUS to settle if it was enabled locally
* since tcpm_reset_port() will disable VBUS.
*/
port->vbus_present = port->tcpc->get_vbus(port->tcpc);
if (port->vbus_present)
port->vbus_never_low = true;
tcpm_set_state(port, tcpm_default_state(port), 0);
if (port->tcpc->get_cc(port->tcpc, &cc1, &cc2) == 0)
_tcpm_cc_change(port, cc1, cc2);
/*
* Some adapters need a clean slate at startup, and won't recover
* otherwise. So do not try to be fancy and force a clean disconnect.
*/
tcpm_set_state(port, ERROR_RECOVERY, 0);
}
void tcpm_tcpc_reset(struct tcpm_port *port)
{
mutex_lock(&port->lock);
/* XXX: Maintain PD connection if possible? */
tcpm_init(port);
mutex_unlock(&port->lock);
}
EXPORT_SYMBOL_GPL(tcpm_tcpc_reset);
static int tcpm_copy_pdos(u32 *dest_pdo, const u32 *src_pdo,
unsigned int nr_pdo)
{
unsigned int i;
if (nr_pdo > PDO_MAX_OBJECTS)
nr_pdo = PDO_MAX_OBJECTS;
for (i = 0; i < nr_pdo; i++)
dest_pdo[i] = src_pdo[i];
return nr_pdo;
}
void tcpm_update_source_capabilities(struct tcpm_port *port, const u32 *pdo,
unsigned int nr_pdo)
{
mutex_lock(&port->lock);
port->nr_src_pdo = tcpm_copy_pdos(port->src_pdo, pdo, nr_pdo);
switch (port->state) {
case SRC_UNATTACHED:
case SRC_ATTACH_WAIT:
case SRC_TRYWAIT:
tcpm_set_cc(port, tcpm_rp_cc(port));
break;
case SRC_SEND_CAPABILITIES:
case SRC_NEGOTIATE_CAPABILITIES:
case SRC_READY:
case SRC_WAIT_NEW_CAPABILITIES:
tcpm_set_cc(port, tcpm_rp_cc(port));
tcpm_set_state(port, SRC_SEND_CAPABILITIES, 0);
break;
default:
break;
}
mutex_unlock(&port->lock);
}
EXPORT_SYMBOL_GPL(tcpm_update_source_capabilities);
void tcpm_update_sink_capabilities(struct tcpm_port *port, const u32 *pdo,
unsigned int nr_pdo,
unsigned int max_snk_mv,
unsigned int max_snk_ma,
unsigned int max_snk_mw,
unsigned int operating_snk_mw)
{
mutex_lock(&port->lock);
port->nr_snk_pdo = tcpm_copy_pdos(port->snk_pdo, pdo, nr_pdo);
port->max_snk_mv = max_snk_mv;
port->max_snk_ma = max_snk_ma;
port->max_snk_mw = max_snk_mw;
port->operating_snk_mw = operating_snk_mw;
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
case SNK_READY:
case SNK_TRANSITION_SINK:
case SNK_TRANSITION_SINK_VBUS:
tcpm_set_state(port, SNK_NEGOTIATE_CAPABILITIES, 0);
break;
default:
break;
}
mutex_unlock(&port->lock);
}
EXPORT_SYMBOL_GPL(tcpm_update_sink_capabilities);
struct tcpm_port *tcpm_register_port(struct device *dev, struct tcpc_dev *tcpc)
{
struct tcpm_port *port;
int i, err;
if (!dev || !tcpc || !tcpc->config ||
!tcpc->get_vbus || !tcpc->set_cc || !tcpc->get_cc ||
!tcpc->set_polarity || !tcpc->set_vconn || !tcpc->set_vbus ||
!tcpc->set_pd_rx || !tcpc->set_roles || !tcpc->pd_transmit)
return ERR_PTR(-EINVAL);
port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL);
if (!port)
return ERR_PTR(-ENOMEM);
port->dev = dev;
port->tcpc = tcpc;
mutex_init(&port->lock);
mutex_init(&port->swap_lock);
port->wq = create_singlethread_workqueue(dev_name(dev));
if (!port->wq)
return ERR_PTR(-ENOMEM);
INIT_DELAYED_WORK(&port->state_machine, tcpm_state_machine_work);
INIT_DELAYED_WORK(&port->vdm_state_machine, vdm_state_machine_work);
INIT_WORK(&port->event_work, tcpm_pd_event_handler);
spin_lock_init(&port->pd_event_lock);
init_completion(&port->tx_complete);
init_completion(&port->swap_complete);
port->nr_src_pdo = tcpm_copy_pdos(port->src_pdo, tcpc->config->src_pdo,
tcpc->config->nr_src_pdo);
port->nr_snk_pdo = tcpm_copy_pdos(port->snk_pdo, tcpc->config->snk_pdo,
tcpc->config->nr_snk_pdo);
port->max_snk_mv = tcpc->config->max_snk_mv;
port->max_snk_ma = tcpc->config->max_snk_ma;
port->max_snk_mw = tcpc->config->max_snk_mw;
port->operating_snk_mw = tcpc->config->operating_snk_mw;
if (!tcpc->config->try_role_hw)
port->try_role = tcpc->config->default_role;
else
port->try_role = TYPEC_NO_PREFERRED_ROLE;
port->typec_caps.prefer_role = tcpc->config->default_role;
port->typec_caps.type = tcpc->config->type;
port->typec_caps.revision = 0x0120; /* Type-C spec release 1.2 */
port->typec_caps.pd_revision = 0x0200; /* USB-PD spec release 2.0 */
port->typec_caps.dr_set = tcpm_dr_set;
port->typec_caps.pr_set = tcpm_pr_set;
port->typec_caps.vconn_set = tcpm_vconn_set;
port->typec_caps.try_role = tcpm_try_role;
port->partner_desc.identity = &port->partner_ident;
/*
* TODO:
* - alt_modes, set_alt_mode
* - {debug,audio}_accessory
*/
port->typec_port = typec_register_port(port->dev, &port->typec_caps);
if (!port->typec_port) {
err = -ENOMEM;
goto out_destroy_wq;
}
if (tcpc->config->alt_modes) {
struct typec_altmode_desc *paltmode = tcpc->config->alt_modes;
i = 0;
while (paltmode->svid && i < ARRAY_SIZE(port->port_altmode)) {
port->port_altmode[i] =
typec_port_register_altmode(port->typec_port,
paltmode);
if (!port->port_altmode[i]) {
tcpm_log(port,
"%s: failed to register port alternate mode 0x%x",
dev_name(dev), paltmode->svid);
break;
}
i++;
paltmode++;
}
}
tcpm_debugfs_init(port);
mutex_lock(&port->lock);
tcpm_init(port);
mutex_unlock(&port->lock);
tcpm_log(port, "%s: registered", dev_name(dev));
return port;
out_destroy_wq:
destroy_workqueue(port->wq);
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(tcpm_register_port);
void tcpm_unregister_port(struct tcpm_port *port)
{
int i;
for (i = 0; i < ARRAY_SIZE(port->port_altmode); i++)
typec_unregister_altmode(port->port_altmode[i]);
typec_unregister_port(port->typec_port);
tcpm_debugfs_exit(port);
destroy_workqueue(port->wq);
}
EXPORT_SYMBOL_GPL(tcpm_unregister_port);
MODULE_AUTHOR("Guenter Roeck <groeck@chromium.org>");
MODULE_DESCRIPTION("USB Type-C Port Manager");
MODULE_LICENSE("GPL");
/*
* Copyright 2015-2017 Google, Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __LINUX_USB_TCPM_H
#define __LINUX_USB_TCPM_H
#include <linux/bitops.h>
#include <linux/usb/typec.h>
#include "pd.h"
enum typec_cc_status {
TYPEC_CC_OPEN,
TYPEC_CC_RA,
TYPEC_CC_RD,
TYPEC_CC_RP_DEF,
TYPEC_CC_RP_1_5,
TYPEC_CC_RP_3_0,
};
enum typec_cc_polarity {
TYPEC_POLARITY_CC1,
TYPEC_POLARITY_CC2,
};
/* Time to wait for TCPC to complete transmit */
#define PD_T_TCPC_TX_TIMEOUT 100
enum tcpm_transmit_status {
TCPC_TX_SUCCESS = 0,
TCPC_TX_DISCARDED = 1,
TCPC_TX_FAILED = 2,
};
enum tcpm_transmit_type {
TCPC_TX_SOP = 0,
TCPC_TX_SOP_PRIME = 1,
TCPC_TX_SOP_PRIME_PRIME = 2,
TCPC_TX_SOP_DEBUG_PRIME = 3,
TCPC_TX_SOP_DEBUG_PRIME_PRIME = 4,
TCPC_TX_HARD_RESET = 5,
TCPC_TX_CABLE_RESET = 6,
TCPC_TX_BIST_MODE_2 = 7
};
struct tcpc_config {
const u32 *src_pdo;
unsigned int nr_src_pdo;
const u32 *snk_pdo;
unsigned int nr_snk_pdo;
unsigned int max_snk_mv;
unsigned int max_snk_ma;
unsigned int max_snk_mw;
unsigned int operating_snk_mw;
enum typec_port_type type;
enum typec_role default_role;
bool try_role_hw; /* try.{src,snk} implemented in hardware */
struct typec_altmode_desc *alt_modes;
};
enum tcpc_usb_switch {
TCPC_USB_SWITCH_CONNECT,
TCPC_USB_SWITCH_DISCONNECT,
TCPC_USB_SWITCH_RESTORE, /* TODO FIXME */
};
/* Mux state attributes */
#define TCPC_MUX_USB_ENABLED BIT(0) /* USB enabled */
#define TCPC_MUX_DP_ENABLED BIT(1) /* DP enabled */
#define TCPC_MUX_POLARITY_INVERTED BIT(2) /* Polarity inverted */
/* Mux modes, decoded to attributes */
enum tcpc_mux_mode {
TYPEC_MUX_NONE = 0, /* Open switch */
TYPEC_MUX_USB = TCPC_MUX_USB_ENABLED, /* USB only */
TYPEC_MUX_DP = TCPC_MUX_DP_ENABLED, /* DP only */
TYPEC_MUX_DOCK = TCPC_MUX_USB_ENABLED | /* Both USB and DP */
TCPC_MUX_DP_ENABLED,
};
struct tcpc_mux_dev {
int (*set)(struct tcpc_mux_dev *dev, enum tcpc_mux_mode mux_mode,
enum tcpc_usb_switch usb_config,
enum typec_cc_polarity polarity);
bool dfp_only;
void *priv_data;
};
struct tcpc_dev {
const struct tcpc_config *config;
int (*init)(struct tcpc_dev *dev);
int (*get_vbus)(struct tcpc_dev *dev);
int (*set_cc)(struct tcpc_dev *dev, enum typec_cc_status cc);
int (*get_cc)(struct tcpc_dev *dev, enum typec_cc_status *cc1,
enum typec_cc_status *cc2);
int (*set_polarity)(struct tcpc_dev *dev,
enum typec_cc_polarity polarity);
int (*set_vconn)(struct tcpc_dev *dev, bool on);
int (*set_vbus)(struct tcpc_dev *dev, bool on, bool charge);
int (*set_current_limit)(struct tcpc_dev *dev, u32 max_ma, u32 mv);
int (*set_pd_rx)(struct tcpc_dev *dev, bool on);
int (*set_roles)(struct tcpc_dev *dev, bool attached,
enum typec_role role, enum typec_data_role data);
int (*start_drp_toggling)(struct tcpc_dev *dev,
enum typec_cc_status cc);
int (*try_role)(struct tcpc_dev *dev, int role);
int (*pd_transmit)(struct tcpc_dev *dev, enum tcpm_transmit_type type,
const struct pd_message *msg);
struct tcpc_mux_dev *mux;
};
struct tcpm_port;
struct tcpm_port *tcpm_register_port(struct device *dev, struct tcpc_dev *tcpc);
void tcpm_unregister_port(struct tcpm_port *port);
void tcpm_update_source_capabilities(struct tcpm_port *port, const u32 *pdo,
unsigned int nr_pdo);
void tcpm_update_sink_capabilities(struct tcpm_port *port, const u32 *pdo,
unsigned int nr_pdo,
unsigned int max_snk_mv,
unsigned int max_snk_ma,
unsigned int max_snk_mw,
unsigned int operating_snk_mw);
void tcpm_vbus_change(struct tcpm_port *port);
void tcpm_cc_change(struct tcpm_port *port);
void tcpm_pd_receive(struct tcpm_port *port,
const struct pd_message *msg);
void tcpm_pd_transmit_complete(struct tcpm_port *port,
enum tcpm_transmit_status status);
void tcpm_pd_hard_reset(struct tcpm_port *port);
void tcpm_tcpc_reset(struct tcpm_port *port);
#endif /* __LINUX_USB_TCPM_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment