Commit f1174f77 authored by Edward Cree's avatar Edward Cree Committed by David S. Miller

bpf/verifier: rework value tracking

Unifies adjusted and unadjusted register value types (e.g. FRAME_POINTER is
 now just a PTR_TO_STACK with zero offset).
Tracks value alignment by means of tracking known & unknown bits.  This
 also replaces the 'reg->imm' (leading zero bits) calculations for (what
 were) UNKNOWN_VALUEs.
If pointer leaks are allowed, and adjust_ptr_min_max_vals returns -EACCES,
 treat the pointer as an unknown scalar and try again, because we might be
 able to conclude something about the result (e.g. pointer & 0x40 is either
 0 or 0x40).
Verifier hooks in the netronome/nfp driver were changed to match the new
 data structures.
Signed-off-by: default avatarEdward Cree <ecree@solarflare.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent e1cb90f2
......@@ -79,28 +79,32 @@ nfp_bpf_check_exit(struct nfp_prog *nfp_prog,
const struct bpf_verifier_env *env)
{
const struct bpf_reg_state *reg0 = &env->cur_state.regs[0];
u64 imm;
if (nfp_prog->act == NN_ACT_XDP)
return 0;
if (reg0->type != CONST_IMM) {
pr_info("unsupported exit state: %d, imm: %llx\n",
reg0->type, reg0->imm);
if (!(reg0->type == SCALAR_VALUE && tnum_is_const(reg0->var_off))) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg0->var_off);
pr_info("unsupported exit state: %d, var_off: %s\n",
reg0->type, tn_buf);
return -EINVAL;
}
if (nfp_prog->act != NN_ACT_DIRECT &&
reg0->imm != 0 && (reg0->imm & ~0U) != ~0U) {
imm = reg0->var_off.value;
if (nfp_prog->act != NN_ACT_DIRECT && imm != 0 && (imm & ~0U) != ~0U) {
pr_info("unsupported exit state: %d, imm: %llx\n",
reg0->type, reg0->imm);
reg0->type, imm);
return -EINVAL;
}
if (nfp_prog->act == NN_ACT_DIRECT && reg0->imm <= TC_ACT_REDIRECT &&
reg0->imm != TC_ACT_SHOT && reg0->imm != TC_ACT_STOLEN &&
reg0->imm != TC_ACT_QUEUED) {
if (nfp_prog->act == NN_ACT_DIRECT && imm <= TC_ACT_REDIRECT &&
imm != TC_ACT_SHOT && imm != TC_ACT_STOLEN &&
imm != TC_ACT_QUEUED) {
pr_info("unsupported exit state: %d, imm: %llx\n",
reg0->type, reg0->imm);
reg0->type, imm);
return -EINVAL;
}
......
......@@ -117,35 +117,25 @@ enum bpf_access_type {
};
/* types of values stored in eBPF registers */
/* Pointer types represent:
* pointer
* pointer + imm
* pointer + (u16) var
* pointer + (u16) var + imm
* if (range > 0) then [ptr, ptr + range - off) is safe to access
* if (id > 0) means that some 'var' was added
* if (off > 0) means that 'imm' was added
*/
enum bpf_reg_type {
NOT_INIT = 0, /* nothing was written into register */
UNKNOWN_VALUE, /* reg doesn't contain a valid pointer */
SCALAR_VALUE, /* reg doesn't contain a valid pointer */
PTR_TO_CTX, /* reg points to bpf_context */
CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
PTR_TO_MAP_VALUE, /* reg points to map element value */
PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
FRAME_PTR, /* reg == frame_pointer */
PTR_TO_STACK, /* reg == frame_pointer + imm */
CONST_IMM, /* constant integer value */
/* PTR_TO_PACKET represents:
* skb->data
* skb->data + imm
* skb->data + (u16) var
* skb->data + (u16) var + imm
* if (range > 0) then [ptr, ptr + range - off) is safe to access
* if (id > 0) means that some 'var' was added
* if (off > 0) menas that 'imm' was added
*/
PTR_TO_PACKET,
PTR_TO_STACK, /* reg == frame_pointer + offset */
PTR_TO_PACKET, /* reg points to skb->data */
PTR_TO_PACKET_END, /* skb->data + headlen */
/* PTR_TO_MAP_VALUE_ADJ is used for doing pointer math inside of a map
* elem value. We only allow this if we can statically verify that
* access from this register are going to fall within the size of the
* map element.
*/
PTR_TO_MAP_VALUE_ADJ,
};
struct bpf_prog;
......
......@@ -9,6 +9,7 @@
#include <linux/bpf.h> /* for enum bpf_reg_type */
#include <linux/filter.h> /* for MAX_BPF_STACK */
#include <linux/tnum.h>
/* Just some arbitrary values so we can safely do math without overflowing and
* are obviously wrong for any sort of memory access.
......@@ -19,30 +20,37 @@
struct bpf_reg_state {
enum bpf_reg_type type;
union {
/* valid when type == CONST_IMM | PTR_TO_STACK | UNKNOWN_VALUE */
s64 imm;
/* valid when type == PTR_TO_PACKET* */
struct {
u16 off;
/* valid when type == PTR_TO_PACKET */
u16 range;
};
/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
* PTR_TO_MAP_VALUE_OR_NULL
*/
struct bpf_map *map_ptr;
};
/* Fixed part of pointer offset, pointer types only */
s32 off;
/* For PTR_TO_PACKET, used to find other pointers with the same variable
* offset, so they can share range knowledge.
* For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
* came from, when one is tested for != NULL.
*/
u32 id;
/* These three fields must be last. See states_equal() */
/* For scalar types (SCALAR_VALUE), this represents our knowledge of
* the actual value.
* For pointer types, this represents the variable part of the offset
* from the pointed-to object, and is shared with all bpf_reg_states
* with the same id as us.
*/
struct tnum var_off;
/* Used to determine if any memory access using this register will
* result in a bad access. These two fields must be last.
* See states_equal()
* result in a bad access.
* These refer to the same value as var_off, not necessarily the actual
* contents of the register.
*/
s64 min_value;
u64 max_value;
u32 min_align;
u32 aux_off;
u32 aux_off_align;
bool value_from_signed;
};
......
/* tnum: tracked (or tristate) numbers
*
* A tnum tracks knowledge about the bits of a value. Each bit can be either
* known (0 or 1), or unknown (x). Arithmetic operations on tnums will
* propagate the unknown bits such that the tnum result represents all the
* possible results for possible values of the operands.
*/
#include <linux/types.h>
struct tnum {
u64 value;
u64 mask;
};
/* Constructors */
/* Represent a known constant as a tnum. */
struct tnum tnum_const(u64 value);
/* A completely unknown value */
extern const struct tnum tnum_unknown;
/* Arithmetic and logical ops */
/* Shift a tnum left (by a fixed shift) */
struct tnum tnum_lshift(struct tnum a, u8 shift);
/* Shift a tnum right (by a fixed shift) */
struct tnum tnum_rshift(struct tnum a, u8 shift);
/* Add two tnums, return @a + @b */
struct tnum tnum_add(struct tnum a, struct tnum b);
/* Subtract two tnums, return @a - @b */
struct tnum tnum_sub(struct tnum a, struct tnum b);
/* Bitwise-AND, return @a & @b */
struct tnum tnum_and(struct tnum a, struct tnum b);
/* Bitwise-OR, return @a | @b */
struct tnum tnum_or(struct tnum a, struct tnum b);
/* Bitwise-XOR, return @a ^ @b */
struct tnum tnum_xor(struct tnum a, struct tnum b);
/* Multiply two tnums, return @a * @b */
struct tnum tnum_mul(struct tnum a, struct tnum b);
/* Return a tnum representing numbers satisfying both @a and @b */
struct tnum tnum_intersect(struct tnum a, struct tnum b);
/* Return @a with all but the lowest @size bytes cleared */
struct tnum tnum_cast(struct tnum a, u8 size);
/* Returns true if @a is a known constant */
static inline bool tnum_is_const(struct tnum a)
{
return !a.mask;
}
/* Returns true if @a == tnum_const(@b) */
static inline bool tnum_equals_const(struct tnum a, u64 b)
{
return tnum_is_const(a) && a.value == b;
}
/* Returns true if @a is completely unknown */
static inline bool tnum_is_unknown(struct tnum a)
{
return !~a.mask;
}
/* Returns true if @a is known to be a multiple of @size.
* @size must be a power of two.
*/
bool tnum_is_aligned(struct tnum a, u64 size);
/* Returns true if @b represents a subset of @a. */
bool tnum_in(struct tnum a, struct tnum b);
/* Formatting functions. These have snprintf-like semantics: they will write
* up to @size bytes (including the terminating NUL byte), and return the number
* of bytes (excluding the terminating NUL) which would have been written had
* sufficient space been available. (Thus tnum_sbin always returns 64.)
*/
/* Format a tnum as a pair of hex numbers (value; mask) */
int tnum_strn(char *str, size_t size, struct tnum a);
/* Format a tnum as tristate binary expansion */
int tnum_sbin(char *str, size_t size, struct tnum a);
obj-y := core.o
obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o
obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o tnum.o
obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o lpm_trie.o map_in_map.o
ifeq ($(CONFIG_NET),y)
obj-$(CONFIG_BPF_SYSCALL) += devmap.o
......
/* tnum: tracked (or tristate) numbers
*
* A tnum tracks knowledge about the bits of a value. Each bit can be either
* known (0 or 1), or unknown (x). Arithmetic operations on tnums will
* propagate the unknown bits such that the tnum result represents all the
* possible results for possible values of the operands.
*/
#include <linux/kernel.h>
#include <linux/tnum.h>
#define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m}
/* A completely unknown value */
const struct tnum tnum_unknown = { .value = 0, .mask = -1 };
struct tnum tnum_const(u64 value)
{
return TNUM(value, 0);
}
struct tnum tnum_lshift(struct tnum a, u8 shift)
{
return TNUM(a.value << shift, a.mask << shift);
}
struct tnum tnum_rshift(struct tnum a, u8 shift)
{
return TNUM(a.value >> shift, a.mask >> shift);
}
struct tnum tnum_add(struct tnum a, struct tnum b)
{
u64 sm, sv, sigma, chi, mu;
sm = a.mask + b.mask;
sv = a.value + b.value;
sigma = sm + sv;
chi = sigma ^ sv;
mu = chi | a.mask | b.mask;
return TNUM(sv & ~mu, mu);
}
struct tnum tnum_sub(struct tnum a, struct tnum b)
{
u64 dv, alpha, beta, chi, mu;
dv = a.value - b.value;
alpha = dv + a.mask;
beta = dv - b.mask;
chi = alpha ^ beta;
mu = chi | a.mask | b.mask;
return TNUM(dv & ~mu, mu);
}
struct tnum tnum_and(struct tnum a, struct tnum b)
{
u64 alpha, beta, v;
alpha = a.value | a.mask;
beta = b.value | b.mask;
v = a.value & b.value;
return TNUM(v, alpha & beta & ~v);
}
struct tnum tnum_or(struct tnum a, struct tnum b)
{
u64 v, mu;
v = a.value | b.value;
mu = a.mask | b.mask;
return TNUM(v, mu & ~v);
}
struct tnum tnum_xor(struct tnum a, struct tnum b)
{
u64 v, mu;
v = a.value ^ b.value;
mu = a.mask | b.mask;
return TNUM(v & ~mu, mu);
}
/* half-multiply add: acc += (unknown * mask * value).
* An intermediate step in the multiply algorithm.
*/
static struct tnum hma(struct tnum acc, u64 value, u64 mask)
{
while (mask) {
if (mask & 1)
acc = tnum_add(acc, TNUM(0, value));
mask >>= 1;
value <<= 1;
}
return acc;
}
struct tnum tnum_mul(struct tnum a, struct tnum b)
{
struct tnum acc;
u64 pi;
pi = a.value * b.value;
acc = hma(TNUM(pi, 0), a.mask, b.mask | b.value);
return hma(acc, b.mask, a.value);
}
/* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
* a 'known 0' - this will return a 'known 1' for that bit.
*/
struct tnum tnum_intersect(struct tnum a, struct tnum b)
{
u64 v, mu;
v = a.value | b.value;
mu = a.mask & b.mask;
return TNUM(v & ~mu, mu);
}
struct tnum tnum_cast(struct tnum a, u8 size)
{
a.value &= (1ULL << (size * 8)) - 1;
a.mask &= (1ULL << (size * 8)) - 1;
return a;
}
bool tnum_is_aligned(struct tnum a, u64 size)
{
if (!size)
return true;
return !((a.value | a.mask) & (size - 1));
}
bool tnum_in(struct tnum a, struct tnum b)
{
if (b.mask & ~a.mask)
return false;
b.value &= ~a.mask;
return a.value == b.value;
}
int tnum_strn(char *str, size_t size, struct tnum a)
{
return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
}
EXPORT_SYMBOL_GPL(tnum_strn);
int tnum_sbin(char *str, size_t size, struct tnum a)
{
size_t n;
for (n = 64; n; n--) {
if (n < size) {
if (a.mask & 1)
str[n - 1] = 'x';
else if (a.value & 1)
str[n - 1] = '1';
else
str[n - 1] = '0';
}
a.mask >>= 1;
a.value >>= 1;
}
str[min(size - 1, (size_t)64)] = 0;
return 64;
}
......@@ -61,12 +61,12 @@
* (and -20 constant is saved for further stack bounds checking).
* Meaning that this reg is a pointer to stack plus known immediate constant.
*
* Most of the time the registers have UNKNOWN_VALUE type, which
* Most of the time the registers have SCALAR_VALUE type, which
* means the register has some value, but it's not a valid pointer.
* (like pointer plus pointer becomes UNKNOWN_VALUE type)
* (like pointer plus pointer becomes SCALAR_VALUE type)
*
* When verifier sees load or store instructions the type of base register
* can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
* can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
* types recognized by check_mem_access() function.
*
* PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
......@@ -180,15 +180,12 @@ static __printf(1, 2) void verbose(const char *fmt, ...)
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
[NOT_INIT] = "?",
[UNKNOWN_VALUE] = "inv",
[SCALAR_VALUE] = "inv",
[PTR_TO_CTX] = "ctx",
[CONST_PTR_TO_MAP] = "map_ptr",
[PTR_TO_MAP_VALUE] = "map_value",
[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
[PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
[FRAME_PTR] = "fp",
[PTR_TO_STACK] = "fp",
[CONST_IMM] = "imm",
[PTR_TO_PACKET] = "pkt",
[PTR_TO_PACKET_END] = "pkt_end",
};
......@@ -221,32 +218,36 @@ static void print_verifier_state(struct bpf_verifier_state *state)
if (t == NOT_INIT)
continue;
verbose(" R%d=%s", i, reg_type_str[t]);
if (t == CONST_IMM || t == PTR_TO_STACK)
verbose("%lld", reg->imm);
else if (t == PTR_TO_PACKET)
verbose("(id=%d,off=%d,r=%d)",
reg->id, reg->off, reg->range);
else if (t == UNKNOWN_VALUE && reg->imm)
verbose("%lld", reg->imm);
else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
t == PTR_TO_MAP_VALUE_OR_NULL ||
t == PTR_TO_MAP_VALUE_ADJ)
verbose("(ks=%d,vs=%d,id=%u)",
if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
tnum_is_const(reg->var_off)) {
/* reg->off should be 0 for SCALAR_VALUE */
verbose("%lld", reg->var_off.value + reg->off);
} else {
verbose("(id=%d", reg->id);
if (t != SCALAR_VALUE)
verbose(",off=%d", reg->off);
if (t == PTR_TO_PACKET)
verbose(",r=%d", reg->range);
else if (t == CONST_PTR_TO_MAP ||
t == PTR_TO_MAP_VALUE ||
t == PTR_TO_MAP_VALUE_OR_NULL)
verbose(",ks=%d,vs=%d",
reg->map_ptr->key_size,
reg->map_ptr->value_size,
reg->id);
reg->map_ptr->value_size);
if (reg->min_value != BPF_REGISTER_MIN_RANGE)
verbose(",min_value=%lld",
(long long)reg->min_value);
if (reg->max_value != BPF_REGISTER_MAX_RANGE)
verbose(",max_value=%llu",
(unsigned long long)reg->max_value);
if (reg->min_align)
verbose(",min_align=%u", reg->min_align);
if (reg->aux_off)
verbose(",aux_off=%u", reg->aux_off);
if (reg->aux_off_align)
verbose(",aux_off_align=%u", reg->aux_off_align);
if (!tnum_is_unknown(reg->var_off)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose(",var_off=%s", tn_buf);
}
verbose(")");
}
}
for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
if (state->stack_slot_type[i] == STACK_SPILL)
......@@ -463,14 +464,69 @@ static const int caller_saved[CALLER_SAVED_REGS] = {
BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};
static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
static void __mark_reg_not_init(struct bpf_reg_state *reg);
/* Mark the 'variable offset' part of a register as zero. This should be
* used only on registers holding a pointer type.
*/
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
{
BUG_ON(regno >= MAX_BPF_REG);
reg->var_off = tnum_const(0);
reg->min_value = 0;
reg->max_value = 0;
}
memset(&regs[regno], 0, sizeof(regs[regno]));
regs[regno].type = NOT_INIT;
regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
{
if (WARN_ON(regno >= MAX_BPF_REG)) {
verbose("mark_reg_known_zero(regs, %u)\n", regno);
/* Something bad happened, let's kill all regs */
for (regno = 0; regno < MAX_BPF_REG; regno++)
__mark_reg_not_init(regs + regno);
return;
}
__mark_reg_known_zero(regs + regno);
}
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
reg->type = SCALAR_VALUE;
reg->id = 0;
reg->off = 0;
reg->var_off = tnum_unknown;
reg->min_value = BPF_REGISTER_MIN_RANGE;
reg->max_value = BPF_REGISTER_MAX_RANGE;
}
static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
{
if (WARN_ON(regno >= MAX_BPF_REG)) {
verbose("mark_reg_unknown(regs, %u)\n", regno);
/* Something bad happened, let's kill all regs */
for (regno = 0; regno < MAX_BPF_REG; regno++)
__mark_reg_not_init(regs + regno);
return;
}
__mark_reg_unknown(regs + regno);
}
static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
__mark_reg_unknown(reg);
reg->type = NOT_INIT;
}
static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
{
if (WARN_ON(regno >= MAX_BPF_REG)) {
verbose("mark_reg_not_init(regs, %u)\n", regno);
/* Something bad happened, let's kill all regs */
for (regno = 0; regno < MAX_BPF_REG; regno++)
__mark_reg_not_init(regs + regno);
return;
}
__mark_reg_not_init(regs + regno);
}
static void init_reg_state(struct bpf_reg_state *regs)
......@@ -481,23 +537,12 @@ static void init_reg_state(struct bpf_reg_state *regs)
mark_reg_not_init(regs, i);
/* frame pointer */
regs[BPF_REG_FP].type = FRAME_PTR;
regs[BPF_REG_FP].type = PTR_TO_STACK;
mark_reg_known_zero(regs, BPF_REG_FP);
/* 1st arg to a function */
regs[BPF_REG_1].type = PTR_TO_CTX;
}
static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
{
regs[regno].type = UNKNOWN_VALUE;
regs[regno].id = 0;
regs[regno].imm = 0;
}
static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
{
BUG_ON(regno >= MAX_BPF_REG);
__mark_reg_unknown_value(regs, regno);
mark_reg_known_zero(regs, BPF_REG_1);
}
static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
......@@ -505,14 +550,6 @@ static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
regs[regno].value_from_signed = false;
regs[regno].min_align = 0;
}
static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
u32 regno)
{
mark_reg_unknown_value(regs, regno);
reset_reg_range_values(regs, regno);
}
enum reg_arg_type {
......@@ -542,7 +579,7 @@ static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
return -EACCES;
}
if (t == DST_OP)
mark_reg_unknown_value(regs, regno);
mark_reg_unknown(regs, regno);
}
return 0;
}
......@@ -552,12 +589,10 @@ static bool is_spillable_regtype(enum bpf_reg_type type)
switch (type) {
case PTR_TO_MAP_VALUE:
case PTR_TO_MAP_VALUE_OR_NULL:
case PTR_TO_MAP_VALUE_ADJ:
case PTR_TO_STACK:
case PTR_TO_CTX:
case PTR_TO_PACKET:
case PTR_TO_PACKET_END:
case FRAME_PTR:
case CONST_PTR_TO_MAP:
return true;
default:
......@@ -637,14 +672,13 @@ static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
}
if (value_regno >= 0)
/* have read misc data from the stack */
mark_reg_unknown_value_and_range(state->regs,
value_regno);
mark_reg_unknown(state->regs, value_regno);
return 0;
}
}
/* check read/write into map element returned by bpf_map_lookup_elem() */
static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
int size)
{
struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
......@@ -657,21 +691,24 @@ static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
return 0;
}
/* check read/write into an adjusted map element */
static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
int off, int size)
{
struct bpf_verifier_state *state = &env->cur_state;
struct bpf_reg_state *reg = &state->regs[regno];
int err;
/* We adjusted the register to this map value, so we
* need to change off and size to min_value and max_value
* respectively to make sure our theoretical access will be
* safe.
/* We may have adjusted the register to this map value, so we
* need to try adding each of min_value and max_value to off
* to make sure our theoretical access will be safe.
*/
if (log_level)
print_verifier_state(state);
/* If the offset is variable, we will need to be stricter in state
* pruning from now on.
*/
if (!tnum_is_const(reg->var_off))
env->varlen_map_value_access = true;
/* The minimum value is only important with signed
* comparisons where we can't assume the floor of a
......@@ -684,10 +721,9 @@ static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
regno);
return -EACCES;
}
err = check_map_access(env, regno, reg->min_value + off, size);
err = __check_map_access(env, regno, reg->min_value + off, size);
if (err) {
verbose("R%d min value is outside of the array range\n",
regno);
verbose("R%d min value is outside of the array range\n", regno);
return err;
}
......@@ -699,7 +735,10 @@ static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
regno);
return -EACCES;
}
return check_map_access(env, regno, reg->max_value + off, size);
err = __check_map_access(env, regno, reg->max_value + off, size);
if (err)
verbose("R%d max value is outside of the array range\n", regno);
return err;
}
#define MAX_PACKET_OFF 0xffff
......@@ -729,14 +768,13 @@ static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
}
}
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
int size)
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
int off, int size)
{
struct bpf_reg_state *regs = env->cur_state.regs;
struct bpf_reg_state *reg = &regs[regno];
off += reg->off;
if (off < 0 || size <= 0 || off + size > reg->range) {
if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
off, size, regno, reg->id, reg->off, reg->range);
return -EACCES;
......@@ -744,7 +782,35 @@ static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
return 0;
}
/* check access to 'struct bpf_context' fields */
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
int size)
{
struct bpf_reg_state *regs = env->cur_state.regs;
struct bpf_reg_state *reg = &regs[regno];
int err;
/* We may have added a variable offset to the packet pointer; but any
* reg->range we have comes after that. We are only checking the fixed
* offset.
*/
/* We don't allow negative numbers, because we aren't tracking enough
* detail to prove they're safe.
*/
if (reg->min_value < 0) {
verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
regno);
return -EACCES;
}
err = __check_packet_access(env, regno, off, size);
if (err) {
verbose("R%d offset is outside of the packet\n", regno);
return err;
}
return err;
}
/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
enum bpf_access_type t, enum bpf_reg_type *reg_type)
{
......@@ -784,13 +850,7 @@ static bool __is_pointer_value(bool allow_ptr_leaks,
if (allow_ptr_leaks)
return false;
switch (reg->type) {
case UNKNOWN_VALUE:
case CONST_IMM:
return false;
default:
return true;
}
return reg->type != SCALAR_VALUE;
}
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
......@@ -801,23 +861,13 @@ static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
int off, int size, bool strict)
{
struct tnum reg_off;
int ip_align;
int reg_off;
/* Byte size accesses are always allowed. */
if (!strict || size == 1)
return 0;
reg_off = reg->off;
if (reg->id) {
if (reg->aux_off_align % size) {
verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
reg->aux_off_align, size);
return -EACCES;
}
reg_off += reg->aux_off;
}
/* For platforms that do not have a Kconfig enabling
* CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
* NET_IP_ALIGN is universally set to '2'. And on platforms
......@@ -827,20 +877,37 @@ static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
* unconditional IP align value of '2'.
*/
ip_align = 2;
if ((ip_align + reg_off + off) % size != 0) {
verbose("misaligned packet access off %d+%d+%d size %d\n",
ip_align, reg_off, off, size);
reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
if (!tnum_is_aligned(reg_off, size)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
ip_align, tn_buf, reg->off, off, size);
return -EACCES;
}
return 0;
}
static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
int size, bool strict)
static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
const char *pointer_desc,
int off, int size, bool strict)
{
if (strict && size != 1) {
verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
struct tnum reg_off;
/* Byte size accesses are always allowed. */
if (!strict || size == 1)
return 0;
reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
if (!tnum_is_aligned(reg_off, size)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose("misaligned %saccess off %s+%d+%d size %d\n",
pointer_desc, tn_buf, reg->off, off, size);
return -EACCES;
}
......@@ -852,21 +919,25 @@ static int check_ptr_alignment(struct bpf_verifier_env *env,
int off, int size)
{
bool strict = env->strict_alignment;
const char *pointer_desc = "";
switch (reg->type) {
case PTR_TO_PACKET:
/* special case, because of NET_IP_ALIGN */
return check_pkt_ptr_alignment(reg, off, size, strict);
case PTR_TO_MAP_VALUE_ADJ:
return check_val_ptr_alignment(reg, size, strict);
case PTR_TO_MAP_VALUE:
pointer_desc = "value ";
break;
case PTR_TO_CTX:
pointer_desc = "context ";
break;
case PTR_TO_STACK:
pointer_desc = "stack ";
break;
default:
if (off % size != 0) {
verbose("misaligned access off %d size %d\n",
off, size);
return -EACCES;
}
return 0;
break;
}
return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
}
/* check whether memory at (regno + off) is accessible for t = (read | write)
......@@ -883,52 +954,79 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
struct bpf_reg_state *reg = &state->regs[regno];
int size, err = 0;
if (reg->type == PTR_TO_STACK)
off += reg->imm;
size = bpf_size_to_bytes(bpf_size);
if (size < 0)
return size;
/* alignment checks will add in reg->off themselves */
err = check_ptr_alignment(env, reg, off, size);
if (err)
return err;
if (reg->type == PTR_TO_MAP_VALUE ||
reg->type == PTR_TO_MAP_VALUE_ADJ) {
/* for access checks, reg->off is just part of off */
off += reg->off;
if (reg->type == PTR_TO_MAP_VALUE) {
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose("R%d leaks addr into map\n", value_regno);
return -EACCES;
}
if (reg->type == PTR_TO_MAP_VALUE_ADJ)
err = check_map_access_adj(env, regno, off, size);
else
err = check_map_access(env, regno, off, size);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown_value_and_range(state->regs,
value_regno);
mark_reg_unknown(state->regs, value_regno);
} else if (reg->type == PTR_TO_CTX) {
enum bpf_reg_type reg_type = UNKNOWN_VALUE;
enum bpf_reg_type reg_type = SCALAR_VALUE;
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
verbose("R%d leaks addr into ctx\n", value_regno);
return -EACCES;
}
/* ctx accesses must be at a fixed offset, so that we can
* determine what type of data were returned.
*/
if (!tnum_is_const(reg->var_off)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose("variable ctx access var_off=%s off=%d size=%d",
tn_buf, off, size);
return -EACCES;
}
off += reg->var_off.value;
err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
if (!err && t == BPF_READ && value_regno >= 0) {
mark_reg_unknown_value_and_range(state->regs,
value_regno);
/* note that reg.[id|off|range] == 0 */
/* ctx access returns either a scalar, or a
* PTR_TO_PACKET[_END]. In the latter case, we know
* the offset is zero.
*/
if (reg_type == SCALAR_VALUE)
mark_reg_unknown(state->regs, value_regno);
else
mark_reg_known_zero(state->regs, value_regno);
state->regs[value_regno].id = 0;
state->regs[value_regno].off = 0;
state->regs[value_regno].range = 0;
state->regs[value_regno].type = reg_type;
state->regs[value_regno].aux_off = 0;
state->regs[value_regno].aux_off_align = 0;
}
} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
} else if (reg->type == PTR_TO_STACK) {
/* stack accesses must be at a fixed offset, so that we can
* determine what type of data were returned.
* See check_stack_read().
*/
if (!tnum_is_const(reg->var_off)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
verbose("variable stack access var_off=%s off=%d size=%d",
tn_buf, off, size);
return -EACCES;
}
off += reg->var_off.value;
if (off >= 0 || off < -MAX_BPF_STACK) {
verbose("invalid stack off=%d size=%d\n", off, size);
return -EACCES;
......@@ -948,7 +1046,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
} else {
err = check_stack_read(state, off, size, value_regno);
}
} else if (state->regs[regno].type == PTR_TO_PACKET) {
} else if (reg->type == PTR_TO_PACKET) {
if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
verbose("cannot write into packet\n");
return -EACCES;
......@@ -960,21 +1058,24 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
}
err = check_packet_access(env, regno, off, size);
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown_value_and_range(state->regs,
value_regno);
mark_reg_unknown(state->regs, value_regno);
} else {
verbose("R%d invalid mem access '%s'\n",
regno, reg_type_str[reg->type]);
return -EACCES;
}
if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
state->regs[value_regno].type == UNKNOWN_VALUE) {
/* 1 or 2 byte load zero-extends, determine the number of
* zero upper bits. Not doing it fo 4 byte load, since
* such values cannot be added to ptr_to_packet anyway.
*/
state->regs[value_regno].imm = 64 - size * 8;
if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
state->regs[value_regno].type == SCALAR_VALUE) {
/* b/h/w load zero-extends, mark upper bits as known 0 */
state->regs[value_regno].var_off = tnum_cast(
state->regs[value_regno].var_off, size);
/* sign bit is known zero, so we can bound the value */
state->regs[value_regno].min_value = 0;
state->regs[value_regno].max_value = min_t(u64,
state->regs[value_regno].var_off.value |
state->regs[value_regno].var_off.mask,
BPF_REGISTER_MAX_RANGE);
}
return err;
}
......@@ -1016,9 +1117,17 @@ static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_ins
BPF_SIZE(insn->code), BPF_WRITE, -1);
}
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state reg)
{
return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
}
/* when register 'regno' is passed into function that will read 'access_size'
* bytes from that pointer, make sure that it's within stack boundary
* and all elements of stack are initialized
* and all elements of stack are initialized.
* Unlike most pointer bounds-checking functions, this one doesn't take an
* 'off' argument, so it has to add in reg->off itself.
*/
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
int access_size, bool zero_size_allowed,
......@@ -1029,9 +1138,9 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
int off, i;
if (regs[regno].type != PTR_TO_STACK) {
/* Allow zero-byte read from NULL, regardless of pointer type */
if (zero_size_allowed && access_size == 0 &&
regs[regno].type == CONST_IMM &&
regs[regno].imm == 0)
register_is_null(regs[regno]))
return 0;
verbose("R%d type=%s expected=%s\n", regno,
......@@ -1040,7 +1149,15 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
return -EACCES;
}
off = regs[regno].imm;
/* Only allow fixed-offset stack reads */
if (!tnum_is_const(regs[regno].var_off)) {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
verbose("invalid variable stack read R%d var_off=%s\n",
regno, tn_buf);
}
off = regs[regno].off + regs[regno].var_off.value;
if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
access_size <= 0) {
verbose("invalid stack type R%d off=%d access_size=%d\n",
......@@ -1071,16 +1188,14 @@ static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
int access_size, bool zero_size_allowed,
struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *regs = env->cur_state.regs;
struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
switch (regs[regno].type) {
switch (reg->type) {
case PTR_TO_PACKET:
return check_packet_access(env, regno, 0, access_size);
return check_packet_access(env, regno, reg->off, access_size);
case PTR_TO_MAP_VALUE:
return check_map_access(env, regno, 0, access_size);
case PTR_TO_MAP_VALUE_ADJ:
return check_map_access_adj(env, regno, 0, access_size);
default: /* const_imm|ptr_to_stack or invalid ptr */
return check_map_access(env, regno, reg->off, access_size);
default: /* scalar_value|ptr_to_stack or invalid ptr */
return check_stack_boundary(env, regno, access_size,
zero_size_allowed, meta);
}
......@@ -1123,11 +1238,8 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
goto err_type;
} else if (arg_type == ARG_CONST_SIZE ||
arg_type == ARG_CONST_SIZE_OR_ZERO) {
expected_type = CONST_IMM;
/* One exception. Allow UNKNOWN_VALUE registers when the
* boundaries are known and don't cause unsafe memory accesses
*/
if (type != UNKNOWN_VALUE && type != expected_type)
expected_type = SCALAR_VALUE;
if (type != expected_type)
goto err_type;
} else if (arg_type == ARG_CONST_MAP_PTR) {
expected_type = CONST_PTR_TO_MAP;
......@@ -1141,13 +1253,13 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
arg_type == ARG_PTR_TO_UNINIT_MEM) {
expected_type = PTR_TO_STACK;
/* One exception here. In case function allows for NULL to be
* passed in as argument, it's a CONST_IMM type. Final test
* passed in as argument, it's a SCALAR_VALUE type. Final test
* happens during stack boundary checking.
*/
if (type == CONST_IMM && reg->imm == 0)
if (register_is_null(*reg))
/* final test in check_stack_boundary() */;
else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
type != expected_type)
goto err_type;
meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
} else {
......@@ -1173,7 +1285,7 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
return -EACCES;
}
if (type == PTR_TO_PACKET)
err = check_packet_access(env, regno, 0,
err = check_packet_access(env, regno, reg->off,
meta->map_ptr->key_size);
else
err = check_stack_boundary(env, regno,
......@@ -1189,7 +1301,7 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
return -EACCES;
}
if (type == PTR_TO_PACKET)
err = check_packet_access(env, regno, 0,
err = check_packet_access(env, regno, reg->off,
meta->map_ptr->value_size);
else
err = check_stack_boundary(env, regno,
......@@ -1209,10 +1321,11 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
return -EACCES;
}
/* If the register is UNKNOWN_VALUE, the access check happens
* using its boundaries. Otherwise, just use its imm
/* The register is SCALAR_VALUE; the access check
* happens using its boundaries.
*/
if (type == UNKNOWN_VALUE) {
if (!tnum_is_const(reg->var_off))
/* For unprivileged variable accesses, disable raw
* mode so that the program is required to
* initialize all the memory that the helper could
......@@ -1242,13 +1355,6 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
err = check_helper_mem_access(env, regno - 1,
reg->max_value,
zero_size_allowed, meta);
if (err)
return err;
} else {
/* register is CONST_IMM */
err = check_helper_mem_access(env, regno - 1, reg->imm,
zero_size_allowed, meta);
}
}
return err;
......@@ -1352,6 +1458,9 @@ static int check_raw_mode(const struct bpf_func_proto *fn)
return count > 1 ? -EINVAL : 0;
}
/* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
* so turn them into unknown SCALAR_VALUE.
*/
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
struct bpf_verifier_state *state = &env->cur_state;
......@@ -1361,7 +1470,7 @@ static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
for (i = 0; i < MAX_BPF_REG; i++)
if (regs[i].type == PTR_TO_PACKET ||
regs[i].type == PTR_TO_PACKET_END)
mark_reg_unknown_value(regs, i);
mark_reg_unknown(regs, i);
for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
if (state->stack_slot_type[i] != STACK_SPILL)
......@@ -1370,8 +1479,7 @@ static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
if (reg->type != PTR_TO_PACKET &&
reg->type != PTR_TO_PACKET_END)
continue;
__mark_reg_unknown_value(state->spilled_regs,
i / BPF_REG_SIZE);
__mark_reg_unknown(reg);
}
}
......@@ -1451,14 +1559,17 @@ static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
/* update return register */
if (fn->ret_type == RET_INTEGER) {
regs[BPF_REG_0].type = UNKNOWN_VALUE;
/* sets type to SCALAR_VALUE */
mark_reg_unknown(regs, BPF_REG_0);
} else if (fn->ret_type == RET_VOID) {
regs[BPF_REG_0].type = NOT_INIT;
} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
struct bpf_insn_aux_data *insn_aux;
regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
/* There is no offset yet applied, variable or fixed */
mark_reg_known_zero(regs, BPF_REG_0);
regs[BPF_REG_0].off = 0;
/* remember map_ptr, so that check_map_access()
* can check 'value_size' boundary of memory access
* to map element returned from bpf_map_lookup_elem()
......@@ -1489,456 +1600,337 @@ static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
return 0;
}
static int check_packet_ptr_add(struct bpf_verifier_env *env,
struct bpf_insn *insn)
static void check_reg_overflow(struct bpf_reg_state *reg)
{
struct bpf_reg_state *regs = env->cur_state.regs;
struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
struct bpf_reg_state *src_reg = &regs[insn->src_reg];
struct bpf_reg_state tmp_reg;
s32 imm;
if (BPF_SRC(insn->code) == BPF_K) {
/* pkt_ptr += imm */
imm = insn->imm;
add_imm:
if (imm < 0) {
verbose("addition of negative constant to packet pointer is not allowed\n");
if (reg->max_value > BPF_REGISTER_MAX_RANGE)
reg->max_value = BPF_REGISTER_MAX_RANGE;
if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
reg->min_value > BPF_REGISTER_MAX_RANGE)
reg->min_value = BPF_REGISTER_MIN_RANGE;
}
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
/* 32-bit values can't be negative as an s64 */
if (reg->min_value < 0)
reg->min_value = 0;
/* clear high 32 bits */
reg->var_off = tnum_cast(reg->var_off, 4);
/* Did value become known? Then update bounds */
if (tnum_is_const(reg->var_off)) {
if ((s64)reg->var_off.value > BPF_REGISTER_MIN_RANGE)
reg->min_value = reg->var_off.value;
if (reg->var_off.value < BPF_REGISTER_MAX_RANGE)
reg->max_value = reg->var_off.value;
}
}
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
* Caller must check_reg_overflow all argument regs beforehand.
* Caller should also handle BPF_MOV case separately.
* If we return -EACCES, caller may want to try again treating pointer as a
* scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
*/
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn,
const struct bpf_reg_state *ptr_reg,
const struct bpf_reg_state *off_reg)
{
struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
bool known = tnum_is_const(off_reg->var_off);
s64 min_val = off_reg->min_value;
u64 max_val = off_reg->max_value;
u8 opcode = BPF_OP(insn->code);
u32 dst = insn->dst_reg;
dst_reg = &regs[dst];
if (WARN_ON_ONCE(known && (min_val != max_val))) {
print_verifier_state(&env->cur_state);
verbose("verifier internal error\n");
return -EINVAL;
}
if (BPF_CLASS(insn->code) != BPF_ALU64) {
/* 32-bit ALU ops on pointers produce (meaningless) scalars */
if (!env->allow_ptr_leaks)
verbose("R%d 32-bit pointer arithmetic prohibited\n",
dst);
return -EACCES;
}
if (imm >= MAX_PACKET_OFF ||
imm + dst_reg->off >= MAX_PACKET_OFF) {
verbose("constant %d is too large to add to packet pointer\n",
imm);
if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
if (!env->allow_ptr_leaks)
verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
dst);
return -EACCES;
}
/* a constant was added to pkt_ptr.
* Remember it while keeping the same 'id'
*/
dst_reg->off += imm;
} else {
bool had_id;
if (src_reg->type == PTR_TO_PACKET) {
/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
tmp_reg = *dst_reg; /* save r7 state */
*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
src_reg = &tmp_reg; /* pretend it's src_reg state */
/* if the checks below reject it, the copy won't matter,
* since we're rejecting the whole program. If all ok,
* then imm22 state will be added to r7
* and r7 will be pkt(id=0,off=22,r=62) while
* r6 will stay as pkt(id=0,off=0,r=62)
*/
}
if (src_reg->type == CONST_IMM) {
/* pkt_ptr += reg where reg is known constant */
imm = src_reg->imm;
goto add_imm;
}
/* disallow pkt_ptr += reg
* if reg is not uknown_value with guaranteed zero upper bits
* otherwise pkt_ptr may overflow and addition will become
* subtraction which is not allowed
*/
if (src_reg->type != UNKNOWN_VALUE) {
verbose("cannot add '%s' to ptr_to_packet\n",
reg_type_str[src_reg->type]);
if (ptr_reg->type == CONST_PTR_TO_MAP) {
if (!env->allow_ptr_leaks)
verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
dst);
return -EACCES;
}
if (src_reg->imm < 48) {
verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
src_reg->imm);
if (ptr_reg->type == PTR_TO_PACKET_END) {
if (!env->allow_ptr_leaks)
verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
dst);
return -EACCES;
}
had_id = (dst_reg->id != 0);
/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
* The id may be overwritten later if we create a new variable offset.
*/
dst_reg->type = ptr_reg->type;
dst_reg->id = ptr_reg->id;
/* dst_reg stays as pkt_ptr type and since some positive
* integer value was added to the pointer, increment its 'id'
switch (opcode) {
case BPF_ADD:
/* We can take a fixed offset as long as it doesn't overflow
* the s32 'off' field
*/
if (known && (ptr_reg->off + min_val ==
(s64)(s32)(ptr_reg->off + min_val))) {
/* pointer += K. Accumulate it into fixed offset */
dst_reg->min_value = ptr_reg->min_value;
dst_reg->max_value = ptr_reg->max_value;
dst_reg->var_off = ptr_reg->var_off;
dst_reg->off = ptr_reg->off + min_val;
dst_reg->range = ptr_reg->range;
break;
}
if (max_val == BPF_REGISTER_MAX_RANGE) {
if (!env->allow_ptr_leaks)
verbose("R%d tried to add unbounded value to pointer\n",
dst);
return -EACCES;
}
/* A new variable offset is created. Note that off_reg->off
* == 0, since it's a scalar.
* dst_reg gets the pointer type and since some positive
* integer value was added to the pointer, give it a new 'id'
* if it's a PTR_TO_PACKET.
* this creates a new 'base' pointer, off_reg (variable) gets
* added into the variable offset, and we copy the fixed offset
* from ptr_reg.
*/
if (min_val <= BPF_REGISTER_MIN_RANGE)
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
dst_reg->min_value += min_val;
if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
dst_reg->max_value += max_val;
dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
dst_reg->off = ptr_reg->off;
if (ptr_reg->type == PTR_TO_PACKET) {
dst_reg->id = ++env->id_gen;
/* something was added to pkt_ptr, set range to zero */
dst_reg->aux_off += dst_reg->off;
dst_reg->off = 0;
dst_reg->range = 0;
if (had_id)
dst_reg->aux_off_align = min(dst_reg->aux_off_align,
src_reg->min_align);
else
dst_reg->aux_off_align = src_reg->min_align;
}
return 0;
}
static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
struct bpf_reg_state *regs = env->cur_state.regs;
struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
u8 opcode = BPF_OP(insn->code);
s64 imm_log2;
/* for type == UNKNOWN_VALUE:
* imm > 0 -> number of zero upper bits
* imm == 0 -> don't track which is the same as all bits can be non-zero
*/
if (BPF_SRC(insn->code) == BPF_X) {
struct bpf_reg_state *src_reg = &regs[insn->src_reg];
if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
dst_reg->imm && opcode == BPF_ADD) {
/* dreg += sreg
* where both have zero upper bits. Adding them
* can only result making one more bit non-zero
* in the larger value.
* Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
* 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
*/
dst_reg->imm = min(dst_reg->imm, src_reg->imm);
dst_reg->imm--;
return 0;
break;
case BPF_SUB:
if (dst_reg == off_reg) {
/* scalar -= pointer. Creates an unknown scalar */
if (!env->allow_ptr_leaks)
verbose("R%d tried to subtract pointer from scalar\n",
dst);
return -EACCES;
}
if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
dst_reg->imm && opcode == BPF_ADD) {
/* dreg += sreg
* where dreg has zero upper bits and sreg is const.
* Adding them can only result making one more bit
* non-zero in the larger value.
/* We don't allow subtraction from FP, because (according to
* test_verifier.c test "invalid fp arithmetic", JITs might not
* be able to deal with it.
*/
imm_log2 = __ilog2_u64((long long)src_reg->imm);
dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
dst_reg->imm--;
return 0;
if (ptr_reg->type == PTR_TO_STACK) {
if (!env->allow_ptr_leaks)
verbose("R%d subtraction from stack pointer prohibited\n",
dst);
return -EACCES;
}
/* all other cases non supported yet, just mark dst_reg */
dst_reg->imm = 0;
return 0;
if (known && (ptr_reg->off - min_val ==
(s64)(s32)(ptr_reg->off - min_val))) {
/* pointer -= K. Subtract it from fixed offset */
dst_reg->min_value = ptr_reg->min_value;
dst_reg->max_value = ptr_reg->max_value;
dst_reg->var_off = ptr_reg->var_off;
dst_reg->id = ptr_reg->id;
dst_reg->off = ptr_reg->off - min_val;
dst_reg->range = ptr_reg->range;
break;
}
/* sign extend 32-bit imm into 64-bit to make sure that
* negative values occupy bit 63. Note ilog2() would have
* been incorrect, since sizeof(insn->imm) == 4
*/
imm_log2 = __ilog2_u64((long long)insn->imm);
if (dst_reg->imm && opcode == BPF_LSH) {
/* reg <<= imm
* if reg was a result of 2 byte load, then its imm == 48
* which means that upper 48 bits are zero and shifting this reg
* left by 4 would mean that upper 44 bits are still zero
*/
dst_reg->imm -= insn->imm;
} else if (dst_reg->imm && opcode == BPF_MUL) {
/* reg *= imm
* if multiplying by 14 subtract 4
* This is conservative calculation of upper zero bits.
* It's not trying to special case insn->imm == 1 or 0 cases
*/
dst_reg->imm -= imm_log2 + 1;
} else if (opcode == BPF_AND) {
/* reg &= imm */
dst_reg->imm = 63 - imm_log2;
} else if (dst_reg->imm && opcode == BPF_ADD) {
/* reg += imm */
dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
dst_reg->imm--;
} else if (opcode == BPF_RSH) {
/* reg >>= imm
* which means that after right shift, upper bits will be zero
* note that verifier already checked that
* 0 <= imm < 64 for shift insn
*/
dst_reg->imm += insn->imm;
if (unlikely(dst_reg->imm > 64))
/* some dumb code did:
* r2 = *(u32 *)mem;
* r2 >>= 32;
* and all bits are zero now */
dst_reg->imm = 64;
} else {
/* all other alu ops, means that we don't know what will
* happen to the value, mark it with unknown number of zero bits
/* Subtracting a negative value will just confuse everything.
* This can happen if off_reg is an immediate.
*/
dst_reg->imm = 0;
if ((s64)max_val < 0) {
if (!env->allow_ptr_leaks)
verbose("R%d tried to subtract negative max_val %lld from pointer\n",
dst, (s64)max_val);
return -EACCES;
}
if (dst_reg->imm < 0) {
/* all 64 bits of the register can contain non-zero bits
* and such value cannot be added to ptr_to_packet, since it
* may overflow, mark it as unknown to avoid further eval
/* A new variable offset is created. If the subtrahend is known
* nonnegative, then any reg->range we had before is still good.
*/
dst_reg->imm = 0;
if (max_val >= BPF_REGISTER_MAX_RANGE)
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
dst_reg->min_value -= max_val;
if (min_val <= BPF_REGISTER_MIN_RANGE)
dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
dst_reg->max_value -= min_val;
dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
dst_reg->off = ptr_reg->off;
if (ptr_reg->type == PTR_TO_PACKET) {
dst_reg->id = ++env->id_gen;
/* something was added to pkt_ptr, set range to zero */
if (min_val < 0)
dst_reg->range = 0;
}
return 0;
}
static int evaluate_reg_imm_alu_unknown(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
struct bpf_reg_state *regs = env->cur_state.regs;
struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
struct bpf_reg_state *src_reg = &regs[insn->src_reg];
u8 opcode = BPF_OP(insn->code);
s64 imm_log2 = __ilog2_u64((long long)dst_reg->imm);
/* BPF_X code with src_reg->type UNKNOWN_VALUE here. */
if (src_reg->imm > 0 && dst_reg->imm) {
switch (opcode) {
case BPF_ADD:
/* dreg += sreg
* where both have zero upper bits. Adding them
* can only result making one more bit non-zero
* in the larger value.
* Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
* 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
*/
dst_reg->imm = min(src_reg->imm, 63 - imm_log2);
dst_reg->imm--;
break;
case BPF_AND:
/* dreg &= sreg
* AND can not extend zero bits only shrink
* Ex. 0x00..00ffffff
* & 0x0f..ffffffff
* ----------------
* 0x00..00ffffff
*/
dst_reg->imm = max(src_reg->imm, 63 - imm_log2);
break;
case BPF_OR:
/* dreg |= sreg
* OR can only extend zero bits
* Ex. 0x00..00ffffff
* | 0x0f..ffffffff
* ----------------
* 0x0f..00ffffff
*/
dst_reg->imm = min(src_reg->imm, 63 - imm_log2);
break;
case BPF_SUB:
case BPF_MUL:
case BPF_RSH:
case BPF_LSH:
/* These may be flushed out later */
case BPF_XOR:
/* bitwise ops on pointers are troublesome, prohibit for now.
* (However, in principle we could allow some cases, e.g.
* ptr &= ~3 which would reduce min_value by 3.)
*/
if (!env->allow_ptr_leaks)
verbose("R%d bitwise operator %s on pointer prohibited\n",
dst, bpf_alu_string[opcode >> 4]);
return -EACCES;
default:
mark_reg_unknown_value(regs, insn->dst_reg);
}
} else {
mark_reg_unknown_value(regs, insn->dst_reg);
/* other operators (e.g. MUL,LSH) produce non-pointer results */
if (!env->allow_ptr_leaks)
verbose("R%d pointer arithmetic with %s operator prohibited\n",
dst, bpf_alu_string[opcode >> 4]);
return -EACCES;
}
dst_reg->type = UNKNOWN_VALUE;
check_reg_overflow(dst_reg);
return 0;
}
static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
struct bpf_insn *insn)
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn,
struct bpf_reg_state *dst_reg,
struct bpf_reg_state src_reg)
{
struct bpf_reg_state *regs = env->cur_state.regs;
struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
struct bpf_reg_state *src_reg = &regs[insn->src_reg];
u8 opcode = BPF_OP(insn->code);
u64 dst_imm = dst_reg->imm;
if (BPF_SRC(insn->code) == BPF_X && src_reg->type == UNKNOWN_VALUE)
return evaluate_reg_imm_alu_unknown(env, insn);
/* dst_reg->type == CONST_IMM here. Simulate execution of insns
* containing ALU ops. Don't care about overflow or negative
* values, just add/sub/... them; registers are in u64.
*/
if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
dst_imm += insn->imm;
} else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm += src_reg->imm;
} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
dst_imm -= insn->imm;
} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm -= src_reg->imm;
} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
dst_imm *= insn->imm;
} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm *= src_reg->imm;
} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
dst_imm |= insn->imm;
} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm |= src_reg->imm;
} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
dst_imm &= insn->imm;
} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm &= src_reg->imm;
} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
dst_imm >>= insn->imm;
} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm >>= src_reg->imm;
} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
dst_imm <<= insn->imm;
} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
src_reg->type == CONST_IMM) {
dst_imm <<= src_reg->imm;
} else {
mark_reg_unknown_value(regs, insn->dst_reg);
goto out;
}
dst_reg->imm = dst_imm;
out:
return 0;
}
static void check_reg_overflow(struct bpf_reg_state *reg)
{
if (reg->max_value > BPF_REGISTER_MAX_RANGE)
reg->max_value = BPF_REGISTER_MAX_RANGE;
if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
reg->min_value > BPF_REGISTER_MAX_RANGE)
reg->min_value = BPF_REGISTER_MIN_RANGE;
}
static u32 calc_align(u32 imm)
{
if (!imm)
return 1U << 31;
return imm - ((imm - 1) & imm);
}
static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
s64 min_val = BPF_REGISTER_MIN_RANGE;
u64 max_val = BPF_REGISTER_MAX_RANGE;
u8 opcode = BPF_OP(insn->code);
u32 dst_align, src_align;
dst_reg = &regs[insn->dst_reg];
src_align = 0;
if (BPF_SRC(insn->code) == BPF_X) {
check_reg_overflow(&regs[insn->src_reg]);
min_val = regs[insn->src_reg].min_value;
max_val = regs[insn->src_reg].max_value;
/* If the source register is a random pointer then the
* min_value/max_value values represent the range of the known
* accesses into that value, not the actual min/max value of the
* register itself. In this case we have to reset the reg range
* values so we know it is not safe to look at.
*/
if (regs[insn->src_reg].type != CONST_IMM &&
regs[insn->src_reg].type != UNKNOWN_VALUE) {
min_val = BPF_REGISTER_MIN_RANGE;
max_val = BPF_REGISTER_MAX_RANGE;
src_align = 0;
} else {
src_align = regs[insn->src_reg].min_align;
}
} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
(s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
min_val = max_val = insn->imm;
src_align = calc_align(insn->imm);
}
dst_align = dst_reg->min_align;
/* We don't know anything about what was done to this register, mark it
* as unknown. Also, if both derived bounds came from signed/unsigned
* mixed compares and one side is unbounded, we cannot really do anything
* with them as boundaries cannot be trusted. Thus, arithmetic of two
* regs of such kind will get invalidated bounds on the dst side.
*/
if ((min_val == BPF_REGISTER_MIN_RANGE &&
max_val == BPF_REGISTER_MAX_RANGE) ||
(BPF_SRC(insn->code) == BPF_X &&
((min_val != BPF_REGISTER_MIN_RANGE &&
max_val == BPF_REGISTER_MAX_RANGE) ||
(min_val == BPF_REGISTER_MIN_RANGE &&
max_val != BPF_REGISTER_MAX_RANGE) ||
(dst_reg->min_value != BPF_REGISTER_MIN_RANGE &&
dst_reg->max_value == BPF_REGISTER_MAX_RANGE) ||
(dst_reg->min_value == BPF_REGISTER_MIN_RANGE &&
dst_reg->max_value != BPF_REGISTER_MAX_RANGE)) &&
regs[insn->dst_reg].value_from_signed !=
regs[insn->src_reg].value_from_signed)) {
reset_reg_range_values(regs, insn->dst_reg);
return;
}
bool src_known, dst_known;
/* If one of our values was at the end of our ranges then we can't just
* do our normal operations to the register, we need to set the values
* to the min/max since they are undefined.
*/
if (opcode != BPF_SUB) {
if (min_val == BPF_REGISTER_MIN_RANGE)
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
if (max_val == BPF_REGISTER_MAX_RANGE)
dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
if (BPF_CLASS(insn->code) != BPF_ALU64) {
/* 32-bit ALU ops are (32,32)->64 */
coerce_reg_to_32(dst_reg);
coerce_reg_to_32(&src_reg);
}
min_val = src_reg.min_value;
max_val = src_reg.max_value;
src_known = tnum_is_const(src_reg.var_off);
dst_known = tnum_is_const(dst_reg->var_off);
switch (opcode) {
case BPF_ADD:
if (min_val == BPF_REGISTER_MIN_RANGE)
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
dst_reg->min_value += min_val;
/* if max_val is MAX_RANGE, this will saturate dst->max */
if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
dst_reg->max_value += max_val;
dst_reg->min_align = min(src_align, dst_align);
dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
break;
case BPF_SUB:
/* If one of our values was at the end of our ranges, then the
* _opposite_ value in the dst_reg goes to the end of our range.
*/
if (min_val == BPF_REGISTER_MIN_RANGE)
dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
if (max_val == BPF_REGISTER_MAX_RANGE)
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
dst_reg->min_value -= max_val;
if (min_val == BPF_REGISTER_MIN_RANGE)
dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
dst_reg->max_value -= min_val;
dst_reg->min_align = min(src_align, dst_align);
dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
break;
case BPF_MUL:
if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
if (min_val < 0 || dst_reg->min_value < 0) {
/* Ain't nobody got time to multiply that sign */
__mark_reg_unknown(dst_reg);
break;
}
dst_reg->min_value *= min_val;
/* if max_val is MAX_RANGE, this will saturate dst->max.
* We know MAX_RANGE ** 2 won't overflow a u64, because
* MAX_RANGE itself fits in a u32.
*/
BUILD_BUG_ON(BPF_REGISTER_MAX_RANGE > (u32)-1);
if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
dst_reg->max_value *= max_val;
dst_reg->min_align = max(src_align, dst_align);
dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
break;
case BPF_AND:
/* Disallow AND'ing of negative numbers, ain't nobody got time
* for that. Otherwise the minimum is 0 and the max is the max
* value we could AND against.
if (src_known && dst_known) {
u64 value = dst_reg->var_off.value & src_reg.var_off.value;
dst_reg->var_off = tnum_const(value);
dst_reg->min_value = dst_reg->max_value = min_t(u64,
value, BPF_REGISTER_MAX_RANGE);
break;
}
/* Lose min_value when AND'ing negative numbers, ain't nobody
* got time for that. Otherwise we get our minimum from the
* var_off, since that's inherently bitwise.
* Our maximum is the minimum of the operands' maxima.
*/
if (min_val < 0)
dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
if (min_val < 0 && dst_reg->min_value < 0)
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
else
dst_reg->min_value = 0;
dst_reg->max_value = max_val;
dst_reg->min_align = max(src_align, dst_align);
dst_reg->min_value = dst_reg->var_off.value;
dst_reg->max_value = min(dst_reg->max_value, max_val);
break;
case BPF_OR:
if (src_known && dst_known) {
u64 value = dst_reg->var_off.value | src_reg.var_off.value;
dst_reg->var_off = tnum_const(value);
dst_reg->min_value = dst_reg->max_value = min_t(u64,
value, BPF_REGISTER_MAX_RANGE);
break;
}
/* Lose ranges when OR'ing negative numbers, ain't nobody got
* time for that. Otherwise we get our maximum from the var_off,
* and our minimum is the maximum of the operands' minima.
*/
dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
if (min_val < 0 || dst_reg->min_value < 0) {
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
} else {
dst_reg->min_value = max(dst_reg->min_value, min_val);
dst_reg->max_value = dst_reg->var_off.value | dst_reg->var_off.mask;
}
break;
case BPF_LSH:
if (min_val < 0) {
/* LSH by a negative number is undefined */
mark_reg_unknown(regs, insn->dst_reg);
break;
}
/* Gotta have special overflow logic here, if we're shifting
* more than MAX_RANGE then just assume we have an invalid
* range.
*/
if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
dst_reg->min_align = 1;
dst_reg->var_off = tnum_unknown;
} else {
if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
dst_reg->min_value <<= min_val;
if (!dst_reg->min_align)
dst_reg->min_align = 1;
dst_reg->min_align <<= min_val;
if (src_known)
dst_reg->var_off = tnum_lshift(dst_reg->var_off, min_val);
else
dst_reg->var_off = tnum_lshift(tnum_unknown, min_val);
}
if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
......@@ -1946,37 +1938,139 @@ static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
dst_reg->max_value <<= max_val;
break;
case BPF_RSH:
/* RSH by a negative number is undefined, and the BPF_RSH is an
* unsigned shift, so make the appropriate casts.
*/
if (min_val < 0 || dst_reg->min_value < 0) {
dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
if (min_val < 0) {
/* RSH by a negative number is undefined */
mark_reg_unknown(regs, insn->dst_reg);
break;
}
/* BPF_RSH is an unsigned shift, so make the appropriate casts */
if (dst_reg->min_value < 0) {
if (min_val)
/* Sign bit will be cleared */
dst_reg->min_value = 0;
} else {
dst_reg->min_value =
(u64)(dst_reg->min_value) >> min_val;
}
if (min_val < 0) {
dst_reg->min_align = 1;
} else {
dst_reg->min_align >>= (u64) min_val;
if (!dst_reg->min_align)
dst_reg->min_align = 1;
}
if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
if (src_known)
dst_reg->var_off = tnum_rshift(dst_reg->var_off, min_val);
else
dst_reg->var_off = tnum_rshift(tnum_unknown, min_val);
if (dst_reg->max_value == BPF_REGISTER_MAX_RANGE)
dst_reg->max_value = ~0;
dst_reg->max_value >>= max_val;
break;
default:
reset_reg_range_values(regs, insn->dst_reg);
mark_reg_unknown(regs, insn->dst_reg);
break;
}
check_reg_overflow(dst_reg);
return 0;
}
/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
* and var_off.
*/
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{
struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
u8 opcode = BPF_OP(insn->code);
int rc;
dst_reg = &regs[insn->dst_reg];
check_reg_overflow(dst_reg);
src_reg = NULL;
if (dst_reg->type != SCALAR_VALUE)
ptr_reg = dst_reg;
if (BPF_SRC(insn->code) == BPF_X) {
src_reg = &regs[insn->src_reg];
check_reg_overflow(src_reg);
if (src_reg->type != SCALAR_VALUE) {
if (dst_reg->type != SCALAR_VALUE) {
/* Combining two pointers by any ALU op yields
* an arbitrary scalar.
*/
if (!env->allow_ptr_leaks) {
verbose("R%d pointer %s pointer prohibited\n",
insn->dst_reg,
bpf_alu_string[opcode >> 4]);
return -EACCES;
}
mark_reg_unknown(regs, insn->dst_reg);
return 0;
} else {
/* scalar += pointer
* This is legal, but we have to reverse our
* src/dest handling in computing the range
*/
rc = adjust_ptr_min_max_vals(env, insn,
src_reg, dst_reg);
if (rc == -EACCES && env->allow_ptr_leaks) {
/* scalar += unknown scalar */
__mark_reg_unknown(&off_reg);
return adjust_scalar_min_max_vals(
env, insn,
dst_reg, off_reg);
}
return rc;
}
} else if (ptr_reg) {
/* pointer += scalar */
rc = adjust_ptr_min_max_vals(env, insn,
dst_reg, src_reg);
if (rc == -EACCES && env->allow_ptr_leaks) {
/* unknown scalar += scalar */
__mark_reg_unknown(dst_reg);
return adjust_scalar_min_max_vals(
env, insn, dst_reg, *src_reg);
}
return rc;
}
} else {
/* Pretend the src is a reg with a known value, since we only
* need to be able to read from this state.
*/
off_reg.type = SCALAR_VALUE;
off_reg.var_off = tnum_const(insn->imm);
off_reg.min_value = insn->imm;
off_reg.max_value = insn->imm;
src_reg = &off_reg;
check_reg_overflow(src_reg);
if (ptr_reg) { /* pointer += K */
rc = adjust_ptr_min_max_vals(env, insn,
ptr_reg, src_reg);
if (rc == -EACCES && env->allow_ptr_leaks) {
/* unknown scalar += K */
__mark_reg_unknown(dst_reg);
return adjust_scalar_min_max_vals(
env, insn, dst_reg, off_reg);
}
return rc;
}
}
/* Got here implies adding two SCALAR_VALUEs */
if (WARN_ON_ONCE(ptr_reg)) {
print_verifier_state(&env->cur_state);
verbose("verifier internal error: unexpected ptr_reg\n");
return -EINVAL;
}
if (WARN_ON(!src_reg)) {
print_verifier_state(&env->cur_state);
verbose("verifier internal error: no src_reg\n");
return -EINVAL;
}
return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
}
/* check validity of 32-bit and 64-bit arithmetic operations */
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
{
struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
struct bpf_reg_state *regs = env->cur_state.regs;
u8 opcode = BPF_OP(insn->code);
int err;
......@@ -2036,11 +2130,6 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
if (err)
return err;
/* we are setting our register to something new, we need to
* reset its range values.
*/
reset_reg_range_values(regs, insn->dst_reg);
if (BPF_SRC(insn->code) == BPF_X) {
if (BPF_CLASS(insn->code) == BPF_ALU64) {
/* case: R1 = R2
......@@ -2048,24 +2137,29 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
*/
regs[insn->dst_reg] = regs[insn->src_reg];
} else {
/* R1 = (u32) R2 */
if (is_pointer_value(env, insn->src_reg)) {
verbose("R%d partial copy of pointer\n",
insn->src_reg);
return -EACCES;
}
mark_reg_unknown_value(regs, insn->dst_reg);
mark_reg_unknown(regs, insn->dst_reg);
/* high 32 bits are known zero. But this is
* still out of range for max_value, so leave
* that.
*/
regs[insn->dst_reg].var_off = tnum_cast(
regs[insn->dst_reg].var_off, 4);
}
} else {
/* case: R = imm
* remember the value we stored into this reg
*/
regs[insn->dst_reg].type = CONST_IMM;
regs[insn->dst_reg].imm = insn->imm;
regs[insn->dst_reg].id = 0;
regs[insn->dst_reg].type = SCALAR_VALUE;
regs[insn->dst_reg].var_off = tnum_const(insn->imm);
regs[insn->dst_reg].max_value = insn->imm;
regs[insn->dst_reg].min_value = insn->imm;
regs[insn->dst_reg].min_align = calc_align(insn->imm);
regs[insn->dst_reg].value_from_signed = false;
regs[insn->dst_reg].id = 0;
}
} else if (opcode > BPF_END) {
......@@ -2116,68 +2210,7 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
if (err)
return err;
dst_reg = &regs[insn->dst_reg];
/* first we want to adjust our ranges. */
adjust_reg_min_max_vals(env, insn);
/* pattern match 'bpf_add Rx, imm' instruction */
if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
dst_reg->type = PTR_TO_STACK;
dst_reg->imm = insn->imm;
return 0;
} else if (opcode == BPF_ADD &&
BPF_CLASS(insn->code) == BPF_ALU64 &&
dst_reg->type == PTR_TO_STACK &&
((BPF_SRC(insn->code) == BPF_X &&
regs[insn->src_reg].type == CONST_IMM) ||
BPF_SRC(insn->code) == BPF_K)) {
if (BPF_SRC(insn->code) == BPF_X)
dst_reg->imm += regs[insn->src_reg].imm;
else
dst_reg->imm += insn->imm;
return 0;
} else if (opcode == BPF_ADD &&
BPF_CLASS(insn->code) == BPF_ALU64 &&
(dst_reg->type == PTR_TO_PACKET ||
(BPF_SRC(insn->code) == BPF_X &&
regs[insn->src_reg].type == PTR_TO_PACKET))) {
/* ptr_to_packet += K|X */
return check_packet_ptr_add(env, insn);
} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
dst_reg->type == UNKNOWN_VALUE &&
env->allow_ptr_leaks) {
/* unknown += K|X */
return evaluate_reg_alu(env, insn);
} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
dst_reg->type == CONST_IMM &&
env->allow_ptr_leaks) {
/* reg_imm += K|X */
return evaluate_reg_imm_alu(env, insn);
} else if (is_pointer_value(env, insn->dst_reg)) {
verbose("R%d pointer arithmetic prohibited\n",
insn->dst_reg);
return -EACCES;
} else if (BPF_SRC(insn->code) == BPF_X &&
is_pointer_value(env, insn->src_reg)) {
verbose("R%d pointer arithmetic prohibited\n",
insn->src_reg);
return -EACCES;
}
/* If we did pointer math on a map value then just set it to our
* PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
* loads to this register appropriately, otherwise just mark the
* register as unknown.
*/
if (env->allow_ptr_leaks &&
BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
(dst_reg->type == PTR_TO_MAP_VALUE ||
dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
else
mark_reg_unknown_value(regs, insn->dst_reg);
return adjust_reg_min_max_vals(env, insn);
}
return 0;
......@@ -2189,6 +2222,17 @@ static void find_good_pkt_pointers(struct bpf_verifier_state *state,
struct bpf_reg_state *regs = state->regs, *reg;
int i;
if (dst_reg->off < 0)
/* This doesn't give us any range */
return;
if (dst_reg->max_value > MAX_PACKET_OFF ||
dst_reg->max_value + dst_reg->off > MAX_PACKET_OFF)
/* Risk of overflow. For instance, ptr + (1<<63) may be less
* than pkt_end, but that's because it's also less than pkt.
*/
return;
/* LLVM can generate two kind of checks:
*
* Type 1:
......@@ -2219,30 +2263,44 @@ static void find_good_pkt_pointers(struct bpf_verifier_state *state,
* so that range of bytes [r3, r3 + 8) is safe to access.
*/
/* If our ids match, then we must have the same max_value. And we
* don't care about the other reg's fixed offset, since if it's too big
* the range won't allow anything.
* dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
*/
for (i = 0; i < MAX_BPF_REG; i++)
if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
/* keep the maximum range already checked */
regs[i].range = max(regs[i].range, dst_reg->off);
regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
if (state->stack_slot_type[i] != STACK_SPILL)
continue;
reg = &state->spilled_regs[i / BPF_REG_SIZE];
if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
reg->range = max(reg->range, dst_reg->off);
reg->range = max_t(u16, reg->range, dst_reg->off);
}
}
/* Adjusts the register min/max values in the case that the dst_reg is the
* variable register that we are working on, and src_reg is a constant or we're
* simply doing a BPF_K check.
* In JEQ/JNE cases we also adjust the var_off values.
*/
static void reg_set_min_max(struct bpf_reg_state *true_reg,
struct bpf_reg_state *false_reg, u64 val,
u8 opcode)
{
bool value_from_signed = true;
bool is_range = true;
/* If the dst_reg is a pointer, we can't learn anything about its
* variable offset from the compare (unless src_reg were a pointer into
* the same object, but we don't bother with that.
* Since false_reg and true_reg have the same type by construction, we
* only need to check one of them for pointerness.
*/
if (__is_pointer_value(false, false_reg))
return;
switch (opcode) {
case BPF_JEQ:
......@@ -2250,14 +2308,14 @@ static void reg_set_min_max(struct bpf_reg_state *true_reg,
* true then we know for sure.
*/
true_reg->max_value = true_reg->min_value = val;
is_range = false;
true_reg->var_off = tnum_const(val);
break;
case BPF_JNE:
/* If this is true we know nothing Jon Snow, but if it is false
* we know the value for sure;
*/
false_reg->max_value = false_reg->min_value = val;
is_range = false;
false_reg->var_off = tnum_const(val);
break;
case BPF_JGT:
value_from_signed = false;
......@@ -2305,23 +2363,19 @@ static void reg_set_min_max(struct bpf_reg_state *true_reg,
check_reg_overflow(false_reg);
check_reg_overflow(true_reg);
if (is_range) {
if (__is_pointer_value(false, false_reg))
reset_reg_range_values(false_reg, 0);
if (__is_pointer_value(false, true_reg))
reset_reg_range_values(true_reg, 0);
}
}
/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
* is the variable reg.
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
* the variable reg.
*/
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
struct bpf_reg_state *false_reg, u64 val,
u8 opcode)
{
bool value_from_signed = true;
bool is_range = true;
if (__is_pointer_value(false, false_reg))
return;
switch (opcode) {
case BPF_JEQ:
......@@ -2329,14 +2383,14 @@ static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
* true then we know for sure.
*/
true_reg->max_value = true_reg->min_value = val;
is_range = false;
true_reg->var_off = tnum_const(val);
break;
case BPF_JNE:
/* If this is true we know nothing Jon Snow, but if it is false
* we know the value for sure;
*/
false_reg->max_value = false_reg->min_value = val;
is_range = false;
false_reg->var_off = tnum_const(val);
break;
case BPF_JGT:
value_from_signed = false;
......@@ -2385,27 +2439,60 @@ static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
check_reg_overflow(false_reg);
check_reg_overflow(true_reg);
if (is_range) {
if (__is_pointer_value(false, false_reg))
reset_reg_range_values(false_reg, 0);
if (__is_pointer_value(false, true_reg))
reset_reg_range_values(true_reg, 0);
}
/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
struct bpf_reg_state *dst_reg)
{
src_reg->min_value = dst_reg->min_value = max(src_reg->min_value,
dst_reg->min_value);
src_reg->max_value = dst_reg->max_value = min(src_reg->max_value,
dst_reg->max_value);
src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
dst_reg->var_off);
check_reg_overflow(src_reg);
check_reg_overflow(dst_reg);
}
static void reg_combine_min_max(struct bpf_reg_state *true_src,
struct bpf_reg_state *true_dst,
struct bpf_reg_state *false_src,
struct bpf_reg_state *false_dst,
u8 opcode)
{
switch (opcode) {
case BPF_JEQ:
__reg_combine_min_max(true_src, true_dst);
break;
case BPF_JNE:
__reg_combine_min_max(false_src, false_dst);
}
}
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
enum bpf_reg_type type)
bool is_null)
{
struct bpf_reg_state *reg = &regs[regno];
if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
if (type == UNKNOWN_VALUE) {
__mark_reg_unknown_value(regs, regno);
/* Old offset (both fixed and variable parts) should
* have been known-zero, because we don't allow pointer
* arithmetic on pointers that might be NULL.
*/
if (WARN_ON_ONCE(reg->min_value || reg->max_value ||
reg->var_off.value || reg->var_off.mask ||
reg->off)) {
reg->min_value = reg->max_value = reg->off = 0;
reg->var_off = tnum_const(0);
}
if (is_null) {
reg->type = SCALAR_VALUE;
} else if (reg->map_ptr->inner_map_meta) {
reg->type = CONST_PTR_TO_MAP;
reg->map_ptr = reg->map_ptr->inner_map_meta;
} else {
reg->type = type;
reg->type = PTR_TO_MAP_VALUE;
}
/* We don't need id from this point onwards anymore, thus we
* should better reset it, so that state pruning has chances
......@@ -2419,19 +2506,19 @@ static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
* be folded together at some point.
*/
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
enum bpf_reg_type type)
bool is_null)
{
struct bpf_reg_state *regs = state->regs;
u32 id = regs[regno].id;
int i;
for (i = 0; i < MAX_BPF_REG; i++)
mark_map_reg(regs, i, id, type);
mark_map_reg(regs, i, id, is_null);
for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
if (state->stack_slot_type[i] != STACK_SPILL)
continue;
mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
}
}
......@@ -2481,7 +2568,8 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
/* detect if R == 0 where R was initialized to zero earlier */
if (BPF_SRC(insn->code) == BPF_K &&
(opcode == BPF_JEQ || opcode == BPF_JNE) &&
dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
dst_reg->type == SCALAR_VALUE &&
tnum_equals_const(dst_reg->var_off, insn->imm)) {
if (opcode == BPF_JEQ) {
/* if (imm == imm) goto pc+off;
* only follow the goto, ignore fall-through
......@@ -2503,17 +2591,30 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
/* detect if we are comparing against a constant value so we can adjust
* our min/max values for our dst register.
* this is only legit if both are scalars (or pointers to the same
* object, I suppose, but we don't support that right now), because
* otherwise the different base pointers mean the offsets aren't
* comparable.
*/
if (BPF_SRC(insn->code) == BPF_X) {
if (regs[insn->src_reg].type == CONST_IMM)
if (dst_reg->type == SCALAR_VALUE &&
regs[insn->src_reg].type == SCALAR_VALUE) {
if (tnum_is_const(regs[insn->src_reg].var_off))
reg_set_min_max(&other_branch->regs[insn->dst_reg],
dst_reg, regs[insn->src_reg].imm,
dst_reg, regs[insn->src_reg].var_off.value,
opcode);
else if (dst_reg->type == CONST_IMM)
else if (tnum_is_const(dst_reg->var_off))
reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
&regs[insn->src_reg], dst_reg->imm,
opcode);
} else {
&regs[insn->src_reg],
dst_reg->var_off.value, opcode);
else if (opcode == BPF_JEQ || opcode == BPF_JNE)
/* Comparing for equality, we can combine knowledge */
reg_combine_min_max(&other_branch->regs[insn->src_reg],
&other_branch->regs[insn->dst_reg],
&regs[insn->src_reg],
&regs[insn->dst_reg], opcode);
}
} else if (dst_reg->type == SCALAR_VALUE) {
reg_set_min_max(&other_branch->regs[insn->dst_reg],
dst_reg, insn->imm, opcode);
}
......@@ -2525,10 +2626,8 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
/* Mark all identical map registers in each branch as either
* safe or unknown depending R == 0 or R != 0 conditional.
*/
mark_map_regs(this_branch, insn->dst_reg,
opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
mark_map_regs(other_branch, insn->dst_reg,
opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
dst_reg->type == PTR_TO_PACKET &&
regs[insn->src_reg].type == PTR_TO_PACKET_END) {
......@@ -2576,8 +2675,11 @@ static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
if (insn->src_reg == 0) {
u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
regs[insn->dst_reg].type = CONST_IMM;
regs[insn->dst_reg].imm = imm;
regs[insn->dst_reg].type = SCALAR_VALUE;
regs[insn->dst_reg].min_value = imm;
regs[insn->dst_reg].max_value = imm;
check_reg_overflow(&regs[insn->dst_reg]);
regs[insn->dst_reg].var_off = tnum_const(imm);
regs[insn->dst_reg].id = 0;
return 0;
}
......@@ -2659,7 +2761,7 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
/* mark destination R0 register as readable, since it contains
* the value fetched from the packet
*/
regs[BPF_REG_0].type = UNKNOWN_VALUE;
mark_reg_unknown(regs, BPF_REG_0);
return 0;
}
......@@ -2862,57 +2964,145 @@ static int check_cfg(struct bpf_verifier_env *env)
return ret;
}
/* the following conditions reduce the number of explored insns
* from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
*/
static bool compare_ptrs_to_packet(struct bpf_verifier_env *env,
struct bpf_reg_state *old,
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
struct bpf_reg_state *cur)
{
if (old->id != cur->id)
return false;
return old->min_value <= cur->min_value &&
old->max_value >= cur->max_value;
}
/* old ptr_to_packet is more conservative, since it allows smaller
* range. Ex:
* old(off=0,r=10) is equal to cur(off=0,r=20), because
* old(off=0,r=10) means that with range=10 the verifier proceeded
* further and found no issues with the program. Now we're in the same
* spot with cur(off=0,r=20), so we're safe too, since anything further
* will only be looking at most 10 bytes after this pointer.
/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
u32 old;
u32 cur;
};
/* If in the old state two registers had the same id, then they need to have
* the same id in the new state as well. But that id could be different from
* the old state, so we need to track the mapping from old to new ids.
* Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
* regs with old id 5 must also have new id 9 for the new state to be safe. But
* regs with a different old id could still have new id 9, we don't care about
* that.
* So we look through our idmap to see if this old id has been seen before. If
* so, we require the new id to match; otherwise, we add the id pair to the map.
*/
if (old->off == cur->off && old->range < cur->range)
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
{
unsigned int i;
for (i = 0; i < ID_MAP_SIZE; i++) {
if (!idmap[i].old) {
/* Reached an empty slot; haven't seen this id before */
idmap[i].old = old_id;
idmap[i].cur = cur_id;
return true;
}
if (idmap[i].old == old_id)
return idmap[i].cur == cur_id;
}
/* We ran out of idmap slots, which should be impossible */
WARN_ON_ONCE(1);
return false;
}
/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
* since both cannot be used for packet access and safe(old)
* pointer has smaller off that could be used for further
* 'if (ptr > data_end)' check
* Ex:
* old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
* that we cannot access the packet.
* The safe range is:
* [ptr, ptr + range - off)
* so whenever off >=range, it means no safe bytes from this pointer.
* When comparing old->off <= cur->off, it means that older code
* went with smaller offset and that offset was later
* used to figure out the safe range after 'if (ptr > data_end)' check
* Say, 'old' state was explored like:
* ... R3(off=0, r=0)
* R4 = R3 + 20
* ... now R4(off=20,r=0) <-- here
* if (R4 > data_end)
* ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
* ... the code further went all the way to bpf_exit.
* Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
* old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
* goes further, such cur_R4 will give larger safe packet range after
* 'if (R4 > data_end)' and all further insn were already good with r=20,
* so they will be good with r=30 and we can prune the search.
*/
if (!env->strict_alignment && old->off <= cur->off &&
old->off >= old->range && cur->off >= cur->range)
/* Returns true if (rold safe implies rcur safe) */
static bool regsafe(struct bpf_reg_state *rold,
struct bpf_reg_state *rcur,
bool varlen_map_access, struct idpair *idmap)
{
if (memcmp(rold, rcur, sizeof(*rold)) == 0)
return true;
if (rold->type == NOT_INIT)
/* explored state can't have used this */
return true;
if (rcur->type == NOT_INIT)
return false;
switch (rold->type) {
case SCALAR_VALUE:
if (rcur->type == SCALAR_VALUE) {
/* new val must satisfy old val knowledge */
return range_within(rold, rcur) &&
tnum_in(rold->var_off, rcur->var_off);
} else {
/* if we knew anything about the old value, we're not
* equal, because we can't know anything about the
* scalar value of the pointer in the new value.
*/
return rold->min_value == BPF_REGISTER_MIN_RANGE &&
rold->max_value == BPF_REGISTER_MAX_RANGE &&
tnum_is_unknown(rold->var_off);
}
case PTR_TO_MAP_VALUE:
if (varlen_map_access) {
/* If the new min/max/var_off satisfy the old ones and
* everything else matches, we are OK.
* We don't care about the 'id' value, because nothing
* uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
*/
return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
range_within(rold, rcur) &&
tnum_in(rold->var_off, rcur->var_off);
} else {
/* If the ranges/var_off were not the same, but
* everything else was and we didn't do a variable
* access into a map then we are a-ok.
*/
return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0;
}
case PTR_TO_MAP_VALUE_OR_NULL:
/* a PTR_TO_MAP_VALUE could be safe to use as a
* PTR_TO_MAP_VALUE_OR_NULL into the same map.
* However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
* checked, doing so could have affected others with the same
* id, and we can't check for that because we lost the id when
* we converted to a PTR_TO_MAP_VALUE.
*/
if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
return false;
if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
return false;
/* Check our ids match any regs they're supposed to */
return check_ids(rold->id, rcur->id, idmap);
case PTR_TO_PACKET:
if (rcur->type != PTR_TO_PACKET)
return false;
/* We must have at least as much range as the old ptr
* did, so that any accesses which were safe before are
* still safe. This is true even if old range < old off,
* since someone could have accessed through (ptr - k), or
* even done ptr -= k in a register, to get a safe access.
*/
if (rold->range > rcur->range)
return false;
/* If the offsets don't match, we can't trust our alignment;
* nor can we be sure that we won't fall out of range.
*/
if (rold->off != rcur->off)
return false;
/* id relations must be preserved */
if (rold->id && !check_ids(rold->id, rcur->id, idmap))
return false;
/* new val must satisfy old val knowledge */
return range_within(rold, rcur) &&
tnum_in(rold->var_off, rcur->var_off);
case PTR_TO_CTX:
case CONST_PTR_TO_MAP:
case PTR_TO_STACK:
case PTR_TO_PACKET_END:
/* Only valid matches are exact, which memcmp() above
* would have accepted
*/
default:
/* Don't know what's going on, just say it's not safe */
return false;
}
/* Shouldn't get here; if we do, say it's not safe */
WARN_ON_ONCE(1);
return false;
}
......@@ -2947,43 +3137,19 @@ static bool states_equal(struct bpf_verifier_env *env,
struct bpf_verifier_state *cur)
{
bool varlen_map_access = env->varlen_map_value_access;
struct bpf_reg_state *rold, *rcur;
struct idpair *idmap;
bool ret = false;
int i;
for (i = 0; i < MAX_BPF_REG; i++) {
rold = &old->regs[i];
rcur = &cur->regs[i];
if (memcmp(rold, rcur, sizeof(*rold)) == 0)
continue;
/* If the ranges were not the same, but everything else was and
* we didn't do a variable access into a map then we are a-ok.
*/
if (!varlen_map_access &&
memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
continue;
/* If we didn't map access then again we don't care about the
* mismatched range values and it's ok if our old type was
* UNKNOWN and we didn't go to a NOT_INIT'ed reg.
*/
if (rold->type == NOT_INIT ||
(!varlen_map_access && rold->type == UNKNOWN_VALUE &&
rcur->type != NOT_INIT))
continue;
/* Don't care about the reg->id in this case. */
if (rold->type == PTR_TO_MAP_VALUE_OR_NULL &&
rcur->type == PTR_TO_MAP_VALUE_OR_NULL &&
rold->map_ptr == rcur->map_ptr)
continue;
if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
compare_ptrs_to_packet(env, rold, rcur))
continue;
idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
/* If we failed to allocate the idmap, just say it's not safe */
if (!idmap)
return false;
for (i = 0; i < MAX_BPF_REG; i++) {
if (!regsafe(&old->regs[i], &cur->regs[i], varlen_map_access,
idmap))
goto out_free;
}
for (i = 0; i < MAX_BPF_STACK; i++) {
......@@ -2995,29 +3161,32 @@ static bool states_equal(struct bpf_verifier_env *env,
* this verifier states are not equivalent,
* return false to continue verification of this path
*/
return false;
goto out_free;
if (i % BPF_REG_SIZE)
continue;
if (old->stack_slot_type[i] != STACK_SPILL)
continue;
if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
&cur->spilled_regs[i / BPF_REG_SIZE],
sizeof(old->spilled_regs[0])))
/* when explored and current stack slot types are
* the same, check that stored pointers types
varlen_map_access, idmap))
/* when explored and current stack slot are both storing
* spilled registers, check that stored pointers types
* are the same as well.
* Ex: explored safe path could have stored
* (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
* (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
* but current path has stored:
* (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
* (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
* such verifier states are not equivalent.
* return false to continue verification of this path
*/
return false;
goto out_free;
else
continue;
}
return true;
ret = true;
out_free:
kfree(idmap);
return ret;
}
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
......@@ -3331,7 +3500,6 @@ static int do_check(struct bpf_verifier_env *env)
verbose("invalid BPF_LD mode\n");
return -EINVAL;
}
reset_reg_range_values(regs, insn->dst_reg);
} else {
verbose("unknown insn class %d\n", class);
return -EINVAL;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment